1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 S�ren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_compat.h" 35 36 #include <sys/param.h> 37 #include <sys/exec.h> 38 #include <sys/fcntl.h> 39 #include <sys/imgact.h> 40 #include <sys/imgact_elf.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/mutex.h> 46 #include <sys/mman.h> 47 #include <sys/namei.h> 48 #include <sys/pioctl.h> 49 #include <sys/proc.h> 50 #include <sys/procfs.h> 51 #include <sys/resourcevar.h> 52 #include <sys/systm.h> 53 #include <sys/signalvar.h> 54 #include <sys/stat.h> 55 #include <sys/sx.h> 56 #include <sys/syscall.h> 57 #include <sys/sysctl.h> 58 #include <sys/sysent.h> 59 #include <sys/vnode.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_kern.h> 63 #include <vm/vm_param.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_extern.h> 68 69 #include <machine/elf.h> 70 #include <machine/md_var.h> 71 72 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 73 #include <machine/fpu.h> 74 #include <compat/ia32/ia32_reg.h> 75 #endif 76 77 #define OLD_EI_BRAND 8 78 79 static int __elfN(check_header)(const Elf_Ehdr *hdr); 80 static Elf_Brandinfo *__elfN(get_brandinfo)(const Elf_Ehdr *hdr, 81 const char *interp); 82 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 83 u_long *entry, size_t pagesize); 84 static int __elfN(load_section)(struct proc *p, 85 struct vmspace *vmspace, struct vnode *vp, vm_object_t object, 86 vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 87 vm_prot_t prot, size_t pagesize); 88 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 89 90 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 91 ""); 92 93 int __elfN(fallback_brand) = -1; 94 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 95 fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, 96 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 97 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", 98 &__elfN(fallback_brand)); 99 100 int __elfN(can_exec_dyn) = 0; 101 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 102 can_exec_dyn, CTLFLAG_RW, &__elfN(can_exec_dyn), 0, 103 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " can exec shared libraries"); 104 105 static int elf_trace = 0; 106 SYSCTL_INT(_debug, OID_AUTO, __elfN(trace), CTLFLAG_RW, &elf_trace, 0, ""); 107 108 static int elf_legacy_coredump = 0; 109 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 110 &elf_legacy_coredump, 0, ""); 111 112 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 113 114 int 115 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 116 { 117 int i; 118 119 for (i = 0; i < MAX_BRANDS; i++) { 120 if (elf_brand_list[i] == NULL) { 121 elf_brand_list[i] = entry; 122 break; 123 } 124 } 125 if (i == MAX_BRANDS) 126 return (-1); 127 return (0); 128 } 129 130 int 131 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 132 { 133 int i; 134 135 for (i = 0; i < MAX_BRANDS; i++) { 136 if (elf_brand_list[i] == entry) { 137 elf_brand_list[i] = NULL; 138 break; 139 } 140 } 141 if (i == MAX_BRANDS) 142 return (-1); 143 return (0); 144 } 145 146 int 147 __elfN(brand_inuse)(Elf_Brandinfo *entry) 148 { 149 struct proc *p; 150 int rval = FALSE; 151 152 sx_slock(&allproc_lock); 153 LIST_FOREACH(p, &allproc, p_list) { 154 if (p->p_sysent == entry->sysvec) { 155 rval = TRUE; 156 break; 157 } 158 } 159 sx_sunlock(&allproc_lock); 160 161 return (rval); 162 } 163 164 static Elf_Brandinfo * 165 __elfN(get_brandinfo)(const Elf_Ehdr *hdr, const char *interp) 166 { 167 Elf_Brandinfo *bi; 168 int i; 169 170 /* 171 * We support three types of branding -- (1) the ELF EI_OSABI field 172 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 173 * branding w/in the ELF header, and (3) path of the `interp_path' 174 * field. We should also look for an ".note.ABI-tag" ELF section now 175 * in all Linux ELF binaries, FreeBSD 4.1+, and some NetBSD ones. 176 */ 177 178 /* If the executable has a brand, search for it in the brand list. */ 179 for (i = 0; i < MAX_BRANDS; i++) { 180 bi = elf_brand_list[i]; 181 if (bi != NULL && hdr->e_machine == bi->machine && 182 (hdr->e_ident[EI_OSABI] == bi->brand || 183 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 184 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 185 return (bi); 186 } 187 188 /* Lacking a known brand, search for a recognized interpreter. */ 189 if (interp != NULL) { 190 for (i = 0; i < MAX_BRANDS; i++) { 191 bi = elf_brand_list[i]; 192 if (bi != NULL && hdr->e_machine == bi->machine && 193 strcmp(interp, bi->interp_path) == 0) 194 return (bi); 195 } 196 } 197 198 /* Lacking a recognized interpreter, try the default brand */ 199 for (i = 0; i < MAX_BRANDS; i++) { 200 bi = elf_brand_list[i]; 201 if (bi != NULL && hdr->e_machine == bi->machine && 202 __elfN(fallback_brand) == bi->brand) 203 return (bi); 204 } 205 return (NULL); 206 } 207 208 static int 209 __elfN(check_header)(const Elf_Ehdr *hdr) 210 { 211 Elf_Brandinfo *bi; 212 int i; 213 214 if (!IS_ELF(*hdr) || 215 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 216 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 217 hdr->e_ident[EI_VERSION] != EV_CURRENT || 218 hdr->e_phentsize != sizeof(Elf_Phdr) || 219 hdr->e_version != ELF_TARG_VER) 220 return (ENOEXEC); 221 222 /* 223 * Make sure we have at least one brand for this machine. 