1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int interp_name_len, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 139 ""); 140 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 141 142 static int __elfN(aslr_enabled) = 0; 143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 144 &__elfN(aslr_enabled), 0, 145 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 146 ": enable address map randomization"); 147 148 static int __elfN(pie_aslr_enabled) = 0; 149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 150 &__elfN(pie_aslr_enabled), 0, 151 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 152 ": enable address map randomization for PIE binaries"); 153 154 static int __elfN(aslr_honor_sbrk) = 1; 155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 156 &__elfN(aslr_honor_sbrk), 0, 157 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 158 159 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 160 161 #define trunc_page_ps(va, ps) rounddown2(va, ps) 162 #define round_page_ps(va, ps) roundup2(va, ps) 163 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 164 165 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 166 167 Elf_Brandnote __elfN(freebsd_brandnote) = { 168 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 169 .hdr.n_descsz = sizeof(int32_t), 170 .hdr.n_type = NT_FREEBSD_ABI_TAG, 171 .vendor = FREEBSD_ABI_VENDOR, 172 .flags = BN_TRANSLATE_OSREL, 173 .trans_osrel = __elfN(freebsd_trans_osrel) 174 }; 175 176 static bool 177 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 178 { 179 uintptr_t p; 180 181 p = (uintptr_t)(note + 1); 182 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 183 *osrel = *(const int32_t *)(p); 184 185 return (true); 186 } 187 188 static const char GNU_ABI_VENDOR[] = "GNU"; 189 static int GNU_KFREEBSD_ABI_DESC = 3; 190 191 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 192 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 193 .hdr.n_descsz = 16, /* XXX at least 16 */ 194 .hdr.n_type = 1, 195 .vendor = GNU_ABI_VENDOR, 196 .flags = BN_TRANSLATE_OSREL, 197 .trans_osrel = kfreebsd_trans_osrel 198 }; 199 200 static bool 201 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 202 { 203 const Elf32_Word *desc; 204 uintptr_t p; 205 206 p = (uintptr_t)(note + 1); 207 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 208 209 desc = (const Elf32_Word *)p; 210 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 211 return (false); 212 213 /* 214 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 215 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 216 */ 217 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 218 219 return (true); 220 } 221 222 int 223 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 224 { 225 int i; 226 227 for (i = 0; i < MAX_BRANDS; i++) { 228 if (elf_brand_list[i] == NULL) { 229 elf_brand_list[i] = entry; 230 break; 231 } 232 } 233 if (i == MAX_BRANDS) { 234 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 235 __func__, entry); 236 return (-1); 237 } 238 return (0); 239 } 240 241 int 242 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 243 { 244 int i; 245 246 for (i = 0; i < MAX_BRANDS; i++) { 247 if (elf_brand_list[i] == entry) { 248 elf_brand_list[i] = NULL; 249 break; 250 } 251 } 252 if (i == MAX_BRANDS) 253 return (-1); 254 return (0); 255 } 256 257 int 258 __elfN(brand_inuse)(Elf_Brandinfo *entry) 259 { 260 struct proc *p; 261 int rval = FALSE; 262 263 sx_slock(&allproc_lock); 264 FOREACH_PROC_IN_SYSTEM(p) { 265 if (p->p_sysent == entry->sysvec) { 266 rval = TRUE; 267 break; 268 } 269 } 270 sx_sunlock(&allproc_lock); 271 272 return (rval); 273 } 274 275 static Elf_Brandinfo * 276 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 277 int interp_name_len, int32_t *osrel, uint32_t *fctl0) 278 { 279 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 280 Elf_Brandinfo *bi, *bi_m; 281 boolean_t ret; 282 int i; 283 284 /* 285 * We support four types of branding -- (1) the ELF EI_OSABI field 286 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 287 * branding w/in the ELF header, (3) path of the `interp_path' 288 * field, and (4) the ".note.ABI-tag" ELF section. 289 */ 290 291 /* Look for an ".note.ABI-tag" ELF section */ 292 bi_m = NULL; 293 for (i = 0; i < MAX_BRANDS; i++) { 294 bi = elf_brand_list[i]; 295 if (bi == NULL) 296 continue; 297 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 298 continue; 299 if (hdr->e_machine == bi->machine && (bi->flags & 300 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 301 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 302 fctl0); 303 /* Give brand a chance to veto check_note's guess */ 304 if (ret && bi->header_supported) 305 ret = bi->header_supported(imgp); 306 /* 307 * If note checker claimed the binary, but the 308 * interpreter path in the image does not 309 * match default one for the brand, try to 310 * search for other brands with the same 311 * interpreter. Either there is better brand 312 * with the right interpreter, or, failing 313 * this, we return first brand which accepted 314 * our note and, optionally, header. 315 */ 316 if (ret && bi_m == NULL && interp != NULL && 317 (bi->interp_path == NULL || 318 (strlen(bi->interp_path) + 1 != interp_name_len || 319 strncmp(interp, bi->interp_path, interp_name_len) 320 != 0))) { 321 bi_m = bi; 322 ret = 0; 323 } 324 if (ret) 325 return (bi); 326 } 327 } 328 if (bi_m != NULL) 329 return (bi_m); 330 331 /* If the executable has a brand, search for it in the brand list. */ 332 for (i = 0; i < MAX_BRANDS; i++) { 333 bi = elf_brand_list[i]; 334 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 335 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 336 continue; 337 if (hdr->e_machine == bi->machine && 338 (hdr->e_ident[EI_OSABI] == bi->brand || 339 (bi->compat_3_brand != NULL && 340 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 341 bi->compat_3_brand) == 0))) { 342 /* Looks good, but give brand a chance to veto */ 343 if (bi->header_supported == NULL || 344 bi->header_supported(imgp)) { 345 /* 346 * Again, prefer strictly matching 347 * interpreter path. 348 */ 349 if (interp_name_len == 0 && 350 bi->interp_path == NULL) 351 return (bi); 352 if (bi->interp_path != NULL && 353 strlen(bi->interp_path) + 1 == 354 interp_name_len && strncmp(interp, 355 bi->interp_path, interp_name_len) == 0) 356 return (bi); 357 if (bi_m == NULL) 358 bi_m = bi; 359 } 360 } 361 } 362 if (bi_m != NULL) 363 return (bi_m); 364 365 /* No known brand, see if the header is recognized by any brand */ 366 for (i = 0; i < MAX_BRANDS; i++) { 367 bi = elf_brand_list[i]; 368 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 369 bi->header_supported == NULL) 370 continue; 371 if (hdr->e_machine == bi->machine) { 372 ret = bi->header_supported(imgp); 373 if (ret) 374 return (bi); 375 } 376 } 377 378 /* Lacking a known brand, search for a recognized interpreter. */ 379 if (interp != NULL) { 380 for (i = 0; i < MAX_BRANDS; i++) { 381 bi = elf_brand_list[i]; 382 if (bi == NULL || (bi->flags & 383 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 384 != 0) 385 continue; 386 if (hdr->e_machine == bi->machine && 387 bi->interp_path != NULL && 388 /* ELF image p_filesz includes terminating zero */ 389 strlen(bi->interp_path) + 1 == interp_name_len && 390 strncmp(interp, bi->interp_path, interp_name_len) 391 == 0 && (bi->header_supported == NULL || 392 bi->header_supported(imgp))) 393 return (bi); 394 } 395 } 396 397 /* Lacking a recognized interpreter, try the default brand */ 398 for (i = 0; i < MAX_BRANDS; i++) { 399 bi = elf_brand_list[i]; 400 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 401 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 402 continue; 403 if (hdr->e_machine == bi->machine && 404 __elfN(fallback_brand) == bi->brand && 405 (bi->header_supported == NULL || 406 bi->header_supported(imgp))) 407 return (bi); 408 } 409 return (NULL); 410 } 411 412 static int 413 __elfN(check_header)(const Elf_Ehdr *hdr) 414 { 415 Elf_Brandinfo *bi; 416 int i; 417 418 if (!IS_ELF(*hdr) || 419 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 420 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 421 hdr->e_ident[EI_VERSION] != EV_CURRENT || 422 hdr->e_phentsize != sizeof(Elf_Phdr) || 423 hdr->e_version != ELF_TARG_VER) 424 return (ENOEXEC); 425 426 /* 427 * Make sure we have at least one brand for this machine. 428 */ 429 430 for (i = 0; i < MAX_BRANDS; i++) { 431 bi = elf_brand_list[i]; 432 if (bi != NULL && bi->machine == hdr->e_machine) 433 break; 434 } 435 if (i == MAX_BRANDS) 436 return (ENOEXEC); 437 438 return (0); 439 } 440 441 static int 442 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 443 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 444 { 445 struct sf_buf *sf; 446 int error; 447 vm_offset_t off; 448 449 /* 450 * Create the page if it doesn't exist yet. Ignore errors. 451 */ 452 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 453 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 454 455 /* 456 * Find the page from the underlying object. 