xref: /freebsd/sys/kern/imgact_elf.c (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #include "opt_capsicum.h"
36 
37 #include <sys/param.h>
38 #include <sys/capsicum.h>
39 #include <sys/compressor.h>
40 #include <sys/exec.h>
41 #include <sys/fcntl.h>
42 #include <sys/imgact.h>
43 #include <sys/imgact_elf.h>
44 #include <sys/jail.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/mman.h>
50 #include <sys/namei.h>
51 #include <sys/proc.h>
52 #include <sys/procfs.h>
53 #include <sys/ptrace.h>
54 #include <sys/racct.h>
55 #include <sys/reg.h>
56 #include <sys/resourcevar.h>
57 #include <sys/rwlock.h>
58 #include <sys/sbuf.h>
59 #include <sys/sf_buf.h>
60 #include <sys/smp.h>
61 #include <sys/systm.h>
62 #include <sys/signalvar.h>
63 #include <sys/stat.h>
64 #include <sys/sx.h>
65 #include <sys/syscall.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysent.h>
68 #include <sys/vnode.h>
69 #include <sys/syslog.h>
70 #include <sys/eventhandler.h>
71 #include <sys/user.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_param.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80 
81 #include <machine/elf.h>
82 #include <machine/md_var.h>
83 
84 #define ELF_NOTE_ROUNDSIZE	4
85 #define OLD_EI_BRAND	8
86 
87 static int __elfN(check_header)(const Elf_Ehdr *hdr);
88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
89     const char *interp, int32_t *osrel, uint32_t *fctl0);
90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
91     u_long *entry);
92 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
93     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
94 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
95 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
96     int32_t *osrel);
97 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
98 static bool __elfN(check_note)(struct image_params *imgp,
99     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
100     uint32_t *fctl0);
101 static vm_prot_t __elfN(trans_prot)(Elf_Word);
102 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
103 static size_t __elfN(prepare_register_notes)(struct thread *td,
104     struct note_info_list *list, struct thread *target_td);
105 
106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
107     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
108     "");
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if defined(__amd64__)
133 static int __elfN(vdso) = 1;
134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
135     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
136     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
137 #else
138 static int __elfN(vdso) = 0;
139 #endif
140 
141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
142 int i386_read_exec = 0;
143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
144     "enable execution from readable segments");
145 #endif
146 
147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
148 static int
149 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
150 {
151 	u_long val;
152 	int error;
153 
154 	val = __elfN(pie_base);
155 	error = sysctl_handle_long(oidp, &val, 0, req);
156 	if (error != 0 || req->newptr == NULL)
157 		return (error);
158 	if ((val & PAGE_MASK) != 0)
159 		return (EINVAL);
160 	__elfN(pie_base) = val;
161 	return (0);
162 }
163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
164     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
165     sysctl_pie_base, "LU",
166     "PIE load base without randomization");
167 
168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
169     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170     "");
171 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
172 
173 /*
174  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
175  * have limited address space (which can cause issues for applications with
176  * high memory use) so we leave it off there.
177  */
178 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
179 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
180     &__elfN(aslr_enabled), 0,
181     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
182     ": enable address map randomization");
183 
184 /*
185  * Enable ASLR by default for 64-bit PIE binaries.
186  */
187 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
189     &__elfN(pie_aslr_enabled), 0,
190     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
191     ": enable address map randomization for PIE binaries");
192 
193 /*
194  * Sbrk is deprecated and it can be assumed that in most cases it will not be
195  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
196  * to use the bss grow region.
197  */
198 static int __elfN(aslr_honor_sbrk) = 0;
199 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
200     &__elfN(aslr_honor_sbrk), 0,
201     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
202 
203 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
204 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
205     &__elfN(aslr_stack), 0,
206     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
207     ": enable stack address randomization");
208 
209 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
210 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
211     &__elfN(aslr_shared_page), 0,
212     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
213     ": enable shared page address randomization");
214 
215 static int __elfN(sigfastblock) = 1;
216 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
217     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
218     "enable sigfastblock for new processes");
219 
220 static bool __elfN(allow_wx) = true;
221 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
222     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
223     "Allow pages to be mapped simultaneously writable and executable");
224 
225 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
226 
227 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
228 
229 Elf_Brandnote __elfN(freebsd_brandnote) = {
230 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
231 	.hdr.n_descsz	= sizeof(int32_t),
232 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
233 	.vendor		= FREEBSD_ABI_VENDOR,
234 	.flags		= BN_TRANSLATE_OSREL,
235 	.trans_osrel	= __elfN(freebsd_trans_osrel)
236 };
237 
238 static bool
239 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
240 {
241 	uintptr_t p;
242 
243 	p = (uintptr_t)(note + 1);
244 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
245 	*osrel = *(const int32_t *)(p);
246 
247 	return (true);
248 }
249 
250 static const char GNU_ABI_VENDOR[] = "GNU";
251 static int GNU_KFREEBSD_ABI_DESC = 3;
252 
253 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
254 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
255 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
256 	.hdr.n_type	= 1,
257 	.vendor		= GNU_ABI_VENDOR,
258 	.flags		= BN_TRANSLATE_OSREL,
259 	.trans_osrel	= kfreebsd_trans_osrel
260 };
261 
262 static bool
263 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
264 {
265 	const Elf32_Word *desc;
266 	uintptr_t p;
267 
268 	p = (uintptr_t)(note + 1);
269 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
270 
271 	desc = (const Elf32_Word *)p;
272 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
273 		return (false);
274 
275 	/*
276 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
277 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
278 	 */
279 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
280 
281 	return (true);
282 }
283 
284 int
285 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
286 {
287 	int i;
288 
289 	for (i = 0; i < MAX_BRANDS; i++) {
290 		if (elf_brand_list[i] == NULL) {
291 			elf_brand_list[i] = entry;
292 			break;
293 		}
294 	}
295 	if (i == MAX_BRANDS) {
296 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
297 			__func__, entry);
298 		return (-1);
299 	}
300 	return (0);
301 }
302 
303 int
304 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
305 {
306 	int i;
307 
308 	for (i = 0; i < MAX_BRANDS; i++) {
309 		if (elf_brand_list[i] == entry) {
310 			elf_brand_list[i] = NULL;
311 			break;
312 		}
313 	}
314 	if (i == MAX_BRANDS)
315 		return (-1);
316 	return (0);
317 }
318 
319 bool
320 __elfN(brand_inuse)(Elf_Brandinfo *entry)
321 {
322 	struct proc *p;
323 	bool rval = false;
324 
325 	sx_slock(&allproc_lock);
326 	FOREACH_PROC_IN_SYSTEM(p) {
327 		if (p->p_sysent == entry->sysvec) {
328 			rval = true;
329 			break;
330 		}
331 	}
332 	sx_sunlock(&allproc_lock);
333 
334 	return (rval);
335 }
336 
337 static Elf_Brandinfo *
338 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
339     int32_t *osrel, uint32_t *fctl0)
340 {
341 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
342 	Elf_Brandinfo *bi, *bi_m;
343 	bool ret, has_fctl0;
344 	int i, interp_name_len;
345 
346 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
347 
348 	/*
349 	 * We support four types of branding -- (1) the ELF EI_OSABI field
350 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
351 	 * branding w/in the ELF header, (3) path of the `interp_path'
352 	 * field, and (4) the ".note.ABI-tag" ELF section.
353 	 */
354 
355 	/* Look for an ".note.ABI-tag" ELF section */
356 	bi_m = NULL;
357 	for (i = 0; i < MAX_BRANDS; i++) {
358 		bi = elf_brand_list[i];
359 		if (bi == NULL)
360 			continue;
361 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
362 			continue;
363 		if (hdr->e_machine == bi->machine && (bi->flags &
364 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
365 			has_fctl0 = false;
366 			*fctl0 = 0;
367 			*osrel = 0;
368 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
369 			    &has_fctl0, fctl0);
370 			/* Give brand a chance to veto check_note's guess */
371 			if (ret && bi->header_supported) {
372 				ret = bi->header_supported(imgp, osrel,
373 				    has_fctl0 ? fctl0 : NULL);
374 			}
375 			/*
376 			 * If note checker claimed the binary, but the
377 			 * interpreter path in the image does not
378 			 * match default one for the brand, try to
379 			 * search for other brands with the same
380 			 * interpreter.  Either there is better brand
381 			 * with the right interpreter, or, failing
382 			 * this, we return first brand which accepted
383 			 * our note and, optionally, header.
384 			 */
385 			if (ret && bi_m == NULL && interp != NULL &&
386 			    (bi->interp_path == NULL ||
387 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
388 			    strncmp(interp, bi->interp_path, interp_name_len)
389 			    != 0))) {
390 				bi_m = bi;
391 				ret = 0;
392 			}
393 			if (ret)
394 				return (bi);
395 		}
396 	}
397 	if (bi_m != NULL)
398 		return (bi_m);
399 
400 	/* If the executable has a brand, search for it in the brand list. */
401 	for (i = 0; i < MAX_BRANDS; i++) {
402 		bi = elf_brand_list[i];
403 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
404 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
405 			continue;
406 		if (hdr->e_machine == bi->machine &&
407 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
408 		    (bi->compat_3_brand != NULL &&
409 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
410 		    bi->compat_3_brand) == 0))) {
411 			/* Looks good, but give brand a chance to veto */
412 			if (bi->header_supported == NULL ||
413 			    bi->header_supported(imgp, NULL, NULL)) {
414 				/*
415 				 * Again, prefer strictly matching
416 				 * interpreter path.