224 */ 225 226 for (i = 0; i < MAX_BRANDS; i++) { 227 bi = elf_brand_list[i]; 228 if (bi != NULL && bi->machine == hdr->e_machine) 229 break; 230 } 231 if (i == MAX_BRANDS) 232 return (ENOEXEC); 233 234 return (0); 235 } 236 237 static int 238 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 239 vm_offset_t start, vm_offset_t end, vm_prot_t prot, 240 vm_prot_t max) 241 { 242 int error, rv; 243 vm_offset_t off; 244 vm_offset_t data_buf = 0; 245 246 /* 247 * Create the page if it doesn't exist yet. Ignore errors. 248 */ 249 vm_map_lock(map); 250 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), max, 251 max, 0); 252 vm_map_unlock(map); 253 254 /* 255 * Find the page from the underlying object. 256 */ 257 if (object) { 258 vm_object_reference(object); 259 rv = vm_map_find(exec_map, 260 object, 261 trunc_page(offset), 262 &data_buf, 263 PAGE_SIZE, 264 TRUE, 265 VM_PROT_READ, 266 VM_PROT_ALL, 267 MAP_COPY_ON_WRITE | MAP_PREFAULT_PARTIAL); 268 if (rv != KERN_SUCCESS) { 269 vm_object_deallocate(object); 270 return (rv); 271 } 272 273 off = offset - trunc_page(offset); 274 error = copyout((caddr_t)data_buf + off, (caddr_t)start, 275 end - start); 276 vm_map_remove(exec_map, data_buf, data_buf + PAGE_SIZE); 277 if (error) { 278 return (KERN_FAILURE); 279 } 280 } 281 282 return (KERN_SUCCESS); 283 } 284 285 static int 286 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 287 vm_offset_t start, vm_offset_t end, vm_prot_t prot, 288 vm_prot_t max, int cow) 289 { 290 vm_offset_t data_buf, off; 291 vm_size_t sz; 292 int error, rv; 293 294 if (start != trunc_page(start)) { 295 rv = __elfN(map_partial)(map, object, offset, start, 296 round_page(start), prot, max); 297 if (rv) 298 return (rv); 299 offset += round_page(start) - start; 300 start = round_page(start); 301 } 302 if (end != round_page(end)) { 303 rv = __elfN(map_partial)(map, object, offset + 304 trunc_page(end) - start, trunc_page(end), end, prot, max); 305 if (rv) 306 return (rv); 307 end = trunc_page(end); 308 } 309 if (end > start) { 310 if (offset & PAGE_MASK) { 311 /* 312 * The mapping is not page aligned. This means we have 313 * to copy the data. Sigh. 314 */ 315 rv = vm_map_find(map, 0, 0, &start, end - start, 316 FALSE, prot, max, 0); 317 if (rv) 318 return (rv); 319 data_buf = 0; 320 while (start < end) { 321 vm_object_reference(object); 322 rv = vm_map_find(exec_map, 323 object, 324 trunc_page(offset), 325 &data_buf, 326 2 * PAGE_SIZE, 327 TRUE, 328 VM_PROT_READ, 329 VM_PROT_ALL, 330 (MAP_COPY_ON_WRITE 331 | MAP_PREFAULT_PARTIAL)); 332 if (rv != KERN_SUCCESS) { 333 vm_object_deallocate(object); 334 return (rv); 335 } 336 off = offset - trunc_page(offset); 337 sz = end - start; 338 if (sz > PAGE_SIZE) 339 sz = PAGE_SIZE; 340 error = copyout((caddr_t)data_buf + off, 341 (caddr_t)start, sz); 342 vm_map_remove(exec_map, data_buf, 343 data_buf + 2 * PAGE_SIZE); 344 if (error) { 345 return (KERN_FAILURE); 346 } 347 start += sz; 348 } 349 rv = KERN_SUCCESS; 350 } else { 351 vm_map_lock(map); 352 rv = vm_map_insert(map, object, offset, start, end, 353 prot, max, cow); 354 vm_map_unlock(map); 355 } 356 return (rv); 357 } else { 358 return (KERN_SUCCESS); 359 } 360 } 361 362 static int 363 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, 364 struct vnode *vp, vm_object_t object, vm_offset_t offset, 365 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 366 size_t pagesize) 367 { 368 size_t map_len; 369 vm_offset_t map_addr; 370 int error, rv, cow; 371 size_t copy_len; 372 vm_offset_t file_addr; 373 vm_offset_t data_buf = 0; 374 375 error = 0; 376 377 /* 378 * It's necessary to fail if the filsz + offset taken from the 379 * header is greater than the actual file pager object's size. 380 * If we were to allow this, then the vm_map_find() below would 381 * walk right off the end of the file object and into the ether. 382 * 383 * While I'm here, might as well check for something else that 384 * is invalid: filsz cannot be greater than memsz. 