1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/reg.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static bool __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 102 uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 ""); 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if defined(__amd64__) 133 static int __elfN(vdso) = 1; 134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 135 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 136 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 137 #else 138 static int __elfN(vdso) = 0; 139 #endif 140 141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 142 int i386_read_exec = 0; 143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 144 "enable execution from readable segments"); 145 #endif 146 147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 148 static int 149 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 150 { 151 u_long val; 152 int error; 153 154 val = __elfN(pie_base); 155 error = sysctl_handle_long(oidp, &val, 0, req); 156 if (error != 0 || req->newptr == NULL) 157 return (error); 158 if ((val & PAGE_MASK) != 0) 159 return (EINVAL); 160 __elfN(pie_base) = val; 161 return (0); 162 } 163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 164 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 165 sysctl_pie_base, "LU", 166 "PIE load base without randomization"); 167 168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 ""); 171 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 172 173 /* 174 * While for 64-bit machines ASLR works properly, there are 175 * still some problems when using 32-bit architectures. For this 176 * reason ASLR is only enabled by default when running native 177 * 64-bit non-PIE executables. 178 */ 179 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 180 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 181 &__elfN(aslr_enabled), 0, 182 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 183 ": enable address map randomization"); 184 185 /* 186 * Enable ASLR only for 64-bit PIE binaries by default. 187 */ 188 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 189 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 190 &__elfN(pie_aslr_enabled), 0, 191 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 192 ": enable address map randomization for PIE binaries"); 193 194 /* 195 * Sbrk is now deprecated and it can be assumed, that in most 196 * cases it will not be used anyway. This setting is valid only 197 * for the ASLR enabled and allows for utilizing the bss grow region. 198 */ 199 static int __elfN(aslr_honor_sbrk) = 0; 200 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 201 &__elfN(aslr_honor_sbrk), 0, 202 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 203 204 static int __elfN(aslr_stack) = 1; 205 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 206 &__elfN(aslr_stack), 0, 207 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 208 ": enable stack address randomization"); 209 210 static int __elfN(sigfastblock) = 1; 211 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 212 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 213 "enable sigfastblock for new processes"); 214 215 static bool __elfN(allow_wx) = true; 216 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 217 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 218 "Allow pages to be mapped simultaneously writable and executable"); 219 220 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 221 222 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 223 224 Elf_Brandnote __elfN(freebsd_brandnote) = { 225 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 226 .hdr.n_descsz = sizeof(int32_t), 227 .hdr.n_type = NT_FREEBSD_ABI_TAG, 228 .vendor = FREEBSD_ABI_VENDOR, 229 .flags = BN_TRANSLATE_OSREL, 230 .trans_osrel = __elfN(freebsd_trans_osrel) 231 }; 232 233 static bool 234 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 235 { 236 uintptr_t p; 237 238 p = (uintptr_t)(note + 1); 239 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 240 *osrel = *(const int32_t *)(p); 241 242 return (true); 243 } 244 245 static const char GNU_ABI_VENDOR[] = "GNU"; 246 static int GNU_KFREEBSD_ABI_DESC = 3; 247 248 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 249 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 250 .hdr.n_descsz = 16, /* XXX at least 16 */ 251 .hdr.n_type = 1, 252 .vendor = GNU_ABI_VENDOR, 253 .flags = BN_TRANSLATE_OSREL, 254 .trans_osrel = kfreebsd_trans_osrel 255 }; 256 257 static bool 258 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 259 { 260 const Elf32_Word *desc; 261 uintptr_t p; 262 263 p = (uintptr_t)(note + 1); 264 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 265 266 desc = (const Elf32_Word *)p; 267 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 268 return (false); 269 270 /* 271 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 272 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 273 */ 274 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 275 276 return (true); 277 } 278 279 int 280 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 281 { 282 int i; 283 284 for (i = 0; i < MAX_BRANDS; i++) { 285 if (elf_brand_list[i] == NULL) { 286 elf_brand_list[i] = entry; 287 break; 288 } 289 } 290 if (i == MAX_BRANDS) { 291 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 292 __func__, entry); 293 return (-1); 294 } 295 return (0); 296 } 297 298 int 299 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 300 { 301 int i; 302 303 for (i = 0; i < MAX_BRANDS; i++) { 304 if (elf_brand_list[i] == entry) { 305 elf_brand_list[i] = NULL; 306 break; 307 } 308 } 309 if (i == MAX_BRANDS) 310 return (-1); 311 return (0); 312 } 313 314 bool 315 __elfN(brand_inuse)(Elf_Brandinfo *entry) 316 { 317 struct proc *p; 318 bool rval = false; 319 320 sx_slock(&allproc_lock); 321 FOREACH_PROC_IN_SYSTEM(p) { 322 if (p->p_sysent == entry->sysvec) { 323 rval = true; 324 break; 325 } 326 } 327 sx_sunlock(&allproc_lock); 328 329 return (rval); 330 } 331 332 static Elf_Brandinfo * 333 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 334 int32_t *osrel, uint32_t *fctl0) 335 { 336 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 337 Elf_Brandinfo *bi, *bi_m; 338 bool ret, has_fctl0; 339 int i, interp_name_len; 340 341 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 342 343 /* 344 * We support four types of branding -- (1) the ELF EI_OSABI field 345 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 346 * branding w/in the ELF header, (3) path of the `interp_path' 347 * field, and (4) the ".note.ABI-tag" ELF section. 348 */ 349 350 /* Look for an ".note.ABI-tag" ELF section */ 351 bi_m = NULL; 352 for (i = 0; i < MAX_BRANDS; i++) { 353 bi = elf_brand_list[i]; 354 if (bi == NULL) 355 continue; 356 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 357 continue; 358 if (hdr->e_machine == bi->machine && (bi->flags & 359 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 360 has_fctl0 = false; 361 *fctl0 = 0; 362 *osrel = 0; 363 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 364 &has_fctl0, fctl0); 365 /* Give brand a chance to veto check_note's guess */ 366 if (ret && bi->header_supported) { 367 ret = bi->header_supported(imgp, osrel, 368 has_fctl0 ? fctl0 : NULL); 369 } 370 /* 371 * If note checker claimed the binary, but the 372 * interpreter path in the image does not 373 * match default one for the brand, try to 374 * search for other brands with the same 375 * interpreter. Either there is better brand 376 * with the right interpreter, or, failing 377 * this, we return first brand which accepted 378 * our note and, optionally, header. 379 */ 380 if (ret && bi_m == NULL && interp != NULL && 381 (bi->interp_path == NULL || 382 (strlen(bi->interp_path) + 1 != interp_name_len || 383 strncmp(interp, bi->interp_path, interp_name_len) 384 != 0))) { 385 bi_m = bi; 386 ret = 0; 387 } 388 if (ret) 389 return (bi); 390 } 391 } 392 if (bi_m != NULL) 393 return (bi_m); 394 395 /* If the executable has a brand, search for it in the brand list. */ 396 for (i = 0; i < MAX_BRANDS; i++) { 397 bi = elf_brand_list[i]; 398 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 399 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 400 continue; 401 if (hdr->e_machine == bi->machine && 402 (hdr->e_ident[EI_OSABI] == bi->brand || 403 (bi->compat_3_brand != NULL && 404 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 405 bi->compat_3_brand) == 0))) { 406 /* Looks good, but give brand a chance to veto */ 407 if (bi->header_supported == NULL || 408 bi->header_supported(imgp, NULL, NULL)) { 409 /* 410 * Again, prefer strictly matching 411 * interpreter path. 412 */ 413 if (interp_name_len == 0 && 414 bi->interp_path == NULL) 415 return (bi); 416 if (bi->interp_path != NULL && 417 strlen(bi->interp_path) + 1 == 418 interp_name_len && strncmp(interp, 419 bi->interp_path, interp_name_len) == 0) 420 return (bi); 421 if (bi_m == NULL) 422 bi_m = bi; 423 } 424 } 425 } 426 if (bi_m != NULL) 427 return (bi_m); 428 429 /* No known brand, see if the header is recognized by any brand */ 430 for (i = 0; i < MAX_BRANDS; i++) { 431 bi = elf_brand_list[i]; 432 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 433 bi->header_supported == NULL) 434 continue; 435 if (hdr->e_machine == bi->machine) { 436 ret = bi->header_supported(imgp, NULL, NULL); 437 if (ret) 438 return (bi); 439 } 440 } 441 442 /* Lacking a known brand, search for a recognized interpreter. */ 443 if (interp != NULL) { 444 for (i = 0; i < MAX_BRANDS; i++) { 445 bi = elf_brand_list[i]; 446 if (bi == NULL || (bi->flags & 447 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 448 != 0) 449 continue; 450 if (hdr->e_machine == bi->machine && 451 bi->interp_path != NULL && 452 /* ELF image p_filesz includes terminating zero */ 453 strlen(bi->interp_path) + 1 == interp_name_len && 454 strncmp(interp, bi->interp_path, interp_name_len) 455 == 0 && (bi->header_supported == NULL || 456 bi->header_supported(imgp, NULL, NULL))) 457 return (bi); 458 } 459 } 460 461 /* Lacking a recognized interpreter, try the default brand */ 462 for (i = 0; i < MAX_BRANDS; i++) { 463 bi = elf_brand_list[i]; 464 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 465 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 466 continue; 467 if (hdr->e_machine == bi->machine && 468 __elfN(fallback_brand) == bi->brand && 469 (bi->header_supported == NULL || 470 bi->header_supported(imgp, NULL, NULL))) 471 return (bi); 472 } 473 return (NULL); 474 } 475 476 static bool 477 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 478 { 479 return (hdr->e_phoff <= PAGE_SIZE && 480 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 481 } 482 483 static int 484 __elfN(check_header)(const Elf_Ehdr *hdr) 485 { 486 Elf_Brandinfo *bi; 487 int i; 488 489 if (!IS_ELF(*hdr) || 490 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 491 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 492 hdr->e_ident[EI_VERSION] != EV_CURRENT || 493 hdr->e_phentsize != sizeof(Elf_Phdr) || 494 hdr->e_version != ELF_TARG_VER) 495 return (ENOEXEC); 496 497 /* 498 * Make sure we have at least one brand for this machine. 