417 				 */
418 				if (interp_name_len == 0 &&
419 				    bi->interp_path == NULL)
420 					return (bi);
421 				if (bi->interp_path != NULL &&
422 				    strlen(bi->interp_path) + 1 ==
423 				    interp_name_len && strncmp(interp,
424 				    bi->interp_path, interp_name_len) == 0)
425 					return (bi);
426 				if (bi_m == NULL)
427 					bi_m = bi;
428 			}
429 		}
430 	}
431 	if (bi_m != NULL)
432 		return (bi_m);
433 
434 	/* No known brand, see if the header is recognized by any brand */
435 	for (i = 0; i < MAX_BRANDS; i++) {
436 		bi = elf_brand_list[i];
437 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
438 		    bi->header_supported == NULL)
439 			continue;
440 		if (hdr->e_machine == bi->machine) {
441 			ret = bi->header_supported(imgp, NULL, NULL);
442 			if (ret)
443 				return (bi);
444 		}
445 	}
446 
447 	/* Lacking a known brand, search for a recognized interpreter. */
448 	if (interp != NULL) {
449 		for (i = 0; i < MAX_BRANDS; i++) {
450 			bi = elf_brand_list[i];
451 			if (bi == NULL || (bi->flags &
452 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
453 			    != 0)
454 				continue;
455 			if (hdr->e_machine == bi->machine &&
456 			    bi->interp_path != NULL &&
457 			    /* ELF image p_filesz includes terminating zero */
458 			    strlen(bi->interp_path) + 1 == interp_name_len &&
459 			    strncmp(interp, bi->interp_path, interp_name_len)
460 			    == 0 && (bi->header_supported == NULL ||
461 			    bi->header_supported(imgp, NULL, NULL)))
462 				return (bi);
463 		}
464 	}
465 
466 	/* Lacking a recognized interpreter, try the default brand */
467 	for (i = 0; i < MAX_BRANDS; i++) {
468 		bi = elf_brand_list[i];
469 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
470 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
471 			continue;
472 		if (hdr->e_machine == bi->machine &&
473 		    __elfN(fallback_brand) == bi->brand &&
474 		    (bi->header_supported == NULL ||
475 		    bi->header_supported(imgp, NULL, NULL)))
476 			return (bi);
477 	}
478 	return (NULL);
479 }
480 
481 static bool
482 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
483 {
484 	return (hdr->e_phoff <= PAGE_SIZE &&
485 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
486 }
487 
488 static int
489 __elfN(check_header)(const Elf_Ehdr *hdr)
490 {
491 	Elf_Brandinfo *bi;
492 	int i;
493 
494 	if (!IS_ELF(*hdr) ||
495 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
496 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
497 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
498 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
499 	    hdr->e_version != ELF_TARG_VER)
500 		return (ENOEXEC);
501 
502 	/*
503 	 * Make sure we have at least one brand for this machine.
504 	 */
505 
506 	for (i = 0; i < MAX_BRANDS; i++) {
507 		bi = elf_brand_list[i];
508 		if (bi != NULL && bi->machine == hdr->e_machine)
509 			break;
510 	}
511 	if (i == MAX_BRANDS)
512 		return (ENOEXEC);
513 
514 	return (0);
515 }
516 
517 static int
518 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
519     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
520 {
521 	struct sf_buf *sf;
522 	int error;
523 	vm_offset_t off;
524 
525 	/*
526 	 * Create the page if it doesn't exist yet. Ignore errors.
527 	 */
528 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
529 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
530 
531 	/*
532 	 * Find the page from the underlying object.
533 	 */
534 	if (object != NULL) {
535 		sf = vm_imgact_map_page(object, offset);
536 		if (sf == NULL)
537 			return (KERN_FAILURE);
538 		off = offset - trunc_page(offset);
539 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
540 		    end - start);
541 		vm_imgact_unmap_page(sf);
542 		if (error != 0)
543 			return (KERN_FAILURE);
544 	}
545 
546 	return (KERN_SUCCESS);
547 }
548 
549 static int
550 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
551     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
552     int cow)
553 {
554 	struct sf_buf *sf;
555 	vm_offset_t off;
556 	vm_size_t sz;
557 	int error, locked, rv;
558 
559 	if (start != trunc_page(start)) {
560 		rv = __elfN(map_partial)(map, object, offset, start,
561 		    round_page(start), prot);
562 		if (rv != KERN_SUCCESS)
563 			return (rv);
564 		offset += round_page(start) - start;
565 		start = round_page(start);
566 	}
567 	if (end != round_page(end)) {
568 		rv = __elfN(map_partial)(map, object, offset +
569 		    trunc_page(end) - start, trunc_page(end), end, prot);
570 		if (rv != KERN_SUCCESS)
571 			return (rv);
572 		end = trunc_page(end);
573 	}
574 	if (start >= end)
575 		return (KERN_SUCCESS);
576 	if ((offset & PAGE_MASK) != 0) {
577 		/*
578 		 * The mapping is not page aligned.  This means that we have
579 		 * to copy the data.
580 		 */
581 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
582 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
583 		if (rv != KERN_SUCCESS)
584 			return (rv);
585 		if (object == NULL)
586 			return (KERN_SUCCESS);
587 		for (; start < end; start += sz) {
588 			sf = vm_imgact_map_page(object, offset);
589 			if (sf == NULL)
590 				return (KERN_FAILURE);
591 			off = offset - trunc_page(offset);
592 			sz = end - start;
593 			if (sz > PAGE_SIZE - off)
594 				sz = PAGE_SIZE - off;
595 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
596 			    (caddr_t)start, sz);
597 			vm_imgact_unmap_page(sf);
598 			if (error != 0)
599 				return (KERN_FAILURE);
600 			offset += sz;
601 		}
602 	} else {
603 		vm_object_reference(object);
604 		rv = vm_map_fixed(map, object, offset, start, end - start,
605 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
606 		    (object != NULL ? MAP_VN_EXEC : 0));
607 		if (rv != KERN_SUCCESS) {
608 			locked = VOP_ISLOCKED(imgp->vp);
609 			VOP_UNLOCK(imgp->vp);
610 			vm_object_deallocate(object);
611 			vn_lock(imgp->vp, locked | LK_RETRY);
612 			return (rv);
613 		} else if (object != NULL) {
614 			MPASS(imgp->vp->v_object == object);
615 			VOP_SET_TEXT_CHECKED(imgp->vp);
616 		}
617 	}
618 	return (KERN_SUCCESS);
619 }
620 
621 static int
622 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
623     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
624 {
625 	struct sf_buf *sf;
626 	size_t map_len;
627 	vm_map_t map;
628 	vm_object_t object;
629 	vm_offset_t map_addr;
630 	int error, rv, cow;
631 	size_t copy_len;
632 	vm_ooffset_t file_addr;
633 
634 	/*
635 	 * It's necessary to fail if the filsz + offset taken from the
636 	 * header is greater than the actual file pager object's size.
637 	 * If we were to allow this, then the vm_map_find() below would
638 	 * walk right off the end of the file object and into the ether.
639 	 *
640 	 * While I'm here, might as well check for something else that
641 	 * is invalid: filsz cannot be greater than memsz.
642 	 */
643 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
644 	    filsz > memsz) {
645 		uprintf("elf_load_section: truncated ELF file\n");
646 		return (ENOEXEC);
647 	}
648 
649 	object = imgp->object;
650 	map = &imgp->proc->p_vmspace->vm_map;
651 	map_addr = trunc_page((vm_offset_t)vmaddr);
652 	file_addr = trunc_page(offset);
653 
654 	/*
655 	 * We have two choices.  We can either clear the data in the last page
656 	 * of an oversized mapping, or we can start the anon mapping a page
657 	 * early and copy the initialized data into that first page.  We
658 	 * choose the second.
659 	 */
660 	if (filsz == 0)
661 		map_len = 0;
662 	else if (memsz > filsz)
663 		map_len = trunc_page(offset + filsz) - file_addr;
664 	else
665 		map_len = round_page(offset + filsz) - file_addr;
666 
667 	if (map_len != 0) {
668 		/* cow flags: don't dump readonly sections in core */
669 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
670 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
671 
672 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
673 		    map_addr, map_addr + map_len, prot, cow);
674 		if (rv != KERN_SUCCESS)
675 			return (EINVAL);
676 
677 		/* we can stop now if we've covered it all */
678 		if (memsz == filsz)
679 			return (0);
680 	}
681 
682 	/*
683 	 * We have to get the remaining bit of the file into the first part
684 	 * of the oversized map segment.  This is normally because the .data
685 	 * segment in the file is extended to provide bss.  It's a neat idea
686 	 * to try and save a page, but it's a pain in the behind to implement.
687 	 */
688 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
689 	    filsz);
690 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
691 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
692 
693 	/* This had damn well better be true! */
694 	if (map_len != 0) {
695 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
696 		    map_addr + map_len, prot, 0);
697 		if (rv != KERN_SUCCESS)
698 			return (EINVAL);
699 	}
700 
701 	if (copy_len != 0) {
702 		sf = vm_imgact_map_page(object, offset + filsz);
703 		if (sf == NULL)
704 			return (EIO);
705 
706 		/* send the page fragment to user space */
707 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
708 		    copy_len);
709 		vm_imgact_unmap_page(sf);
710 		if (error != 0)
711 			return (error);
712 	}
713 
714 	/*
715 	 * Remove write access to the page if it was only granted by map_insert
716 	 * to allow copyout.
717 	 */
718 	if ((prot & VM_PROT_WRITE) == 0)
719 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
720 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
721 
722 	return (0);
723 }
724 
725 static int
726 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
727     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
728 {
729 	vm_prot_t prot;
730 	u_long base_addr;
731 	bool first;
732 	int error, i;
733 
734 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
735 
736 	base_addr = 0;
737 	first = true;
738 
739 	for (i = 0; i < hdr->e_phnum; i++) {
740 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
741 			continue;
742 
743 		/* Loadable segment */
744 		prot = __elfN(trans_prot)(phdr[i].p_flags);
745 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
746 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
747 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
748 		if (error != 0)
749 			return (error);
750 
751 		/*
752 		 * Establish the base address if this is the first segment.
753 		 */
754 		if (first) {
755   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
756 			first = false;
757 		}
758 	}
759 
760 	if (base_addrp != NULL)
761 		*base_addrp = base_addr;
762 
763 	return (0);
764 }
765 
766 /*
767  * Load the file "file" into memory.  It may be either a shared object
768  * or an executable.
769  *
770  * The "addr" reference parameter is in/out.  On entry, it specifies
771  * the address where a shared object should be loaded.  If the file is
772  * an executable, this value is ignored.  On exit, "addr" specifies
773  * where the file was actually loaded.
774  *
775  * The "entry" reference parameter is out only.  On exit, it specifies
776  * the entry point for the loaded file.
777  */
778 static int
779 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
780 	u_long *entry)
781 {
782 	struct {
783 		struct nameidata nd;
784 		struct vattr attr;
785 		struct image_params image_params;
786 	} *tempdata;
787 	const Elf_Ehdr *hdr = NULL;
788 	const Elf_Phdr *phdr = NULL;
789 	struct nameidata *nd;
790 	struct vattr *attr;
791 	struct image_params *imgp;
792 	u_long rbase;
793 	u_long base_addr = 0;
794 	int error;
795 
796 #ifdef CAPABILITY_MODE
797 	/*
798 	 * XXXJA: This check can go away once we are sufficiently confident
799 	 * that the checks in namei() are correct.