457 */ 458 if (object != NULL) { 459 sf = vm_imgact_map_page(object, offset); 460 if (sf == NULL) 461 return (KERN_FAILURE); 462 off = offset - trunc_page(offset); 463 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 464 end - start); 465 vm_imgact_unmap_page(sf); 466 if (error != 0) 467 return (KERN_FAILURE); 468 } 469 470 return (KERN_SUCCESS); 471 } 472 473 static int 474 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 475 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 476 int cow) 477 { 478 struct sf_buf *sf; 479 vm_offset_t off; 480 vm_size_t sz; 481 int error, locked, rv; 482 483 if (start != trunc_page(start)) { 484 rv = __elfN(map_partial)(map, object, offset, start, 485 round_page(start), prot); 486 if (rv != KERN_SUCCESS) 487 return (rv); 488 offset += round_page(start) - start; 489 start = round_page(start); 490 } 491 if (end != round_page(end)) { 492 rv = __elfN(map_partial)(map, object, offset + 493 trunc_page(end) - start, trunc_page(end), end, prot); 494 if (rv != KERN_SUCCESS) 495 return (rv); 496 end = trunc_page(end); 497 } 498 if (start >= end) 499 return (KERN_SUCCESS); 500 if ((offset & PAGE_MASK) != 0) { 501 /* 502 * The mapping is not page aligned. This means that we have 503 * to copy the data. 504 */ 505 rv = vm_map_fixed(map, NULL, 0, start, end - start, 506 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 507 if (rv != KERN_SUCCESS) 508 return (rv); 509 if (object == NULL) 510 return (KERN_SUCCESS); 511 for (; start < end; start += sz) { 512 sf = vm_imgact_map_page(object, offset); 513 if (sf == NULL) 514 return (KERN_FAILURE); 515 off = offset - trunc_page(offset); 516 sz = end - start; 517 if (sz > PAGE_SIZE - off) 518 sz = PAGE_SIZE - off; 519 error = copyout((caddr_t)sf_buf_kva(sf) + off, 520 (caddr_t)start, sz); 521 vm_imgact_unmap_page(sf); 522 if (error != 0) 523 return (KERN_FAILURE); 524 offset += sz; 525 } 526 } else { 527 vm_object_reference(object); 528 rv = vm_map_fixed(map, object, offset, start, end - start, 529 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 530 if (rv != KERN_SUCCESS) { 531 locked = VOP_ISLOCKED(imgp->vp); 532 VOP_UNLOCK(imgp->vp, 0); 533 vm_object_deallocate(object); 534 vn_lock(imgp->vp, locked | LK_RETRY); 535 return (rv); 536 } 537 } 538 return (KERN_SUCCESS); 539 } 540 541 static int 542 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 543 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 544 { 545 struct sf_buf *sf; 546 size_t map_len; 547 vm_map_t map; 548 vm_object_t object; 549 vm_offset_t off, map_addr; 550 int error, rv, cow; 551 size_t copy_len; 552 vm_ooffset_t file_addr; 553 554 /* 555 * It's necessary to fail if the filsz + offset taken from the 556 * header is greater than the actual file pager object's size. 557 * If we were to allow this, then the vm_map_find() below would 558 * walk right off the end of the file object and into the ether. 559 * 560 * While I'm here, might as well check for something else that 561 * is invalid: filsz cannot be greater than memsz. 562 */ 563 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 564 filsz > memsz) { 565 uprintf("elf_load_section: truncated ELF file\n"); 566 return (ENOEXEC); 567 } 568 569 object = imgp->object; 570 map = &imgp->proc->p_vmspace->vm_map; 571 map_addr = trunc_page_ps((vm_offset_t)vmaddr, PAGE_SIZE); 572 file_addr = trunc_page_ps(offset, PAGE_SIZE); 573 574 /* 575 * We have two choices. We can either clear the data in the last page 576 * of an oversized mapping, or we can start the anon mapping a page 577 * early and copy the initialized data into that first page. We 578 * choose the second. 579 */ 580 if (filsz == 0) 581 map_len = 0; 582 else if (memsz > filsz) 583 map_len = trunc_page_ps(offset + filsz, PAGE_SIZE) - file_addr; 584 else 585 map_len = round_page_ps(offset + filsz, PAGE_SIZE) - file_addr; 586 587 if (map_len != 0) { 588 /* cow flags: don't dump readonly sections in core */ 589 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 590 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 591 592 rv = __elfN(map_insert)(imgp, map, 593 object, 594 file_addr, /* file offset */ 595 map_addr, /* virtual start */ 596 map_addr + map_len,/* virtual end */ 597 prot, 598 cow); 599 if (rv != KERN_SUCCESS) 600 return (EINVAL); 601 602 /* we can stop now if we've covered it all */ 603 if (memsz == filsz) 604 return (0); 605 } 606 607 608 /* 609 * We have to get the remaining bit of the file into the first part 610 * of the oversized map segment. This is normally because the .data 611 * segment in the file is extended to provide bss. It's a neat idea 612 * to try and save a page, but it's a pain in the behind to implement. 613 */ 614 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset + 615 filsz, PAGE_SIZE); 616 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, PAGE_SIZE); 617 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, PAGE_SIZE) - 618 map_addr; 619 620 /* This had damn well better be true! */ 621 if (map_len != 0) { 622 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 623 map_addr + map_len, prot, 0); 624 if (rv != KERN_SUCCESS) 625 return (EINVAL); 626 } 627 628 if (copy_len != 0) { 629 sf = vm_imgact_map_page(object, offset + filsz); 630 if (sf == NULL) 631 return (EIO); 632 633 /* send the page fragment to user space */ 634 off = trunc_page_ps(offset + filsz, PAGE_SIZE) - 635 trunc_page(offset + filsz); 636 error = copyout((caddr_t)sf_buf_kva(sf) + off, 637 (caddr_t)map_addr, copy_len); 638 vm_imgact_unmap_page(sf); 639 if (error != 0) 640 return (error); 641 } 642 643 /* 644 * Remove write access to the page if it was only granted by map_insert 645 * to allow copyout. 646 */ 647 if ((prot & VM_PROT_WRITE) == 0) 648 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 649 map_len), prot, FALSE); 650 651 return (0); 652 } 653 654 /* 655 * Load the file "file" into memory. It may be either a shared object 656 * or an executable. 657 * 658 * The "addr" reference parameter is in/out. On entry, it specifies 659 * the address where a shared object should be loaded. If the file is 660 * an executable, this value is ignored. On exit, "addr" specifies 661 * where the file was actually loaded. 662 * 663 * The "entry" reference parameter is out only. On exit, it specifies 664 * the entry point for the loaded file. 665 */ 666 static int 667 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 668 u_long *entry) 669 { 670 struct { 671 struct nameidata nd; 672 struct vattr attr; 673 struct image_params image_params; 674 } *tempdata; 675 const Elf_Ehdr *hdr = NULL; 676 const Elf_Phdr *phdr = NULL; 677 struct nameidata *nd; 678 struct vattr *attr; 679 struct image_params *imgp; 680 vm_prot_t prot; 681 u_long rbase; 682 u_long base_addr = 0; 683 int error, i, numsegs; 684 685 #ifdef CAPABILITY_MODE 686 /* 687 * XXXJA: This check can go away once we are sufficiently confident 688 * that the checks in namei() are correct. 689 */ 690 if (IN_CAPABILITY_MODE(curthread)) 691 return (ECAPMODE); 692 #endif 693 694 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 695 nd = &tempdata->nd; 696 attr = &tempdata->attr; 697 imgp = &tempdata->image_params; 698 699 /* 700 * Initialize part of the common data 701 */ 702 imgp->proc = p; 703 imgp->attr = attr; 704 imgp->firstpage = NULL; 705 imgp->image_header = NULL; 706 imgp->object = NULL; 707 imgp->execlabel = NULL; 708 709 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 710 if ((error = namei(nd)) != 0) { 711 nd->ni_vp = NULL; 712 goto fail; 713 } 714 NDFREE(nd, NDF_ONLY_PNBUF); 715 imgp->vp = nd->ni_vp; 716 717 /* 718 * Check permissions, modes, uid, etc on the file, and "open" it. 719 */ 720 error = exec_check_permissions(imgp); 721 if (error) 722 goto fail; 723 724 error = exec_map_first_page(imgp); 725 if (error) 726 goto fail; 727 728 /* 729 * Also make certain that the interpreter stays the same, so set 730 * its VV_TEXT flag, too. 731 */ 732 VOP_SET_TEXT(nd->ni_vp); 733 734 imgp->object = nd->ni_vp->v_object; 735 736 hdr = (const Elf_Ehdr *)imgp->image_header; 737 if ((error = __elfN(check_header)(hdr)) != 0) 738 goto fail; 739 if (hdr->e_type == ET_DYN) 740 rbase = *addr; 741 else if (hdr->e_type == ET_EXEC) 742 rbase = 0; 743 else { 744 error = ENOEXEC; 745 goto fail; 746 } 747 748 /* Only support headers that fit within first page for now */ 749 if ((hdr->e_phoff > PAGE_SIZE) || 750 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 751 error = ENOEXEC; 752 goto fail; 753 } 754 755 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 756 if (!aligned(phdr, Elf_Addr)) { 757 error = ENOEXEC; 758 goto fail; 759 } 760 761 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 762 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 763 /* Loadable segment */ 764 prot = __elfN(trans_prot)(phdr[i].p_flags); 765 error = __elfN(load_section)(imgp, phdr[i].p_offset, 766 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 767 phdr[i].p_memsz, phdr[i].p_filesz, prot); 768 if (error != 0) 769 goto fail; 770 /* 771 * Establish the base address if this is the 772 * first segment. 773 */ 774 if (numsegs == 0) 775 base_addr = trunc_page(phdr[i].p_vaddr + 776 rbase); 777 numsegs++; 778 } 779 } 780 *addr = base_addr; 781 *entry = (unsigned long)hdr->e_entry + rbase; 782 783 fail: 784 if (imgp->firstpage) 785 exec_unmap_first_page(imgp); 786 787 if (nd->ni_vp) 788 vput(nd->ni_vp); 789 790 free(tempdata, M_TEMP); 791 792 return (error); 793 } 794 795 static u_long 796 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 797 u_int align) 798 { 799 u_long rbase, res; 800 801 MPASS(vm_map_min(map) <= minv); 802 MPASS(maxv <= vm_map_max(map)); 803 MPASS(minv < maxv); 804 MPASS(minv + align < maxv); 805 arc4rand(&rbase, sizeof(rbase), 0); 806 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 807 res &= ~((u_long)align - 1); 808 if (res >= maxv) 809 res -= align; 810 KASSERT(res >= minv, 811 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 812 res, minv, maxv, rbase)); 813 KASSERT(res < maxv, 814 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 815 res, maxv, minv, rbase)); 816 return (res); 817 } 818 819 /* 820 * Impossible et_dyn_addr initial value indicating that the real base 821 * must be calculated later with some randomization applied. 