499 */ 500 501 for (i = 0; i < MAX_BRANDS; i++) { 502 bi = elf_brand_list[i]; 503 if (bi != NULL && bi->machine == hdr->e_machine) 504 break; 505 } 506 if (i == MAX_BRANDS) 507 return (ENOEXEC); 508 509 return (0); 510 } 511 512 static int 513 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 514 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 515 { 516 struct sf_buf *sf; 517 int error; 518 vm_offset_t off; 519 520 /* 521 * Create the page if it doesn't exist yet. Ignore errors. 522 */ 523 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 524 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 525 526 /* 527 * Find the page from the underlying object. 528 */ 529 if (object != NULL) { 530 sf = vm_imgact_map_page(object, offset); 531 if (sf == NULL) 532 return (KERN_FAILURE); 533 off = offset - trunc_page(offset); 534 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 535 end - start); 536 vm_imgact_unmap_page(sf); 537 if (error != 0) 538 return (KERN_FAILURE); 539 } 540 541 return (KERN_SUCCESS); 542 } 543 544 static int 545 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 546 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 547 int cow) 548 { 549 struct sf_buf *sf; 550 vm_offset_t off; 551 vm_size_t sz; 552 int error, locked, rv; 553 554 if (start != trunc_page(start)) { 555 rv = __elfN(map_partial)(map, object, offset, start, 556 round_page(start), prot); 557 if (rv != KERN_SUCCESS) 558 return (rv); 559 offset += round_page(start) - start; 560 start = round_page(start); 561 } 562 if (end != round_page(end)) { 563 rv = __elfN(map_partial)(map, object, offset + 564 trunc_page(end) - start, trunc_page(end), end, prot); 565 if (rv != KERN_SUCCESS) 566 return (rv); 567 end = trunc_page(end); 568 } 569 if (start >= end) 570 return (KERN_SUCCESS); 571 if ((offset & PAGE_MASK) != 0) { 572 /* 573 * The mapping is not page aligned. This means that we have 574 * to copy the data. 575 */ 576 rv = vm_map_fixed(map, NULL, 0, start, end - start, 577 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 578 if (rv != KERN_SUCCESS) 579 return (rv); 580 if (object == NULL) 581 return (KERN_SUCCESS); 582 for (; start < end; start += sz) { 583 sf = vm_imgact_map_page(object, offset); 584 if (sf == NULL) 585 return (KERN_FAILURE); 586 off = offset - trunc_page(offset); 587 sz = end - start; 588 if (sz > PAGE_SIZE - off) 589 sz = PAGE_SIZE - off; 590 error = copyout((caddr_t)sf_buf_kva(sf) + off, 591 (caddr_t)start, sz); 592 vm_imgact_unmap_page(sf); 593 if (error != 0) 594 return (KERN_FAILURE); 595 offset += sz; 596 } 597 } else { 598 vm_object_reference(object); 599 rv = vm_map_fixed(map, object, offset, start, end - start, 600 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 601 (object != NULL ? MAP_VN_EXEC : 0)); 602 if (rv != KERN_SUCCESS) { 603 locked = VOP_ISLOCKED(imgp->vp); 604 VOP_UNLOCK(imgp->vp); 605 vm_object_deallocate(object); 606 vn_lock(imgp->vp, locked | LK_RETRY); 607 return (rv); 608 } else if (object != NULL) { 609 MPASS(imgp->vp->v_object == object); 610 VOP_SET_TEXT_CHECKED(imgp->vp); 611 } 612 } 613 return (KERN_SUCCESS); 614 } 615 616 static int 617 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 618 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 619 { 620 struct sf_buf *sf; 621 size_t map_len; 622 vm_map_t map; 623 vm_object_t object; 624 vm_offset_t map_addr; 625 int error, rv, cow; 626 size_t copy_len; 627 vm_ooffset_t file_addr; 628 629 /* 630 * It's necessary to fail if the filsz + offset taken from the 631 * header is greater than the actual file pager object's size. 632 * If we were to allow this, then the vm_map_find() below would 633 * walk right off the end of the file object and into the ether. 634 * 635 * While I'm here, might as well check for something else that 636 * is invalid: filsz cannot be greater than memsz. 637 */ 638 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 639 filsz > memsz) { 640 uprintf("elf_load_section: truncated ELF file\n"); 641 return (ENOEXEC); 642 } 643 644 object = imgp->object; 645 map = &imgp->proc->p_vmspace->vm_map; 646 map_addr = trunc_page((vm_offset_t)vmaddr); 647 file_addr = trunc_page(offset); 648 649 /* 650 * We have two choices. We can either clear the data in the last page 651 * of an oversized mapping, or we can start the anon mapping a page 652 * early and copy the initialized data into that first page. We 653 * choose the second. 654 */ 655 if (filsz == 0) 656 map_len = 0; 657 else if (memsz > filsz) 658 map_len = trunc_page(offset + filsz) - file_addr; 659 else 660 map_len = round_page(offset + filsz) - file_addr; 661 662 if (map_len != 0) { 663 /* cow flags: don't dump readonly sections in core */ 664 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 665 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 666 667 rv = __elfN(map_insert)(imgp, map, object, file_addr, 668 map_addr, map_addr + map_len, prot, cow); 669 if (rv != KERN_SUCCESS) 670 return (EINVAL); 671 672 /* we can stop now if we've covered it all */ 673 if (memsz == filsz) 674 return (0); 675 } 676 677 /* 678 * We have to get the remaining bit of the file into the first part 679 * of the oversized map segment. This is normally because the .data 680 * segment in the file is extended to provide bss. It's a neat idea 681 * to try and save a page, but it's a pain in the behind to implement. 682 */ 683 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 684 filsz); 685 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 686 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 687 688 /* This had damn well better be true! */ 689 if (map_len != 0) { 690 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 691 map_addr + map_len, prot, 0); 692 if (rv != KERN_SUCCESS) 693 return (EINVAL); 694 } 695 696 if (copy_len != 0) { 697 sf = vm_imgact_map_page(object, offset + filsz); 698 if (sf == NULL) 699 return (EIO); 700 701 /* send the page fragment to user space */ 702 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 703 copy_len); 704 vm_imgact_unmap_page(sf); 705 if (error != 0) 706 return (error); 707 } 708 709 /* 710 * Remove write access to the page if it was only granted by map_insert 711 * to allow copyout. 712 */ 713 if ((prot & VM_PROT_WRITE) == 0) 714 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 715 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 716 717 return (0); 718 } 719 720 static int 721 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 722 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 723 { 724 vm_prot_t prot; 725 u_long base_addr; 726 bool first; 727 int error, i; 728 729 ASSERT_VOP_LOCKED(imgp->vp, __func__); 730 731 base_addr = 0; 732 first = true; 733 734 for (i = 0; i < hdr->e_phnum; i++) { 735 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 736 continue; 737 738 /* Loadable segment */ 739 prot = __elfN(trans_prot)(phdr[i].p_flags); 740 error = __elfN(load_section)(imgp, phdr[i].p_offset, 741 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 742 phdr[i].p_memsz, phdr[i].p_filesz, prot); 743 if (error != 0) 744 return (error); 745 746 /* 747 * Establish the base address if this is the first segment. 748 */ 749 if (first) { 750 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 751 first = false; 752 } 753 } 754 755 if (base_addrp != NULL) 756 *base_addrp = base_addr; 757 758 return (0); 759 } 760 761 /* 762 * Load the file "file" into memory. It may be either a shared object 763 * or an executable. 764 * 765 * The "addr" reference parameter is in/out. On entry, it specifies 766 * the address where a shared object should be loaded. If the file is 767 * an executable, this value is ignored. On exit, "addr" specifies 768 * where the file was actually loaded. 769 * 770 * The "entry" reference parameter is out only. On exit, it specifies 771 * the entry point for the loaded file. 772 */ 773 static int 774 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 775 u_long *entry) 776 { 777 struct { 778 struct nameidata nd; 779 struct vattr attr; 780 struct image_params image_params; 781 } *tempdata; 782 const Elf_Ehdr *hdr = NULL; 783 const Elf_Phdr *phdr = NULL; 784 struct nameidata *nd; 785 struct vattr *attr; 786 struct image_params *imgp; 787 u_long rbase; 788 u_long base_addr = 0; 789 int error; 790 791 #ifdef CAPABILITY_MODE 792 /* 793 * XXXJA: This check can go away once we are sufficiently confident 794 * that the checks in namei() are correct. 