800 	 */
801 	if (IN_CAPABILITY_MODE(curthread))
802 		return (ECAPMODE);
803 #endif
804 
805 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
806 	nd = &tempdata->nd;
807 	attr = &tempdata->attr;
808 	imgp = &tempdata->image_params;
809 
810 	/*
811 	 * Initialize part of the common data
812 	 */
813 	imgp->proc = p;
814 	imgp->attr = attr;
815 
816 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
817 	    UIO_SYSSPACE, file);
818 	if ((error = namei(nd)) != 0) {
819 		nd->ni_vp = NULL;
820 		goto fail;
821 	}
822 	NDFREE_PNBUF(nd);
823 	imgp->vp = nd->ni_vp;
824 
825 	/*
826 	 * Check permissions, modes, uid, etc on the file, and "open" it.
827 	 */
828 	error = exec_check_permissions(imgp);
829 	if (error)
830 		goto fail;
831 
832 	error = exec_map_first_page(imgp);
833 	if (error)
834 		goto fail;
835 
836 	imgp->object = nd->ni_vp->v_object;
837 
838 	hdr = (const Elf_Ehdr *)imgp->image_header;
839 	if ((error = __elfN(check_header)(hdr)) != 0)
840 		goto fail;
841 	if (hdr->e_type == ET_DYN)
842 		rbase = *addr;
843 	else if (hdr->e_type == ET_EXEC)
844 		rbase = 0;
845 	else {
846 		error = ENOEXEC;
847 		goto fail;
848 	}
849 
850 	/* Only support headers that fit within first page for now      */
851 	if (!__elfN(phdr_in_zero_page)(hdr)) {
852 		error = ENOEXEC;
853 		goto fail;
854 	}
855 
856 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
857 	if (!aligned(phdr, Elf_Addr)) {
858 		error = ENOEXEC;
859 		goto fail;
860 	}
861 
862 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
863 	if (error != 0)
864 		goto fail;
865 
866 	*addr = base_addr;
867 	*entry = (unsigned long)hdr->e_entry + rbase;
868 
869 fail:
870 	if (imgp->firstpage)
871 		exec_unmap_first_page(imgp);
872 
873 	if (nd->ni_vp) {
874 		if (imgp->textset)
875 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
876 		vput(nd->ni_vp);
877 	}
878 	free(tempdata, M_TEMP);
879 
880 	return (error);
881 }
882 
883 /*
884  * Select randomized valid address in the map map, between minv and
885  * maxv, with specified alignment.  The [minv, maxv) range must belong
886  * to the map.  Note that function only allocates the address, it is
887  * up to caller to clamp maxv in a way that the final allocation
888  * length fit into the map.
889  *
890  * Result is returned in *resp, error code indicates that arguments
891  * did not pass sanity checks for overflow and range correctness.
892  */
893 static int
894 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
895     u_int align, u_long *resp)
896 {
897 	u_long rbase, res;
898 
899 	MPASS(vm_map_min(map) <= minv);
900 
901 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
902 		uprintf("Invalid ELF segments layout\n");
903 		return (ENOEXEC);
904 	}
905 
906 	arc4rand(&rbase, sizeof(rbase), 0);
907 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
908 	res &= ~((u_long)align - 1);
909 	if (res >= maxv)
910 		res -= align;
911 
912 	KASSERT(res >= minv,
913 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
914 	    res, minv, maxv, rbase));
915 	KASSERT(res < maxv,
916 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
917 	    res, maxv, minv, rbase));
918 
919 	*resp = res;
920 	return (0);
921 }
922 
923 static int
924 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
925     const Elf_Phdr *phdr)
926 {
927 	struct vmspace *vmspace;
928 	const char *err_str;
929 	u_long text_size, data_size, total_size, text_addr, data_addr;
930 	u_long seg_size, seg_addr;
931 	int i;
932 
933 	err_str = NULL;
934 	text_size = data_size = total_size = text_addr = data_addr = 0;
935 
936 	for (i = 0; i < hdr->e_phnum; i++) {
937 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
938 			continue;
939 
940 		seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
941 		seg_size = round_page(phdr[i].p_memsz +
942 		    phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
943 
944 		/*
945 		 * Make the largest executable segment the official
946 		 * text segment and all others data.
947 		 *
948 		 * Note that obreak() assumes that data_addr + data_size == end
949 		 * of data load area, and the ELF file format expects segments
950 		 * to be sorted by address.  If multiple data segments exist,
951 		 * the last one will be used.
952 		 */
953 
954 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
955 			text_size = seg_size;
956 			text_addr = seg_addr;
957 		} else {
958 			data_size = seg_size;
959 			data_addr = seg_addr;
960 		}
961 		total_size += seg_size;
962 	}
963 
964 	if (data_addr == 0 && data_size == 0) {
965 		data_addr = text_addr;
966 		data_size = text_size;
967 	}
968 
969 	/*
970 	 * Check limits.  It should be safe to check the
971 	 * limits after loading the segments since we do
972 	 * not actually fault in all the segments pages.
973 	 */
974 	PROC_LOCK(imgp->proc);
975 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
976 		err_str = "Data segment size exceeds process limit";
977 	else if (text_size > maxtsiz)
978 		err_str = "Text segment size exceeds system limit";
979 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
980 		err_str = "Total segment size exceeds process limit";
981 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
982 		err_str = "Data segment size exceeds resource limit";
983 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
984 		err_str = "Total segment size exceeds resource limit";
985 	PROC_UNLOCK(imgp->proc);
986 	if (err_str != NULL) {
987 		uprintf("%s\n", err_str);
988 		return (ENOMEM);
989 	}
990 
991 	vmspace = imgp->proc->p_vmspace;
992 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
993 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
994 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
995 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
996 
997 	return (0);
998 }
999 
1000 static int
1001 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1002     char **interpp, bool *free_interpp)
1003 {
1004 	struct thread *td;
1005 	char *interp;
1006 	int error, interp_name_len;
1007 
1008 	KASSERT(phdr->p_type == PT_INTERP,
1009 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1010 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1011 
1012 	td = curthread;
1013 
1014 	/* Path to interpreter */
1015 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1016 		uprintf("Invalid PT_INTERP\n");
1017 		return (ENOEXEC);
1018 	}
1019 
1020 	interp_name_len = phdr->p_filesz;
1021 	if (phdr->p_offset > PAGE_SIZE ||
1022 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1023 		/*
1024 		 * The vnode lock might be needed by the pagedaemon to
1025 		 * clean pages owned by the vnode.  Do not allow sleep
1026 		 * waiting for memory with the vnode locked, instead
1027 		 * try non-sleepable allocation first, and if it
1028 		 * fails, go to the slow path were we drop the lock
1029 		 * and do M_WAITOK.  A text reference prevents
1030 		 * modifications to the vnode content.
1031 		 */
1032 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1033 		if (interp == NULL) {
1034 			VOP_UNLOCK(imgp->vp);
1035 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1036 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1037 		}
1038 
1039 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1040 		    interp_name_len, phdr->p_offset,
1041 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1042 		    NOCRED, NULL, td);
1043 		if (error != 0) {
1044 			free(interp, M_TEMP);
1045 			uprintf("i/o error PT_INTERP %d\n", error);
1046 			return (error);
1047 		}
1048 		interp[interp_name_len] = '\0';
1049 
1050 		*interpp = interp;
1051 		*free_interpp = true;
1052 		return (0);
1053 	}
1054 
1055 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1056 	if (interp[interp_name_len - 1] != '\0') {
1057 		uprintf("Invalid PT_INTERP\n");
1058 		return (ENOEXEC);
1059 	}
1060 
1061 	*interpp = interp;
1062 	*free_interpp = false;
1063 	return (0);
1064 }
1065 
1066 static int
1067 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1068     const char *interp, u_long *addr, u_long *entry)
1069 {
1070 	int error;
1071 
1072 	if (brand_info->interp_newpath != NULL &&
1073 	    (brand_info->interp_path == NULL ||
1074 	    strcmp(interp, brand_info->interp_path) == 0)) {
1075 		error = __elfN(load_file)(imgp->proc,
1076 		    brand_info->interp_newpath, addr, entry);
1077 		if (error == 0)
1078 			return (0);
1079 	}
1080 
1081 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1082 	if (error == 0)
1083 		return (0);
1084 
1085 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1086 	return (error);
1087 }
1088 
1089 /*
1090  * Impossible et_dyn_addr initial value indicating that the real base
1091  * must be calculated later with some randomization applied.
1092  */
1093 #define	ET_DYN_ADDR_RAND	1
1094 
1095 static int
1096 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1097 {
1098 	struct thread *td;
1099 	const Elf_Ehdr *hdr;
1100 	const Elf_Phdr *phdr;
1101 	Elf_Auxargs *elf_auxargs;
1102 	struct vmspace *vmspace;
1103 	vm_map_t map;
1104 	char *interp;
1105 	Elf_Brandinfo *brand_info;
1106 	struct sysentvec *sv;
1107 	u_long addr, baddr, entry, proghdr;
1108 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1109 	uint32_t fctl0;
1110 	int32_t osrel;
1111 	bool free_interp;
1112 	int error, i, n;
1113 
1114 	hdr = (const Elf_Ehdr *)imgp->image_header;
1115 
1116 	/*
1117 	 * Do we have a valid ELF header ?
1118 	 *
1119 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1120 	 * if particular brand doesn't support it.
1121 	 */
1122 	if (__elfN(check_header)(hdr) != 0 ||
1123 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1124 		return (-1);
1125 
1126 	/*
1127 	 * From here on down, we return an errno, not -1, as we've
1128 	 * detected an ELF file.
1129 	 */
1130 
1131 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1132 		uprintf("Program headers not in the first page\n");
1133 		return (ENOEXEC);
1134 	}
1135 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1136 	if (!aligned(phdr, Elf_Addr)) {
1137 		uprintf("Unaligned program headers\n");
1138 		return (ENOEXEC);
1139 	}
1140 
1141 	n = error = 0;
1142 	baddr = 0;
1143 	osrel = 0;
1144 	fctl0 = 0;
1145 	entry = proghdr = 0;
1146 	interp = NULL;
1147 	free_interp = false;
1148 	td = curthread;
1149 
1150 	/*
1151 	 * Somewhat arbitrary, limit accepted max alignment for the
1152 	 * loadable segment to the max supported superpage size. Too
1153 	 * large alignment requests are not useful and are indicators
1154 	 * of corrupted or outright malicious binary.
