1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "opt_capsicum.h" 35 36 #include <sys/param.h> 37 #include <sys/capsicum.h> 38 #include <sys/compressor.h> 39 #include <sys/exec.h> 40 #include <sys/fcntl.h> 41 #include <sys/imgact.h> 42 #include <sys/imgact_elf.h> 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mman.h> 49 #include <sys/namei.h> 50 #include <sys/proc.h> 51 #include <sys/procfs.h> 52 #include <sys/ptrace.h> 53 #include <sys/racct.h> 54 #include <sys/reg.h> 55 #include <sys/resourcevar.h> 56 #include <sys/rwlock.h> 57 #include <sys/sbuf.h> 58 #include <sys/sf_buf.h> 59 #include <sys/smp.h> 60 #include <sys/systm.h> 61 #include <sys/signalvar.h> 62 #include <sys/stat.h> 63 #include <sys/sx.h> 64 #include <sys/syscall.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysent.h> 67 #include <sys/vnode.h> 68 #include <sys/syslog.h> 69 #include <sys/eventhandler.h> 70 #include <sys/user.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_param.h> 75 #include <vm/pmap.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_object.h> 78 #include <vm/vm_extern.h> 79 80 #include <machine/elf.h> 81 #include <machine/md_var.h> 82 83 #define ELF_NOTE_ROUNDSIZE 4 84 #define OLD_EI_BRAND 8 85 86 static int __elfN(check_header)(const Elf_Ehdr *hdr); 87 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 88 const char *interp, int32_t *osrel, uint32_t *fctl0); 89 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 90 u_long *entry); 91 static int __elfN(load_section)(const struct image_params *imgp, 92 vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 93 vm_prot_t prot); 94 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 95 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 96 int32_t *osrel); 97 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 98 static bool __elfN(check_note)(struct image_params *imgp, 99 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 100 uint32_t *fctl0); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 static size_t __elfN(prepare_register_notes)(struct thread *td, 104 struct note_info_list *list, struct thread *target_td); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 ""); 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 defined(__arm__) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": support PT_GNU_STACK for non-executable stack control"); 131 132 #if defined(__amd64__) 133 static int __elfN(vdso) = 1; 134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 135 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 136 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 137 #else 138 static int __elfN(vdso) = 0; 139 #endif 140 141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 142 int i386_read_exec = 0; 143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 144 "enable execution from readable segments"); 145 #endif 146 147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 148 static int 149 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 150 { 151 u_long val; 152 int error; 153 154 val = __elfN(pie_base); 155 error = sysctl_handle_long(oidp, &val, 0, req); 156 if (error != 0 || req->newptr == NULL) 157 return (error); 158 if ((val & PAGE_MASK) != 0) 159 return (EINVAL); 160 __elfN(pie_base) = val; 161 return (0); 162 } 163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 164 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 165 sysctl_pie_base, "LU", 166 "PIE load base without randomization"); 167 168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 ""); 171 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 172 173 /* 174 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures 175 * have limited address space (which can cause issues for applications with 176 * high memory use) so we leave it off there. 177 */ 178 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 179 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 180 &__elfN(aslr_enabled), 0, 181 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 182 ": enable address map randomization"); 183 184 /* 185 * Enable ASLR by default for 64-bit PIE binaries. 186 */ 187 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 189 &__elfN(pie_aslr_enabled), 0, 190 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 191 ": enable address map randomization for PIE binaries"); 192 193 /* 194 * Sbrk is deprecated and it can be assumed that in most cases it will not be 195 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR 196 * to use the bss grow region. 197 */ 198 static int __elfN(aslr_honor_sbrk) = 0; 199 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 200 &__elfN(aslr_honor_sbrk), 0, 201 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 202 203 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64; 204 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 205 &__elfN(aslr_stack), 0, 206 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 207 ": enable stack address randomization"); 208 209 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64; 210 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN, 211 &__elfN(aslr_shared_page), 0, 212 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 213 ": enable shared page address randomization"); 214 215 static int __elfN(sigfastblock) = 1; 216 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 217 