385 */ 386 if ((off_t)filsz + offset > object->un_pager.vnp.vnp_size || 387 filsz > memsz) { 388 uprintf("elf_load_section: truncated ELF file\n"); 389 return (ENOEXEC); 390 } 391 392 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 393 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 394 395 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 396 file_addr = trunc_page_ps(offset, pagesize); 397 398 /* 399 * We have two choices. We can either clear the data in the last page 400 * of an oversized mapping, or we can start the anon mapping a page 401 * early and copy the initialized data into that first page. We 402 * choose the second.. 403 */ 404 if (memsz > filsz) 405 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 406 else 407 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 408 409 if (map_len != 0) { 410 vm_object_reference(object); 411 412 /* cow flags: don't dump readonly sections in core */ 413 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 414 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 415 416 rv = __elfN(map_insert)(&vmspace->vm_map, 417 object, 418 file_addr, /* file offset */ 419 map_addr, /* virtual start */ 420 map_addr + map_len,/* virtual end */ 421 prot, 422 VM_PROT_ALL, 423 cow); 424 if (rv != KERN_SUCCESS) { 425 vm_object_deallocate(object); 426 return (EINVAL); 427 } 428 429 /* we can stop now if we've covered it all */ 430 if (memsz == filsz) { 431 return (0); 432 } 433 } 434 435 436 /* 437 * We have to get the remaining bit of the file into the first part 438 * of the oversized map segment. This is normally because the .data 439 * segment in the file is extended to provide bss. It's a neat idea 440 * to try and save a page, but it's a pain in the behind to implement. 441 */ 442 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 443 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 444 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 445 map_addr; 446 447 /* This had damn well better be true! */ 448 if (map_len != 0) { 449 rv = __elfN(map_insert)(&vmspace->vm_map, NULL, 0, map_addr, 450 map_addr + map_len, VM_PROT_ALL, VM_PROT_ALL, 0); 451 if (rv != KERN_SUCCESS) { 452 return (EINVAL); 453 } 454 } 455 456 if (copy_len != 0) { 457 vm_offset_t off; 458 vm_object_reference(object); 459 rv = vm_map_find(exec_map, 460 object, 461 trunc_page(offset + filsz), 462 &data_buf, 463 PAGE_SIZE, 464 TRUE, 465 VM_PROT_READ, 466 VM_PROT_ALL, 467 MAP_COPY_ON_WRITE | MAP_PREFAULT_PARTIAL); 468 if (rv != KERN_SUCCESS) { 469 vm_object_deallocate(object); 470 return (EINVAL); 471 } 472 473 /* send the page fragment to user space */ 474 off = trunc_page_ps(offset + filsz, pagesize) - 475 trunc_page(offset + filsz); 476 error = copyout((caddr_t)data_buf + off, (caddr_t)map_addr, 477 copy_len); 478 vm_map_remove(exec_map, data_buf, data_buf + PAGE_SIZE); 479 if (error) { 480 return (error); 481 } 482 } 483 484 /* 485 * set it to the specified protection. 486 * XXX had better undo the damage from pasting over the cracks here! 487 */ 488 vm_map_protect(&vmspace->vm_map, trunc_page(map_addr), 489 round_page(map_addr + map_len), prot, FALSE); 490 491 return (error); 492 } 493 494 /* 495 * Load the file "file" into memory. It may be either a shared object 496 * or an executable. 497 * 498 * The "addr" reference parameter is in/out. On entry, it specifies 499 * the address where a shared object should be loaded. If the file is 500 * an executable, this value is ignored. On exit, "addr" specifies 501 * where the file was actually loaded. 502 * 503 * The "entry" reference parameter is out only. On exit, it specifies 504 * the entry point for the loaded file. 505 */ 506 static int 507 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 508 u_long *entry, size_t pagesize) 509 { 510 struct { 511 struct nameidata nd; 512 struct vattr attr; 513 struct image_params image_params; 514 } *tempdata; 515 const Elf_Ehdr *hdr = NULL; 516 const Elf_Phdr *phdr = NULL; 517 struct nameidata *nd; 518 struct vmspace *vmspace = p->p_vmspace; 519 struct vattr *attr; 520 struct image_params *imgp; 521 vm_prot_t prot; 522 u_long rbase; 523 u_long base_addr = 0; 524 int vfslocked, error, i, numsegs; 525 526 if (curthread->td_proc != p) 527 panic("elf_load_file - thread"); /* XXXKSE DIAGNOSTIC */ 528 529 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 530 nd = &tempdata->nd; 531 attr = &tempdata->attr; 532 imgp = &tempdata->image_params; 533 534 /* 535 * Initialize part of the common data 536 */ 537 imgp->proc = p; 538 imgp->attr = attr; 539 imgp->firstpage = NULL; 540 