1155 	 */
1156 	maxalign = PAGE_SIZE;
1157 	maxsalign = PAGE_SIZE * 1024;
1158 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1159 		if (pagesizes[i] > maxsalign)
1160 			maxsalign = pagesizes[i];
1161 	}
1162 
1163 	mapsz = 0;
1164 
1165 	for (i = 0; i < hdr->e_phnum; i++) {
1166 		switch (phdr[i].p_type) {
1167 		case PT_LOAD:
1168 			if (n == 0)
1169 				baddr = phdr[i].p_vaddr;
1170 			if (!powerof2(phdr[i].p_align) ||
1171 			    phdr[i].p_align > maxsalign) {
1172 				uprintf("Invalid segment alignment\n");
1173 				error = ENOEXEC;
1174 				goto ret;
1175 			}
1176 			if (phdr[i].p_align > maxalign)
1177 				maxalign = phdr[i].p_align;
1178 			if (mapsz + phdr[i].p_memsz < mapsz) {
1179 				uprintf("Mapsize overflow\n");
1180 				error = ENOEXEC;
1181 				goto ret;
1182 			}
1183 			mapsz += phdr[i].p_memsz;
1184 			n++;
1185 
1186 			/*
1187 			 * If this segment contains the program headers,
1188 			 * remember their virtual address for the AT_PHDR
1189 			 * aux entry. Static binaries don't usually include
1190 			 * a PT_PHDR entry.
1191 			 */
1192 			if (phdr[i].p_offset == 0 &&
1193 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1194 			    phdr[i].p_filesz)
1195 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1196 			break;
1197 		case PT_INTERP:
1198 			/* Path to interpreter */
1199 			if (interp != NULL) {
1200 				uprintf("Multiple PT_INTERP headers\n");
1201 				error = ENOEXEC;
1202 				goto ret;
1203 			}
1204 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1205 			    &free_interp);
1206 			if (error != 0)
1207 				goto ret;
1208 			break;
1209 		case PT_GNU_STACK:
1210 			if (__elfN(nxstack)) {
1211 				imgp->stack_prot =
1212 				    __elfN(trans_prot)(phdr[i].p_flags);
1213 				if ((imgp->stack_prot & VM_PROT_RW) !=
1214 				    VM_PROT_RW) {
1215 					uprintf("Invalid PT_GNU_STACK\n");
1216 					error = ENOEXEC;
1217 					goto ret;
1218 				}
1219 			}
1220 			imgp->stack_sz = phdr[i].p_memsz;
1221 			break;
1222 		case PT_PHDR: 	/* Program header table info */
1223 			proghdr = phdr[i].p_vaddr;
1224 			break;
1225 		}
1226 	}
1227 
1228 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1229 	if (brand_info == NULL) {
1230 		uprintf("ELF binary type \"%u\" not known.\n",
1231 		    hdr->e_ident[EI_OSABI]);
1232 		error = ENOEXEC;
1233 		goto ret;
1234 	}
1235 	sv = brand_info->sysvec;
1236 	if (hdr->e_type == ET_DYN) {
1237 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1238 			uprintf("Cannot execute shared object\n");
1239 			error = ENOEXEC;
1240 			goto ret;
1241 		}
1242 		/*
1243 		 * Honour the base load address from the dso if it is
1244 		 * non-zero for some reason.
1245 		 */
1246 		if (baddr == 0) {
1247 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1248 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1249 				imgp->et_dyn_addr = __elfN(pie_base);
1250 			else if ((__elfN(pie_aslr_enabled) &&
1251 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1252 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1253 				imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1254 			else
1255 				imgp->et_dyn_addr = __elfN(pie_base);
1256 		}
1257 	}
1258 
1259 	/*
1260 	 * Avoid a possible deadlock if the current address space is destroyed
1261 	 * and that address space maps the locked vnode.  In the common case,
1262 	 * the locked vnode's v_usecount is decremented but remains greater
1263 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1264 	 * However, in cases where the vnode lock is external, such as nullfs,
1265 	 * v_usecount may become zero.
1266 	 *
1267 	 * The VV_TEXT flag prevents modifications to the executable while
1268 	 * the vnode is unlocked.
1269 	 */
1270 	VOP_UNLOCK(imgp->vp);
1271 
1272 	/*
1273 	 * Decide whether to enable randomization of user mappings.
1274 	 * First, reset user preferences for the setid binaries.
1275 	 * Then, account for the support of the randomization by the
1276 	 * ABI, by user preferences, and make special treatment for
1277 	 * PIE binaries.
1278 	 */
1279 	if (imgp->credential_setid) {
1280 		PROC_LOCK(imgp->proc);
1281 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1282 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1283 		PROC_UNLOCK(imgp->proc);
1284 	}
1285 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1286 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1287 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1288 		KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1289 		    ("imgp->et_dyn_addr == RAND and !ASLR"));
1290 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1291 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1292 	    imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1293 		imgp->map_flags |= MAP_ASLR;
1294 		/*
1295 		 * If user does not care about sbrk, utilize the bss
1296 		 * grow region for mappings as well.  We can select
1297 		 * the base for the image anywere and still not suffer
1298 		 * from the fragmentation.
1299 		 */
1300 		if (!__elfN(aslr_honor_sbrk) ||
1301 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1302 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1303 		if (__elfN(aslr_stack))
1304 			imgp->map_flags |= MAP_ASLR_STACK;
1305 		if (__elfN(aslr_shared_page))
1306 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1307 	}
1308 
1309 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1310 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1311 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1312 		imgp->map_flags |= MAP_WXORX;
1313 
1314 	error = exec_new_vmspace(imgp, sv);
1315 
1316 	imgp->proc->p_sysent = sv;
1317 	imgp->proc->p_elf_brandinfo = brand_info;
1318 
1319 	vmspace = imgp->proc->p_vmspace;
1320 	map = &vmspace->vm_map;
1321 	maxv = sv->sv_usrstack;
1322 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1323 		maxv -= lim_max(td, RLIMIT_STACK);
1324 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1325 		uprintf("Excessive mapping size\n");
1326 		error = ENOEXEC;
1327 	}
1328 
1329 	if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1330 		KASSERT((map->flags & MAP_ASLR) != 0,
1331 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1332 		error = __CONCAT(rnd_, __elfN(base))(map,
1333 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1334 		    /* reserve half of the address space to interpreter */
1335 		    maxv / 2, maxalign, &imgp->et_dyn_addr);
1336 	}
1337 
1338 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1339 	if (error != 0)
1340 		goto ret;
1341 
1342 	error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1343 	if (error != 0)
1344 		goto ret;
1345 
1346 	error = __elfN(enforce_limits)(imgp, hdr, phdr);
1347 	if (error != 0)
1348 		goto ret;
1349 
1350 	/*
1351 	 * We load the dynamic linker where a userland call
1352 	 * to mmap(0, ...) would put it.  The rationale behind this
1353 	 * calculation is that it leaves room for the heap to grow to
1354 	 * its maximum allowed size.
1355 	 */
1356 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1357 	    RLIMIT_DATA));
1358 	if ((map->flags & MAP_ASLR) != 0) {
1359 		maxv1 = maxv / 2 + addr / 2;
1360 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1361 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1362 		    pagesizes[1] : pagesizes[0], &anon_loc);
1363 		if (error != 0)
1364 			goto ret;
1365 		map->anon_loc = anon_loc;
1366 	} else {
1367 		map->anon_loc = addr;
1368 	}
1369 
1370 	entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1371 	imgp->entry_addr = entry;
1372 
1373 	if (interp != NULL) {
1374 		VOP_UNLOCK(imgp->vp);
1375 		if ((map->flags & MAP_ASLR) != 0) {
1376 			/* Assume that interpreter fits into 1/4 of AS */
1377 			maxv1 = maxv / 2 + addr / 2;
1378 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1379 			    maxv1, PAGE_SIZE, &addr);
1380 		}
1381 		if (error == 0) {
1382 			error = __elfN(load_interp)(imgp, brand_info, interp,
1383 			    &addr, &imgp->entry_addr);
1384 		}
1385 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1386 		if (error != 0)
1387 			goto ret;
1388 	} else
1389 		addr = imgp->et_dyn_addr;
1390 
1391 	error = exec_map_stack(imgp);
1392 	if (error != 0)
1393 		goto ret;
1394 
1395 	/*
1396 	 * Construct auxargs table (used by the copyout_auxargs routine)
1397 	 */
1398 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1399 	if (elf_auxargs == NULL) {
1400 		VOP_UNLOCK(imgp->vp);
1401 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1402 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1403 	}
1404 	elf_auxargs->execfd = -1;
1405 	elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1406 	elf_auxargs->phent = hdr->e_phentsize;
1407 	elf_auxargs->phnum = hdr->e_phnum;
1408 	elf_auxargs->pagesz = PAGE_SIZE;
1409 	elf_auxargs->base = addr;
1410 	elf_auxargs->flags = 0;
1411 	elf_auxargs->entry = entry;
1412 	elf_auxargs->hdr_eflags = hdr->e_flags;
1413 
1414 	imgp->auxargs = elf_auxargs;
1415 	imgp->interpreted = 0;
1416 	imgp->reloc_base = addr;
1417 	imgp->proc->p_osrel = osrel;
1418 	imgp->proc->p_fctl0 = fctl0;
1419 	imgp->proc->p_elf_flags = hdr->e_flags;
1420 
1421 ret:
1422 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1423 	if (free_interp)
1424 		free(interp, M_TEMP);
1425 	return (error);
1426 }
1427 
1428 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1429 
1430 int
1431 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1432 {
1433 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1434 	Elf_Auxinfo *argarray, *pos;
1435 	struct vmspace *vmspace;
1436 	rlim_t stacksz;
1437 	int error, oc;
1438 	uint32_t bsdflags;
1439 
1440 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1441 	    M_WAITOK | M_ZERO);
1442 
1443 	vmspace = imgp->proc->p_vmspace;
1444 
1445 	if (args->execfd != -1)
1446 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1447 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1448 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1449 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1450 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1451 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1452 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1453 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1454 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1455 	if (imgp->execpathp != 0)
1456 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1457 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1458 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1459 	if (imgp->canary != 0) {
1460 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1461 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1462 	}
1463 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1464 	if (imgp->pagesizes != 0) {
1465 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1466 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1467 	}
1468 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1469 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1470 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1471 	}
1472 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1473 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1474 	    imgp->sysent->sv_stackprot);
1475 	if (imgp->sysent->sv_hwcap != NULL)
1476 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1477 	if (imgp->sysent->sv_hwcap2 != NULL)
1478 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1479 	bsdflags = 0;
1480 	bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1481 	oc = atomic_load_int(&vm_overcommit);
1482 	bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1483 	    0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1484 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1485 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1486 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1487 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1488 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1489 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1490 #ifdef RANDOM_FENESTRASX
1491 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1492 		AUXARGS_ENTRY(pos, AT_FXRNG,
1493 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1494 	}
1495 #endif
1496 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1497 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1498 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1499 	}
1500 	AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1501 	stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1502 	AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1503 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1504 
1505 	free(imgp->auxargs, M_TEMP);
1506 	imgp->auxargs = NULL;
1507 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1508 
1509 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1510 	free(argarray, M_TEMP);
1511 	return (error);
1512 }
1513 
1514 int
1515 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1516 {
1517 	Elf_Addr *base;
1518 
1519 	base = (Elf_Addr *)*stack_base;
1520 	base--;
1521 	if (elf_suword(base, imgp->args->argc) == -1)
1522 		return (EFAULT);
1523 	*stack_base = (uintptr_t)base;
1524 	return (0);
1525 }
1526 
1527 /*
1528  * Code for generating ELF core dumps.