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 218 "enable sigfastblock for new processes"); 219 220 static bool __elfN(allow_wx) = true; 221 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 222 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 223 "Allow pages to be mapped simultaneously writable and executable"); 224 225 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 226 227 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 228 229 Elf_Brandnote __elfN(freebsd_brandnote) = { 230 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 231 .hdr.n_descsz = sizeof(int32_t), 232 .hdr.n_type = NT_FREEBSD_ABI_TAG, 233 .vendor = FREEBSD_ABI_VENDOR, 234 .flags = BN_TRANSLATE_OSREL, 235 .trans_osrel = __elfN(freebsd_trans_osrel) 236 }; 237 238 static bool 239 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 240 { 241 uintptr_t p; 242 243 p = (uintptr_t)(note + 1); 244 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 245 *osrel = *(const int32_t *)(p); 246 247 return (true); 248 } 249 250 static int GNU_KFREEBSD_ABI_DESC = 3; 251 252 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 253 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 254 .hdr.n_descsz = 16, /* XXX at least 16 */ 255 .hdr.n_type = 1, 256 .vendor = GNU_ABI_VENDOR, 257 .flags = BN_TRANSLATE_OSREL, 258 .trans_osrel = kfreebsd_trans_osrel 259 }; 260 261 static bool 262 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 263 { 264 const Elf32_Word *desc; 265 uintptr_t p; 266 267 p = (uintptr_t)(note + 1); 268 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 269 270 desc = (const Elf32_Word *)p; 271 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 272 return (false); 273 274 /* 275 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 276 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 277 */ 278 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 279 280 return (true); 281 } 282 283 int 284 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 285 { 286 int i; 287 288 for (i = 0; i < MAX_BRANDS; i++) { 289 if (elf_brand_list[i] == NULL) { 290 elf_brand_list[i] = entry; 291 break; 292 } 293 } 294 if (i == MAX_BRANDS) { 295 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 296 __func__, entry); 297 return (-1); 298 } 299 return (0); 300 } 301 302 int 303 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 304 { 305 int i; 306 307 for (i = 0; i < MAX_BRANDS; i++) { 308 if (elf_brand_list[i] == entry) { 309 elf_brand_list[i] = NULL; 310 break; 311 } 312 } 313 if (i == MAX_BRANDS) 314 return (-1); 315 return (0); 316 } 317 318 bool 319 __elfN(brand_inuse)(Elf_Brandinfo *entry) 320 { 321 struct proc *p; 322 bool rval = false; 323 324 sx_slock(&allproc_lock); 325 FOREACH_PROC_IN_SYSTEM(p) { 326 if (p->p_sysent == entry->sysvec) { 327 rval = true; 328 break; 329 } 330 } 331 sx_sunlock(&allproc_lock); 332 333 return (rval); 334 } 335 336 static Elf_Brandinfo * 337 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 338 int32_t *osrel, uint32_t *fctl0) 339 { 340 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 341 Elf_Brandinfo *bi, *bi_m; 342 bool ret, has_fctl0; 343 int i, interp_name_len; 344 345 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 346 347 /* 348 * We support four types of branding -- (1) the ELF EI_OSABI field 349 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 350 * branding w/in the ELF header, (3) path of the `interp_path' 351 * field, and (4) the ".note.ABI-tag" ELF section. 352 */ 353 354 /* Look for an ".note.ABI-tag" ELF section */ 355 bi_m = NULL; 356 for (i = 0; i < MAX_BRANDS; i++) { 357 bi = elf_brand_list[i]; 358 if (bi == NULL) 359 continue; 360 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 361 continue; 362 if (hdr->e_machine == bi->machine && (bi->flags & 363 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 364 has_fctl0 = false; 365 *fctl0 = 0; 366 *osrel = 0; 367 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 368 &has_fctl0, fctl0); 369 /* Give brand a chance to veto check_note's guess */ 370 if (ret && bi->header_supported) { 371 ret = bi->header_supported(imgp, osrel, 372 has_fctl0 ? fctl0 : NULL); 373 } 374 /* 375 * If note checker claimed the binary, but the 376 * interpreter path in the image does not 377 * match default one for the brand, try to 378 * search for other brands with the same 379 * interpreter. Either there is better brand 380 * with the right interpreter, or, failing 381 * this, we return first brand which accepted 382 * our note and, optionally, header. 383 */ 384 if (ret && bi_m == NULL && interp != NULL && 385 (bi->interp_path == NULL || 386 (strlen(bi->interp_path) + 1 != interp_name_len || 387 strncmp(interp, bi->interp_path, interp_name_len) 388 != 0))) { 389 bi_m = bi; 390 ret = 0; 391 } 392 if (ret) 393 return (bi); 394 } 395 } 396 if (bi_m != NULL) 397 return (bi_m); 398 399 /* If the executable has a brand, search for it in the brand list. */ 400 for (i = 0; i < MAX_BRANDS; i++) { 401 bi = elf_brand_list[i]; 402 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 403 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 404 continue; 405 if (hdr->e_machine == bi->machine && 406 (hdr->e_ident[EI_OSABI] == bi->brand || 407 (bi->compat_3_brand != NULL && 408 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 409 bi->compat_3_brand) == 0))) { 410 /* Looks good, but