795 */ 796 if (IN_CAPABILITY_MODE(curthread)) 797 return (ECAPMODE); 798 #endif 799 800 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 801 nd = &tempdata->nd; 802 attr = &tempdata->attr; 803 imgp = &tempdata->image_params; 804 805 /* 806 * Initialize part of the common data 807 */ 808 imgp->proc = p; 809 imgp->attr = attr; 810 811 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 812 UIO_SYSSPACE, file); 813 if ((error = namei(nd)) != 0) { 814 nd->ni_vp = NULL; 815 goto fail; 816 } 817 NDFREE(nd, NDF_ONLY_PNBUF); 818 imgp->vp = nd->ni_vp; 819 820 /* 821 * Check permissions, modes, uid, etc on the file, and "open" it. 822 */ 823 error = exec_check_permissions(imgp); 824 if (error) 825 goto fail; 826 827 error = exec_map_first_page(imgp); 828 if (error) 829 goto fail; 830 831 imgp->object = nd->ni_vp->v_object; 832 833 hdr = (const Elf_Ehdr *)imgp->image_header; 834 if ((error = __elfN(check_header)(hdr)) != 0) 835 goto fail; 836 if (hdr->e_type == ET_DYN) 837 rbase = *addr; 838 else if (hdr->e_type == ET_EXEC) 839 rbase = 0; 840 else { 841 error = ENOEXEC; 842 goto fail; 843 } 844 845 /* Only support headers that fit within first page for now */ 846 if (!__elfN(phdr_in_zero_page)(hdr)) { 847 error = ENOEXEC; 848 goto fail; 849 } 850 851 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 852 if (!aligned(phdr, Elf_Addr)) { 853 error = ENOEXEC; 854 goto fail; 855 } 856 857 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 858 if (error != 0) 859 goto fail; 860 861 *addr = base_addr; 862 *entry = (unsigned long)hdr->e_entry + rbase; 863 864 fail: 865 if (imgp->firstpage) 866 exec_unmap_first_page(imgp); 867 868 if (nd->ni_vp) { 869 if (imgp->textset) 870 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 871 vput(nd->ni_vp); 872 } 873 free(tempdata, M_TEMP); 874 875 return (error); 876 } 877 878 /* 879 * Select randomized valid address in the map map, between minv and 880 * maxv, with specified alignment. The [minv, maxv) range must belong 881 * to the map. Note that function only allocates the address, it is 882 * up to caller to clamp maxv in a way that the final allocation 883 * length fit into the map. 884 * 885 * Result is returned in *resp, error code indicates that arguments 886 * did not pass sanity checks for overflow and range correctness. 887 */ 888 static int 889 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 890 u_int align, u_long *resp) 891 { 892 u_long rbase, res; 893 894 MPASS(vm_map_min(map) <= minv); 895 896 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 897 uprintf("Invalid ELF segments layout\n"); 898 return (ENOEXEC); 899 } 900 901 arc4rand(&rbase, sizeof(rbase), 0); 902 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 903 res &= ~((u_long)align - 1); 904 if (res >= maxv) 905 res -= align; 906 907 KASSERT(res >= minv, 908 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 909 res, minv, maxv, rbase)); 910 KASSERT(res < maxv, 911 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 912 res, maxv, minv, rbase)); 913 914 *resp = res; 915 return (0); 916 } 917 918 static int 919 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 920 const Elf_Phdr *phdr, u_long et_dyn_addr) 921 { 922 struct vmspace *vmspace; 923 const char *err_str; 924 u_long text_size, data_size, total_size, text_addr, data_addr; 925 u_long seg_size, seg_addr; 926 int i; 927 928 err_str = NULL; 929 text_size = data_size = total_size = text_addr = data_addr = 0; 930 931 for (i = 0; i < hdr->e_phnum; i++) { 932 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 933 continue; 934 935 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 936 seg_size = round_page(phdr[i].p_memsz + 937 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 938 939 /* 940 * Make the largest executable segment the official 941 * text segment and all others data. 942 * 943 * Note that obreak() assumes that data_addr + data_size == end 944 * of data load area, and the ELF file format expects segments 945 * to be sorted by address. If multiple data segments exist, 946 * the last one will be used. 947 */ 948 949 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 950 text_size = seg_size; 951 text_addr = seg_addr; 952 } else { 953 data_size = seg_size; 954 data_addr = seg_addr; 955 } 956 total_size += seg_size; 957 } 958 959 if (data_addr == 0 && data_size == 0) { 960 data_addr = text_addr; 961 data_size = text_size; 962 } 963 964 /* 965 * Check limits. It should be safe to check the 966 * limits after loading the segments since we do 967 * not actually fault in all the segments pages. 968 */ 969 PROC_LOCK(imgp->proc); 970 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 971 err_str = "Data segment size exceeds process limit"; 972 else if (text_size > maxtsiz) 973 err_str = "Text segment size exceeds system limit"; 974 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 975 err_str = "Total segment size exceeds process limit"; 976 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 977 err_str = "Data segment size exceeds resource limit"; 978 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 979 err_str = "Total segment size exceeds resource limit"; 980 PROC_UNLOCK(imgp->proc); 981 if (err_str != NULL) { 982 uprintf("%s\n", err_str); 983 return (ENOMEM); 984 } 985 986 vmspace = imgp->proc->p_vmspace; 987 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 988 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 989 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 990 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 991 992 return (0); 993 } 994 995 static int 996 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 997 char **interpp, bool *free_interpp) 998 { 999 struct thread *td; 1000 char *interp; 1001 int error, interp_name_len; 1002 1003 KASSERT(phdr->p_type == PT_INTERP, 1004 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1005 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1006 1007 td = curthread; 1008 1009 /* Path to interpreter */ 1010 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1011 uprintf("Invalid PT_INTERP\n"); 1012 return (ENOEXEC); 1013 } 1014 1015 interp_name_len = phdr->p_filesz; 1016 if (phdr->p_offset > PAGE_SIZE || 1017 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1018 /* 1019 * The vnode lock might be needed by the pagedaemon to 1020 * clean pages owned by the vnode. Do not allow sleep 1021 * waiting for memory with the vnode locked, instead 1022 * try non-sleepable allocation first, and if it 1023 * fails, go to the slow path were we drop the lock 1024 * and do M_WAITOK. A text reference prevents 1025 * modifications to the vnode content. 1026 */ 1027 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1028 if (interp == NULL) { 1029 VOP_UNLOCK(imgp->vp); 1030 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1031 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1032 } 1033 1034 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1035 interp_name_len, phdr->p_offset, 1036 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1037 NOCRED, NULL, td); 1038 if (error != 0) { 1039 free(interp, M_TEMP); 1040 uprintf("i/o error PT_INTERP %d\n", error); 1041 return (error); 1042 } 1043 interp[interp_name_len] = '\0'; 1044 1045 *interpp = interp; 1046 *free_interpp = true; 1047 return (0); 1048 } 1049 1050 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1051 if (interp[interp_name_len - 1] != '\0') { 1052 uprintf("Invalid PT_INTERP\n"); 1053 return (ENOEXEC); 1054 } 1055 1056 *interpp = interp; 1057 *free_interpp = false; 1058 return (0); 1059 } 1060 1061 static int 1062 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1063 const char *interp, u_long *addr, u_long *entry) 1064 { 1065 char *path; 1066 int error; 1067 1068 if (brand_info->emul_path != NULL && 1069 brand_info->emul_path[0] != '\0') { 1070 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1071 snprintf(path, MAXPATHLEN, "%s%s", 1072 brand_info->emul_path, interp); 1073 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1074 free(path, M_TEMP); 1075 if (error == 0) 1076 return (0); 1077 } 1078 1079 if (brand_info->interp_newpath != NULL && 1080 (brand_info->interp_path == NULL || 1081 strcmp(interp, brand_info->interp_path) == 0)) { 1082 error = __elfN(load_file)(imgp->proc, 1083 brand_info->interp_newpath, addr, entry); 1084 if (error == 0) 1085 return (0); 1086 } 1087 1088 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1089 if (error == 0) 1090 return (0); 1091 1092 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1093 return (error); 1094 } 1095 1096 /* 1097 * Impossible et_dyn_addr initial value indicating that the real base 1098 * must be calculated later with some randomization applied. 1099 */ 1100 #define ET_DYN_ADDR_RAND 1 1101 1102 static int 1103 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1104 { 1105 struct thread *td; 1106 const Elf_Ehdr *hdr; 1107 const Elf_Phdr *phdr; 1108 Elf_Auxargs *elf_auxargs; 1109 struct vmspace *vmspace; 1110 vm_map_t map; 1111 char *interp; 1112 Elf_Brandinfo *brand_info; 1113 struct sysentvec *sv; 1114 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1115 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1116 uint32_t fctl0; 1117 int32_t osrel; 1118 bool free_interp; 1119 int error, i, n; 1120 1121 hdr = (const Elf_Ehdr *)imgp->image_header; 1122 1123 /* 1124 * Do we have a valid ELF header ? 1125 * 1126 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1127 * if particular brand doesn't support it. 1128 */ 1129 if (__elfN(check_header)(hdr) != 0 || 1130 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1131 return (-1); 1132 1133 /* 1134 * From here on down, we return an errno, not -1, as we've 1135 * detected an ELF file. 1136 */ 1137 1138 if (!__elfN(phdr_in_zero_page)(hdr)) { 1139 uprintf("Program headers not in the first page\n"); 1140 return (ENOEXEC); 1141 } 1142 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1143 if (!aligned(phdr, Elf_Addr)) { 1144 uprintf("Unaligned program headers\n"); 1145 return (ENOEXEC); 1146 } 1147 1148 n = error = 0; 1149 baddr = 0; 1150 osrel = 0; 1151 fctl0 = 0; 1152 entry = proghdr = 0; 1153 interp = NULL; 1154 free_interp = false; 1155 td = curthread; 1156 1157 /* 1158 * Somewhat arbitrary, limit accepted max alignment for the 1159 * loadable segment to the max supported superpage size. Too 1160 * large alignment requests are not useful and are indicators 1161 * of corrupted or outright malicious binary. 