imgp->image_header = NULL; 541 imgp->object = NULL; 542 imgp->execlabel = NULL; 543 544 /* XXXKSE */ 545 NDINIT(nd, LOOKUP, MPSAFE|LOCKLEAF|FOLLOW, UIO_SYSSPACE, file, 546 curthread); 547 vfslocked = 0; 548 if ((error = namei(nd)) != 0) { 549 nd->ni_vp = NULL; 550 goto fail; 551 } 552 vfslocked = NDHASGIANT(nd); 553 NDFREE(nd, NDF_ONLY_PNBUF); 554 imgp->vp = nd->ni_vp; 555 556 /* 557 * Check permissions, modes, uid, etc on the file, and "open" it. 558 */ 559 error = exec_check_permissions(imgp); 560 if (error) { 561 VOP_UNLOCK(nd->ni_vp, 0, curthread); /* XXXKSE */ 562 goto fail; 563 } 564 565 error = exec_map_first_page(imgp); 566 /* 567 * Also make certain that the interpreter stays the same, so set 568 * its VV_TEXT flag, too. 569 */ 570 if (error == 0) 571 nd->ni_vp->v_vflag |= VV_TEXT; 572 573 imgp->object = nd->ni_vp->v_object; 574 vm_object_reference(imgp->object); 575 576 VOP_UNLOCK(nd->ni_vp, 0, curthread); /* XXXKSE */ 577 if (error) 578 goto fail; 579 580 hdr = (const Elf_Ehdr *)imgp->image_header; 581 if ((error = __elfN(check_header)(hdr)) != 0) 582 goto fail; 583 if (hdr->e_type == ET_DYN) 584 rbase = *addr; 585 else if (hdr->e_type == ET_EXEC) 586 rbase = 0; 587 else { 588 error = ENOEXEC; 589 goto fail; 590 } 591 592 /* Only support headers that fit within first page for now */ 593 /* (multiplication of two Elf_Half fields will not overflow) */ 594 if ((hdr->e_phoff > PAGE_SIZE) || 595 (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) { 596 error = ENOEXEC; 597 goto fail; 598 } 599 600 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 601 602 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 603 if (phdr[i].p_type == PT_LOAD) { /* Loadable segment */ 604 prot = 0; 605 if (phdr[i].p_flags & PF_X) 606 prot |= VM_PROT_EXECUTE; 607 if (phdr[i].p_flags & PF_W) 608 prot |= VM_PROT_WRITE; 609 if (phdr[i].p_flags & PF_R) 610 prot |= VM_PROT_READ; 611 612 if ((error = __elfN(load_section)(p, vmspace, 613 nd->ni_vp, imgp->object, phdr[i].p_offset, 614 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 615 phdr[i].p_memsz, phdr[i].p_filesz, prot, 616 pagesize)) != 0) 617 goto fail; 618 /* 619 * Establish the base address if this is the 620 * first segment. 621 */ 622 if (numsegs == 0) 623 base_addr = trunc_page(phdr[i].p_vaddr + 624 rbase); 625 numsegs++; 626 } 627 } 628 *addr = base_addr; 629 *entry = (unsigned long)hdr->e_entry + rbase; 630 631 fail: 632 if (imgp->firstpage) 633 exec_unmap_first_page(imgp); 634 if (imgp->object) 635 vm_object_deallocate(imgp->object); 636 637 if (nd->ni_vp) 638 vrele(nd->ni_vp); 639 640 VFS_UNLOCK_GIANT(vfslocked); 641 free(tempdata, M_TEMP); 642 643 return (error); 644 } 645 646 static int 647 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 648 { 649 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 650 const Elf_Phdr *phdr; 651 Elf_Auxargs *elf_auxargs = NULL; 652 struct vmspace *vmspace; 653 vm_prot_t prot; 654 u_long text_size = 0, data_size = 0, total_size = 0; 655 u_long text_addr = 0, data_addr = 0; 656 u_long seg_size, seg_addr; 657 u_long addr, entry = 0, proghdr = 0; 658 int error = 0, i; 659 const char *interp = NULL; 660 Elf_Brandinfo *brand_info; 661 char *path; 662 struct thread *td = curthread; 663 struct sysentvec *sv; 664 665 /* 666 * Do we have a valid ELF header ? 667 */ 668 if (__elfN(check_header)(hdr) != 0 || (hdr->e_type != ET_EXEC 669 && (!__elfN(can_exec_dyn) || hdr->e_type != ET_DYN))) 670 return (-1); 671 672 /* 673 * From here on down, we return an errno, not -1, as we've 674 * detected an ELF file. 675 */ 676 677 if ((hdr->e_phoff > PAGE_SIZE) || 678 (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) { 679 /* Only support headers in first page for now */ 680 return (ENOEXEC); 681 } 682 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 683 684 /* 685 * From this point on, we may have resources that need to be freed. 686 */ 687 688 VOP_UNLOCK(imgp->vp, 0, td); 689 690 for (i = 0; i < hdr->e_phnum; i++) { 691 switch (phdr[i].p_type) { 692 case PT_INTERP: /* Path to interpreter */ 693 if (phdr[i].p_filesz > MAXPATHLEN || 694 phdr[i].p_offset + phdr[i].p_filesz > PAGE_SIZE) { 695 error = ENOEXEC; 696 goto fail; 697 } 698 interp = imgp->image_header + phdr[i].p_offset; 699 break; 700 default: 701 break; 702 } 703 } 704 705 brand_info = __elfN(get_brandinfo)(hdr, interp); 706 if (brand_info == NULL) { 707 uprintf("ELF binary type \"%u\" not known.