822 */ 823 #define ET_DYN_ADDR_RAND 1 824 825 static int 826 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 827 { 828 struct thread *td; 829 const Elf_Ehdr *hdr; 830 const Elf_Phdr *phdr; 831 Elf_Auxargs *elf_auxargs; 832 struct vmspace *vmspace; 833 vm_map_t map; 834 const char *err_str, *newinterp; 835 char *interp, *interp_buf, *path; 836 Elf_Brandinfo *brand_info; 837 struct sysentvec *sv; 838 vm_prot_t prot; 839 u_long text_size, data_size, total_size, text_addr, data_addr; 840 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 841 u_long maxalign, mapsz, maxv, maxv1; 842 uint32_t fctl0; 843 int32_t osrel; 844 int error, i, n, interp_name_len, have_interp; 845 846 hdr = (const Elf_Ehdr *)imgp->image_header; 847 848 /* 849 * Do we have a valid ELF header ? 850 * 851 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 852 * if particular brand doesn't support it. 853 */ 854 if (__elfN(check_header)(hdr) != 0 || 855 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 856 return (-1); 857 858 /* 859 * From here on down, we return an errno, not -1, as we've 860 * detected an ELF file. 861 */ 862 863 if ((hdr->e_phoff > PAGE_SIZE) || 864 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 865 /* Only support headers in first page for now */ 866 uprintf("Program headers not in the first page\n"); 867 return (ENOEXEC); 868 } 869 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 870 if (!aligned(phdr, Elf_Addr)) { 871 uprintf("Unaligned program headers\n"); 872 return (ENOEXEC); 873 } 874 875 n = error = 0; 876 baddr = 0; 877 osrel = 0; 878 fctl0 = 0; 879 text_size = data_size = total_size = text_addr = data_addr = 0; 880 entry = proghdr = 0; 881 interp_name_len = 0; 882 err_str = newinterp = NULL; 883 interp = interp_buf = NULL; 884 td = curthread; 885 maxalign = PAGE_SIZE; 886 mapsz = 0; 887 888 for (i = 0; i < hdr->e_phnum; i++) { 889 switch (phdr[i].p_type) { 890 case PT_LOAD: 891 if (n == 0) 892 baddr = phdr[i].p_vaddr; 893 if (phdr[i].p_align > maxalign) 894 maxalign = phdr[i].p_align; 895 mapsz += phdr[i].p_memsz; 896 n++; 897 break; 898 case PT_INTERP: 899 /* Path to interpreter */ 900 if (phdr[i].p_filesz < 2 || 901 phdr[i].p_filesz > MAXPATHLEN) { 902 uprintf("Invalid PT_INTERP\n"); 903 error = ENOEXEC; 904 goto ret; 905 } 906 if (interp != NULL) { 907 uprintf("Multiple PT_INTERP headers\n"); 908 error = ENOEXEC; 909 goto ret; 910 } 911 interp_name_len = phdr[i].p_filesz; 912 if (phdr[i].p_offset > PAGE_SIZE || 913 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 914 VOP_UNLOCK(imgp->vp, 0); 915 interp_buf = malloc(interp_name_len + 1, M_TEMP, 916 M_WAITOK); 917 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 918 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 919 interp_name_len, phdr[i].p_offset, 920 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 921 NOCRED, NULL, td); 922 if (error != 0) { 923 uprintf("i/o error PT_INTERP %d\n", 924 error); 925 goto ret; 926 } 927 interp_buf[interp_name_len] = '\0'; 928 interp = interp_buf; 929 } else { 930 interp = __DECONST(char *, imgp->image_header) + 931 phdr[i].p_offset; 932 if (interp[interp_name_len - 1] != '\0') { 933 uprintf("Invalid PT_INTERP\n"); 934 error = ENOEXEC; 935 goto ret; 936 } 937 } 938 break; 939 case PT_GNU_STACK: 940 if (__elfN(nxstack)) 941 imgp->stack_prot = 942 __elfN(trans_prot)(phdr[i].p_flags); 943 imgp->stack_sz = phdr[i].p_memsz; 944 break; 945 } 946 } 947 948 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 949 &osrel, &fctl0); 950 if (brand_info == NULL) { 951 uprintf("ELF binary type \"%u\" not known.\n", 952 hdr->e_ident[EI_OSABI]); 953 error = ENOEXEC; 954 goto ret; 955 } 956 sv = brand_info->sysvec; 957 et_dyn_addr = 0; 958 if (hdr->e_type == ET_DYN) { 959 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 960 uprintf("Cannot execute shared object\n"); 961 error = ENOEXEC; 962 goto ret; 963 } 964 /* 965 * Honour the base load address from the dso if it is 966 * non-zero for some reason. 967 */ 968 if (baddr == 0) { 969 if ((sv->sv_flags & SV_ASLR) == 0 || 970 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 971 et_dyn_addr = ET_DYN_LOAD_ADDR; 972 else if ((__elfN(pie_aslr_enabled) && 973 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 974 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 975 et_dyn_addr = ET_DYN_ADDR_RAND; 976 else 977 et_dyn_addr = ET_DYN_LOAD_ADDR; 978 } 979 } 980 if (interp != NULL && brand_info->interp_newpath != NULL) 981 newinterp = brand_info->interp_newpath; 982 983 /* 984 * Avoid a possible deadlock if the current address space is destroyed 985 * and that address space maps the locked vnode. In the common case, 986 * the locked vnode's v_usecount is decremented but remains greater 987 * than zero. Consequently, the vnode lock is not needed by vrele(). 988 * However, in cases where the vnode lock is external, such as nullfs, 989 * v_usecount may become zero. 990 * 991 * The VV_TEXT flag prevents modifications to the executable while 992 * the vnode is unlocked. 993 */ 994 VOP_UNLOCK(imgp->vp, 0); 995 996 /* 997 * Decide whether to enable randomization of user mappings. 998 * First, reset user preferences for the setid binaries. 999 * Then, account for the support of the randomization by the 1000 * ABI, by user preferences, and make special treatment for 1001 * PIE binaries. 1002 */ 1003 if (imgp->credential_setid) { 1004 PROC_LOCK(imgp->proc); 1005 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1006 PROC_UNLOCK(imgp->proc); 1007 } 1008 if ((sv->sv_flags & SV_ASLR) == 0 || 1009 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1010 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1011 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1012 ("et_dyn_addr == RAND and !ASLR")); 1013 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1014 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1015 et_dyn_addr == ET_DYN_ADDR_RAND) { 1016 imgp->map_flags |= MAP_ASLR; 1017 /* 1018 * If user does not care about sbrk, utilize the bss 1019 * grow region for mappings as well. We can select 1020 * the base for the image anywere and still not suffer 1021 * from the fragmentation. 1022 */ 1023 if (!__elfN(aslr_honor_sbrk) || 1024 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1025 imgp->map_flags |= MAP_ASLR_IGNSTART; 1026 } 1027 1028 error = exec_new_vmspace(imgp, sv); 1029 vmspace = imgp->proc->p_vmspace; 1030 map = &vmspace->vm_map; 1031 1032 imgp->proc->p_sysent = sv; 1033 1034 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1035 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1036 KASSERT((map->flags & MAP_ASLR) != 0, 1037 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1038 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1039 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1040 /* reserve half of the address space to interpreter */ 1041 maxv / 2, 1UL << flsl(maxalign)); 1042 } 1043 1044 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1045 if (error != 0) 1046 goto ret; 1047 1048 for (i = 0; i < hdr->e_phnum; i++) { 1049 switch (phdr[i].p_type) { 1050 case PT_LOAD: /* Loadable segment */ 1051 if (phdr[i].p_memsz == 0) 1052 break; 1053 prot = __elfN(trans_prot)(phdr[i].p_flags); 1054 error = __elfN(load_section)(imgp, phdr[i].p_offset, 1055 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 1056 phdr[i].p_memsz, phdr[i].p_filesz, prot); 1057 if (error != 0) 1058 goto ret; 1059 1060 /* 1061 * If this segment contains the program headers, 1062 * remember their virtual address for the AT_PHDR 1063 * aux entry. Static binaries don't usually include 1064 * a PT_PHDR entry. 1065 */ 1066 if (phdr[i].p_offset == 0 && 1067 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1068 <= phdr[i].p_filesz) 1069 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 1070 et_dyn_addr; 1071 1072 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 1073 seg_size = round_page(phdr[i].p_memsz + 1074 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 1075 1076 /* 1077 * Make the largest executable segment the official 1078 * text segment and all others data. 1079 * 1080 * Note that obreak() assumes that data_addr + 1081 * data_size == end of data load area, and the ELF 1082 * file format expects segments to be sorted by 1083 * address. If multiple data segments exist, the 1084 * last one will be used. 1085 */ 1086 1087 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 1088 text_size = seg_size; 1089 text_addr = seg_addr; 1090 } else { 1091 data_size = seg_size; 1092 data_addr = seg_addr; 1093 } 1094 total_size += seg_size; 1095 break; 1096 case PT_PHDR: /* Program header table info */ 1097 proghdr = phdr[i].p_vaddr + et_dyn_addr; 1098 break; 1099 default: 1100 break; 1101 } 1102 } 1103 1104 if (data_addr == 0 && data_size == 0) { 1105 data_addr = text_addr; 1106 data_size = text_size; 1107 } 1108 1109 entry = (u_long)hdr->e_entry + et_dyn_addr; 1110 1111 /* 1112 * Check limits. It should be safe to check the 1113 * limits after loading the segments since we do 1114 * not actually fault in all the segments pages. 