1162 */ 1163 maxalign = PAGE_SIZE; 1164 maxsalign = PAGE_SIZE * 1024; 1165 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1166 if (pagesizes[i] > maxsalign) 1167 maxsalign = pagesizes[i]; 1168 } 1169 1170 mapsz = 0; 1171 1172 for (i = 0; i < hdr->e_phnum; i++) { 1173 switch (phdr[i].p_type) { 1174 case PT_LOAD: 1175 if (n == 0) 1176 baddr = phdr[i].p_vaddr; 1177 if (!powerof2(phdr[i].p_align) || 1178 phdr[i].p_align > maxsalign) { 1179 uprintf("Invalid segment alignment\n"); 1180 error = ENOEXEC; 1181 goto ret; 1182 } 1183 if (phdr[i].p_align > maxalign) 1184 maxalign = phdr[i].p_align; 1185 if (mapsz + phdr[i].p_memsz < mapsz) { 1186 uprintf("Mapsize overflow\n"); 1187 error = ENOEXEC; 1188 goto ret; 1189 } 1190 mapsz += phdr[i].p_memsz; 1191 n++; 1192 1193 /* 1194 * If this segment contains the program headers, 1195 * remember their virtual address for the AT_PHDR 1196 * aux entry. Static binaries don't usually include 1197 * a PT_PHDR entry. 1198 */ 1199 if (phdr[i].p_offset == 0 && 1200 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1201 phdr[i].p_filesz) 1202 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1203 break; 1204 case PT_INTERP: 1205 /* Path to interpreter */ 1206 if (interp != NULL) { 1207 uprintf("Multiple PT_INTERP headers\n"); 1208 error = ENOEXEC; 1209 goto ret; 1210 } 1211 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1212 &free_interp); 1213 if (error != 0) 1214 goto ret; 1215 break; 1216 case PT_GNU_STACK: 1217 if (__elfN(nxstack)) 1218 imgp->stack_prot = 1219 __elfN(trans_prot)(phdr[i].p_flags); 1220 imgp->stack_sz = phdr[i].p_memsz; 1221 break; 1222 case PT_PHDR: /* Program header table info */ 1223 proghdr = phdr[i].p_vaddr; 1224 break; 1225 } 1226 } 1227 1228 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1229 if (brand_info == NULL) { 1230 uprintf("ELF binary type \"%u\" not known.\n", 1231 hdr->e_ident[EI_OSABI]); 1232 error = ENOEXEC; 1233 goto ret; 1234 } 1235 sv = brand_info->sysvec; 1236 et_dyn_addr = 0; 1237 if (hdr->e_type == ET_DYN) { 1238 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1239 uprintf("Cannot execute shared object\n"); 1240 error = ENOEXEC; 1241 goto ret; 1242 } 1243 /* 1244 * Honour the base load address from the dso if it is 1245 * non-zero for some reason. 1246 */ 1247 if (baddr == 0) { 1248 if ((sv->sv_flags & SV_ASLR) == 0 || 1249 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1250 et_dyn_addr = __elfN(pie_base); 1251 else if ((__elfN(pie_aslr_enabled) && 1252 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1253 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1254 et_dyn_addr = ET_DYN_ADDR_RAND; 1255 else 1256 et_dyn_addr = __elfN(pie_base); 1257 } 1258 } 1259 1260 /* 1261 * Avoid a possible deadlock if the current address space is destroyed 1262 * and that address space maps the locked vnode. In the common case, 1263 * the locked vnode's v_usecount is decremented but remains greater 1264 * than zero. Consequently, the vnode lock is not needed by vrele(). 1265 * However, in cases where the vnode lock is external, such as nullfs, 1266 * v_usecount may become zero. 1267 * 1268 * The VV_TEXT flag prevents modifications to the executable while 1269 * the vnode is unlocked. 1270 */ 1271 VOP_UNLOCK(imgp->vp); 1272 1273 /* 1274 * Decide whether to enable randomization of user mappings. 1275 * First, reset user preferences for the setid binaries. 1276 * Then, account for the support of the randomization by the 1277 * ABI, by user preferences, and make special treatment for 1278 * PIE binaries. 1279 */ 1280 if (imgp->credential_setid) { 1281 PROC_LOCK(imgp->proc); 1282 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1283 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1284 PROC_UNLOCK(imgp->proc); 1285 } 1286 if ((sv->sv_flags & SV_ASLR) == 0 || 1287 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1288 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1289 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1290 ("et_dyn_addr == RAND and !ASLR")); 1291 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1292 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1293 et_dyn_addr == ET_DYN_ADDR_RAND) { 1294 imgp->map_flags |= MAP_ASLR; 1295 /* 1296 * If user does not care about sbrk, utilize the bss 1297 * grow region for mappings as well. We can select 1298 * the base for the image anywere and still not suffer 1299 * from the fragmentation. 1300 */ 1301 if (!__elfN(aslr_honor_sbrk) || 1302 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1303 imgp->map_flags |= MAP_ASLR_IGNSTART; 1304 if (__elfN(aslr_stack)) 1305 imgp->map_flags |= MAP_ASLR_STACK; 1306 } 1307 1308 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1309 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1310 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1311 imgp->map_flags |= MAP_WXORX; 1312 1313 error = exec_new_vmspace(imgp, sv); 1314 1315 imgp->proc->p_sysent = sv; 1316 imgp->proc->p_elf_brandinfo = brand_info; 1317 1318 vmspace = imgp->proc->p_vmspace; 1319 map = &vmspace->vm_map; 1320 maxv = sv->sv_usrstack; 1321 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1322 maxv -= lim_max(td, RLIMIT_STACK); 1323 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1324 uprintf("Excessive mapping size\n"); 1325 error = ENOEXEC; 1326 } 1327 1328 if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) { 1329 KASSERT((map->flags & MAP_ASLR) != 0, 1330 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1331 error = __CONCAT(rnd_, __elfN(base))(map, 1332 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1333 /* reserve half of the address space to interpreter */ 1334 maxv / 2, maxalign, &et_dyn_addr); 1335 } 1336 1337 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1338 if (error != 0) 1339 goto ret; 1340 1341 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1342 if (error != 0) 1343 goto ret; 1344 1345 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1346 if (error != 0) 1347 goto ret; 1348 1349 /* 1350 * We load the dynamic linker where a userland call 1351 * to mmap(0, ...) would put it. The rationale behind this 1352 * calculation is that it leaves room for the heap to grow to 1353 * its maximum allowed size. 1354 */ 1355 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1356 RLIMIT_DATA)); 1357 if ((map->flags & MAP_ASLR) != 0) { 1358 maxv1 = maxv / 2 + addr / 2; 1359 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1360 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1361 pagesizes[1] : pagesizes[0], &anon_loc); 1362 if (error != 0) 1363 goto ret; 1364 map->anon_loc = anon_loc; 1365 } else { 1366 map->anon_loc = addr; 1367 } 1368 1369 entry = (u_long)hdr->e_entry + et_dyn_addr; 1370 imgp->entry_addr = entry; 1371 1372 if (interp != NULL) { 1373 VOP_UNLOCK(imgp->vp); 1374 if ((map->flags & MAP_ASLR) != 0) { 1375 /* Assume that interpreter fits into 1/4 of AS */ 1376 maxv1 = maxv / 2 + addr / 2; 1377 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1378 maxv1, PAGE_SIZE, &addr); 1379 } 1380 if (error == 0) { 1381 error = __elfN(load_interp)(imgp, brand_info, interp, 1382 &addr, &imgp->entry_addr); 1383 } 1384 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1385 if (error != 0) 1386 goto ret; 1387 } else 1388 addr = et_dyn_addr; 1389 1390 error = exec_map_stack(imgp); 1391 if (error != 0) 1392 goto ret; 1393 1394 /* 1395 * Construct auxargs table (used by the copyout_auxargs routine) 1396 */ 1397 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1398 if (elf_auxargs == NULL) { 1399 VOP_UNLOCK(imgp->vp); 1400 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1401 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1402 } 1403 elf_auxargs->execfd = -1; 1404 elf_auxargs->phdr = proghdr + et_dyn_addr; 1405 elf_auxargs->phent = hdr->e_phentsize; 1406 elf_auxargs->phnum = hdr->e_phnum; 1407 elf_auxargs->pagesz = PAGE_SIZE; 1408 elf_auxargs->base = addr; 1409 elf_auxargs->flags = 0; 1410 elf_auxargs->entry = entry; 1411 elf_auxargs->hdr_eflags = hdr->e_flags; 1412 1413 imgp->auxargs = elf_auxargs; 1414 imgp->interpreted = 0; 1415 imgp->reloc_base = addr; 1416 imgp->proc->p_osrel = osrel; 1417 imgp->proc->p_fctl0 = fctl0; 1418 imgp->proc->p_elf_flags = hdr->e_flags; 1419 1420 ret: 1421 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1422 if (free_interp) 1423 free(interp, M_TEMP); 1424 return (error); 1425 } 1426 1427 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1428 1429 int 1430 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1431 { 1432 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1433 Elf_Auxinfo *argarray, *pos; 1434 int error; 1435 1436 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1437 M_WAITOK | M_ZERO); 1438 1439 if (args->execfd != -1) 1440 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1441 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1442 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1443 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1444 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1445 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1446 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1447 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1448 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1449 if (imgp->execpathp != 0) 1450 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1451 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1452 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1453 if (imgp->canary != 0) { 1454 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1455 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1456 } 1457 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1458 if (imgp->pagesizes != 0) { 1459 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1460 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1461 } 1462 if (imgp->sysent->sv_timekeep_base != 0) { 1463 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1464 imgp->sysent->sv_timekeep_base); 1465 } 1466 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1467 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1468 imgp->sysent->sv_stackprot); 1469 if (imgp->sysent->sv_hwcap != NULL) 1470 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1471 if (imgp->sysent->sv_hwcap2 != NULL) 1472 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1473 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1474 ELF_BSDF_SIGFASTBLK : 0); 1475 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1476 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1477 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1478 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1479 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1480 if (imgp->sysent->sv_fxrng_gen_base != 0) 1481 AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base); 1482 if (imgp->sysent->sv_vdso_base != 0 && __elfN(vdso) != 0) 1483 AUXARGS_ENTRY(pos, AT_KPRELOAD, imgp->sysent->sv_vdso_base); 1484 AUXARGS_ENTRY(pos, AT_NULL, 0); 1485 1486 free(imgp->auxargs, M_TEMP); 1487 imgp->auxargs = NULL; 1488 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1489 1490 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1491 free(argarray, M_TEMP); 1492 return (error); 1493 } 1494 1495 int 1496 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1497 { 1498 Elf_Addr *base; 1499 1500 base = (Elf_Addr *)*stack_base; 1501 base--; 1502 if (elf_suword(base, imgp->args->argc) == -1) 1503 return (EFAULT); 1504 *stack_base = (uintptr_t)base; 1505 return (0); 1506 } 1507 1508 /* 1509 * Code for generating ELF core dumps. 