\n", 708 hdr->e_ident[EI_OSABI]); 709 error = ENOEXEC; 710 goto fail; 711 } 712 sv = brand_info->sysvec; 713 if (interp != NULL && brand_info->interp_newpath != NULL) 714 interp = brand_info->interp_newpath; 715 716 exec_new_vmspace(imgp, sv); 717 718 vmspace = imgp->proc->p_vmspace; 719 720 for (i = 0; i < hdr->e_phnum; i++) { 721 switch (phdr[i].p_type) { 722 case PT_LOAD: /* Loadable segment */ 723 prot = 0; 724 if (phdr[i].p_flags & PF_X) 725 prot |= VM_PROT_EXECUTE; 726 if (phdr[i].p_flags & PF_W) 727 prot |= VM_PROT_WRITE; 728 if (phdr[i].p_flags & PF_R) 729 prot |= VM_PROT_READ; 730 731 #if defined(__ia64__) && __ELF_WORD_SIZE == 32 && defined(IA32_ME_HARDER) 732 /* 733 * Some x86 binaries assume read == executable, 734 * notably the M3 runtime and therefore cvsup 735 */ 736 if (prot & VM_PROT_READ) 737 prot |= VM_PROT_EXECUTE; 738 #endif 739 740 if ((error = __elfN(load_section)(imgp->proc, vmspace, 741 imgp->vp, imgp->object, phdr[i].p_offset, 742 (caddr_t)(uintptr_t)phdr[i].p_vaddr, 743 phdr[i].p_memsz, phdr[i].p_filesz, prot, 744 sv->sv_pagesize)) != 0) 745 goto fail; 746 747 /* 748 * If this segment contains the program headers, 749 * remember their virtual address for the AT_PHDR 750 * aux entry. Static binaries don't usually include 751 * a PT_PHDR entry. 752 */ 753 if (phdr[i].p_offset == 0 && 754 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 755 <= phdr[i].p_filesz) 756 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 757 758 seg_addr = trunc_page(phdr[i].p_vaddr); 759 seg_size = round_page(phdr[i].p_memsz + 760 phdr[i].p_vaddr - seg_addr); 761 762 /* 763 * Is this .text or .data? We can't use 764 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the 765 * alpha terribly and possibly does other bad 766 * things so we stick to the old way of figuring 767 * it out: If the segment contains the program 768 * entry point, it's a text segment, otherwise it 769 * is a data segment. 770 * 771 * Note that obreak() assumes that data_addr + 772 * data_size == end of data load area, and the ELF 773 * file format expects segments to be sorted by 774 * address. If multiple data segments exist, the 775 * last one will be used. 776 */ 777 if (hdr->e_entry >= phdr[i].p_vaddr && 778 hdr->e_entry < (phdr[i].p_vaddr + 779 phdr[i].p_memsz)) { 780 text_size = seg_size; 781 text_addr = seg_addr; 782 entry = (u_long)hdr->e_entry; 783 } else { 784 data_size = seg_size; 785 data_addr = seg_addr; 786 } 787 total_size += seg_size; 788 break; 789 case PT_PHDR: /* Program header table info */ 790 proghdr = phdr[i].p_vaddr; 791 break; 792 default: 793 break; 794 } 795 } 796 797 if (data_addr == 0 && data_size == 0) { 798 data_addr = text_addr; 799 data_size = text_size; 800 } 801 802 /* 803 * Check limits. It should be safe to check the 804 * limits after loading the segments since we do 805 * not actually fault in all the segments pages. 806 */ 807 PROC_LOCK(imgp->proc); 808 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 809 text_size > maxtsiz || 810 total_size > lim_cur(imgp->proc, RLIMIT_VMEM)) { 811 PROC_UNLOCK(imgp->proc); 812 error = ENOMEM; 813 goto fail; 814 } 815 816 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 817 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 818 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 819 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 820 821 /* 822 * We load the dynamic linker where a userland call 823 * to mmap(0, ...) would put it. The rationale behind this 824 * calculation is that it leaves room for the heap to grow to 825 * its maximum allowed size. 826 */ 827 addr = round_page((vm_offset_t)imgp->proc->p_vmspace->vm_daddr + 828 lim_max(imgp->proc, RLIMIT_DATA)); 829 PROC_UNLOCK(imgp->proc); 830 831 imgp->entry_addr = entry; 832 833 imgp->proc->p_sysent = sv; 834 if (interp != NULL && brand_info->emul_path != NULL && 835 brand_info->emul_path[0] != '\0') { 836 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 837 snprintf(path, MAXPATHLEN, "%s%s", brand_info->emul_path, 838 interp); 839 error = __elfN(load_file)(imgp->proc, path, &addr, 840 &imgp->entry_addr, sv->sv_pagesize); 841 free(path, M_TEMP); 842 if (error == 0) 843 interp = NULL; 844 } 845 if (interp != NULL) { 846 error = __elfN(load_file)(imgp->proc, interp, &addr, 847 &imgp->entry_addr, sv->sv_pagesize); 848 if (error != 0) { 849 uprintf("ELF interpreter %s not found\n", interp); 850 goto fail; 851 } 852 } 853 854 /* 855 * Construct auxargs table (used by the fixup routine) 856 */ 857 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 858 elf_auxargs->execfd = -1; 859 elf_auxargs->phdr = proghdr; 860 elf_auxargs->phent = hdr->e_phentsize; 861 elf_auxargs->phnum = hdr->e_phnum; 862 elf_auxargs->pagesz = PAGE_SIZE; 863 elf_auxargs->base = addr; 864 elf_auxargs->flags = 0; 865 elf_auxargs->entry = entry; 866 elf_auxargs->trace = elf_trace; 867 868 imgp->auxargs = elf_auxargs; 869 imgp->interpreted = 0; 870 871 fail: 872 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY, td); 873 return (error); 874 } 875 876 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 877 878 int 879 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 880 { 881 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 882 Elf_Addr *base; 883 Elf_Addr *pos; 884 885 base = (Elf_Addr *)*stack_base; 886 pos = base + (imgp->args->argc + imgp->args->envc + 2); 887 888 if (args->trace) { 889 AUXARGS_ENTRY(pos, AT_DEBUG, 1); 890 } 891 if (args->execfd != -1) { 892 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 893 } 894 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 895 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 896 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 897 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 898 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 899 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 900 AUXARGS_ENTRY(pos, AT_BASE, args->base); 901 AUXARGS_ENTRY(pos, AT_NULL, 0); 902 903 free(imgp->auxargs, M_TEMP); 904 imgp->auxargs = NULL; 905 906 base--; 907 suword(base, (long)imgp->args->argc); 908 *stack_base = (register_t *)base; 909 return (0); 910 } 911 912 /* 913 * Code for generating ELF core dumps. 914 */ 915 916 typedef void (*segment_callback)(vm_map_entry_t, void *); 917 918 /* Closure for cb_put_phdr(). */ 919 struct phdr_closure { 920 Elf_Phdr *phdr; /* Program header to fill in */ 921 Elf_Off offset; /* Offset of segment in core file */ 922 }; 923 924 /* Closure for cb_size_segment(). */ 925 struct sseg_closure { 926 int count; /* Count of writable segments. */ 927 size_t size; /* Total size of all writable segments. */ 928 }; 929 930 static void cb_put_phdr(vm_map_entry_t, void *); 931 static void cb_size_segment(vm_map_entry_t, void *); 932 static void each_writable_segment(struct thread *, segment_callback, void *); 933 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 934 int, void *, size_t); 935 static void __elfN(puthdr)(struct thread *, void *, size_t *, int); 936 static void __elfN(putnote)(void *, size_t *, const char *, int, 937 const void *, size_t); 938 939 extern int osreldate; 940 941 int 942 __elfN(coredump)(td, vp, limit) 943 struct thread *td; 944 struct vnode *vp; 945 off_t limit; 946 { 947 struct ucred *cred = td->td_ucred; 948 int error = 0; 949 struct sseg_closure seginfo; 950 void *hdr; 951 size_t hdrsize; 952 953 /* Size the program segments. */ 954 seginfo.count = 0; 955 seginfo.size = 0; 956 each_writable_segment(td, cb_size_segment, &seginfo); 957 958 /* 959 * Calculate the size of the core file header area by making 960 * a dry run of generating it. Nothing is written, but the 961 * size is calculated. 962 */ 963 hdrsize = 0; 964 __elfN(puthdr)(td, (void *)NULL, &hdrsize, seginfo.count); 965 966 if (hdrsize + seginfo.size >= limit) 967 return (EFAULT); 968 969 /* 970 * Allocate memory for building the header, fill it up, 971 * and write it out. 972 */ 973 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 974 if (hdr == NULL) { 975 return (EINVAL); 976 } 977 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize); 978 979 /* Write the contents of all of the writable segments. */ 980 if (error == 0) { 981 Elf_Phdr *php; 982 off_t offset; 983 int i; 984 985 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 986 offset = hdrsize; 987 for (i = 0; i < seginfo.count; i++) { 988 error = vn_rdwr_inchunks(UIO_WRITE, vp, 989 (caddr_t)(uintptr_t)php->p_vaddr, 990 php->p_filesz, offset, UIO_USERSPACE, 991 IO_UNIT | IO_DIRECT, cred, NOCRED, NULL, 992 curthread); /* XXXKSE */ 993 if (error != 0) 994 break; 995 offset += php->p_filesz; 996 php++; 997 } 998 } 999 free(hdr, M_TEMP); 1000 1001 return (error); 1002 } 1003 1004 /* 1005 * A callback for each_writable_segment() to write out the segment's 1006 * program header entry. 