1115 */ 1116 PROC_LOCK(imgp->proc); 1117 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 1118 err_str = "Data segment size exceeds process limit"; 1119 else if (text_size > maxtsiz) 1120 err_str = "Text segment size exceeds system limit"; 1121 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 1122 err_str = "Total segment size exceeds process limit"; 1123 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 1124 err_str = "Data segment size exceeds resource limit"; 1125 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1126 err_str = "Total segment size exceeds resource limit"; 1127 if (err_str != NULL) { 1128 PROC_UNLOCK(imgp->proc); 1129 uprintf("%s\n", err_str); 1130 error = ENOMEM; 1131 goto ret; 1132 } 1133 1134 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1135 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1136 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1137 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1138 1139 /* 1140 * We load the dynamic linker where a userland call 1141 * to mmap(0, ...) would put it. The rationale behind this 1142 * calculation is that it leaves room for the heap to grow to 1143 * its maximum allowed size. 1144 */ 1145 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1146 RLIMIT_DATA)); 1147 if ((map->flags & MAP_ASLR) != 0) { 1148 maxv1 = maxv / 2 + addr / 2; 1149 MPASS(maxv1 >= addr); /* No overflow */ 1150 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1151 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1152 } else { 1153 map->anon_loc = addr; 1154 } 1155 PROC_UNLOCK(imgp->proc); 1156 1157 imgp->entry_addr = entry; 1158 1159 if (interp != NULL) { 1160 have_interp = FALSE; 1161 VOP_UNLOCK(imgp->vp, 0); 1162 if ((map->flags & MAP_ASLR) != 0) { 1163 /* Assume that interpeter fits into 1/4 of AS */ 1164 maxv1 = maxv / 2 + addr / 2; 1165 MPASS(maxv1 >= addr); /* No overflow */ 1166 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1167 maxv1, PAGE_SIZE); 1168 } 1169 if (brand_info->emul_path != NULL && 1170 brand_info->emul_path[0] != '\0') { 1171 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1172 snprintf(path, MAXPATHLEN, "%s%s", 1173 brand_info->emul_path, interp); 1174 error = __elfN(load_file)(imgp->proc, path, &addr, 1175 &imgp->entry_addr); 1176 free(path, M_TEMP); 1177 if (error == 0) 1178 have_interp = TRUE; 1179 } 1180 if (!have_interp && newinterp != NULL && 1181 (brand_info->interp_path == NULL || 1182 strcmp(interp, brand_info->interp_path) == 0)) { 1183 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1184 &imgp->entry_addr); 1185 if (error == 0) 1186 have_interp = TRUE; 1187 } 1188 if (!have_interp) { 1189 error = __elfN(load_file)(imgp->proc, interp, &addr, 1190 &imgp->entry_addr); 1191 } 1192 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1193 if (error != 0) { 1194 uprintf("ELF interpreter %s not found, error %d\n", 1195 interp, error); 1196 goto ret; 1197 } 1198 } else 1199 addr = et_dyn_addr; 1200 1201 /* 1202 * Construct auxargs table (used by the fixup routine) 1203 */ 1204 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1205 elf_auxargs->execfd = -1; 1206 elf_auxargs->phdr = proghdr; 1207 elf_auxargs->phent = hdr->e_phentsize; 1208 elf_auxargs->phnum = hdr->e_phnum; 1209 elf_auxargs->pagesz = PAGE_SIZE; 1210 elf_auxargs->base = addr; 1211 elf_auxargs->flags = 0; 1212 elf_auxargs->entry = entry; 1213 elf_auxargs->hdr_eflags = hdr->e_flags; 1214 1215 imgp->auxargs = elf_auxargs; 1216 imgp->interpreted = 0; 1217 imgp->reloc_base = addr; 1218 imgp->proc->p_osrel = osrel; 1219 imgp->proc->p_fctl0 = fctl0; 1220 imgp->proc->p_elf_machine = hdr->e_machine; 1221 imgp->proc->p_elf_flags = hdr->e_flags; 1222 1223 ret: 1224 free(interp_buf, M_TEMP); 1225 return (error); 1226 } 1227 1228 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1229 1230 int 1231 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1232 { 1233 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1234 Elf_Auxinfo *argarray, *pos; 1235 Elf_Addr *base, *auxbase; 1236 int error; 1237 1238 base = (Elf_Addr *)*stack_base; 1239 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1240 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1241 M_WAITOK | M_ZERO); 1242 1243 if (args->execfd != -1) 1244 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1245 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1246 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1247 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1248 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1249 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1250 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1251 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1252 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1253 if (imgp->execpathp != 0) 1254 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1255 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1256 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1257 if (imgp->canary != 0) { 1258 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1259 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1260 } 1261 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1262 if (imgp->pagesizes != 0) { 1263 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1264 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1265 } 1266 if (imgp->sysent->sv_timekeep_base != 0) { 1267 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1268 imgp->sysent->sv_timekeep_base); 1269 } 1270 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1271 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1272 imgp->sysent->sv_stackprot); 1273 if (imgp->sysent->sv_hwcap != NULL) 1274 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1275 if (imgp->sysent->sv_hwcap2 != NULL) 1276 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1277 AUXARGS_ENTRY(pos, AT_NULL, 0); 1278 1279 free(imgp->auxargs, M_TEMP); 1280 imgp->auxargs = NULL; 1281 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1282 1283 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1284 free(argarray, M_TEMP); 1285 if (error != 0) 1286 return (error); 1287 1288 base--; 1289 if (suword(base, imgp->args->argc) == -1) 1290 return (EFAULT); 1291 *stack_base = (register_t *)base; 1292 return (0); 1293 } 1294 1295 /* 1296 * Code for generating ELF core dumps. 1297 */ 1298 1299 typedef void (*segment_callback)(vm_map_entry_t, void *); 1300 1301 /* Closure for cb_put_phdr(). */ 1302 struct phdr_closure { 1303 Elf_Phdr *phdr; /* Program header to fill in */ 1304 Elf_Off offset; /* Offset of segment in core file */ 1305 }; 1306 1307 /* Closure for cb_size_segment(). */ 1308 struct sseg_closure { 1309 int count; /* Count of writable segments. */ 1310 size_t size; /* Total size of all writable segments. */ 1311 }; 1312 1313 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1314 1315 struct note_info { 1316 int type; /* Note type. */ 1317 outfunc_t outfunc; /* Output function. */ 1318 void *outarg; /* Argument for the output function. */ 1319 size_t outsize; /* Output size. */ 1320 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1321 }; 1322 1323 TAILQ_HEAD(note_info_list, note_info); 1324 1325 /* Coredump output parameters. */ 1326 struct coredump_params { 1327 off_t offset; 1328 struct ucred *active_cred; 1329 struct ucred *file_cred; 1330 struct thread *td; 1331 struct vnode *vp; 1332 struct compressor *comp; 1333 }; 1334 1335 extern int compress_user_cores; 1336 extern int compress_user_cores_level; 1337 1338 static void cb_put_phdr(vm_map_entry_t, void *); 1339 static void cb_size_segment(vm_map_entry_t, void *); 1340 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1341 enum uio_seg); 1342 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1343 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1344 struct note_info_list *, size_t); 1345 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1346 size_t *); 1347 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1348 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1349 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1350 static int sbuf_drain_core_output(void *, const char *, int); 1351 static int sbuf_drain_count(void *arg, const char *data, int len); 1352 1353 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1354 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1355 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1356 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1357 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1358 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1359 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1360 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1361 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1362 static void note_procstat_files(void *, struct sbuf *, size_t *); 1363 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1364 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1365 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1366 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1367 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1368 1369 /* 1370 * Write out a core segment to the compression stream. 