give brand a chance to veto */ 411 if (bi->header_supported == NULL || 412 bi->header_supported(imgp, NULL, NULL)) { 413 /* 414 * Again, prefer strictly matching 415 * interpreter path. 416 */ 417 if (interp_name_len == 0 && 418 bi->interp_path == NULL) 419 return (bi); 420 if (bi->interp_path != NULL && 421 strlen(bi->interp_path) + 1 == 422 interp_name_len && strncmp(interp, 423 bi->interp_path, interp_name_len) == 0) 424 return (bi); 425 if (bi_m == NULL) 426 bi_m = bi; 427 } 428 } 429 } 430 if (bi_m != NULL) 431 return (bi_m); 432 433 /* No known brand, see if the header is recognized by any brand */ 434 for (i = 0; i < MAX_BRANDS; i++) { 435 bi = elf_brand_list[i]; 436 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 437 bi->header_supported == NULL) 438 continue; 439 if (hdr->e_machine == bi->machine) { 440 ret = bi->header_supported(imgp, NULL, NULL); 441 if (ret) 442 return (bi); 443 } 444 } 445 446 /* Lacking a known brand, search for a recognized interpreter. */ 447 if (interp != NULL) { 448 for (i = 0; i < MAX_BRANDS; i++) { 449 bi = elf_brand_list[i]; 450 if (bi == NULL || (bi->flags & 451 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 452 != 0) 453 continue; 454 if (hdr->e_machine == bi->machine && 455 bi->interp_path != NULL && 456 /* ELF image p_filesz includes terminating zero */ 457 strlen(bi->interp_path) + 1 == interp_name_len && 458 strncmp(interp, bi->interp_path, interp_name_len) 459 == 0 && (bi->header_supported == NULL || 460 bi->header_supported(imgp, NULL, NULL))) 461 return (bi); 462 } 463 } 464 465 /* Lacking a recognized interpreter, try the default brand */ 466 for (i = 0; i < MAX_BRANDS; i++) { 467 bi = elf_brand_list[i]; 468 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 469 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 470 continue; 471 if (hdr->e_machine == bi->machine && 472 __elfN(fallback_brand) == bi->brand && 473 (bi->header_supported == NULL || 474 bi->header_supported(imgp, NULL, NULL))) 475 return (bi); 476 } 477 return (NULL); 478 } 479 480 static bool 481 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 482 { 483 return (hdr->e_phoff <= PAGE_SIZE && 484 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 485 } 486 487 static int 488 __elfN(check_header)(const Elf_Ehdr *hdr) 489 { 490 Elf_Brandinfo *bi; 491 int i; 492 493 if (!IS_ELF(*hdr) || 494 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 495 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 496 hdr->e_ident[EI_VERSION] != EV_CURRENT || 497 hdr->e_phentsize != sizeof(Elf_Phdr) || 498 hdr->e_version != ELF_TARG_VER) 499 return (ENOEXEC); 500 501 /* 502 * Make sure we have at least one brand for this machine. 503 */ 504 505 for (i = 0; i < MAX_BRANDS; i++) { 506 bi = elf_brand_list[i]; 507 if (bi != NULL && bi->machine == hdr->e_machine) 508 break; 509 } 510 if (i == MAX_BRANDS) 511 return (ENOEXEC); 512 513 return (0); 514 } 515 516 static int 517 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 518 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 519 { 520 struct sf_buf *sf; 521 int error; 522 vm_offset_t off; 523 524 /* 525 * Create the page if it doesn't exist yet. Ignore errors. 526 */ 527 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 528 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 529 530 /* 531 * Find the page from the underlying object. 532 */ 533 if (object != NULL) { 534 sf = vm_imgact_map_page(object, offset); 535 if (sf == NULL) 536 return (KERN_FAILURE); 537 off = offset - trunc_page(offset); 538 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 539 end - start); 540 vm_imgact_unmap_page(sf); 541 if (error != 0) 542 return (KERN_FAILURE); 543 } 544 545 return (KERN_SUCCESS); 546 } 547 548 static int 549 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map, 550 vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, 551 vm_prot_t prot, int cow) 552 { 553 struct sf_buf *sf; 554 vm_offset_t off; 555 vm_size_t sz; 556 int error, locked, rv; 557 558 if (start != trunc_page(start)) { 559 rv = __elfN(map_partial)(map, object, offset, start, 560 round_page(start), prot); 561 if (rv != KERN_SUCCESS) 562 return (rv); 563 offset += round_page(start) - start; 564 start = round_page(start); 565 } 566 if (end != round_page(end)) { 567 rv = __elfN(map_partial)(map, object, offset + 568 trunc_page(end) - start, trunc_page(end), end, prot); 569 if (rv != KERN_SUCCESS) 570 return (rv); 571 end = trunc_page(end); 572 } 573 if (start >= end) 574 return (KERN_SUCCESS); 575 if ((offset & PAGE_MASK) != 0) { 576 /* 577 * The mapping is not page aligned. This means that we have 578 * to copy the data. 579 */ 580 rv = vm_map_fixed(map, NULL, 0, start, end - start, 581 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 582 if (rv != KERN_SUCCESS) 583 return (rv); 584 if (object == NULL) 585 return (KERN_SUCCESS); 586 for (; start < end; start += sz) { 587 sf = vm_imgact_map_page(object, offset); 588 if (sf == NULL) 589 return (KERN_FAILURE); 590 off = offset - trunc_page(offset); 591 sz = end - start; 592 if (sz > PAGE_SIZE - off) 593 sz = PAGE_SIZE - off; 594 error = copyout((caddr_t)sf_buf_kva(sf) + off, 595 (caddr_t)start, sz); 596 vm_imgact_unmap_page(sf); 597 if (error != 0) 598 return (KERN_FAILURE); 599 offset += sz; 600 } 601 } else { 602 vm_object_reference(object); 603 rv = vm_map_fixed(map, object, offset, start, end - start, 604 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 605 (object != NULL ? MAP_VN_EXEC : 0)); 606 if (rv != KERN_SUCCESS) { 607 locked = VOP_ISLOCKED(imgp->vp); 608 VOP_UNLOCK(imgp->vp); 609 vm_object_deallocate(object); 610 vn_lock(imgp->vp, locked | LK_RETRY); 611 return (rv); 612 } else if (object != NULL) { 613 MPASS(imgp->vp->v_object == object); 614 VOP_SET_TEXT_CHECKED(imgp->vp); 615 } 616 } 617 return (KERN_SUCCESS); 618 } 619 620 static int 621 __elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset, 622 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 623 { 624 struct sf_buf *sf; 625 size_t map_len; 626 vm_map_t map; 627 vm_object_t object; 628 vm_offset_t map_addr; 629 int error, rv, cow; 630 size_t copy_len; 631 vm_ooffset_t file_addr; 632 633 /* 634 * It's necessary to fail if the filsz + offset taken from the 635 * header is greater than the actual file pager object's size. 636 * If we were to allow this, then the vm_map_find() below would 637 * walk right off the end of the file object and into the ether. 638 * 639 * While I'm here, might as well check for something else that 640 * is invalid: filsz cannot be greater than memsz. 641 */ 642 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 643 filsz > memsz) { 644 uprintf("elf_load_section: truncated ELF file\n"); 645 return (ENOEXEC); 646 } 647 648 object = imgp->object; 649 map = &imgp->proc->p_vmspace->vm_map; 650 map_addr = trunc_page((vm_offset_t)vmaddr); 651 file_addr = trunc_page(offset); 652 653 /* 654 * We have two choices. We can either clear the data in the last page 655 * of an oversized mapping, or we can start the anon mapping a page 656 * early and copy the initialized data into that first page. We 657 * choose the second. 658 */ 659 if (filsz == 0) 660 map_len = 0; 661 else if (memsz > filsz) 662 map_len = trunc_page(offset + filsz) - file_addr; 663 else 664 map_len = round_page(offset + filsz) - file_addr; 665 666 if (map_len != 0) { 667 /* cow flags: don't dump readonly sections in core */ 668 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 669 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 670 671 rv = __elfN(map_insert)(imgp, map, object, file_addr, 672 map_addr, map_addr + map_len, prot, cow); 673 if (rv != KERN_SUCCESS) 674 return (EINVAL); 675 676 /* we can stop now if we've covered it all */ 677 if (memsz == filsz) 678 return (0); 679 } 680 681 /* 682 * We have to get the remaining bit of the file into the first part 683 * of the oversized map segment. This is normally because the .data 684 * segment in the file is extended to provide bss. It's a neat idea 685 * to try and save a page, but it's a pain in the behind to implement. 686 */ 687 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 688 filsz); 689 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 690 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 691 692 /* This had damn well better be true! */ 693 if (map_len != 0) { 694 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 695 map_addr + map_len, prot, 0); 696 if (rv != KERN_SUCCESS) 697 return (EINVAL); 698 } 699 700 if (copy_len != 0) { 701 sf = vm_imgact_map_page(object, offset + filsz); 702 if (sf == NULL) 703 return (EIO); 704 705 /* send the page fragment to user space */ 706 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 707 copy_len); 708 vm_imgact_unmap_page(sf); 709 if (error != 0) 710 return (error); 711 } 712 713 /* 714 * Remove write access to the page if it was only granted by map_insert 715 * to allow copyout. 716 */ 717 if ((prot & VM_PROT_WRITE) == 0) 718 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 719 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 720 721 return (0); 722 } 723 724 static int 725 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr, 726 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 727 { 728 vm_prot_t prot; 729 u_long base_addr; 730 bool first; 731 int error, i; 732 733 ASSERT_VOP_LOCKED(imgp->vp, __func__); 734 735 base_addr = 0; 736 first = true; 737 738 for (i = 0; i < hdr->e_phnum; i++) { 739 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 740 continue; 741 742 /* Loadable segment */ 743 prot = __elfN(trans_prot)(phdr[i].p_flags); 744 error = __elfN(load_section)(imgp, phdr[i].p_offset, 745 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 746 phdr[i].p_memsz, phdr[i].p_filesz, prot); 747 if (error != 0) 748 return (error); 749 750 /* 751 * Establish the base address if this is the first segment. 752 */ 753 if (first) { 754 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 755 first = false; 756 } 757 } 758 759 if (base_addrp != NULL) 760 *base_addrp = base_addr; 761 762 return (0); 763 } 764 765 /* 766 * Load the file "file" into memory. It may be either a shared object 767 * or an executable. 768 * 769 * The "addr" reference parameter is in/out. On entry, it specifies 770 * the address where a shared object should be loaded. If the file is 771 * an executable, this value is ignored. On exit, "addr" specifies 772 * where the file was actually loaded. 