1510 */ 1511 1512 typedef void (*segment_callback)(vm_map_entry_t, void *); 1513 1514 /* Closure for cb_put_phdr(). */ 1515 struct phdr_closure { 1516 Elf_Phdr *phdr; /* Program header to fill in */ 1517 Elf_Off offset; /* Offset of segment in core file */ 1518 }; 1519 1520 struct note_info { 1521 int type; /* Note type. */ 1522 outfunc_t outfunc; /* Output function. */ 1523 void *outarg; /* Argument for the output function. */ 1524 size_t outsize; /* Output size. */ 1525 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1526 }; 1527 1528 TAILQ_HEAD(note_info_list, note_info); 1529 1530 extern int compress_user_cores; 1531 extern int compress_user_cores_level; 1532 1533 static void cb_put_phdr(vm_map_entry_t, void *); 1534 static void cb_size_segment(vm_map_entry_t, void *); 1535 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1536 int); 1537 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1538 struct note_info_list *, size_t, int); 1539 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1540 1541 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1542 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1543 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1544 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1545 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1546 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1547 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1548 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1549 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1550 static void note_procstat_files(void *, struct sbuf *, size_t *); 1551 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1552 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1553 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1554 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1555 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1556 1557 static int 1558 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1559 { 1560 1561 return (core_write((struct coredump_params *)arg, base, len, offset, 1562 UIO_SYSSPACE, NULL)); 1563 } 1564 1565 int 1566 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1567 { 1568 struct ucred *cred = td->td_ucred; 1569 int compm, error = 0; 1570 struct sseg_closure seginfo; 1571 struct note_info_list notelst; 1572 struct coredump_params params; 1573 struct note_info *ninfo; 1574 void *hdr, *tmpbuf; 1575 size_t hdrsize, notesz, coresize; 1576 1577 hdr = NULL; 1578 tmpbuf = NULL; 1579 TAILQ_INIT(¬elst); 1580 1581 /* Size the program segments. */ 1582 __elfN(size_segments)(td, &seginfo, flags); 1583 1584 /* 1585 * Collect info about the core file header area. 1586 */ 1587 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1588 if (seginfo.count + 1 >= PN_XNUM) 1589 hdrsize += sizeof(Elf_Shdr); 1590 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1591 coresize = round_page(hdrsize + notesz) + seginfo.size; 1592 1593 /* Set up core dump parameters. */ 1594 params.offset = 0; 1595 params.active_cred = cred; 1596 params.file_cred = NOCRED; 1597 params.td = td; 1598 params.vp = vp; 1599 params.comp = NULL; 1600 1601 #ifdef RACCT 1602 if (racct_enable) { 1603 PROC_LOCK(td->td_proc); 1604 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1605 PROC_UNLOCK(td->td_proc); 1606 if (error != 0) { 1607 error = EFAULT; 1608 goto done; 1609 } 1610 } 1611 #endif 1612 if (coresize >= limit) { 1613 error = EFAULT; 1614 goto done; 1615 } 1616 1617 /* Create a compression stream if necessary. */ 1618 compm = compress_user_cores; 1619 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1620 compm == 0) 1621 compm = COMPRESS_GZIP; 1622 if (compm != 0) { 1623 params.comp = compressor_init(core_compressed_write, 1624 compm, CORE_BUF_SIZE, 1625 compress_user_cores_level, ¶ms); 1626 if (params.comp == NULL) { 1627 error = EFAULT; 1628 goto done; 1629 } 1630 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1631 } 1632 1633 /* 1634 * Allocate memory for building the header, fill it up, 1635 * and write it out following the notes. 1636 */ 1637 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1638 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1639 notesz, flags); 1640 1641 /* Write the contents of all of the writable segments. */ 1642 if (error == 0) { 1643 Elf_Phdr *php; 1644 off_t offset; 1645 int i; 1646 1647 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1648 offset = round_page(hdrsize + notesz); 1649 for (i = 0; i < seginfo.count; i++) { 1650 error = core_output((char *)(uintptr_t)php->p_vaddr, 1651 php->p_filesz, offset, ¶ms, tmpbuf); 1652 if (error != 0) 1653 break; 1654 offset += php->p_filesz; 1655 php++; 1656 } 1657 if (error == 0 && params.comp != NULL) 1658 error = compressor_flush(params.comp); 1659 } 1660 if (error) { 1661 log(LOG_WARNING, 1662 "Failed to write core file for process %s (error %d)\n", 1663 curproc->p_comm, error); 1664 } 1665 1666 done: 1667 free(tmpbuf, M_TEMP); 1668 if (params.comp != NULL) 1669 compressor_fini(params.comp); 1670 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1671 TAILQ_REMOVE(¬elst, ninfo, link); 1672 free(ninfo, M_TEMP); 1673 } 1674 if (hdr != NULL) 1675 free(hdr, M_TEMP); 1676 1677 return (error); 1678 } 1679 1680 /* 1681 * A callback for each_dumpable_segment() to write out the segment's 1682 * program header entry. 1683 */ 1684 static void 1685 cb_put_phdr(vm_map_entry_t entry, void *closure) 1686 { 1687 struct phdr_closure *phc = (struct phdr_closure *)closure; 1688 Elf_Phdr *phdr = phc->phdr; 1689 1690 phc->offset = round_page(phc->offset); 1691 1692 phdr->p_type = PT_LOAD; 1693 phdr->p_offset = phc->offset; 1694 phdr->p_vaddr = entry->start; 1695 phdr->p_paddr = 0; 1696 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1697 phdr->p_align = PAGE_SIZE; 1698 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1699 1700 phc->offset += phdr->p_filesz; 1701 phc->phdr++; 1702 } 1703 1704 /* 1705 * A callback for each_dumpable_segment() to gather information about 1706 * the number of segments and their total size. 1707 */ 1708 static void 1709 cb_size_segment(vm_map_entry_t entry, void *closure) 1710 { 1711 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1712 1713 ssc->count++; 1714 ssc->size += entry->end - entry->start; 1715 } 1716 1717 void 1718 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1719 int flags) 1720 { 1721 seginfo->count = 0; 1722 seginfo->size = 0; 1723 1724 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1725 } 1726 1727 /* 1728 * For each writable segment in the process's memory map, call the given 1729 * function with a pointer to the map entry and some arbitrary 1730 * caller-supplied data. 1731 */ 1732 static void 1733 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1734 int flags) 1735 { 1736 struct proc *p = td->td_proc; 1737 vm_map_t map = &p->p_vmspace->vm_map; 1738 vm_map_entry_t entry; 1739 vm_object_t backing_object, object; 1740 bool ignore_entry; 1741 1742 vm_map_lock_read(map); 1743 VM_MAP_ENTRY_FOREACH(entry, map) { 1744 /* 1745 * Don't dump inaccessible mappings, deal with legacy 1746 * coredump mode. 1747 * 1748 * Note that read-only segments related to the elf binary 1749 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1750 * need to arbitrarily ignore such segments. 1751 */ 1752 if ((flags & SVC_ALL) == 0) { 1753 if (elf_legacy_coredump) { 1754 if ((entry->protection & VM_PROT_RW) != 1755 VM_PROT_RW) 1756 continue; 1757 } else { 1758 if ((entry->protection & VM_PROT_ALL) == 0) 1759 continue; 1760 } 1761 } 1762 1763 /* 1764 * Dont include memory segment in the coredump if 1765 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1766 * madvise(2). Do not dump submaps (i.e. parts of the 1767 * kernel map). 1768 */ 1769 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1770 continue; 1771 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1772 (flags & SVC_ALL) == 0) 1773 continue; 1774 if ((object = entry->object.vm_object) == NULL) 1775 continue; 1776 1777 /* Ignore memory-mapped devices and such things. */ 1778 VM_OBJECT_RLOCK(object); 1779 while ((backing_object = object->backing_object) != NULL) { 1780 VM_OBJECT_RLOCK(backing_object); 1781 VM_OBJECT_RUNLOCK(object); 1782 object = backing_object; 1783 } 1784 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1785 VM_OBJECT_RUNLOCK(object); 1786 if (ignore_entry) 1787 continue; 1788 1789 (*func)(entry, closure); 1790 } 1791 vm_map_unlock_read(map); 1792 } 1793 1794 /* 1795 * Write the core file header to the file, including padding up to 1796 * the page boundary. 