1371 */ 1372 static int 1373 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1374 { 1375 u_int chunk_len; 1376 int error; 1377 1378 while (len > 0) { 1379 chunk_len = MIN(len, CORE_BUF_SIZE); 1380 1381 /* 1382 * We can get EFAULT error here. 1383 * In that case zero out the current chunk of the segment. 1384 */ 1385 error = copyin(base, buf, chunk_len); 1386 if (error != 0) 1387 bzero(buf, chunk_len); 1388 error = compressor_write(p->comp, buf, chunk_len); 1389 if (error != 0) 1390 break; 1391 base += chunk_len; 1392 len -= chunk_len; 1393 } 1394 return (error); 1395 } 1396 1397 static int 1398 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1399 { 1400 1401 return (core_write((struct coredump_params *)arg, base, len, offset, 1402 UIO_SYSSPACE)); 1403 } 1404 1405 static int 1406 core_write(struct coredump_params *p, const void *base, size_t len, 1407 off_t offset, enum uio_seg seg) 1408 { 1409 1410 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1411 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1412 p->active_cred, p->file_cred, NULL, p->td)); 1413 } 1414 1415 static int 1416 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1417 void *tmpbuf) 1418 { 1419 int error; 1420 1421 if (p->comp != NULL) 1422 return (compress_chunk(p, base, tmpbuf, len)); 1423 1424 /* 1425 * EFAULT is a non-fatal error that we can get, for example, 1426 * if the segment is backed by a file but extends beyond its 1427 * end. 1428 */ 1429 error = core_write(p, base, len, offset, UIO_USERSPACE); 1430 if (error == EFAULT) { 1431 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1432 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1433 "for process %s\n", base, len, offset, curproc->p_comm); 1434 1435 /* 1436 * Write a "real" zero byte at the end of the target region 1437 * in the case this is the last segment. 1438 * The intermediate space will be implicitly zero-filled. 1439 */ 1440 error = core_write(p, zero_region, 1, offset + len - 1, 1441 UIO_SYSSPACE); 1442 } 1443 return (error); 1444 } 1445 1446 /* 1447 * Drain into a core file. 1448 */ 1449 static int 1450 sbuf_drain_core_output(void *arg, const char *data, int len) 1451 { 1452 struct coredump_params *p; 1453 int error, locked; 1454 1455 p = (struct coredump_params *)arg; 1456 1457 /* 1458 * Some kern_proc out routines that print to this sbuf may 1459 * call us with the process lock held. Draining with the 1460 * non-sleepable lock held is unsafe. The lock is needed for 1461 * those routines when dumping a live process. In our case we 1462 * can safely release the lock before draining and acquire 1463 * again after. 1464 */ 1465 locked = PROC_LOCKED(p->td->td_proc); 1466 if (locked) 1467 PROC_UNLOCK(p->td->td_proc); 1468 if (p->comp != NULL) 1469 error = compressor_write(p->comp, __DECONST(char *, data), len); 1470 else 1471 error = core_write(p, __DECONST(void *, data), len, p->offset, 1472 UIO_SYSSPACE); 1473 if (locked) 1474 PROC_LOCK(p->td->td_proc); 1475 if (error != 0) 1476 return (-error); 1477 p->offset += len; 1478 return (len); 1479 } 1480 1481 /* 1482 * Drain into a counter. 1483 */ 1484 static int 1485 sbuf_drain_count(void *arg, const char *data __unused, int len) 1486 { 1487 size_t *sizep; 1488 1489 sizep = (size_t *)arg; 1490 *sizep += len; 1491 return (len); 1492 } 1493 1494 int 1495 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1496 { 1497 struct ucred *cred = td->td_ucred; 1498 int error = 0; 1499 struct sseg_closure seginfo; 1500 struct note_info_list notelst; 1501 struct coredump_params params; 1502 struct note_info *ninfo; 1503 void *hdr, *tmpbuf; 1504 size_t hdrsize, notesz, coresize; 1505 1506 hdr = NULL; 1507 tmpbuf = NULL; 1508 TAILQ_INIT(¬elst); 1509 1510 /* Size the program segments. */ 1511 seginfo.count = 0; 1512 seginfo.size = 0; 1513 each_dumpable_segment(td, cb_size_segment, &seginfo); 1514 1515 /* 1516 * Collect info about the core file header area. 1517 */ 1518 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1519 if (seginfo.count + 1 >= PN_XNUM) 1520 hdrsize += sizeof(Elf_Shdr); 1521 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1522 coresize = round_page(hdrsize + notesz) + seginfo.size; 1523 1524 /* Set up core dump parameters. */ 1525 params.offset = 0; 1526 params.active_cred = cred; 1527 params.file_cred = NOCRED; 1528 params.td = td; 1529 params.vp = vp; 1530 params.comp = NULL; 1531 1532 #ifdef RACCT 1533 if (racct_enable) { 1534 PROC_LOCK(td->td_proc); 1535 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1536 PROC_UNLOCK(td->td_proc); 1537 if (error != 0) { 1538 error = EFAULT; 1539 goto done; 1540 } 1541 } 1542 #endif 1543 if (coresize >= limit) { 1544 error = EFAULT; 1545 goto done; 1546 } 1547 1548 /* Create a compression stream if necessary. */ 1549 if (compress_user_cores != 0) { 1550 params.comp = compressor_init(core_compressed_write, 1551 compress_user_cores, CORE_BUF_SIZE, 1552 compress_user_cores_level, ¶ms); 1553 if (params.comp == NULL) { 1554 error = EFAULT; 1555 goto done; 1556 } 1557 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1558 } 1559 1560 /* 1561 * Allocate memory for building the header, fill it up, 1562 * and write it out following the notes. 1563 */ 1564 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1565 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1566 notesz); 1567 1568 /* Write the contents of all of the writable segments. */ 1569 if (error == 0) { 1570 Elf_Phdr *php; 1571 off_t offset; 1572 int i; 1573 1574 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1575 offset = round_page(hdrsize + notesz); 1576 for (i = 0; i < seginfo.count; i++) { 1577 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1578 php->p_filesz, offset, ¶ms, tmpbuf); 1579 if (error != 0) 1580 break; 1581 offset += php->p_filesz; 1582 php++; 1583 } 1584 if (error == 0 && params.comp != NULL) 1585 error = compressor_flush(params.comp); 1586 } 1587 if (error) { 1588 log(LOG_WARNING, 1589 "Failed to write core file for process %s (error %d)\n", 1590 curproc->p_comm, error); 1591 } 1592 1593 done: 1594 free(tmpbuf, M_TEMP); 1595 if (params.comp != NULL) 1596 compressor_fini(params.comp); 1597 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1598 TAILQ_REMOVE(¬elst, ninfo, link); 1599 free(ninfo, M_TEMP); 1600 } 1601 if (hdr != NULL) 1602 free(hdr, M_TEMP); 1603 1604 return (error); 1605 } 1606 1607 /* 1608 * A callback for each_dumpable_segment() to write out the segment's 1609 * program header entry. 1610 */ 1611 static void 1612 cb_put_phdr(vm_map_entry_t entry, void *closure) 1613 { 1614 struct phdr_closure *phc = (struct phdr_closure *)closure; 1615 Elf_Phdr *phdr = phc->phdr; 1616 1617 phc->offset = round_page(phc->offset); 1618 1619 phdr->p_type = PT_LOAD; 1620 phdr->p_offset = phc->offset; 1621 phdr->p_vaddr = entry->start; 1622 phdr->p_paddr = 0; 1623 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1624 phdr->p_align = PAGE_SIZE; 1625 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1626 1627 phc->offset += phdr->p_filesz; 1628 phc->phdr++; 1629 } 1630 1631 /* 1632 * A callback for each_dumpable_segment() to gather information about 1633 * the number of segments and their total size. 1634 */ 1635 static void 1636 cb_size_segment(vm_map_entry_t entry, void *closure) 1637 { 1638 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1639 1640 ssc->count++; 1641 ssc->size += entry->end - entry->start; 1642 } 1643 1644 /* 1645 * For each writable segment in the process's memory map, call the given 1646 * function with a pointer to the map entry and some arbitrary 1647 * caller-supplied data. 1648 */ 1649 static void 1650 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1651 { 1652 struct proc *p = td->td_proc; 1653 vm_map_t map = &p->p_vmspace->vm_map; 1654 vm_map_entry_t entry; 1655 vm_object_t backing_object, object; 1656 boolean_t ignore_entry; 1657 1658 vm_map_lock_read(map); 1659 for (entry = map->header.next; entry != &map->header; 1660 entry = entry->next) { 1661 /* 1662 * Don't dump inaccessible mappings, deal with legacy 1663 * coredump mode. 1664 * 1665 * Note that read-only segments related to the elf binary 1666 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1667 * need to arbitrarily ignore such segments. 1668 */ 1669 if (elf_legacy_coredump) { 1670 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1671 continue; 1672 } else { 1673 if ((entry->protection & VM_PROT_ALL) == 0) 1674 continue; 1675 } 1676 1677 /* 1678 * Dont include memory segment in the coredump if 1679 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1680 * madvise(2). Do not dump submaps (i.e. parts of the 1681 * kernel map). 1682 */ 1683 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1684 continue; 1685 1686 if ((object = entry->object.vm_object) == NULL) 1687 continue; 1688 1689 /* Ignore memory-mapped devices and such things. */ 1690 VM_OBJECT_RLOCK(object); 1691 while ((backing_object = object->backing_object) != NULL) { 1692 VM_OBJECT_RLOCK(backing_object); 1693 VM_OBJECT_RUNLOCK(object); 1694 object = backing_object; 1695 } 1696 ignore_entry = object->type != OBJT_DEFAULT && 1697 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1698 object->type != OBJT_PHYS; 1699 VM_OBJECT_RUNLOCK(object); 1700 if (ignore_entry) 1701 continue; 1702 1703 (*func)(entry, closure); 1704 } 1705 vm_map_unlock_read(map); 1706 } 1707 1708 /* 1709 * Write the core file header to the file, including padding up to 1710 * the page boundary. 