1529  */
1530 
1531 typedef void (*segment_callback)(vm_map_entry_t, void *);
1532 
1533 /* Closure for cb_put_phdr(). */
1534 struct phdr_closure {
1535 	Elf_Phdr *phdr;		/* Program header to fill in */
1536 	Elf_Off offset;		/* Offset of segment in core file */
1537 };
1538 
1539 struct note_info {
1540 	int		type;		/* Note type. */
1541 	struct regset	*regset;	/* Register set. */
1542 	outfunc_t 	outfunc; 	/* Output function. */
1543 	void		*outarg;	/* Argument for the output function. */
1544 	size_t		outsize;	/* Output size. */
1545 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1546 };
1547 
1548 TAILQ_HEAD(note_info_list, note_info);
1549 
1550 extern int compress_user_cores;
1551 extern int compress_user_cores_level;
1552 
1553 static void cb_put_phdr(vm_map_entry_t, void *);
1554 static void cb_size_segment(vm_map_entry_t, void *);
1555 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1556     int);
1557 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1558     struct note_info_list *, size_t, int);
1559 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1560 
1561 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1562 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1563 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1564 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1565 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1566 static void note_procstat_files(void *, struct sbuf *, size_t *);
1567 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1568 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1569 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1570 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1571 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1572 
1573 static int
1574 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1575 {
1576 
1577 	return (core_write((struct coredump_params *)arg, base, len, offset,
1578 	    UIO_SYSSPACE, NULL));
1579 }
1580 
1581 int
1582 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1583 {
1584 	struct ucred *cred = td->td_ucred;
1585 	int compm, error = 0;
1586 	struct sseg_closure seginfo;
1587 	struct note_info_list notelst;
1588 	struct coredump_params params;
1589 	struct note_info *ninfo;
1590 	void *hdr, *tmpbuf;
1591 	size_t hdrsize, notesz, coresize;
1592 
1593 	hdr = NULL;
1594 	tmpbuf = NULL;
1595 	TAILQ_INIT(&notelst);
1596 
1597 	/* Size the program segments. */
1598 	__elfN(size_segments)(td, &seginfo, flags);
1599 
1600 	/*
1601 	 * Collect info about the core file header area.
1602 	 */
1603 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1604 	if (seginfo.count + 1 >= PN_XNUM)
1605 		hdrsize += sizeof(Elf_Shdr);
1606 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1607 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1608 
1609 	/* Set up core dump parameters. */
1610 	params.offset = 0;
1611 	params.active_cred = cred;
1612 	params.file_cred = NOCRED;
1613 	params.td = td;
1614 	params.vp = vp;
1615 	params.comp = NULL;
1616 
1617 #ifdef RACCT
1618 	if (racct_enable) {
1619 		PROC_LOCK(td->td_proc);
1620 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1621 		PROC_UNLOCK(td->td_proc);
1622 		if (error != 0) {
1623 			error = EFAULT;
1624 			goto done;
1625 		}
1626 	}
1627 #endif
1628 	if (coresize >= limit) {
1629 		error = EFAULT;
1630 		goto done;
1631 	}
1632 
1633 	/* Create a compression stream if necessary. */
1634 	compm = compress_user_cores;
1635 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1636 	    compm == 0)
1637 		compm = COMPRESS_GZIP;
1638 	if (compm != 0) {
1639 		params.comp = compressor_init(core_compressed_write,
1640 		    compm, CORE_BUF_SIZE,
1641 		    compress_user_cores_level, &params);
1642 		if (params.comp == NULL) {
1643 			error = EFAULT;
1644 			goto done;
1645 		}
1646 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1647         }
1648 
1649 	/*
1650 	 * Allocate memory for building the header, fill it up,
1651 	 * and write it out following the notes.
1652 	 */
1653 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1654 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1655 	    notesz, flags);
1656 
1657 	/* Write the contents of all of the writable segments. */
1658 	if (error == 0) {
1659 		Elf_Phdr *php;
1660 		off_t offset;
1661 		int i;
1662 
1663 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1664 		offset = round_page(hdrsize + notesz);
1665 		for (i = 0; i < seginfo.count; i++) {
1666 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1667 			    php->p_filesz, offset, &params, tmpbuf);
1668 			if (error != 0)
1669 				break;
1670 			offset += php->p_filesz;
1671 			php++;
1672 		}
1673 		if (error == 0 && params.comp != NULL)
1674 			error = compressor_flush(params.comp);
1675 	}
1676 	if (error) {
1677 		log(LOG_WARNING,
1678 		    "Failed to write core file for process %s (error %d)\n",
1679 		    curproc->p_comm, error);
1680 	}
1681 
1682 done:
1683 	free(tmpbuf, M_TEMP);
1684 	if (params.comp != NULL)
1685 		compressor_fini(params.comp);
1686 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1687 		TAILQ_REMOVE(&notelst, ninfo, link);
1688 		free(ninfo, M_TEMP);
1689 	}
1690 	if (hdr != NULL)
1691 		free(hdr, M_TEMP);
1692 
1693 	return (error);
1694 }
1695 
1696 /*
1697  * A callback for each_dumpable_segment() to write out the segment's
1698  * program header entry.
1699  */
1700 static void
1701 cb_put_phdr(vm_map_entry_t entry, void *closure)
1702 {
1703 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1704 	Elf_Phdr *phdr = phc->phdr;
1705 
1706 	phc->offset = round_page(phc->offset);
1707 
1708 	phdr->p_type = PT_LOAD;
1709 	phdr->p_offset = phc->offset;
1710 	phdr->p_vaddr = entry->start;
1711 	phdr->p_paddr = 0;
1712 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1713 	phdr->p_align = PAGE_SIZE;
1714 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1715 
1716 	phc->offset += phdr->p_filesz;
1717 	phc->phdr++;
1718 }
1719 
1720 /*
1721  * A callback for each_dumpable_segment() to gather information about
1722  * the number of segments and their total size.
1723  */
1724 static void
1725 cb_size_segment(vm_map_entry_t entry, void *closure)
1726 {
1727 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1728 
1729 	ssc->count++;
1730 	ssc->size += entry->end - entry->start;
1731 }
1732 
1733 void
1734 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1735     int flags)
1736 {
1737 	seginfo->count = 0;
1738 	seginfo->size = 0;
1739 
1740 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1741 }
1742 
1743 /*
1744  * For each writable segment in the process's memory map, call the given
1745  * function with a pointer to the map entry and some arbitrary
1746  * caller-supplied data.
1747  */
1748 static void
1749 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1750     int flags)
1751 {
1752 	struct proc *p = td->td_proc;
1753 	vm_map_t map = &p->p_vmspace->vm_map;
1754 	vm_map_entry_t entry;
1755 	vm_object_t backing_object, object;
1756 	bool ignore_entry;
1757 
1758 	vm_map_lock_read(map);
1759 	VM_MAP_ENTRY_FOREACH(entry, map) {
1760 		/*
1761 		 * Don't dump inaccessible mappings, deal with legacy
1762 		 * coredump mode.
1763 		 *
1764 		 * Note that read-only segments related to the elf binary
1765 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1766 		 * need to arbitrarily ignore such segments.
1767 		 */
1768 		if ((flags & SVC_ALL) == 0) {
1769 			if (elf_legacy_coredump) {
1770 				if ((entry->protection & VM_PROT_RW) !=
1771 				    VM_PROT_RW)
1772 					continue;
1773 			} else {
1774 				if ((entry->protection & VM_PROT_ALL) == 0)
1775 					continue;
1776 			}
1777 		}
1778 
1779 		/*
1780 		 * Dont include memory segment in the coredump if
1781 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1782 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1783 		 * kernel map).
1784 		 */
1785 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1786 			continue;
1787 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1788 		    (flags & SVC_ALL) == 0)
1789 			continue;
1790 		if ((object = entry->object.vm_object) == NULL)
1791 			continue;
1792 
1793 		/* Ignore memory-mapped devices and such things. */
1794 		VM_OBJECT_RLOCK(object);
1795 		while ((backing_object = object->backing_object) != NULL) {
1796 			VM_OBJECT_RLOCK(backing_object);
1797 			VM_OBJECT_RUNLOCK(object);
1798 			object = backing_object;
1799 		}
1800 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1801 		VM_OBJECT_RUNLOCK(object);
1802 		if (ignore_entry)
1803 			continue;
1804 
1805 		(*func)(entry, closure);
1806 	}
1807 	vm_map_unlock_read(map);
1808 }
1809 
1810 /*
1811  * Write the core file header to the file, including padding up to
1812  * the page boundary.
1813  */
1814 static int
1815 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1816     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1817     int flags)
1818 {
1819 	struct note_info *ninfo;
1820 	struct sbuf *sb;
1821 	int error;
1822 
1823 	/* Fill in the header. */
1824 	bzero(hdr, hdrsize);
1825 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1826 
1827 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1828 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1829 	sbuf_start_section(sb, NULL);
1830 	sbuf_bcat(sb, hdr, hdrsize);
1831 	TAILQ_FOREACH(ninfo, notelst, link)
1832 	    __elfN(putnote)(p->td, ninfo, sb);
1833 	/* Align up to a page boundary for the program segments. */
1834 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1835 	error = sbuf_finish(sb);
1836 	sbuf_delete(sb);
1837 
1838 	return (error);
1839 }
1840 
1841 void
1842 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1843     size_t *sizep)
1844 {
1845 	struct proc *p;
1846 	struct thread *thr;
1847 	size_t size;
1848 
1849 	p = td->td_proc;
1850 	size = 0;
1851 
1852 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1853 	    __elfN(note_prpsinfo), p);
1854 
1855 	/*
1856 	 * To have the debugger select the right thread (LWP) as the initial
1857 	 * thread, we dump the state of the thread passed to us in td first.
1858 	 * This is the thread that causes the core dump and thus likely to
1859 	 * be the right thread one wants to have selected in the debugger.