1007 */ 1008 static void 1009 cb_put_phdr(entry, closure) 1010 vm_map_entry_t entry; 1011 void *closure; 1012 { 1013 struct phdr_closure *phc = (struct phdr_closure *)closure; 1014 Elf_Phdr *phdr = phc->phdr; 1015 1016 phc->offset = round_page(phc->offset); 1017 1018 phdr->p_type = PT_LOAD; 1019 phdr->p_offset = phc->offset; 1020 phdr->p_vaddr = entry->start; 1021 phdr->p_paddr = 0; 1022 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1023 phdr->p_align = PAGE_SIZE; 1024 phdr->p_flags = 0; 1025 if (entry->protection & VM_PROT_READ) 1026 phdr->p_flags |= PF_R; 1027 if (entry->protection & VM_PROT_WRITE) 1028 phdr->p_flags |= PF_W; 1029 if (entry->protection & VM_PROT_EXECUTE) 1030 phdr->p_flags |= PF_X; 1031 1032 phc->offset += phdr->p_filesz; 1033 phc->phdr++; 1034 } 1035 1036 /* 1037 * A callback for each_writable_segment() to gather information about 1038 * the number of segments and their total size. 1039 */ 1040 static void 1041 cb_size_segment(entry, closure) 1042 vm_map_entry_t entry; 1043 void *closure; 1044 { 1045 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1046 1047 ssc->count++; 1048 ssc->size += entry->end - entry->start; 1049 } 1050 1051 /* 1052 * For each writable segment in the process's memory map, call the given 1053 * function with a pointer to the map entry and some arbitrary 1054 * caller-supplied data. 1055 */ 1056 static void 1057 each_writable_segment(td, func, closure) 1058 struct thread *td; 1059 segment_callback func; 1060 void *closure; 1061 { 1062 struct proc *p = td->td_proc; 1063 vm_map_t map = &p->p_vmspace->vm_map; 1064 vm_map_entry_t entry; 1065 1066 for (entry = map->header.next; entry != &map->header; 1067 entry = entry->next) { 1068 vm_object_t obj; 1069 1070 /* 1071 * Don't dump inaccessible mappings, deal with legacy 1072 * coredump mode. 1073 * 1074 * Note that read-only segments related to the elf binary 1075 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1076 * need to arbitrarily ignore such segments. 1077 */ 1078 if (elf_legacy_coredump) { 1079 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1080 continue; 1081 } else { 1082 if ((entry->protection & VM_PROT_ALL) == 0) 1083 continue; 1084 } 1085 1086 /* 1087 * Dont include memory segment in the coredump if 1088 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1089 * madvise(2). Do not dump submaps (i.e. parts of the 1090 * kernel map). 1091 */ 1092 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1093 continue; 1094 1095 if ((obj = entry->object.vm_object) == NULL) 1096 continue; 1097 1098 /* Find the deepest backing object. */ 1099 while (obj->backing_object != NULL) 1100 obj = obj->backing_object; 1101 1102 /* Ignore memory-mapped devices and such things. */ 1103 if (obj->type != OBJT_DEFAULT && 1104 obj->type != OBJT_SWAP && 1105 obj->type != OBJT_VNODE) 1106 continue; 1107 1108 (*func)(entry, closure); 1109 } 1110 } 1111 1112 /* 1113 * Write the core file header to the file, including padding up to 1114 * the page boundary. 1115 */ 1116 static int 1117 __elfN(corehdr)(td, vp, cred, numsegs, hdr, hdrsize) 1118 struct thread *td; 1119 struct vnode *vp; 1120 struct ucred *cred; 1121 int numsegs; 1122 size_t hdrsize; 1123 void *hdr; 1124 { 1125 size_t off; 1126 1127 /* Fill in the header. */ 1128 bzero(hdr, hdrsize); 1129 off = 0; 1130 __elfN(puthdr)(td, hdr, &off, numsegs); 1131 1132 /* Write it to the core file. */ 1133 return (vn_rdwr_inchunks(UIO_WRITE, vp, hdr, hdrsize, (off_t)0, 1134 UIO_SYSSPACE, IO_UNIT | IO_DIRECT, cred, NOCRED, NULL, 1135 td)); /* XXXKSE */ 1136 } 1137 1138 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 1139 typedef struct prstatus32 elf_prstatus_t; 1140 typedef struct prpsinfo32 elf_prpsinfo_t; 1141 typedef struct fpreg32 elf_prfpregset_t; 1142 typedef struct fpreg32 elf_fpregset_t; 1143 typedef struct reg32 elf_gregset_t; 1144 #else 1145 typedef prstatus_t elf_prstatus_t; 1146 typedef prpsinfo_t elf_prpsinfo_t; 1147 typedef prfpregset_t elf_prfpregset_t; 1148 typedef prfpregset_t elf_fpregset_t; 1149 typedef gregset_t elf_gregset_t; 1150 #endif 1151 1152 static void 1153 __elfN(puthdr)(struct thread *td, void *dst, size_t *off, int numsegs) 1154 { 1155 struct { 1156 elf_prstatus_t status; 1157 elf_prfpregset_t fpregset; 1158 elf_prpsinfo_t psinfo; 1159 } *tempdata; 1160 elf_prstatus_t *status; 1161 elf_prfpregset_t *fpregset; 1162 elf_prpsinfo_t *psinfo; 1163 struct proc *p; 1164 struct thread *thr; 1165 size_t ehoff, noteoff, notesz, phoff; 1166 1167 p = td->td_proc; 1168 1169 ehoff = *off; 1170 *off += sizeof(Elf_Ehdr); 1171 1172 phoff = *off; 1173 *off += (numsegs + 1) * sizeof(Elf_Phdr); 1174 1175 noteoff = *off; 1176 /* 1177 * Don't allocate space for the notes if we're just calculating 1178 * the size of the header. We also don't collect the data. 1179 */ 1180 if (dst != NULL) { 1181 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_ZERO|M_WAITOK); 1182 status = &tempdata->status; 1183 fpregset = &tempdata->fpregset; 1184 psinfo = &tempdata->psinfo; 1185 } else { 1186 tempdata = NULL; 1187 status = NULL; 1188 fpregset = NULL; 1189 psinfo = NULL; 1190 } 1191 1192 if (dst != NULL) { 1193 psinfo->pr_version = PRPSINFO_VERSION; 1194 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1195 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1196 /* 1197 * XXX - We don't fill in the command line arguments properly 1198 * yet. 1199 */ 1200 strlcpy(psinfo->pr_psargs, p->p_comm, 1201 sizeof(psinfo->pr_psargs)); 1202 } 1203 __elfN(putnote)(dst, off, "FreeBSD", NT_PRPSINFO, psinfo, 1204 sizeof *psinfo); 1205 1206 /* 1207 * To have the debugger select the right thread (LWP) as the initial 1208 * thread, we dump the state of the thread passed to us in td first. 