1711 */ 1712 static int 1713 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1714 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1715 { 1716 struct note_info *ninfo; 1717 struct sbuf *sb; 1718 int error; 1719 1720 /* Fill in the header. */ 1721 bzero(hdr, hdrsize); 1722 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1723 1724 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1725 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1726 sbuf_start_section(sb, NULL); 1727 sbuf_bcat(sb, hdr, hdrsize); 1728 TAILQ_FOREACH(ninfo, notelst, link) 1729 __elfN(putnote)(ninfo, sb); 1730 /* Align up to a page boundary for the program segments. */ 1731 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1732 error = sbuf_finish(sb); 1733 sbuf_delete(sb); 1734 1735 return (error); 1736 } 1737 1738 static void 1739 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1740 size_t *sizep) 1741 { 1742 struct proc *p; 1743 struct thread *thr; 1744 size_t size; 1745 1746 p = td->td_proc; 1747 size = 0; 1748 1749 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1750 1751 /* 1752 * To have the debugger select the right thread (LWP) as the initial 1753 * thread, we dump the state of the thread passed to us in td first. 1754 * This is the thread that causes the core dump and thus likely to 1755 * be the right thread one wants to have selected in the debugger. 1756 */ 1757 thr = td; 1758 while (thr != NULL) { 1759 size += register_note(list, NT_PRSTATUS, 1760 __elfN(note_prstatus), thr); 1761 size += register_note(list, NT_FPREGSET, 1762 __elfN(note_fpregset), thr); 1763 size += register_note(list, NT_THRMISC, 1764 __elfN(note_thrmisc), thr); 1765 size += register_note(list, NT_PTLWPINFO, 1766 __elfN(note_ptlwpinfo), thr); 1767 size += register_note(list, -1, 1768 __elfN(note_threadmd), thr); 1769 1770 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1771 TAILQ_NEXT(thr, td_plist); 1772 if (thr == td) 1773 thr = TAILQ_NEXT(thr, td_plist); 1774 } 1775 1776 size += register_note(list, NT_PROCSTAT_PROC, 1777 __elfN(note_procstat_proc), p); 1778 size += register_note(list, NT_PROCSTAT_FILES, 1779 note_procstat_files, p); 1780 size += register_note(list, NT_PROCSTAT_VMMAP, 1781 note_procstat_vmmap, p); 1782 size += register_note(list, NT_PROCSTAT_GROUPS, 1783 note_procstat_groups, p); 1784 size += register_note(list, NT_PROCSTAT_UMASK, 1785 note_procstat_umask, p); 1786 size += register_note(list, NT_PROCSTAT_RLIMIT, 1787 note_procstat_rlimit, p); 1788 size += register_note(list, NT_PROCSTAT_OSREL, 1789 note_procstat_osrel, p); 1790 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1791 __elfN(note_procstat_psstrings), p); 1792 size += register_note(list, NT_PROCSTAT_AUXV, 1793 __elfN(note_procstat_auxv), p); 1794 1795 *sizep = size; 1796 } 1797 1798 static void 1799 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1800 size_t notesz) 1801 { 1802 Elf_Ehdr *ehdr; 1803 Elf_Phdr *phdr; 1804 Elf_Shdr *shdr; 1805 struct phdr_closure phc; 1806 1807 ehdr = (Elf_Ehdr *)hdr; 1808 1809 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1810 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1811 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1812 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1813 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1814 ehdr->e_ident[EI_DATA] = ELF_DATA; 1815 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1816 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1817 ehdr->e_ident[EI_ABIVERSION] = 0; 1818 ehdr->e_ident[EI_PAD] = 0; 1819 ehdr->e_type = ET_CORE; 1820 ehdr->e_machine = td->td_proc->p_elf_machine; 1821 ehdr->e_version = EV_CURRENT; 1822 ehdr->e_entry = 0; 1823 ehdr->e_phoff = sizeof(Elf_Ehdr); 1824 ehdr->e_flags = td->td_proc->p_elf_flags; 1825 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1826 ehdr->e_phentsize = sizeof(Elf_Phdr); 1827 ehdr->e_shentsize = sizeof(Elf_Shdr); 1828 ehdr->e_shstrndx = SHN_UNDEF; 1829 if (numsegs + 1 < PN_XNUM) { 1830 ehdr->e_phnum = numsegs + 1; 1831 ehdr->e_shnum = 0; 1832 } else { 1833 ehdr->e_phnum = PN_XNUM; 1834 ehdr->e_shnum = 1; 1835 1836 ehdr->e_shoff = ehdr->e_phoff + 1837 (numsegs + 1) * ehdr->e_phentsize; 1838 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1839 ("e_shoff: %zu, hdrsize - shdr: %zu", 1840 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1841 1842 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1843 memset(shdr, 0, sizeof(*shdr)); 1844 /* 1845 * A special first section is used to hold large segment and 1846 * section counts. This was proposed by Sun Microsystems in 1847 * Solaris and has been adopted by Linux; the standard ELF 1848 * tools are already familiar with the technique. 1849 * 1850 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1851 * (or 12-7 depending on the version of the document) for more 1852 * details. 1853 */ 1854 shdr->sh_type = SHT_NULL; 1855 shdr->sh_size = ehdr->e_shnum; 1856 shdr->sh_link = ehdr->e_shstrndx; 1857 shdr->sh_info = numsegs + 1; 1858 } 1859 1860 /* 1861 * Fill in the program header entries. 1862 */ 1863 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1864 1865 /* The note segement. */ 1866 phdr->p_type = PT_NOTE; 1867 phdr->p_offset = hdrsize; 1868 phdr->p_vaddr = 0; 1869 phdr->p_paddr = 0; 1870 phdr->p_filesz = notesz; 1871 phdr->p_memsz = 0; 1872 phdr->p_flags = PF_R; 1873 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1874 phdr++; 1875 1876 /* All the writable segments from the program. */ 1877 phc.phdr = phdr; 1878 phc.offset = round_page(hdrsize + notesz); 1879 each_dumpable_segment(td, cb_put_phdr, &phc); 1880 } 1881 1882 static size_t 1883 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1884 { 1885 struct note_info *ninfo; 1886 size_t size, notesize; 1887 1888 size = 0; 1889 out(arg, NULL, &size); 1890 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1891 ninfo->type = type; 1892 ninfo->outfunc = out; 1893 ninfo->outarg = arg; 1894 ninfo->outsize = size; 1895 TAILQ_INSERT_TAIL(list, ninfo, link); 1896 1897 if (type == -1) 1898 return (size); 1899 1900 notesize = sizeof(Elf_Note) + /* note header */ 1901 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1902 /* note name */ 1903 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1904 1905 return (notesize); 1906 } 1907 1908 static size_t 1909 append_note_data(const void *src, void *dst, size_t len) 1910 { 1911 size_t padded_len; 1912 1913 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1914 if (dst != NULL) { 1915 bcopy(src, dst, len); 1916 bzero((char *)dst + len, padded_len - len); 1917 } 1918 return (padded_len); 1919 } 1920 1921 size_t 1922 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1923 { 1924 Elf_Note *note; 1925 char *buf; 1926 size_t notesize; 1927 1928 buf = dst; 1929 if (buf != NULL) { 1930 note = (Elf_Note *)buf; 1931 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1932 note->n_descsz = size; 1933 note->n_type = type; 1934 buf += sizeof(*note); 1935 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1936 sizeof(FREEBSD_ABI_VENDOR)); 1937 append_note_data(src, buf, size); 1938 if (descp != NULL) 1939 *descp = buf; 1940 } 1941 1942 notesize = sizeof(Elf_Note) + /* note header */ 1943 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1944 /* note name */ 1945 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1946 1947 return (notesize); 1948 } 1949 1950 static void 1951 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1952 { 1953 Elf_Note note; 1954 ssize_t old_len, sect_len; 1955 size_t new_len, descsz, i; 1956 1957 if (ninfo->type == -1) { 1958 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1959 return; 1960 } 1961 1962 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1963 note.n_descsz = ninfo->outsize; 1964 note.n_type = ninfo->type; 1965 1966 sbuf_bcat(sb, ¬e, sizeof(note)); 1967 sbuf_start_section(sb, &old_len); 1968 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1969 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1970 if (note.n_descsz == 0) 1971 return; 1972 sbuf_start_section(sb, &old_len); 1973 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1974 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1975 if (sect_len < 0) 1976 return; 1977 1978 new_len = (size_t)sect_len; 1979 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1980 if (new_len < descsz) { 1981 /* 1982 * It is expected that individual note emitters will correctly 1983 * predict their expected output size and fill up to that size 1984 * themselves, padding in a format-specific way if needed. 1985 * However, in case they don't, just do it here with zeros. 1986 */ 1987 for (i = 0; i < descsz - new_len; i++) 1988 sbuf_putc(sb, 0); 1989 } else if (new_len > descsz) { 1990 /* 1991 * We can't always truncate sb -- we may have drained some 1992 * of it already. 1993 */ 1994 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1995 "read it (%zu > %zu). Since it is longer than " 1996 "expected, this coredump's notes are corrupt. THIS " 1997 "IS A BUG in the note_procstat routine for type %u.\n", 1998 __func__, (unsigned)note.n_type, new_len, descsz, 1999 (unsigned)note.n_type)); 2000 } 2001 } 2002 2003 /* 2004 * Miscellaneous note out functions. 