773 * 774 * The "entry" reference parameter is out only. On exit, it specifies 775 * the entry point for the loaded file. 776 */ 777 static int 778 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 779 u_long *entry) 780 { 781 struct { 782 struct nameidata nd; 783 struct vattr attr; 784 struct image_params image_params; 785 } *tempdata; 786 const Elf_Ehdr *hdr = NULL; 787 const Elf_Phdr *phdr = NULL; 788 struct nameidata *nd; 789 struct vattr *attr; 790 struct image_params *imgp; 791 u_long rbase; 792 u_long base_addr = 0; 793 int error; 794 795 #ifdef CAPABILITY_MODE 796 /* 797 * XXXJA: This check can go away once we are sufficiently confident 798 * that the checks in namei() are correct. 799 */ 800 if (IN_CAPABILITY_MODE(curthread)) 801 return (ECAPMODE); 802 #endif 803 804 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 805 nd = &tempdata->nd; 806 attr = &tempdata->attr; 807 imgp = &tempdata->image_params; 808 809 /* 810 * Initialize part of the common data 811 */ 812 imgp->proc = p; 813 imgp->attr = attr; 814 815 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 816 UIO_SYSSPACE, file); 817 if ((error = namei(nd)) != 0) { 818 nd->ni_vp = NULL; 819 goto fail; 820 } 821 NDFREE_PNBUF(nd); 822 imgp->vp = nd->ni_vp; 823 824 /* 825 * Check permissions, modes, uid, etc on the file, and "open" it. 826 */ 827 error = exec_check_permissions(imgp); 828 if (error) 829 goto fail; 830 831 error = exec_map_first_page(imgp); 832 if (error) 833 goto fail; 834 835 imgp->object = nd->ni_vp->v_object; 836 837 hdr = (const Elf_Ehdr *)imgp->image_header; 838 if ((error = __elfN(check_header)(hdr)) != 0) 839 goto fail; 840 if (hdr->e_type == ET_DYN) 841 rbase = *addr; 842 else if (hdr->e_type == ET_EXEC) 843 rbase = 0; 844 else { 845 error = ENOEXEC; 846 goto fail; 847 } 848 849 /* Only support headers that fit within first page for now */ 850 if (!__elfN(phdr_in_zero_page)(hdr)) { 851 error = ENOEXEC; 852 goto fail; 853 } 854 855 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 856 if (!aligned(phdr, Elf_Addr)) { 857 error = ENOEXEC; 858 goto fail; 859 } 860 861 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 862 if (error != 0) 863 goto fail; 864 865 if (p->p_sysent->sv_protect != NULL) 866 p->p_sysent->sv_protect(imgp, SVP_INTERP); 867 868 *addr = base_addr; 869 *entry = (unsigned long)hdr->e_entry + rbase; 870 871 fail: 872 if (imgp->firstpage) 873 exec_unmap_first_page(imgp); 874 875 if (nd->ni_vp) { 876 if (imgp->textset) 877 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 878 vput(nd->ni_vp); 879 } 880 free(tempdata, M_TEMP); 881 882 return (error); 883 } 884 885 /* 886 * Select randomized valid address in the map map, between minv and 887 * maxv, with specified alignment. The [minv, maxv) range must belong 888 * to the map. Note that function only allocates the address, it is 889 * up to caller to clamp maxv in a way that the final allocation 890 * length fit into the map. 891 * 892 * Result is returned in *resp, error code indicates that arguments 893 * did not pass sanity checks for overflow and range correctness. 894 */ 895 static int 896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 897 u_int align, u_long *resp) 898 { 899 u_long rbase, res; 900 901 MPASS(vm_map_min(map) <= minv); 902 903 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 904 uprintf("Invalid ELF segments layout\n"); 905 return (ENOEXEC); 906 } 907 908 arc4rand(&rbase, sizeof(rbase), 0); 909 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 910 res &= ~((u_long)align - 1); 911 if (res >= maxv) 912 res -= align; 913 914 KASSERT(res >= minv, 915 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 916 res, minv, maxv, rbase)); 917 KASSERT(res < maxv, 918 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 919 res, maxv, minv, rbase)); 920 921 *resp = res; 922 return (0); 923 } 924 925 static int 926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 927 const Elf_Phdr *phdr) 928 { 929 struct vmspace *vmspace; 930 const char *err_str; 931 u_long text_size, data_size, total_size, text_addr, data_addr; 932 u_long seg_size, seg_addr; 933 int i; 934 935 err_str = NULL; 936 text_size = data_size = total_size = text_addr = data_addr = 0; 937 938 for (i = 0; i < hdr->e_phnum; i++) { 939 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 940 continue; 941 942 seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr); 943 seg_size = round_page(phdr[i].p_memsz + 944 phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr); 945 946 /* 947 * Make the largest executable segment the official 948 * text segment and all others data. 949 * 950 * Note that obreak() assumes that data_addr + data_size == end 951 * of data load area, and the ELF file format expects segments 952 * to be sorted by address. If multiple data segments exist, 953 * the last one will be used. 954 */ 955 956 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 957 text_size = seg_size; 958 text_addr = seg_addr; 959 } else { 960 data_size = seg_size; 961 data_addr = seg_addr; 962 } 963 total_size += seg_size; 964 } 965 966 if (data_addr == 0 && data_size == 0) { 967 data_addr = text_addr; 968 data_size = text_size; 969 } 970 971 /* 972 * Check limits. It should be safe to check the 973 * limits after loading the segments since we do 974 * not actually fault in all the segments pages. 