1797 */ 1798 static int 1799 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1800 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1801 int flags) 1802 { 1803 struct note_info *ninfo; 1804 struct sbuf *sb; 1805 int error; 1806 1807 /* Fill in the header. */ 1808 bzero(hdr, hdrsize); 1809 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1810 1811 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1812 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1813 sbuf_start_section(sb, NULL); 1814 sbuf_bcat(sb, hdr, hdrsize); 1815 TAILQ_FOREACH(ninfo, notelst, link) 1816 __elfN(putnote)(p->td, ninfo, sb); 1817 /* Align up to a page boundary for the program segments. */ 1818 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1819 error = sbuf_finish(sb); 1820 sbuf_delete(sb); 1821 1822 return (error); 1823 } 1824 1825 void 1826 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1827 size_t *sizep) 1828 { 1829 struct proc *p; 1830 struct thread *thr; 1831 size_t size; 1832 1833 p = td->td_proc; 1834 size = 0; 1835 1836 size += __elfN(register_note)(td, list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1837 1838 /* 1839 * To have the debugger select the right thread (LWP) as the initial 1840 * thread, we dump the state of the thread passed to us in td first. 1841 * This is the thread that causes the core dump and thus likely to 1842 * be the right thread one wants to have selected in the debugger. 1843 */ 1844 thr = td; 1845 while (thr != NULL) { 1846 size += __elfN(register_note)(td, list, NT_PRSTATUS, 1847 __elfN(note_prstatus), thr); 1848 size += __elfN(register_note)(td, list, NT_FPREGSET, 1849 __elfN(note_fpregset), thr); 1850 size += __elfN(register_note)(td, list, NT_THRMISC, 1851 __elfN(note_thrmisc), thr); 1852 size += __elfN(register_note)(td, list, NT_PTLWPINFO, 1853 __elfN(note_ptlwpinfo), thr); 1854 size += __elfN(register_note)(td, list, -1, 1855 __elfN(note_threadmd), thr); 1856 1857 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1858 TAILQ_NEXT(thr, td_plist); 1859 if (thr == td) 1860 thr = TAILQ_NEXT(thr, td_plist); 1861 } 1862 1863 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1864 __elfN(note_procstat_proc), p); 1865 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1866 note_procstat_files, p); 1867 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1868 note_procstat_vmmap, p); 1869 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1870 note_procstat_groups, p); 1871 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1872 note_procstat_umask, p); 1873 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1874 note_procstat_rlimit, p); 1875 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1876 note_procstat_osrel, p); 1877 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1878 __elfN(note_procstat_psstrings), p); 1879 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1880 __elfN(note_procstat_auxv), p); 1881 1882 *sizep = size; 1883 } 1884 1885 void 1886 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1887 size_t notesz, int flags) 1888 { 1889 Elf_Ehdr *ehdr; 1890 Elf_Phdr *phdr; 1891 Elf_Shdr *shdr; 1892 struct phdr_closure phc; 1893 Elf_Brandinfo *bi; 1894 1895 ehdr = (Elf_Ehdr *)hdr; 1896 bi = td->td_proc->p_elf_brandinfo; 1897 1898 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1899 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1900 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1901 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1902 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1903 ehdr->e_ident[EI_DATA] = ELF_DATA; 1904 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1905 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1906 ehdr->e_ident[EI_ABIVERSION] = 0; 1907 ehdr->e_ident[EI_PAD] = 0; 1908 ehdr->e_type = ET_CORE; 1909 ehdr->e_machine = bi->machine; 1910 ehdr->e_version = EV_CURRENT; 1911 ehdr->e_entry = 0; 1912 ehdr->e_phoff = sizeof(Elf_Ehdr); 1913 ehdr->e_flags = td->td_proc->p_elf_flags; 1914 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1915 ehdr->e_phentsize = sizeof(Elf_Phdr); 1916 ehdr->e_shentsize = sizeof(Elf_Shdr); 1917 ehdr->e_shstrndx = SHN_UNDEF; 1918 if (numsegs + 1 < PN_XNUM) { 1919 ehdr->e_phnum = numsegs + 1; 1920 ehdr->e_shnum = 0; 1921 } else { 1922 ehdr->e_phnum = PN_XNUM; 1923 ehdr->e_shnum = 1; 1924 1925 ehdr->e_shoff = ehdr->e_phoff + 1926 (numsegs + 1) * ehdr->e_phentsize; 1927 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1928 ("e_shoff: %zu, hdrsize - shdr: %zu", 1929 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1930 1931 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1932 memset(shdr, 0, sizeof(*shdr)); 1933 /* 1934 * A special first section is used to hold large segment and 1935 * section counts. This was proposed by Sun Microsystems in 1936 * Solaris and has been adopted by Linux; the standard ELF 1937 * tools are already familiar with the technique. 1938 * 1939 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1940 * (or 12-7 depending on the version of the document) for more 1941 * details. 1942 */ 1943 shdr->sh_type = SHT_NULL; 1944 shdr->sh_size = ehdr->e_shnum; 1945 shdr->sh_link = ehdr->e_shstrndx; 1946 shdr->sh_info = numsegs + 1; 1947 } 1948 1949 /* 1950 * Fill in the program header entries. 1951 */ 1952 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1953 1954 /* The note segement. */ 1955 phdr->p_type = PT_NOTE; 1956 phdr->p_offset = hdrsize; 1957 phdr->p_vaddr = 0; 1958 phdr->p_paddr = 0; 1959 phdr->p_filesz = notesz; 1960 phdr->p_memsz = 0; 1961 phdr->p_flags = PF_R; 1962 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1963 phdr++; 1964 1965 /* All the writable segments from the program. */ 1966 phc.phdr = phdr; 1967 phc.offset = round_page(hdrsize + notesz); 1968 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1969 } 1970 1971 size_t 1972 __elfN(register_note)(struct thread *td, struct note_info_list *list, 1973 int type, outfunc_t out, void *arg) 1974 { 1975 const struct sysentvec *sv; 1976 struct note_info *ninfo; 1977 size_t size, notesize; 1978 1979 sv = td->td_proc->p_sysent; 1980 size = 0; 1981 out(arg, NULL, &size); 1982 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1983 ninfo->type = type; 1984 ninfo->outfunc = out; 1985 ninfo->outarg = arg; 1986 ninfo->outsize = size; 1987 TAILQ_INSERT_TAIL(list, ninfo, link); 1988 1989 if (type == -1) 1990 return (size); 1991 1992 notesize = sizeof(Elf_Note) + /* note header */ 1993 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 1994 /* note name */ 1995 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1996 1997 return (notesize); 1998 } 1999 2000 static size_t 2001 append_note_data(const void *src, void *dst, size_t len) 2002 { 2003 size_t padded_len; 2004 2005 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2006 if (dst != NULL) { 2007 bcopy(src, dst, len); 2008 bzero((char *)dst + len, padded_len - len); 2009 } 2010 return (padded_len); 2011 } 2012 2013 size_t 2014 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2015 { 2016 Elf_Note *note; 2017 char *buf; 2018 size_t notesize; 2019 2020 buf = dst; 2021 if (buf != NULL) { 2022 note = (Elf_Note *)buf; 2023 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2024 note->n_descsz = size; 2025 note->n_type = type; 2026 buf += sizeof(*note); 2027 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2028 sizeof(FREEBSD_ABI_VENDOR)); 2029 append_note_data(src, buf, size); 2030 if (descp != NULL) 2031 *descp = buf; 2032 } 2033 2034 notesize = sizeof(Elf_Note) + /* note header */ 2035 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2036 /* note name */ 2037 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2038 2039 return (notesize); 2040 } 2041 2042 static void 2043 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2044 { 2045 Elf_Note note; 2046 const struct sysentvec *sv; 2047 ssize_t old_len, sect_len; 2048 size_t new_len, descsz, i; 2049 2050 if (ninfo->type == -1) { 2051 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2052 return; 2053 } 2054 2055 sv = td->td_proc->p_sysent; 2056 2057 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2058 note.n_descsz = ninfo->outsize; 2059 note.n_type = ninfo->type; 2060 2061 sbuf_bcat(sb, ¬e, sizeof(note)); 2062 sbuf_start_section(sb, &old_len); 2063 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2064 strlen(sv->sv_elf_core_abi_vendor) + 1); 2065 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2066 if (note.n_descsz == 0) 2067 return; 2068 sbuf_start_section(sb, &old_len); 2069 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2070 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2071 if (sect_len < 0) 2072 return; 2073 2074 new_len = (size_t)sect_len; 2075 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2076 if (new_len < descsz) { 2077 /* 2078 * It is expected that individual note emitters will correctly 2079 * predict their expected output size and fill up to that size 2080 * themselves, padding in a format-specific way if needed. 2081 * However, in case they don't, just do it here with zeros. 2082 */ 2083 for (i = 0; i < descsz - new_len; i++) 2084 sbuf_putc(sb, 0); 2085 } else if (new_len > descsz) { 2086 /* 2087 * We can't always truncate sb -- we may have drained some 2088 * of it already. 2089 */ 2090 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2091 "read it (%zu > %zu). Since it is longer than " 2092 "expected, this coredump's notes are corrupt. THIS " 2093 "IS A BUG in the note_procstat routine for type %u.\n", 2094 __func__, (unsigned)note.n_type, new_len, descsz, 2095 (unsigned)note.n_type)); 2096 } 2097 } 2098 2099 /* 2100 * Miscellaneous note out functions. 