1860 	 */
1861 	thr = td;
1862 	while (thr != NULL) {
1863 		size += __elfN(prepare_register_notes)(td, list, thr);
1864 		size += __elfN(register_note)(td, list, -1,
1865 		    __elfN(note_threadmd), thr);
1866 
1867 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1868 		    TAILQ_NEXT(thr, td_plist);
1869 		if (thr == td)
1870 			thr = TAILQ_NEXT(thr, td_plist);
1871 	}
1872 
1873 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1874 	    __elfN(note_procstat_proc), p);
1875 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1876 	    note_procstat_files, p);
1877 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1878 	    note_procstat_vmmap, p);
1879 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1880 	    note_procstat_groups, p);
1881 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1882 	    note_procstat_umask, p);
1883 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1884 	    note_procstat_rlimit, p);
1885 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1886 	    note_procstat_osrel, p);
1887 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1888 	    __elfN(note_procstat_psstrings), p);
1889 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1890 	    __elfN(note_procstat_auxv), p);
1891 
1892 	*sizep = size;
1893 }
1894 
1895 void
1896 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1897     size_t notesz, int flags)
1898 {
1899 	Elf_Ehdr *ehdr;
1900 	Elf_Phdr *phdr;
1901 	Elf_Shdr *shdr;
1902 	struct phdr_closure phc;
1903 	Elf_Brandinfo *bi;
1904 
1905 	ehdr = (Elf_Ehdr *)hdr;
1906 	bi = td->td_proc->p_elf_brandinfo;
1907 
1908 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1909 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1910 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1911 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1912 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1913 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1914 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1915 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1916 	ehdr->e_ident[EI_ABIVERSION] = 0;
1917 	ehdr->e_ident[EI_PAD] = 0;
1918 	ehdr->e_type = ET_CORE;
1919 	ehdr->e_machine = bi->machine;
1920 	ehdr->e_version = EV_CURRENT;
1921 	ehdr->e_entry = 0;
1922 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1923 	ehdr->e_flags = td->td_proc->p_elf_flags;
1924 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1925 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1926 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1927 	ehdr->e_shstrndx = SHN_UNDEF;
1928 	if (numsegs + 1 < PN_XNUM) {
1929 		ehdr->e_phnum = numsegs + 1;
1930 		ehdr->e_shnum = 0;
1931 	} else {
1932 		ehdr->e_phnum = PN_XNUM;
1933 		ehdr->e_shnum = 1;
1934 
1935 		ehdr->e_shoff = ehdr->e_phoff +
1936 		    (numsegs + 1) * ehdr->e_phentsize;
1937 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1938 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1939 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1940 
1941 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1942 		memset(shdr, 0, sizeof(*shdr));
1943 		/*
1944 		 * A special first section is used to hold large segment and
1945 		 * section counts.  This was proposed by Sun Microsystems in
1946 		 * Solaris and has been adopted by Linux; the standard ELF
1947 		 * tools are already familiar with the technique.
1948 		 *
1949 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1950 		 * (or 12-7 depending on the version of the document) for more
1951 		 * details.
1952 		 */
1953 		shdr->sh_type = SHT_NULL;
1954 		shdr->sh_size = ehdr->e_shnum;
1955 		shdr->sh_link = ehdr->e_shstrndx;
1956 		shdr->sh_info = numsegs + 1;
1957 	}
1958 
1959 	/*
1960 	 * Fill in the program header entries.
1961 	 */
1962 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1963 
1964 	/* The note segement. */
1965 	phdr->p_type = PT_NOTE;
1966 	phdr->p_offset = hdrsize;
1967 	phdr->p_vaddr = 0;
1968 	phdr->p_paddr = 0;
1969 	phdr->p_filesz = notesz;
1970 	phdr->p_memsz = 0;
1971 	phdr->p_flags = PF_R;
1972 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1973 	phdr++;
1974 
1975 	/* All the writable segments from the program. */
1976 	phc.phdr = phdr;
1977 	phc.offset = round_page(hdrsize + notesz);
1978 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1979 }
1980 
1981 static size_t
1982 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
1983     struct regset *regset, struct thread *target_td)
1984 {
1985 	const struct sysentvec *sv;
1986 	struct note_info *ninfo;
1987 	size_t size, notesize;
1988 
1989 	size = 0;
1990 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
1991 		return (0);
1992 
1993 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1994 	ninfo->type = regset->note;
1995 	ninfo->regset = regset;
1996 	ninfo->outarg = target_td;
1997 	ninfo->outsize = size;
1998 	TAILQ_INSERT_TAIL(list, ninfo, link);
1999 
2000 	sv = td->td_proc->p_sysent;
2001 	notesize = sizeof(Elf_Note) +		/* note header */
2002 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2003 						/* note name */
2004 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2005 
2006 	return (notesize);
2007 }
2008 
2009 size_t
2010 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2011     int type, outfunc_t out, void *arg)
2012 {
2013 	const struct sysentvec *sv;
2014 	struct note_info *ninfo;
2015 	size_t size, notesize;
2016 
2017 	sv = td->td_proc->p_sysent;
2018 	size = 0;
2019 	out(arg, NULL, &size);
2020 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2021 	ninfo->type = type;
2022 	ninfo->outfunc = out;
2023 	ninfo->outarg = arg;
2024 	ninfo->outsize = size;
2025 	TAILQ_INSERT_TAIL(list, ninfo, link);
2026 
2027 	if (type == -1)
2028 		return (size);
2029 
2030 	notesize = sizeof(Elf_Note) +		/* note header */
2031 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2032 						/* note name */
2033 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2034 
2035 	return (notesize);
2036 }
2037 
2038 static size_t
2039 append_note_data(const void *src, void *dst, size_t len)
2040 {
2041 	size_t padded_len;
2042 
2043 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2044 	if (dst != NULL) {
2045 		bcopy(src, dst, len);
2046 		bzero((char *)dst + len, padded_len - len);
2047 	}
2048 	return (padded_len);
2049 }
2050 
2051 size_t
2052 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2053 {
2054 	Elf_Note *note;
2055 	char *buf;
2056 	size_t notesize;
2057 
2058 	buf = dst;
2059 	if (buf != NULL) {
2060 		note = (Elf_Note *)buf;
2061 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2062 		note->n_descsz = size;
2063 		note->n_type = type;
2064 		buf += sizeof(*note);
2065 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2066 		    sizeof(FREEBSD_ABI_VENDOR));
2067 		append_note_data(src, buf, size);
2068 		if (descp != NULL)
2069 			*descp = buf;
2070 	}
2071 
2072 	notesize = sizeof(Elf_Note) +		/* note header */
2073 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2074 						/* note name */
2075 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2076 
2077 	return (notesize);
2078 }
2079 
2080 static void
2081 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2082 {
2083 	Elf_Note note;
2084 	const struct sysentvec *sv;
2085 	ssize_t old_len, sect_len;
2086 	size_t new_len, descsz, i;
2087 
2088 	if (ninfo->type == -1) {
2089 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2090 		return;
2091 	}
2092 
2093 	sv = td->td_proc->p_sysent;
2094 
2095 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2096 	note.n_descsz = ninfo->outsize;
2097 	note.n_type = ninfo->type;
2098 
2099 	sbuf_bcat(sb, &note, sizeof(note));
2100 	sbuf_start_section(sb, &old_len);
2101 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2102 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2103 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2104 	if (note.n_descsz == 0)
2105 		return;
2106 	sbuf_start_section(sb, &old_len);
2107 	if (ninfo->regset != NULL) {
2108 		struct regset *regset = ninfo->regset;
2109 		void *buf;
2110 
2111 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2112 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2113 		sbuf_bcat(sb, buf, ninfo->outsize);
2114 		free(buf, M_TEMP);
2115 	} else
2116 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2117 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2118 	if (sect_len < 0)
2119 		return;
2120 
2121 	new_len = (size_t)sect_len;
2122 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2123 	if (new_len < descsz) {
2124 		/*
2125 		 * It is expected that individual note emitters will correctly
2126 		 * predict their expected output size and fill up to that size
2127 		 * themselves, padding in a format-specific way if needed.
2128 		 * However, in case they don't, just do it here with zeros.
2129 		 */
2130 		for (i = 0; i < descsz - new_len; i++)
2131 			sbuf_putc(sb, 0);
2132 	} else if (new_len > descsz) {
2133 		/*
2134 		 * We can't always truncate sb -- we may have drained some
2135 		 * of it already.
2136 		 */
2137 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2138 		    "read it (%zu > %zu).  Since it is longer than "
2139 		    "expected, this coredump's notes are corrupt.  THIS "
2140 		    "IS A BUG in the note_procstat routine for type %u.\n",
2141 		    __func__, (unsigned)note.n_type, new_len, descsz,
2142 		    (unsigned)note.n_type));
2143 	}
2144 }
2145 
2146 /*
2147  * Miscellaneous note out functions.