975 */ 976 PROC_LOCK(imgp->proc); 977 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 978 err_str = "Data segment size exceeds process limit"; 979 else if (text_size > maxtsiz) 980 err_str = "Text segment size exceeds system limit"; 981 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 982 err_str = "Total segment size exceeds process limit"; 983 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 984 err_str = "Data segment size exceeds resource limit"; 985 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 986 err_str = "Total segment size exceeds resource limit"; 987 PROC_UNLOCK(imgp->proc); 988 if (err_str != NULL) { 989 uprintf("%s\n", err_str); 990 return (ENOMEM); 991 } 992 993 vmspace = imgp->proc->p_vmspace; 994 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 995 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 996 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 997 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 998 999 return (0); 1000 } 1001 1002 static int 1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 1004 char **interpp, bool *free_interpp) 1005 { 1006 struct thread *td; 1007 char *interp; 1008 int error, interp_name_len; 1009 1010 KASSERT(phdr->p_type == PT_INTERP, 1011 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1012 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1013 1014 td = curthread; 1015 1016 /* Path to interpreter */ 1017 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1018 uprintf("Invalid PT_INTERP\n"); 1019 return (ENOEXEC); 1020 } 1021 1022 interp_name_len = phdr->p_filesz; 1023 if (phdr->p_offset > PAGE_SIZE || 1024 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1025 /* 1026 * The vnode lock might be needed by the pagedaemon to 1027 * clean pages owned by the vnode. Do not allow sleep 1028 * waiting for memory with the vnode locked, instead 1029 * try non-sleepable allocation first, and if it 1030 * fails, go to the slow path were we drop the lock 1031 * and do M_WAITOK. A text reference prevents 1032 * modifications to the vnode content. 1033 */ 1034 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1035 if (interp == NULL) { 1036 VOP_UNLOCK(imgp->vp); 1037 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1038 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1039 } 1040 1041 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1042 interp_name_len, phdr->p_offset, 1043 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1044 NOCRED, NULL, td); 1045 if (error != 0) { 1046 free(interp, M_TEMP); 1047 uprintf("i/o error PT_INTERP %d\n", error); 1048 return (error); 1049 } 1050 interp[interp_name_len] = '\0'; 1051 1052 *interpp = interp; 1053 *free_interpp = true; 1054 return (0); 1055 } 1056 1057 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1058 if (interp[interp_name_len - 1] != '\0') { 1059 uprintf("Invalid PT_INTERP\n"); 1060 return (ENOEXEC); 1061 } 1062 1063 *interpp = interp; 1064 *free_interpp = false; 1065 return (0); 1066 } 1067 1068 static int 1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1070 const char *interp, u_long *addr, u_long *entry) 1071 { 1072 int error; 1073 1074 if (brand_info->interp_newpath != NULL && 1075 (brand_info->interp_path == NULL || 1076 strcmp(interp, brand_info->interp_path) == 0)) { 1077 error = __elfN(load_file)(imgp->proc, 1078 brand_info->interp_newpath, addr, entry); 1079 if (error == 0) 1080 return (0); 1081 } 1082 1083 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1084 if (error == 0) 1085 return (0); 1086 1087 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1088 return (error); 1089 } 1090 1091 /* 1092 * Impossible et_dyn_addr initial value indicating that the real base 1093 * must be calculated later with some randomization applied. 1094 */ 1095 #define ET_DYN_ADDR_RAND 1 1096 1097 static int 1098 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1099 { 1100 struct thread *td; 1101 const Elf_Ehdr *hdr; 1102 const Elf_Phdr *phdr; 1103 Elf_Auxargs *elf_auxargs; 1104 struct vmspace *vmspace; 1105 vm_map_t map; 1106 char *interp; 1107 Elf_Brandinfo *brand_info; 1108 struct sysentvec *sv; 1109 u_long addr, baddr, entry, proghdr; 1110 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1111 uint32_t fctl0; 1112 int32_t osrel; 1113 bool free_interp; 1114 int error, i, n; 1115 1116 hdr = (const Elf_Ehdr *)imgp->image_header; 1117 1118 /* 1119 * Do we have a valid ELF header ? 1120 * 1121 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1122 * if particular brand doesn't support it. 1123 */ 1124 if (__elfN(check_header)(hdr) != 0 || 1125 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1126 return (-1); 1127 1128 /* 1129 * From here on down, we return an errno, not -1, as we've 1130 * detected an ELF file. 1131 */ 1132 1133 if (!__elfN(phdr_in_zero_page)(hdr)) { 1134 uprintf("Program headers not in the first page\n"); 1135 return (ENOEXEC); 1136 } 1137 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1138 if (!aligned(phdr, Elf_Addr)) { 1139 uprintf("Unaligned program headers\n"); 1140 return (ENOEXEC); 1141 } 1142 1143 n = error = 0; 1144 baddr = 0; 1145 osrel = 0; 1146 fctl0 = 0; 1147 entry = proghdr = 0; 1148 interp = NULL; 1149 free_interp = false; 1150 td = curthread; 1151 1152 /* 1153 * Somewhat arbitrary, limit accepted max alignment for the 1154 * loadable segment to the max supported superpage size. Too 1155 * large alignment requests are not useful and are indicators 1156 * of corrupted or outright malicious binary. 