2005 */ 2006 2007 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2008 #include <compat/freebsd32/freebsd32.h> 2009 #include <compat/freebsd32/freebsd32_signal.h> 2010 2011 typedef struct prstatus32 elf_prstatus_t; 2012 typedef struct prpsinfo32 elf_prpsinfo_t; 2013 typedef struct fpreg32 elf_prfpregset_t; 2014 typedef struct fpreg32 elf_fpregset_t; 2015 typedef struct reg32 elf_gregset_t; 2016 typedef struct thrmisc32 elf_thrmisc_t; 2017 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2018 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2019 typedef uint32_t elf_ps_strings_t; 2020 #else 2021 typedef prstatus_t elf_prstatus_t; 2022 typedef prpsinfo_t elf_prpsinfo_t; 2023 typedef prfpregset_t elf_prfpregset_t; 2024 typedef prfpregset_t elf_fpregset_t; 2025 typedef gregset_t elf_gregset_t; 2026 typedef thrmisc_t elf_thrmisc_t; 2027 #define ELF_KERN_PROC_MASK 0 2028 typedef struct kinfo_proc elf_kinfo_proc_t; 2029 typedef vm_offset_t elf_ps_strings_t; 2030 #endif 2031 2032 static void 2033 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2034 { 2035 struct sbuf sbarg; 2036 size_t len; 2037 char *cp, *end; 2038 struct proc *p; 2039 elf_prpsinfo_t *psinfo; 2040 int error; 2041 2042 p = (struct proc *)arg; 2043 if (sb != NULL) { 2044 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2045 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2046 psinfo->pr_version = PRPSINFO_VERSION; 2047 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2048 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2049 PROC_LOCK(p); 2050 if (p->p_args != NULL) { 2051 len = sizeof(psinfo->pr_psargs) - 1; 2052 if (len > p->p_args->ar_length) 2053 len = p->p_args->ar_length; 2054 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2055 PROC_UNLOCK(p); 2056 error = 0; 2057 } else { 2058 _PHOLD(p); 2059 PROC_UNLOCK(p); 2060 sbuf_new(&sbarg, psinfo->pr_psargs, 2061 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2062 error = proc_getargv(curthread, p, &sbarg); 2063 PRELE(p); 2064 if (sbuf_finish(&sbarg) == 0) 2065 len = sbuf_len(&sbarg) - 1; 2066 else 2067 len = sizeof(psinfo->pr_psargs) - 1; 2068 sbuf_delete(&sbarg); 2069 } 2070 if (error || len == 0) 2071 strlcpy(psinfo->pr_psargs, p->p_comm, 2072 sizeof(psinfo->pr_psargs)); 2073 else { 2074 KASSERT(len < sizeof(psinfo->pr_psargs), 2075 ("len is too long: %zu vs %zu", len, 2076 sizeof(psinfo->pr_psargs))); 2077 cp = psinfo->pr_psargs; 2078 end = cp + len - 1; 2079 for (;;) { 2080 cp = memchr(cp, '\0', end - cp); 2081 if (cp == NULL) 2082 break; 2083 *cp = ' '; 2084 } 2085 } 2086 psinfo->pr_pid = p->p_pid; 2087 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2088 free(psinfo, M_TEMP); 2089 } 2090 *sizep = sizeof(*psinfo); 2091 } 2092 2093 static void 2094 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2095 { 2096 struct thread *td; 2097 elf_prstatus_t *status; 2098 2099 td = (struct thread *)arg; 2100 if (sb != NULL) { 2101 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2102 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2103 status->pr_version = PRSTATUS_VERSION; 2104 status->pr_statussz = sizeof(elf_prstatus_t); 2105 status->pr_gregsetsz = sizeof(elf_gregset_t); 2106 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2107 status->pr_osreldate = osreldate; 2108 status->pr_cursig = td->td_proc->p_sig; 2109 status->pr_pid = td->td_tid; 2110 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2111 fill_regs32(td, &status->pr_reg); 2112 #else 2113 fill_regs(td, &status->pr_reg); 2114 #endif 2115 sbuf_bcat(sb, status, sizeof(*status)); 2116 free(status, M_TEMP); 2117 } 2118 *sizep = sizeof(*status); 2119 } 2120 2121 static void 2122 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2123 { 2124 struct thread *td; 2125 elf_prfpregset_t *fpregset; 2126 2127 td = (struct thread *)arg; 2128 if (sb != NULL) { 2129 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2130 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2131 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2132 fill_fpregs32(td, fpregset); 2133 #else 2134 fill_fpregs(td, fpregset); 2135 #endif 2136 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2137 free(fpregset, M_TEMP); 2138 } 2139 *sizep = sizeof(*fpregset); 2140 } 2141 2142 static void 2143 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2144 { 2145 struct thread *td; 2146 elf_thrmisc_t thrmisc; 2147 2148 td = (struct thread *)arg; 2149 if (sb != NULL) { 2150 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2151 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2152 strcpy(thrmisc.pr_tname, td->td_name); 2153 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2154 } 2155 *sizep = sizeof(thrmisc); 2156 } 2157 2158 static void 2159 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2160 { 2161 struct thread *td; 2162 size_t size; 2163 int structsize; 2164 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2165 struct ptrace_lwpinfo32 pl; 2166 #else 2167 struct ptrace_lwpinfo pl; 2168 #endif 2169 2170 td = (struct thread *)arg; 2171 size = sizeof(structsize) + sizeof(pl); 2172 if (sb != NULL) { 2173 KASSERT(*sizep == size, ("invalid size")); 2174 structsize = sizeof(pl); 2175 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2176 bzero(&pl, sizeof(pl)); 2177 pl.pl_lwpid = td->td_tid; 2178 pl.pl_event = PL_EVENT_NONE; 2179 pl.pl_sigmask = td->td_sigmask; 2180 pl.pl_siglist = td->td_siglist; 2181 if (td->td_si.si_signo != 0) { 2182 pl.pl_event = PL_EVENT_SIGNAL; 2183 pl.pl_flags |= PL_FLAG_SI; 2184 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2185 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2186 #else 2187 pl.pl_siginfo = td->td_si; 2188 #endif 2189 } 2190 strcpy(pl.pl_tdname, td->td_name); 2191 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2192 sbuf_bcat(sb, &pl, sizeof(pl)); 2193 } 2194 *sizep = size; 2195 } 2196 2197 /* 2198 * Allow for MD specific notes, as well as any MD 2199 * specific preparations for writing MI notes. 2200 */ 2201 static void 2202 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2203 { 2204 struct thread *td; 2205 void *buf; 2206 size_t size; 2207 2208 td = (struct thread *)arg; 2209 size = *sizep; 2210 if (size != 0 && sb != NULL) 2211 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2212 else 2213 buf = NULL; 2214 size = 0; 2215 __elfN(dump_thread)(td, buf, &size); 2216 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2217 if (size != 0 && sb != NULL) 2218 sbuf_bcat(sb, buf, size); 2219 free(buf, M_TEMP); 2220 *sizep = size; 2221 } 2222 2223 #ifdef KINFO_PROC_SIZE 2224 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2225 #endif 2226 2227 static void 2228 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2229 { 2230 struct proc *p; 2231 size_t size; 2232 int structsize; 2233 2234 p = (struct proc *)arg; 2235 size = sizeof(structsize) + p->p_numthreads * 2236 sizeof(elf_kinfo_proc_t); 2237 2238 if (sb != NULL) { 2239 KASSERT(*sizep == size, ("invalid size")); 2240 structsize = sizeof(elf_kinfo_proc_t); 2241 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2242 PROC_LOCK(p); 2243 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2244 } 2245 *sizep = size; 2246 } 2247 2248 #ifdef KINFO_FILE_SIZE 2249 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2250 #endif 2251 2252 static void 2253 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2254 { 2255 struct proc *p; 2256 size_t size, sect_sz, i; 2257 ssize_t start_len, sect_len; 2258 int structsize, filedesc_flags; 2259 2260 if (coredump_pack_fileinfo) 2261 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2262 else 2263 filedesc_flags = 0; 2264 2265 p = (struct proc *)arg; 2266 structsize = sizeof(struct kinfo_file); 2267 if (sb == NULL) { 2268 size = 0; 2269 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2270 sbuf_set_drain(sb, sbuf_drain_count, &size); 2271 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2272 PROC_LOCK(p); 2273 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2274 sbuf_finish(sb); 2275 sbuf_delete(sb); 2276 *sizep = size; 2277 } else { 2278 sbuf_start_section(sb, &start_len); 2279 2280 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2281 PROC_LOCK(p); 2282 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2283 filedesc_flags); 2284 2285 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2286 if (sect_len < 0) 2287 return; 2288 sect_sz = sect_len; 2289 2290 KASSERT(sect_sz <= *sizep, 2291 ("kern_proc_filedesc_out did not respect maxlen; " 2292 "requested %zu, got %zu", *sizep - sizeof(structsize), 2293 sect_sz - sizeof(structsize))); 2294 2295 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2296 sbuf_putc(sb, 0); 2297 } 2298 } 2299 2300 #ifdef KINFO_VMENTRY_SIZE 2301 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2302 #endif 2303 2304 static void 2305 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2306 { 2307 struct proc *p; 2308 size_t size; 2309 int structsize, vmmap_flags; 2310 2311 if (coredump_pack_vmmapinfo) 2312 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2313 else 2314 vmmap_flags = 0; 2315 2316 p = (struct proc *)arg; 2317 structsize = sizeof(struct kinfo_vmentry); 2318 if (sb == NULL) { 2319 size = 0; 2320 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2321 sbuf_set_drain(sb, sbuf_drain_count, &size); 2322 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2323 PROC_LOCK(p); 2324 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2325 