2101 */ 2102 2103 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2104 #include <compat/freebsd32/freebsd32.h> 2105 #include <compat/freebsd32/freebsd32_signal.h> 2106 2107 typedef struct prstatus32 elf_prstatus_t; 2108 typedef struct prpsinfo32 elf_prpsinfo_t; 2109 typedef struct fpreg32 elf_prfpregset_t; 2110 typedef struct fpreg32 elf_fpregset_t; 2111 typedef struct reg32 elf_gregset_t; 2112 typedef struct thrmisc32 elf_thrmisc_t; 2113 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2114 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2115 typedef uint32_t elf_ps_strings_t; 2116 #else 2117 typedef prstatus_t elf_prstatus_t; 2118 typedef prpsinfo_t elf_prpsinfo_t; 2119 typedef prfpregset_t elf_prfpregset_t; 2120 typedef prfpregset_t elf_fpregset_t; 2121 typedef gregset_t elf_gregset_t; 2122 typedef thrmisc_t elf_thrmisc_t; 2123 #define ELF_KERN_PROC_MASK 0 2124 typedef struct kinfo_proc elf_kinfo_proc_t; 2125 typedef vm_offset_t elf_ps_strings_t; 2126 #endif 2127 2128 static void 2129 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2130 { 2131 struct sbuf sbarg; 2132 size_t len; 2133 char *cp, *end; 2134 struct proc *p; 2135 elf_prpsinfo_t *psinfo; 2136 int error; 2137 2138 p = arg; 2139 if (sb != NULL) { 2140 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2141 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2142 psinfo->pr_version = PRPSINFO_VERSION; 2143 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2144 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2145 PROC_LOCK(p); 2146 if (p->p_args != NULL) { 2147 len = sizeof(psinfo->pr_psargs) - 1; 2148 if (len > p->p_args->ar_length) 2149 len = p->p_args->ar_length; 2150 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2151 PROC_UNLOCK(p); 2152 error = 0; 2153 } else { 2154 _PHOLD(p); 2155 PROC_UNLOCK(p); 2156 sbuf_new(&sbarg, psinfo->pr_psargs, 2157 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2158 error = proc_getargv(curthread, p, &sbarg); 2159 PRELE(p); 2160 if (sbuf_finish(&sbarg) == 0) 2161 len = sbuf_len(&sbarg) - 1; 2162 else 2163 len = sizeof(psinfo->pr_psargs) - 1; 2164 sbuf_delete(&sbarg); 2165 } 2166 if (error || len == 0) 2167 strlcpy(psinfo->pr_psargs, p->p_comm, 2168 sizeof(psinfo->pr_psargs)); 2169 else { 2170 KASSERT(len < sizeof(psinfo->pr_psargs), 2171 ("len is too long: %zu vs %zu", len, 2172 sizeof(psinfo->pr_psargs))); 2173 cp = psinfo->pr_psargs; 2174 end = cp + len - 1; 2175 for (;;) { 2176 cp = memchr(cp, '\0', end - cp); 2177 if (cp == NULL) 2178 break; 2179 *cp = ' '; 2180 } 2181 } 2182 psinfo->pr_pid = p->p_pid; 2183 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2184 free(psinfo, M_TEMP); 2185 } 2186 *sizep = sizeof(*psinfo); 2187 } 2188 2189 static bool 2190 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2191 size_t *sizep) 2192 { 2193 elf_prstatus_t *status; 2194 2195 if (buf != NULL) { 2196 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2197 __func__)); 2198 status = buf; 2199 status->pr_version = PRSTATUS_VERSION; 2200 status->pr_statussz = sizeof(elf_prstatus_t); 2201 status->pr_gregsetsz = sizeof(elf_gregset_t); 2202 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2203 status->pr_osreldate = osreldate; 2204 status->pr_cursig = td->td_proc->p_sig; 2205 status->pr_pid = td->td_tid; 2206 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2207 fill_regs32(td, &status->pr_reg); 2208 #else 2209 fill_regs(td, &status->pr_reg); 2210 #endif 2211 } 2212 *sizep = sizeof(*status); 2213 return (true); 2214 } 2215 2216 static bool 2217 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2218 size_t size) 2219 { 2220 elf_prstatus_t *status; 2221 2222 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2223 status = buf; 2224 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2225 set_regs32(td, &status->pr_reg); 2226 #else 2227 set_regs(td, &status->pr_reg); 2228 #endif 2229 return (true); 2230 } 2231 2232 static struct regset __elfN(regset_prstatus) = { 2233 .note = NT_PRSTATUS, 2234 .size = sizeof(elf_prstatus_t), 2235 .get = __elfN(get_prstatus), 2236 .set = __elfN(set_prstatus), 2237 }; 2238 ELF_REGSET(__elfN(regset_prstatus)); 2239 2240 static void 2241 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2242 { 2243 struct thread *td; 2244 elf_prstatus_t *status; 2245 2246 td = arg; 2247 if (sb != NULL) { 2248 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2249 __func__)); 2250 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2251 __elfN(get_prstatus)(NULL, td, status, sizep); 2252 sbuf_bcat(sb, status, sizeof(*status)); 2253 free(status, M_TEMP); 2254 } 2255 *sizep = sizeof(*status); 2256 } 2257 2258 static bool 2259 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2260 size_t *sizep) 2261 { 2262 elf_prfpregset_t *fpregset; 2263 2264 if (buf != NULL) { 2265 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2266 __func__)); 2267 fpregset = buf; 2268 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2269 fill_fpregs32(td, fpregset); 2270 #else 2271 fill_fpregs(td, fpregset); 2272 #endif 2273 } 2274 *sizep = sizeof(fpregset); 2275 return (true); 2276 } 2277 2278 static bool 2279 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2280 size_t size) 2281 { 2282 elf_prfpregset_t *fpregset; 2283 2284 fpregset = buf; 2285 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2286 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2287 set_fpregs32(td, fpregset); 2288 #else 2289 set_fpregs(td, fpregset); 2290 #endif 2291 return (true); 2292 } 2293 2294 static struct regset __elfN(regset_fpregset) = { 2295 .note = NT_FPREGSET, 2296 .size = sizeof(elf_prfpregset_t), 2297 .get = __elfN(get_fpregset), 2298 .set = __elfN(set_fpregset), 2299 }; 2300 ELF_REGSET(__elfN(regset_fpregset)); 2301 2302 static void 2303 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2304 { 2305 struct thread *td; 2306 elf_prfpregset_t *fpregset; 2307 2308 td = arg; 2309 if (sb != NULL) { 2310 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2311 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2312 __elfN(get_fpregset)(NULL, td, fpregset, sizep); 2313 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2314 free(fpregset, M_TEMP); 2315 } 2316 *sizep = sizeof(*fpregset); 2317 } 2318 2319 static void 2320 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2321 { 2322 struct thread *td; 2323 elf_thrmisc_t thrmisc; 2324 2325 td = arg; 2326 if (sb != NULL) { 2327 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2328 bzero(&thrmisc, sizeof(thrmisc)); 2329 strcpy(thrmisc.pr_tname, td->td_name); 2330 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2331 } 2332 *sizep = sizeof(thrmisc); 2333 } 2334 2335 static void 2336 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2337 { 2338 struct thread *td; 2339 size_t size; 2340 int structsize; 2341 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2342 struct ptrace_lwpinfo32 pl; 2343 #else 2344 struct ptrace_lwpinfo pl; 2345 #endif 2346 2347 td = arg; 2348 size = sizeof(structsize) + sizeof(pl); 2349 if (sb != NULL) { 2350 KASSERT(*sizep == size, ("invalid size")); 2351 structsize = sizeof(pl); 2352 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2353 bzero(&pl, sizeof(pl)); 2354 pl.pl_lwpid = td->td_tid; 2355 pl.pl_event = PL_EVENT_NONE; 2356 pl.pl_sigmask = td->td_sigmask; 2357 pl.pl_siglist = td->td_siglist; 2358 if (td->td_si.si_signo != 0) { 2359 pl.pl_event = PL_EVENT_SIGNAL; 2360 pl.pl_flags |= PL_FLAG_SI; 2361 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2362 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2363 #else 2364 pl.pl_siginfo = td->td_si; 2365 #endif 2366 } 2367 strcpy(pl.pl_tdname, td->td_name); 2368 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2369 sbuf_bcat(sb, &pl, sizeof(pl)); 2370 } 2371 *sizep = size; 2372 } 2373 2374 /* 2375 * Allow for MD specific notes, as well as any MD 2376 * specific preparations for writing MI notes. 2377 */ 2378 static void 2379 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2380 { 2381 struct thread *td; 2382 void *buf; 2383 size_t size; 2384 2385 td = (struct thread *)arg; 2386 size = *sizep; 2387 if (size != 0 && sb != NULL) 2388 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2389 else 2390 buf = NULL; 2391 size = 0; 2392 __elfN(dump_thread)(td, buf, &size); 2393 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2394 if (size != 0 && sb != NULL) 2395 sbuf_bcat(sb, buf, size); 2396 free(buf, M_TEMP); 2397 *sizep = size; 2398 } 2399 2400 #ifdef KINFO_PROC_SIZE 2401 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2402 #endif 2403 2404 static void 2405 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2406 { 2407 struct proc *p; 2408 size_t size; 2409 int structsize; 2410 2411 p = arg; 2412 size = sizeof(structsize) + p->p_numthreads * 2413 sizeof(elf_kinfo_proc_t); 2414 2415 if (sb != NULL) { 2416 KASSERT(*sizep == size, ("invalid size")); 2417 structsize = sizeof(elf_kinfo_proc_t); 2418 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2419 sx_slock(&proctree_lock); 2420 PROC_LOCK(p); 2421 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2422 sx_sunlock(&proctree_lock); 2423 } 2424 *sizep = size; 2425 } 2426 2427 #ifdef KINFO_FILE_SIZE 2428 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2429 #endif 2430 2431 static void 2432 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2433 { 2434 struct proc *p; 2435 size_t size, sect_sz, i; 2436 ssize_t start_len, sect_len; 2437 int structsize, filedesc_flags; 2438 2439 if (coredump_pack_fileinfo) 2440 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2441 else 2442 filedesc_flags = 0; 2443 2444 p = arg; 2445 structsize = sizeof(struct kinfo_file); 2446 if (sb == NULL) { 2447 size = 0; 2448 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2449 sbuf_set_drain(sb, sbuf_count_drain, &size); 2450 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2451 PROC_LOCK(p); 2452 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2453 sbuf_finish(sb); 2454 sbuf_delete(sb); 2455 *sizep = size; 2456 } else { 2457 sbuf_start_section(sb, &start_len); 2458 2459 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2460 PROC_LOCK(p); 2461 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2462 filedesc_flags); 2463 2464 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2465 if (sect_len < 0) 2466 return; 2467 sect_sz = sect_len; 2468 2469 KASSERT(sect_sz <= *sizep, 2470 ("kern_proc_filedesc_out did not respect maxlen; " 2471 "requested %zu, got %zu", *sizep - sizeof(structsize), 2472 sect_sz - sizeof(structsize))); 2473 2474 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2475 sbuf_putc(sb, 0); 2476 } 2477 } 2478 2479 #ifdef KINFO_VMENTRY_SIZE 2480 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2481 #endif 2482 2483 static void 2484 