1209 * This is the thread that causes the core dump and thus likely to 1210 * be the right thread one wants to have selected in the debugger. 1211 */ 1212 thr = td; 1213 while (thr != NULL) { 1214 if (dst != NULL) { 1215 status->pr_version = PRSTATUS_VERSION; 1216 status->pr_statussz = sizeof(elf_prstatus_t); 1217 status->pr_gregsetsz = sizeof(elf_gregset_t); 1218 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1219 status->pr_osreldate = osreldate; 1220 status->pr_cursig = p->p_sig; 1221 status->pr_pid = thr->td_tid; 1222 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 1223 fill_regs32(thr, &status->pr_reg); 1224 fill_fpregs32(thr, fpregset); 1225 #else 1226 fill_regs(thr, &status->pr_reg); 1227 fill_fpregs(thr, fpregset); 1228 #endif 1229 } 1230 __elfN(putnote)(dst, off, "FreeBSD", NT_PRSTATUS, status, 1231 sizeof *status); 1232 __elfN(putnote)(dst, off, "FreeBSD", NT_FPREGSET, fpregset, 1233 sizeof *fpregset); 1234 /* 1235 * Allow for MD specific notes, as well as any MD 1236 * specific preparations for writing MI notes. 1237 */ 1238 __elfN(dump_thread)(thr, dst, off); 1239 1240 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1241 TAILQ_NEXT(thr, td_plist); 1242 if (thr == td) 1243 thr = TAILQ_NEXT(thr, td_plist); 1244 } 1245 1246 notesz = *off - noteoff; 1247 1248 if (dst != NULL) 1249 free(tempdata, M_TEMP); 1250 1251 /* Align up to a page boundary for the program segments. */ 1252 *off = round_page(*off); 1253 1254 if (dst != NULL) { 1255 Elf_Ehdr *ehdr; 1256 Elf_Phdr *phdr; 1257 struct phdr_closure phc; 1258 1259 /* 1260 * Fill in the ELF header. 1261 */ 1262 ehdr = (Elf_Ehdr *)((char *)dst + ehoff); 1263 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1264 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1265 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1266 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1267 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1268 ehdr->e_ident[EI_DATA] = ELF_DATA; 1269 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1270 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1271 ehdr->e_ident[EI_ABIVERSION] = 0; 1272 ehdr->e_ident[EI_PAD] = 0; 1273 ehdr->e_type = ET_CORE; 1274 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 1275 ehdr->e_machine = EM_386; 1276 #else 1277 ehdr->e_machine = ELF_ARCH; 1278 #endif 1279 ehdr->e_version = EV_CURRENT; 1280 ehdr->e_entry = 0; 1281 ehdr->e_phoff = phoff; 1282 ehdr->e_flags = 0; 1283 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1284 ehdr->e_phentsize = sizeof(Elf_Phdr); 1285 ehdr->e_phnum = numsegs + 1; 1286 ehdr->e_shentsize = sizeof(Elf_Shdr); 1287 ehdr->e_shnum = 0; 1288 ehdr->e_shstrndx = SHN_UNDEF; 1289 1290 /* 1291 * Fill in the program header entries. 1292 */ 1293 phdr = (Elf_Phdr *)((char *)dst + phoff); 1294 1295 /* The note segement. */ 1296 phdr->p_type = PT_NOTE; 1297 phdr->p_offset = noteoff; 1298 phdr->p_vaddr = 0; 1299 phdr->p_paddr = 0; 1300 phdr->p_filesz = notesz; 1301 phdr->p_memsz = 0; 1302 phdr->p_flags = 0; 1303 phdr->p_align = 0; 1304 phdr++; 1305 1306 /* All the writable segments from the program. */ 1307 phc.phdr = phdr; 1308 phc.offset = *off; 1309 each_writable_segment(td, cb_put_phdr, &phc); 1310 } 1311 } 1312 1313 static void 1314 __elfN(putnote)(void *dst, size_t *off, const char *name, int type, 1315 const void *desc, size_t descsz) 1316 { 1317 Elf_Note note; 1318 1319 note.n_namesz = strlen(name) + 1; 1320 note.n_descsz = descsz; 1321 note.n_type = type; 1322 if (dst != NULL) 1323 bcopy(¬e, (char *)dst + *off, sizeof note); 1324 *off += sizeof note; 1325 if (dst != NULL) 1326 bcopy(name, (char *)dst + *off, note.n_namesz); 1327 *off += roundup2(note.n_namesz, sizeof(Elf_Size)); 1328 if (dst != NULL) 1329 bcopy(desc, (char *)dst + *off, note.n_descsz); 1330 *off += roundup2(note.n_descsz, sizeof(Elf_Size)); 1331 } 1332 1333 /* 1334 * Tell kern_execve.c about it, with a little help from the linker. 1335 */ 1336 static struct execsw __elfN(execsw) = { 1337 __CONCAT(exec_, __elfN(imgact)), 1338 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 1339 }; 1340 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 1341