sbuf_finish(sb); 2326 sbuf_delete(sb); 2327 *sizep = size; 2328 } else { 2329 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2330 PROC_LOCK(p); 2331 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2332 vmmap_flags); 2333 } 2334 } 2335 2336 static void 2337 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2338 { 2339 struct proc *p; 2340 size_t size; 2341 int structsize; 2342 2343 p = (struct proc *)arg; 2344 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2345 if (sb != NULL) { 2346 KASSERT(*sizep == size, ("invalid size")); 2347 structsize = sizeof(gid_t); 2348 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2349 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2350 sizeof(gid_t)); 2351 } 2352 *sizep = size; 2353 } 2354 2355 static void 2356 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2357 { 2358 struct proc *p; 2359 size_t size; 2360 int structsize; 2361 2362 p = (struct proc *)arg; 2363 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2364 if (sb != NULL) { 2365 KASSERT(*sizep == size, ("invalid size")); 2366 structsize = sizeof(p->p_fd->fd_cmask); 2367 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2368 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2369 } 2370 *sizep = size; 2371 } 2372 2373 static void 2374 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2375 { 2376 struct proc *p; 2377 struct rlimit rlim[RLIM_NLIMITS]; 2378 size_t size; 2379 int structsize, i; 2380 2381 p = (struct proc *)arg; 2382 size = sizeof(structsize) + sizeof(rlim); 2383 if (sb != NULL) { 2384 KASSERT(*sizep == size, ("invalid size")); 2385 structsize = sizeof(rlim); 2386 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2387 PROC_LOCK(p); 2388 for (i = 0; i < RLIM_NLIMITS; i++) 2389 lim_rlimit_proc(p, i, &rlim[i]); 2390 PROC_UNLOCK(p); 2391 sbuf_bcat(sb, rlim, sizeof(rlim)); 2392 } 2393 *sizep = size; 2394 } 2395 2396 static void 2397 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2398 { 2399 struct proc *p; 2400 size_t size; 2401 int structsize; 2402 2403 p = (struct proc *)arg; 2404 size = sizeof(structsize) + sizeof(p->p_osrel); 2405 if (sb != NULL) { 2406 KASSERT(*sizep == size, ("invalid size")); 2407 structsize = sizeof(p->p_osrel); 2408 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2409 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2410 } 2411 *sizep = size; 2412 } 2413 2414 static void 2415 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2416 { 2417 struct proc *p; 2418 elf_ps_strings_t ps_strings; 2419 size_t size; 2420 int structsize; 2421 2422 p = (struct proc *)arg; 2423 size = sizeof(structsize) + sizeof(ps_strings); 2424 if (sb != NULL) { 2425 KASSERT(*sizep == size, ("invalid size")); 2426 structsize = sizeof(ps_strings); 2427 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2428 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2429 #else 2430 ps_strings = p->p_sysent->sv_psstrings; 2431 #endif 2432 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2433 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2434 } 2435 *sizep = size; 2436 } 2437 2438 static void 2439 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2440 { 2441 struct proc *p; 2442 size_t size; 2443 int structsize; 2444 2445 p = (struct proc *)arg; 2446 if (sb == NULL) { 2447 size = 0; 2448 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2449 sbuf_set_drain(sb, sbuf_drain_count, &size); 2450 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2451 PHOLD(p); 2452 proc_getauxv(curthread, p, sb); 2453 PRELE(p); 2454 sbuf_finish(sb); 2455 sbuf_delete(sb); 2456 *sizep = size; 2457 } else { 2458 structsize = sizeof(Elf_Auxinfo); 2459 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2460 PHOLD(p); 2461 proc_getauxv(curthread, p, sb); 2462 PRELE(p); 2463 } 2464 } 2465 2466 static boolean_t 2467 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2468 const char *note_vendor, const Elf_Phdr *pnote, 2469 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2470 { 2471 const Elf_Note *note, *note0, *note_end; 2472 const char *note_name; 2473 char *buf; 2474 int i, error; 2475 boolean_t res; 2476 2477 /* We need some limit, might as well use PAGE_SIZE. */ 2478 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2479 return (FALSE); 2480 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2481 if (pnote->p_offset > PAGE_SIZE || 2482 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2483 VOP_UNLOCK(imgp->vp, 0); 2484 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2485 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2486 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2487 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2488 curthread->td_ucred, NOCRED, NULL, curthread); 2489 if (error != 0) { 2490 uprintf("i/o error PT_NOTE\n"); 2491 goto retf; 2492 } 2493 note = note0 = (const Elf_Note *)buf; 2494 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2495 } else { 2496 note = note0 = (const Elf_Note *)(imgp->image_header + 2497 pnote->p_offset); 2498 note_end = (const Elf_Note *)(imgp->image_header + 2499 pnote->p_offset + pnote->p_filesz); 2500 buf = NULL; 2501 } 2502 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2503 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2504 (const char *)note < sizeof(Elf_Note)) { 2505 goto retf; 2506 } 2507 if (note->n_namesz != checknote->n_namesz || 2508 note->n_descsz != checknote->n_descsz || 2509 note->n_type != checknote->n_type) 2510 goto nextnote; 2511 note_name = (const char *)(note + 1); 2512 if (note_name + checknote->n_namesz >= 2513 (const char *)note_end || strncmp(note_vendor, 2514 note_name, checknote->n_namesz) != 0) 2515 goto nextnote; 2516 2517 if (cb(note, cb_arg, &res)) 2518 goto ret; 2519 nextnote: 2520 note = (const Elf_Note *)((const char *)(note + 1) + 2521 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2522 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2523 } 2524 retf: 2525 res = FALSE; 2526 ret: 2527 free(buf, M_TEMP); 2528 return (res); 2529 } 2530 2531 struct brandnote_cb_arg { 2532 Elf_Brandnote *brandnote; 2533 int32_t *osrel; 2534 }; 2535 2536 static boolean_t 2537 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2538 { 2539 struct brandnote_cb_arg *arg; 2540 2541 arg = arg0; 2542 2543 /* 2544 * Fetch the osreldate for binary from the ELF OSABI-note if 2545 * necessary. 2546 */ 2547 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2548 arg->brandnote->trans_osrel != NULL ? 2549 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2550 2551 return (TRUE); 2552 } 2553 2554 static Elf_Note fctl_note = { 2555 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2556 .n_descsz = sizeof(uint32_t), 2557 .n_type = NT_FREEBSD_FEATURE_CTL, 2558 }; 2559 2560 struct fctl_cb_arg { 2561 uint32_t *fctl0; 2562 }; 2563 2564 static boolean_t 2565 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2566 { 2567 struct fctl_cb_arg *arg; 2568 const Elf32_Word *desc; 2569 uintptr_t p; 2570 2571 arg = arg0; 2572 p = (uintptr_t)(note + 1); 2573 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2574 desc = (const Elf32_Word *)p; 2575 *arg->fctl0 = desc[0]; 2576 return (TRUE); 2577 } 2578 2579 /* 2580 * Try to find the appropriate ABI-note section for checknote, fetch 2581 * the osreldate and feature control flags for binary from the ELF 2582 * OSABI-note. Only the first page of the image is searched, the same 2583 * as for headers. 2584 */ 2585 static boolean_t 2586 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2587 int32_t *osrel, uint32_t *fctl0) 2588 { 2589 const Elf_Phdr *phdr; 2590 const Elf_Ehdr *hdr; 2591 struct brandnote_cb_arg b_arg; 2592 struct fctl_cb_arg f_arg; 2593 int i, j; 2594 2595 hdr = (const Elf_Ehdr *)imgp->image_header; 2596 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2597 b_arg.brandnote = brandnote; 2598 b_arg.osrel = osrel; 2599 f_arg.fctl0 = fctl0; 2600 2601 for (i = 0; i < hdr->e_phnum; i++) { 2602 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2603 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2604 &b_arg)) { 2605 for (j = 0; j < hdr->e_phnum; j++) { 2606 if (phdr[j].p_type == PT_NOTE && 2607 __elfN(parse_notes)(imgp, &fctl_note, 2608 FREEBSD_ABI_VENDOR, &phdr[j], 2609 note_fctl_cb, &f_arg)) 2610 break; 2611 } 2612 return (TRUE); 2613 } 2614 } 2615 return (FALSE); 2616 2617 } 2618 2619 /* 2620 * Tell kern_execve.c about it, with a little help from the linker. 2621 */ 2622 static struct execsw __elfN(execsw) = { 2623 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2624 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2625 }; 2626 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2627 2628 static vm_prot_t 2629 __elfN(trans_prot)(Elf_Word flags) 2630 { 2631 vm_prot_t prot; 2632 2633 prot = 0; 2634 if (flags & PF_X) 2635 prot |= VM_PROT_EXECUTE; 2636 if (flags & PF_W) 2637 prot |= VM_PROT_WRITE; 2638 if (flags & PF_R) 2639 prot |= VM_PROT_READ; 2640 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2641 if (i386_read_exec && (flags & PF_R)) 2642 prot |= VM_PROT_EXECUTE; 2643 #endif 2644 return (prot); 2645 } 2646 2647 static Elf_Word 2648 __elfN(untrans_prot)(vm_prot_t prot) 2649 { 2650 Elf_Word flags; 2651 2652 flags = 0; 2653 if (prot & VM_PROT_EXECUTE) 2654 flags |= PF_X; 2655 if (prot & VM_PROT_READ) 2656 flags |= PF_R; 2657 if (prot & VM_PROT_WRITE) 2658 flags |= PF_W; 2659 return (flags); 2660 } 2661