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2485 { 2486 struct proc *p; 2487 size_t size; 2488 int structsize, vmmap_flags; 2489 2490 if (coredump_pack_vmmapinfo) 2491 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2492 else 2493 vmmap_flags = 0; 2494 2495 p = arg; 2496 structsize = sizeof(struct kinfo_vmentry); 2497 if (sb == NULL) { 2498 size = 0; 2499 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2500 sbuf_set_drain(sb, sbuf_count_drain, &size); 2501 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2502 PROC_LOCK(p); 2503 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2504 sbuf_finish(sb); 2505 sbuf_delete(sb); 2506 *sizep = size; 2507 } else { 2508 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2509 PROC_LOCK(p); 2510 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2511 vmmap_flags); 2512 } 2513 } 2514 2515 static void 2516 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2517 { 2518 struct proc *p; 2519 size_t size; 2520 int structsize; 2521 2522 p = arg; 2523 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2524 if (sb != NULL) { 2525 KASSERT(*sizep == size, ("invalid size")); 2526 structsize = sizeof(gid_t); 2527 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2528 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2529 sizeof(gid_t)); 2530 } 2531 *sizep = size; 2532 } 2533 2534 static void 2535 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2536 { 2537 struct proc *p; 2538 size_t size; 2539 int structsize; 2540 2541 p = arg; 2542 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2543 if (sb != NULL) { 2544 KASSERT(*sizep == size, ("invalid size")); 2545 structsize = sizeof(p->p_pd->pd_cmask); 2546 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2547 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2548 } 2549 *sizep = size; 2550 } 2551 2552 static void 2553 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2554 { 2555 struct proc *p; 2556 struct rlimit rlim[RLIM_NLIMITS]; 2557 size_t size; 2558 int structsize, i; 2559 2560 p = arg; 2561 size = sizeof(structsize) + sizeof(rlim); 2562 if (sb != NULL) { 2563 KASSERT(*sizep == size, ("invalid size")); 2564 structsize = sizeof(rlim); 2565 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2566 PROC_LOCK(p); 2567 for (i = 0; i < RLIM_NLIMITS; i++) 2568 lim_rlimit_proc(p, i, &rlim[i]); 2569 PROC_UNLOCK(p); 2570 sbuf_bcat(sb, rlim, sizeof(rlim)); 2571 } 2572 *sizep = size; 2573 } 2574 2575 static void 2576 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2577 { 2578 struct proc *p; 2579 size_t size; 2580 int structsize; 2581 2582 p = arg; 2583 size = sizeof(structsize) + sizeof(p->p_osrel); 2584 if (sb != NULL) { 2585 KASSERT(*sizep == size, ("invalid size")); 2586 structsize = sizeof(p->p_osrel); 2587 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2588 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2589 } 2590 *sizep = size; 2591 } 2592 2593 static void 2594 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2595 { 2596 struct proc *p; 2597 elf_ps_strings_t ps_strings; 2598 size_t size; 2599 int structsize; 2600 2601 p = arg; 2602 size = sizeof(structsize) + sizeof(ps_strings); 2603 if (sb != NULL) { 2604 KASSERT(*sizep == size, ("invalid size")); 2605 structsize = sizeof(ps_strings); 2606 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2607 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2608 #else 2609 ps_strings = PROC_PS_STRINGS(p); 2610 #endif 2611 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2612 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2613 } 2614 *sizep = size; 2615 } 2616 2617 static void 2618 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2619 { 2620 struct proc *p; 2621 size_t size; 2622 int structsize; 2623 2624 p = arg; 2625 if (sb == NULL) { 2626 size = 0; 2627 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2628 SBUF_FIXEDLEN); 2629 sbuf_set_drain(sb, sbuf_count_drain, &size); 2630 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2631 PHOLD(p); 2632 proc_getauxv(curthread, p, sb); 2633 PRELE(p); 2634 sbuf_finish(sb); 2635 sbuf_delete(sb); 2636 *sizep = size; 2637 } else { 2638 structsize = sizeof(Elf_Auxinfo); 2639 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2640 PHOLD(p); 2641 proc_getauxv(curthread, p, sb); 2642 PRELE(p); 2643 } 2644 } 2645 2646 static bool 2647 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2648 const char *note_vendor, const Elf_Phdr *pnote, 2649 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2650 { 2651 const Elf_Note *note, *note0, *note_end; 2652 const char *note_name; 2653 char *buf; 2654 int i, error; 2655 bool res; 2656 2657 /* We need some limit, might as well use PAGE_SIZE. */ 2658 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2659 return (false); 2660 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2661 if (pnote->p_offset > PAGE_SIZE || 2662 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2663 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2664 if (buf == NULL) { 2665 VOP_UNLOCK(imgp->vp); 2666 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2667 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2668 } 2669 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2670 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2671 curthread->td_ucred, NOCRED, NULL, curthread); 2672 if (error != 0) { 2673 uprintf("i/o error PT_NOTE\n"); 2674 goto retf; 2675 } 2676 note = note0 = (const Elf_Note *)buf; 2677 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2678 } else { 2679 note = note0 = (const Elf_Note *)(imgp->image_header + 2680 pnote->p_offset); 2681 note_end = (const Elf_Note *)(imgp->image_header + 2682 pnote->p_offset + pnote->p_filesz); 2683 buf = NULL; 2684 } 2685 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2686 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2687 (const char *)note < sizeof(Elf_Note)) { 2688 goto retf; 2689 } 2690 if (note->n_namesz != checknote->n_namesz || 2691 note->n_descsz != checknote->n_descsz || 2692 note->n_type != checknote->n_type) 2693 goto nextnote; 2694 note_name = (const char *)(note + 1); 2695 if (note_name + checknote->n_namesz >= 2696 (const char *)note_end || strncmp(note_vendor, 2697 note_name, checknote->n_namesz) != 0) 2698 goto nextnote; 2699 2700 if (cb(note, cb_arg, &res)) 2701 goto ret; 2702 nextnote: 2703 note = (const Elf_Note *)((const char *)(note + 1) + 2704 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2705 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2706 } 2707 retf: 2708 res = false; 2709 ret: 2710 free(buf, M_TEMP); 2711 return (res); 2712 } 2713 2714 struct brandnote_cb_arg { 2715 Elf_Brandnote *brandnote; 2716 int32_t *osrel; 2717 }; 2718 2719 static bool 2720 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2721 { 2722 struct brandnote_cb_arg *arg; 2723 2724 arg = arg0; 2725 2726 /* 2727 * Fetch the osreldate for binary from the ELF OSABI-note if 2728 * necessary. 2729 */ 2730 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2731 arg->brandnote->trans_osrel != NULL ? 2732 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2733 2734 return (true); 2735 } 2736 2737 static Elf_Note fctl_note = { 2738 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2739 .n_descsz = sizeof(uint32_t), 2740 .n_type = NT_FREEBSD_FEATURE_CTL, 2741 }; 2742 2743 struct fctl_cb_arg { 2744 bool *has_fctl0; 2745 uint32_t *fctl0; 2746 }; 2747 2748 static bool 2749 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2750 { 2751 struct fctl_cb_arg *arg; 2752 const Elf32_Word *desc; 2753 uintptr_t p; 2754 2755 arg = arg0; 2756 p = (uintptr_t)(note + 1); 2757 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2758 desc = (const Elf32_Word *)p; 2759 *arg->has_fctl0 = true; 2760 *arg->fctl0 = desc[0]; 2761 *res = true; 2762 return (true); 2763 } 2764 2765 /* 2766 * Try to find the appropriate ABI-note section for checknote, fetch 2767 * the osreldate and feature control flags for binary from the ELF 2768 * OSABI-note. Only the first page of the image is searched, the same 2769 * as for headers. 2770 */ 2771 static bool 2772 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2773 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2774 { 2775 const Elf_Phdr *phdr; 2776 const Elf_Ehdr *hdr; 2777 struct brandnote_cb_arg b_arg; 2778 struct fctl_cb_arg f_arg; 2779 int i, j; 2780 2781 hdr = (const Elf_Ehdr *)imgp->image_header; 2782 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2783 b_arg.brandnote = brandnote; 2784 b_arg.osrel = osrel; 2785 f_arg.has_fctl0 = has_fctl0; 2786 f_arg.fctl0 = fctl0; 2787 2788 for (i = 0; i < hdr->e_phnum; i++) { 2789 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2790 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2791 &b_arg)) { 2792 for (j = 0; j < hdr->e_phnum; j++) { 2793 if (phdr[j].p_type == PT_NOTE && 2794 __elfN(parse_notes)(imgp, &fctl_note, 2795 FREEBSD_ABI_VENDOR, &phdr[j], 2796 note_fctl_cb, &f_arg)) 2797 break; 2798 } 2799 return (true); 2800 } 2801 } 2802 return (false); 2803 2804 } 2805 2806 /* 2807 * Tell kern_execve.c about it, with a little help from the linker. 2808 */ 2809 static struct execsw __elfN(execsw) = { 2810 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2811 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2812 }; 2813 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2814 2815 static vm_prot_t 2816 __elfN(trans_prot)(Elf_Word flags) 2817 { 2818 vm_prot_t prot; 2819 2820 prot = 0; 2821 if (flags & PF_X) 2822 prot |= VM_PROT_EXECUTE; 2823 if (flags & PF_W) 2824 prot |= VM_PROT_WRITE; 2825 if (flags & PF_R) 2826 prot |= VM_PROT_READ; 2827 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2828 if (i386_read_exec && (flags & PF_R)) 2829 prot |= VM_PROT_EXECUTE; 2830 #endif 2831 return (prot); 2832 } 2833 2834 static Elf_Word 2835 __elfN(untrans_prot)(vm_prot_t prot) 2836 { 2837 Elf_Word flags; 2838 2839 flags = 0; 2840 if (prot & VM_PROT_EXECUTE) 2841 flags |= PF_X; 2842 if (prot & VM_PROT_READ) 2843 flags |= PF_R; 2844 if (prot & VM_PROT_WRITE) 2845 flags |= PF_W; 2846 return (flags); 2847 } 2848