2148  */
2149 
2150 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2151 #include <compat/freebsd32/freebsd32.h>
2152 #include <compat/freebsd32/freebsd32_signal.h>
2153 
2154 typedef struct prstatus32 elf_prstatus_t;
2155 typedef struct prpsinfo32 elf_prpsinfo_t;
2156 typedef struct fpreg32 elf_prfpregset_t;
2157 typedef struct fpreg32 elf_fpregset_t;
2158 typedef struct reg32 elf_gregset_t;
2159 typedef struct thrmisc32 elf_thrmisc_t;
2160 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2161 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2162 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2163 typedef uint32_t elf_ps_strings_t;
2164 #else
2165 typedef prstatus_t elf_prstatus_t;
2166 typedef prpsinfo_t elf_prpsinfo_t;
2167 typedef prfpregset_t elf_prfpregset_t;
2168 typedef prfpregset_t elf_fpregset_t;
2169 typedef gregset_t elf_gregset_t;
2170 typedef thrmisc_t elf_thrmisc_t;
2171 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2172 #define ELF_KERN_PROC_MASK	0
2173 typedef struct kinfo_proc elf_kinfo_proc_t;
2174 typedef vm_offset_t elf_ps_strings_t;
2175 #endif
2176 
2177 static void
2178 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2179 {
2180 	struct sbuf sbarg;
2181 	size_t len;
2182 	char *cp, *end;
2183 	struct proc *p;
2184 	elf_prpsinfo_t *psinfo;
2185 	int error;
2186 
2187 	p = arg;
2188 	if (sb != NULL) {
2189 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2190 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2191 		psinfo->pr_version = PRPSINFO_VERSION;
2192 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2193 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2194 		PROC_LOCK(p);
2195 		if (p->p_args != NULL) {
2196 			len = sizeof(psinfo->pr_psargs) - 1;
2197 			if (len > p->p_args->ar_length)
2198 				len = p->p_args->ar_length;
2199 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2200 			PROC_UNLOCK(p);
2201 			error = 0;
2202 		} else {
2203 			_PHOLD(p);
2204 			PROC_UNLOCK(p);
2205 			sbuf_new(&sbarg, psinfo->pr_psargs,
2206 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2207 			error = proc_getargv(curthread, p, &sbarg);
2208 			PRELE(p);
2209 			if (sbuf_finish(&sbarg) == 0) {
2210 				len = sbuf_len(&sbarg);
2211 				if (len > 0)
2212 					len--;
2213 			} else {
2214 				len = sizeof(psinfo->pr_psargs) - 1;
2215 			}
2216 			sbuf_delete(&sbarg);
2217 		}
2218 		if (error != 0 || len == 0 || (ssize_t)len == -1)
2219 			strlcpy(psinfo->pr_psargs, p->p_comm,
2220 			    sizeof(psinfo->pr_psargs));
2221 		else {
2222 			KASSERT(len < sizeof(psinfo->pr_psargs),
2223 			    ("len is too long: %zu vs %zu", len,
2224 			    sizeof(psinfo->pr_psargs)));
2225 			cp = psinfo->pr_psargs;
2226 			end = cp + len - 1;
2227 			for (;;) {
2228 				cp = memchr(cp, '\0', end - cp);
2229 				if (cp == NULL)
2230 					break;
2231 				*cp = ' ';
2232 			}
2233 		}
2234 		psinfo->pr_pid = p->p_pid;
2235 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2236 		free(psinfo, M_TEMP);
2237 	}
2238 	*sizep = sizeof(*psinfo);
2239 }
2240 
2241 static bool
2242 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2243     size_t *sizep)
2244 {
2245 	elf_prstatus_t *status;
2246 
2247 	if (buf != NULL) {
2248 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2249 		    __func__));
2250 		status = buf;
2251 		memset(status, 0, *sizep);
2252 		status->pr_version = PRSTATUS_VERSION;
2253 		status->pr_statussz = sizeof(elf_prstatus_t);
2254 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2255 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2256 		status->pr_osreldate = osreldate;
2257 		status->pr_cursig = td->td_proc->p_sig;
2258 		status->pr_pid = td->td_tid;
2259 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2260 		fill_regs32(td, &status->pr_reg);
2261 #else
2262 		fill_regs(td, &status->pr_reg);
2263 #endif
2264 	}
2265 	*sizep = sizeof(*status);
2266 	return (true);
2267 }
2268 
2269 static bool
2270 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2271     size_t size)
2272 {
2273 	elf_prstatus_t *status;
2274 
2275 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2276 	status = buf;
2277 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2278 	set_regs32(td, &status->pr_reg);
2279 #else
2280 	set_regs(td, &status->pr_reg);
2281 #endif
2282 	return (true);
2283 }
2284 
2285 static struct regset __elfN(regset_prstatus) = {
2286 	.note = NT_PRSTATUS,
2287 	.size = sizeof(elf_prstatus_t),
2288 	.get = __elfN(get_prstatus),
2289 	.set = __elfN(set_prstatus),
2290 };
2291 ELF_REGSET(__elfN(regset_prstatus));
2292 
2293 static bool
2294 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2295     size_t *sizep)
2296 {
2297 	elf_prfpregset_t *fpregset;
2298 
2299 	if (buf != NULL) {
2300 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2301 		    __func__));
2302 		fpregset = buf;
2303 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2304 		fill_fpregs32(td, fpregset);
2305 #else
2306 		fill_fpregs(td, fpregset);
2307 #endif
2308 	}
2309 	*sizep = sizeof(*fpregset);
2310 	return (true);
2311 }
2312 
2313 static bool
2314 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2315     size_t size)
2316 {
2317 	elf_prfpregset_t *fpregset;
2318 
2319 	fpregset = buf;
2320 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2321 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2322 	set_fpregs32(td, fpregset);
2323 #else
2324 	set_fpregs(td, fpregset);
2325 #endif
2326 	return (true);
2327 }
2328 
2329 static struct regset __elfN(regset_fpregset) = {
2330 	.note = NT_FPREGSET,
2331 	.size = sizeof(elf_prfpregset_t),
2332 	.get = __elfN(get_fpregset),
2333 	.set = __elfN(set_fpregset),
2334 };
2335 ELF_REGSET(__elfN(regset_fpregset));
2336 
2337 static bool
2338 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2339     size_t *sizep)
2340 {
2341 	elf_thrmisc_t *thrmisc;
2342 
2343 	if (buf != NULL) {
2344 		KASSERT(*sizep == sizeof(*thrmisc),
2345 		    ("%s: invalid size", __func__));
2346 		thrmisc = buf;
2347 		bzero(thrmisc, sizeof(*thrmisc));
2348 		strcpy(thrmisc->pr_tname, td->td_name);
2349 	}
2350 	*sizep = sizeof(*thrmisc);
2351 	return (true);
2352 }
2353 
2354 static struct regset __elfN(regset_thrmisc) = {
2355 	.note = NT_THRMISC,
2356 	.size = sizeof(elf_thrmisc_t),
2357 	.get = __elfN(get_thrmisc),
2358 };
2359 ELF_REGSET(__elfN(regset_thrmisc));
2360 
2361 static bool
2362 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2363     size_t *sizep)
2364 {
2365 	elf_lwpinfo_t pl;
2366 	size_t size;
2367 	int structsize;
2368 
2369 	size = sizeof(structsize) + sizeof(pl);
2370 	if (buf != NULL) {
2371 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2372 		structsize = sizeof(pl);
2373 		memcpy(buf, &structsize, sizeof(structsize));
2374 		bzero(&pl, sizeof(pl));
2375 		pl.pl_lwpid = td->td_tid;
2376 		pl.pl_event = PL_EVENT_NONE;
2377 		pl.pl_sigmask = td->td_sigmask;
2378 		pl.pl_siglist = td->td_siglist;
2379 		if (td->td_si.si_signo != 0) {
2380 			pl.pl_event = PL_EVENT_SIGNAL;
2381 			pl.pl_flags |= PL_FLAG_SI;
2382 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2383 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2384 #else
2385 			pl.pl_siginfo = td->td_si;
2386 #endif
2387 		}
2388 		strcpy(pl.pl_tdname, td->td_name);
2389 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2390 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2391 	}
2392 	*sizep = size;
2393 	return (true);
2394 }
2395 
2396 static struct regset __elfN(regset_lwpinfo) = {
2397 	.note = NT_PTLWPINFO,
2398 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2399 	.get = __elfN(get_lwpinfo),
2400 };
2401 ELF_REGSET(__elfN(regset_lwpinfo));
2402 
2403 static size_t
2404 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2405     struct thread *target_td)
2406 {
2407 	struct sysentvec *sv = td->td_proc->p_sysent;
2408 	struct regset **regsetp, **regset_end, *regset;
2409 	size_t size;
2410 
2411 	size = 0;
2412 
2413 	/* NT_PRSTATUS must be the first register set note. */
2414 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2415 	    target_td);
2416 
2417 	regsetp = sv->sv_regset_begin;
2418 	if (regsetp == NULL) {
2419 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2420 		size += __elfN(register_regset_note)(td, list,
2421 		    &__elfN(regset_fpregset), target_td);
2422 		return (size);
2423 	}
2424 	regset_end = sv->sv_regset_end;
2425 	MPASS(regset_end != NULL);
2426 	for (; regsetp < regset_end; regsetp++) {
2427 		regset = *regsetp;
2428 		if (regset->note == NT_PRSTATUS)
2429 			continue;
2430 		size += __elfN(register_regset_note)(td, list, regset,
2431 		    target_td);
2432 	}
2433 	return (size);
2434 }
2435 
2436 /*
2437  * Allow for MD specific notes, as well as any MD
2438  * specific preparations for writing MI notes.
2439  */
2440 static void
2441 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2442 {
2443 	struct thread *td;
2444 	void *buf;
2445 	size_t size;
2446 
2447 	td = (struct thread *)arg;
2448 	size = *sizep;
2449 	if (size != 0 && sb != NULL)
2450 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2451 	else
2452 		buf = NULL;
2453 	size = 0;
2454 	__elfN(dump_thread)(td, buf, &size);
2455 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2456 	if (size != 0 && sb != NULL)
2457 		sbuf_bcat(sb, buf, size);
2458 	free(buf, M_TEMP);
2459 	*sizep = size;
2460 }
2461 
2462 #ifdef KINFO_PROC_SIZE
2463 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2464 #endif
2465 
2466 static void
2467 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2468 {
2469 	struct proc *p;
2470 	size_t size;
2471 	int structsize;
2472 
2473 	p = arg;
2474 	size = sizeof(structsize) + p->p_numthreads *
2475 	    sizeof(elf_kinfo_proc_t);
2476 
2477 	if (sb != NULL) {
2478 		KASSERT(*sizep == size, ("invalid size"));
2479 		structsize = sizeof(elf_kinfo_proc_t);
2480 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2481 		sx_slock(&proctree_lock);
2482 		PROC_LOCK(p);
2483 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2484 		sx_sunlock(&proctree_lock);
2485 	}
2486 	*sizep = size;
2487 }
2488 
2489 #ifdef KINFO_FILE_SIZE
2490 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2491 #endif
2492 
2493 static void
2494 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2495 {
2496 	struct proc *p;
2497 	size_t size, sect_sz, i;
2498 	ssize_t start_len, sect_len;
2499 	int structsize, filedesc_flags;
2500 
2501 	if (coredump_pack_fileinfo)
2502 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2503 	else
2504 		filedesc_flags = 0;
2505 
2506 	p = arg;
2507 	structsize = sizeof(struct kinfo_file);
2508 	if (sb == NULL) {
2509 		size = 0;
2510 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2511 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2512 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2513 		PROC_LOCK(p);
2514 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2515 		sbuf_finish(sb);
2516 		sbuf_delete(sb);
2517 		*sizep = size;
2518 	} else {
2519 		sbuf_start_section(sb, &start_len);
2520 
2521 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2522 		PROC_LOCK(p);
2523 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2524 		    filedesc_flags);
2525 
2526 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2527 		if (sect_len < 0)
2528 			return;
2529 		sect_sz = sect_len;
2530 
2531 		KASSERT(sect_sz <= *sizep,
2532 		    ("kern_proc_filedesc_out did not respect maxlen; "
2533 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2534 		     sect_sz - sizeof(structsize)));
2535 
2536 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2537 			sbuf_putc(sb, 0);
2538 	}
2539 }
2540 
2541 #ifdef KINFO_VMENTRY_SIZE
2542 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2543 #endif
2544 
2545 static void
2546 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2547 {
2548 	struct proc *p;
2549 	size_t size;
2550 	int structsize, vmmap_flags;
2551 
2552 	if (coredump_pack_vmmapinfo)
2553 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2554 	else
2555 		vmmap_flags = 0;
2556 
2557 	p = arg;
2558 	structsize = sizeof(struct kinfo_vmentry);
2559 	if (sb == NULL) {
2560 		size = 0;
2561 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2562 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2563 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2564 		PROC_LOCK(p);
2565 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2566 		sbuf_finish(sb);
2567 		sbuf_delete(sb);
2568 		*sizep = size;
2569 	} else {
2570 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2571 		PROC_LOCK(p);
2572 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2573 		    vmmap_flags);
2574 	}
2575 }
2576 
2577 static void
2578 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2579 {
2580 	struct proc *p;
2581 	size_t size;
2582 	int structsize;
2583 
2584 	p = arg;
2585 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2586 	if (sb != NULL) {
2587 		KASSERT(*sizep == size, ("invalid size"));
2588 		structsize = sizeof(gid_t);
2589 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2590 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2591 		    sizeof(gid_t));
2592 	}
2593 	*sizep = size;
2594 }
2595 
2596 static void
2597 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2598 {
2599 	struct proc *p;
2600 	size_t size;
2601 	int structsize;
2602 
2603 	p = arg;
2604 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2605 	if (sb != NULL) {
2606 		KASSERT(*sizep == size, ("invalid size"));
2607 		structsize = sizeof(p->p_pd->pd_cmask);
2608 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2609 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2610 	}
2611 	*sizep = size;
2612 }
2613 
2614 static void
2615 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2616 {
2617 	struct proc *p;
2618 	struct rlimit rlim[RLIM_NLIMITS];
2619 	size_t size;
2620 	int structsize, i;
2621 
2622 	p = arg;
2623 	size = sizeof(structsize) + sizeof(rlim);
2624 	if (sb != NULL) {
2625 		KASSERT(*sizep == size, ("invalid size"));
2626 		structsize = sizeof(rlim);
2627 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2628 		PROC_LOCK(p);
2629 		for (i = 0; i < RLIM_NLIMITS; i++)
2630 			lim_rlimit_proc(p, i, &rlim[i]);
2631 		PROC_UNLOCK(p);
2632 		sbuf_bcat(sb, rlim, sizeof(rlim));
2633 	}
2634 	*sizep = size;
2635 }
2636 
2637 static void
2638 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2639 {
2640 	struct proc *p;
2641 	size_t size;
2642 	int structsize;
2643 
2644 	p = arg;
2645 	size = sizeof(structsize) + sizeof(p->p_osrel);
2646 	if (sb != NULL) {
2647 		KASSERT(*sizep == size, ("invalid size"));
2648 		structsize = sizeof(p->p_osrel);
2649 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2650 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2651 	}
2652 	*sizep = size;
2653 }
2654 
2655 static void
2656 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2657 {
2658 	struct proc *p;
2659 	elf_ps_strings_t ps_strings;
2660 	size_t size;
2661 	int structsize;
2662 
2663 	p = arg;
2664 	size = sizeof(structsize) + sizeof(ps_strings);
2665 	if (sb != NULL) {
2666 		KASSERT(*sizep == size, ("invalid size"));
2667 		structsize = sizeof(ps_strings);
2668 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2669 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2670 #else
2671 		ps_strings = PROC_PS_STRINGS(p);
2672 #endif
2673 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2674 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2675 	}
2676 	*sizep = size;
2677 }
2678 
2679 static void
2680 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2681 {
2682 	struct proc *p;
2683 	size_t size;
2684 	int structsize;
2685 
2686 	p = arg;
2687 	if (sb == NULL) {
2688 		size = 0;
2689 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2690 		    SBUF_FIXEDLEN);
2691 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2692 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2693 		PHOLD(p);
2694 		proc_getauxv(curthread, p, sb);
2695 		PRELE(p);
2696 		sbuf_finish(sb);
2697 		sbuf_delete(sb);
2698 		*sizep = size;
2699 	} else {
2700 		structsize = sizeof(Elf_Auxinfo);
2701 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2702 		PHOLD(p);
2703 		proc_getauxv(curthread, p, sb);
2704 		PRELE(p);
2705 	}
2706 }
2707 
2708 static bool
2709 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2710     const char *note_vendor, const Elf_Phdr *pnote,
2711     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2712 {
2713 	const Elf_Note *note, *note0, *note_end;
2714 	const char *note_name;
2715 	char *buf;
2716 	int i, error;
2717 	bool res;
2718 
2719 	/* We need some limit, might as well use PAGE_SIZE. */
2720 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2721 		return (false);
2722 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2723 	if (pnote->p_offset > PAGE_SIZE ||
2724 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2725 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2726 		if (buf == NULL) {
2727 			VOP_UNLOCK(imgp->vp);
2728 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2729 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2730 		}
2731 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2732 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2733 		    curthread->td_ucred, NOCRED, NULL, curthread);
2734 		if (error != 0) {
2735 			uprintf("i/o error PT_NOTE\n");
2736 			goto retf;
2737 		}
2738 		note = note0 = (const Elf_Note *)buf;
2739 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2740 	} else {
2741 		note = note0 = (const Elf_Note *)(imgp->image_header +
2742 		    pnote->p_offset);
2743 		note_end = (const Elf_Note *)(imgp->image_header +
2744 		    pnote->p_offset + pnote->p_filesz);
2745 		buf = NULL;
2746 	}
2747 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2748 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2749 		    (const char *)note < sizeof(Elf_Note)) {
2750 			goto retf;
2751 		}
2752 		if (note->n_namesz != checknote->n_namesz ||
2753 		    note->n_descsz != checknote->n_descsz ||
2754 		    note->n_type != checknote->n_type)
2755 			goto nextnote;
2756 		note_name = (const char *)(note + 1);
2757 		if (note_name + checknote->n_namesz >=
2758 		    (const char *)note_end || strncmp(note_vendor,
2759 		    note_name, checknote->n_namesz) != 0)
2760 			goto nextnote;
2761 
2762 		if (cb(note, cb_arg, &res))
2763 			goto ret;
2764 nextnote:
2765 		note = (const Elf_Note *)((const char *)(note + 1) +
2766 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2767 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2768 	}
2769 retf:
2770 	res = false;
2771 ret:
2772 	free(buf, M_TEMP);
2773 	return (res);
2774 }
2775 
2776 struct brandnote_cb_arg {
2777 	Elf_Brandnote *brandnote;
2778 	int32_t *osrel;
2779 };
2780 
2781 static bool
2782 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2783 {
2784 	struct brandnote_cb_arg *arg;
2785 
2786 	arg = arg0;
2787 
2788 	/*
2789 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2790 	 * necessary.
2791 	 */
2792 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2793 	    arg->brandnote->trans_osrel != NULL ?
2794 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2795 
2796 	return (true);
2797 }
2798 
2799 static Elf_Note fctl_note = {
2800 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2801 	.n_descsz = sizeof(uint32_t),
2802 	.n_type = NT_FREEBSD_FEATURE_CTL,
2803 };
2804 
2805 struct fctl_cb_arg {
2806 	bool *has_fctl0;
2807 	uint32_t *fctl0;
2808 };
2809 
2810 static bool
2811 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2812 {
2813 	struct fctl_cb_arg *arg;
2814 	const Elf32_Word *desc;
2815 	uintptr_t p;
2816 
2817 	arg = arg0;
2818 	p = (uintptr_t)(note + 1);
2819 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2820 	desc = (const Elf32_Word *)p;
2821 	*arg->has_fctl0 = true;
2822 	*arg->fctl0 = desc[0];
2823 	*res = true;
2824 	return (true);
2825 }
2826 
2827 /*
2828  * Try to find the appropriate ABI-note section for checknote, fetch
2829  * the osreldate and feature control flags for binary from the ELF
2830  * OSABI-note.  Only the first page of the image is searched, the same
2831  * as for headers.
2832  */
2833 static bool
2834 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2835     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2836 {
2837 	const Elf_Phdr *phdr;
2838 	const Elf_Ehdr *hdr;
2839 	struct brandnote_cb_arg b_arg;
2840 	struct fctl_cb_arg f_arg;
2841 	int i, j;
2842 
2843 	hdr = (const Elf_Ehdr *)imgp->image_header;
2844 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2845 	b_arg.brandnote = brandnote;
2846 	b_arg.osrel = osrel;
2847 	f_arg.has_fctl0 = has_fctl0;
2848 	f_arg.fctl0 = fctl0;
2849 
2850 	for (i = 0; i < hdr->e_phnum; i++) {
2851 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2852 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2853 		    &b_arg)) {
2854 			for (j = 0; j < hdr->e_phnum; j++) {
2855 				if (phdr[j].p_type == PT_NOTE &&
2856 				    __elfN(parse_notes)(imgp, &fctl_note,
2857 				    FREEBSD_ABI_VENDOR, &phdr[j],
2858 				    note_fctl_cb, &f_arg))
2859 					break;
2860 			}
2861 			return (true);
2862 		}
2863 	}
2864 	return (false);
2865 
2866 }
2867 
2868 /*
2869  * Tell kern_execve.c about it, with a little help from the linker.
2870  */
2871 static struct execsw __elfN(execsw) = {
2872 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2873 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2874 };
2875 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2876 
2877 static vm_prot_t
2878 __elfN(trans_prot)(Elf_Word flags)
2879 {
2880 	vm_prot_t prot;
2881 
2882 	prot = 0;
2883 	if (flags & PF_X)
2884 		prot |= VM_PROT_EXECUTE;
2885 	if (flags & PF_W)
2886 		prot |= VM_PROT_WRITE;
2887 	if (flags & PF_R)
2888 		prot |= VM_PROT_READ;
2889 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2890 	if (i386_read_exec && (flags & PF_R))
2891 		prot |= VM_PROT_EXECUTE;
2892 #endif
2893 	return (prot);
2894 }
2895 
2896 static Elf_Word
2897 __elfN(untrans_prot)(vm_prot_t prot)
2898 {
2899 	Elf_Word flags;
2900 
2901 	flags = 0;
2902 	if (prot & VM_PROT_EXECUTE)
2903 		flags |= PF_X;
2904 	if (prot & VM_PROT_READ)
2905 		flags |= PF_R;
2906 	if (prot & VM_PROT_WRITE)
2907 		flags |= PF_W;
2908 	return (flags);
2909 }
2910