1157 */ 1158 maxalign = PAGE_SIZE; 1159 maxsalign = PAGE_SIZE * 1024; 1160 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1161 if (pagesizes[i] > maxsalign) { 1162 maxsalign = pagesizes[i]; 1163 break; 1164 } 1165 } 1166 1167 mapsz = 0; 1168 1169 for (i = 0; i < hdr->e_phnum; i++) { 1170 switch (phdr[i].p_type) { 1171 case PT_LOAD: 1172 if (n == 0) 1173 baddr = phdr[i].p_vaddr; 1174 if (!powerof2(phdr[i].p_align) || 1175 phdr[i].p_align > maxsalign) { 1176 uprintf("Invalid segment alignment\n"); 1177 error = ENOEXEC; 1178 goto ret; 1179 } 1180 if (phdr[i].p_align > maxalign) 1181 maxalign = phdr[i].p_align; 1182 if (mapsz + phdr[i].p_memsz < mapsz) { 1183 uprintf("Mapsize overflow\n"); 1184 error = ENOEXEC; 1185 goto ret; 1186 } 1187 mapsz += phdr[i].p_memsz; 1188 n++; 1189 1190 /* 1191 * If this segment contains the program headers, 1192 * remember their virtual address for the AT_PHDR 1193 * aux entry. Static binaries don't usually include 1194 * a PT_PHDR entry. 1195 */ 1196 if (phdr[i].p_offset == 0 && 1197 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1198 phdr[i].p_filesz) 1199 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1200 break; 1201 case PT_INTERP: 1202 /* Path to interpreter */ 1203 if (interp != NULL) { 1204 uprintf("Multiple PT_INTERP headers\n"); 1205 error = ENOEXEC; 1206 goto ret; 1207 } 1208 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1209 &free_interp); 1210 if (error != 0) 1211 goto ret; 1212 break; 1213 case PT_GNU_STACK: 1214 if (__elfN(nxstack)) { 1215 imgp->stack_prot = 1216 __elfN(trans_prot)(phdr[i].p_flags); 1217 if ((imgp->stack_prot & VM_PROT_RW) != 1218 VM_PROT_RW) { 1219 uprintf("Invalid PT_GNU_STACK\n"); 1220 error = ENOEXEC; 1221 goto ret; 1222 } 1223 } 1224 imgp->stack_sz = phdr[i].p_memsz; 1225 break; 1226 case PT_PHDR: /* Program header table info */ 1227 proghdr = phdr[i].p_vaddr; 1228 break; 1229 } 1230 } 1231 1232 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1233 if (brand_info == NULL) { 1234 uprintf("ELF binary type \"%u\" not known.\n", 1235 hdr->e_ident[EI_OSABI]); 1236 error = ENOEXEC; 1237 goto ret; 1238 } 1239 sv = brand_info->sysvec; 1240 if (hdr->e_type == ET_DYN) { 1241 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1242 uprintf("Cannot execute shared object\n"); 1243 error = ENOEXEC; 1244 goto ret; 1245 } 1246 /* 1247 * Honour the base load address from the dso if it is 1248 * non-zero for some reason. 1249 */ 1250 if (baddr == 0) { 1251 if ((sv->sv_flags & SV_ASLR) == 0 || 1252 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1253 imgp->et_dyn_addr = __elfN(pie_base); 1254 else if ((__elfN(pie_aslr_enabled) && 1255 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1256 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1257 imgp->et_dyn_addr = ET_DYN_ADDR_RAND; 1258 else 1259 imgp->et_dyn_addr = __elfN(pie_base); 1260 } 1261 } 1262 1263 /* 1264 * Avoid a possible deadlock if the current address space is destroyed 1265 * and that address space maps the locked vnode. In the common case, 1266 * the locked vnode's v_usecount is decremented but remains greater 1267 * than zero. Consequently, the vnode lock is not needed by vrele(). 1268 * However, in cases where the vnode lock is external, such as nullfs, 1269 * v_usecount may become zero. 1270 * 1271 * The VV_TEXT flag prevents modifications to the executable while 1272 * the vnode is unlocked. 1273 */ 1274 VOP_UNLOCK(imgp->vp); 1275 1276 /* 1277 * Decide whether to enable randomization of user mappings. 1278 * First, reset user preferences for the setid binaries. 1279 * Then, account for the support of the randomization by the 1280 * ABI, by user preferences, and make special treatment for 1281 * PIE binaries. 1282 */ 1283 if (imgp->credential_setid) { 1284 PROC_LOCK(imgp->proc); 1285 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1286 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1287 PROC_UNLOCK(imgp->proc); 1288 } 1289 if ((sv->sv_flags & SV_ASLR) == 0 || 1290 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1291 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1292 KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND, 1293 ("imgp->et_dyn_addr == RAND and !ASLR")); 1294 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1295 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1296 imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1297 imgp->map_flags |= MAP_ASLR; 1298 /* 1299 * If user does not care about sbrk, utilize the bss 1300 * grow region for mappings as well. We can select 1301 * the base for the image anywere and still not suffer 1302 * from the fragmentation. 1303 */ 1304 if (!__elfN(aslr_honor_sbrk) || 1305 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1306 imgp->map_flags |= MAP_ASLR_IGNSTART; 1307 if (__elfN(aslr_stack)) 1308 imgp->map_flags |= MAP_ASLR_STACK; 1309 if (__elfN(aslr_shared_page)) 1310 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE; 1311 } 1312 1313 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1314 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1315 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1316 imgp->map_flags |= MAP_WXORX; 1317 1318 error = exec_new_vmspace(imgp, sv); 1319 1320 imgp->proc->p_sysent = sv; 1321 imgp->proc->p_elf_brandinfo = brand_info; 1322 1323 vmspace = imgp->proc->p_vmspace; 1324 map = &vmspace->vm_map; 1325 maxv = sv->sv_usrstack; 1326 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1327 maxv -= lim_max(td, RLIMIT_STACK); 1328 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1329 uprintf("Excessive mapping size\n"); 1330 error = ENOEXEC; 1331 } 1332 1333 if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1334 KASSERT((map->flags & MAP_ASLR) != 0, 1335 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1336 error = __CONCAT(rnd_, __elfN(base))(map, 1337 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1338 /* reserve half of the address space to interpreter */ 1339 maxv / 2, maxalign, &imgp->et_dyn_addr); 1340 } 1341 1342 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1343 if (error != 0) 1344 goto ret; 1345 1346 error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL); 1347 if (error != 0) 1348 goto ret; 1349 1350 error = __elfN(enforce_limits)(imgp, hdr, phdr); 1351 if (error != 0) 1352 goto ret; 1353 1354 /* 1355 * We load the dynamic linker where a userland call 1356 * to mmap(0, ...) would put it. The rationale behind this 1357 * calculation is that it leaves room for the heap to grow to 1358 * its maximum allowed size. 1359 */ 1360 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1361 RLIMIT_DATA)); 1362 if ((map->flags & MAP_ASLR) != 0) { 1363 maxv1 = maxv / 2 + addr / 2; 1364 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1365 #if VM_NRESERVLEVEL > 0 1366 pagesizes[VM_NRESERVLEVEL] != 0 ? 1367 /* Align anon_loc to the largest superpage size. */ 1368 pagesizes[VM_NRESERVLEVEL] : 1369 #endif 1370 pagesizes[0], &anon_loc); 1371 if (error != 0) 1372 goto ret; 1373 map->anon_loc = anon_loc; 1374 } else { 1375 map->anon_loc = addr; 1376 } 1377 1378 entry = (u_long)hdr->e_entry + imgp->et_dyn_addr; 1379 imgp->entry_addr = entry; 1380 1381 if (sv->sv_protect != NULL) 1382 sv->sv_protect(imgp, SVP_IMAGE); 1383 1384 if (interp != NULL) { 1385 VOP_UNLOCK(imgp->vp); 1386 if ((map->flags & MAP_ASLR) != 0) { 1387 /* Assume that interpreter fits into 1/4 of AS */ 1388 maxv1 = maxv / 2 + addr / 2; 1389 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1390 maxv1, PAGE_SIZE, &addr); 1391 } 1392 if (error == 0) { 1393 error = __elfN(load_interp)(imgp, brand_info, interp, 1394 &addr, &imgp->entry_addr); 1395 } 1396 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1397 if (error != 0) 1398 goto ret; 1399 } else 1400 addr = imgp->et_dyn_addr; 1401 1402 error = exec_map_stack(imgp); 1403 if (error != 0) 1404 goto ret; 1405 1406 /* 1407 * Construct auxargs table (used by the copyout_auxargs routine) 1408 */ 1409 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1410 if (elf_auxargs == NULL) { 1411 VOP_UNLOCK(imgp->vp); 1412 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1413 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1414 } 1415 elf_auxargs->execfd = -1; 1416 elf_auxargs->phdr = proghdr + imgp->et_dyn_addr; 1417 elf_auxargs->phent = hdr->e_phentsize; 1418 elf_auxargs->phnum = hdr->e_phnum; 1419 elf_auxargs->pagesz = PAGE_SIZE; 1420 elf_auxargs->base = addr; 1421 elf_auxargs->flags = 0; 1422 elf_auxargs->entry = entry; 1423 elf_auxargs->hdr_eflags = hdr->e_flags; 1424 1425 imgp->auxargs = elf_auxargs; 1426 imgp->interpreted = 0; 1427 imgp->reloc_base = addr; 1428 imgp->proc->p_osrel = osrel; 1429 imgp->proc->p_fctl0 = fctl0; 1430 imgp->proc->p_elf_flags = hdr->e_flags; 1431 1432 ret: 1433 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1434 if (free_interp) 1435 free(interp, M_TEMP); 1436 return (error); 1437 } 1438 1439 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1440 1441 int 1442 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1443 { 1444 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1445 Elf_Auxinfo *argarray, *pos; 1446 struct vmspace *vmspace; 1447 rlim_t stacksz; 1448 int error, oc; 1449 uint32_t bsdflags; 1450 1451 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1452 M_WAITOK | M_ZERO); 1453 1454 vmspace = imgp->proc->p_vmspace; 1455 1456 if (args->execfd != -1) 1457 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1458 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1459 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1460 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1461 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1462 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1463 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1464 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1465 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1466 if (imgp->execpathp != 0) 1467 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1468 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1469 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1470 if (imgp->canary != 0) { 1471 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1472 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1473 } 1474 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1475 if (imgp->pagesizes != 0) { 1476 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1477 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1478 } 1479 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) { 1480 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1481 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset); 1482 } 1483 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1484 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1485 imgp->sysent->sv_stackprot); 1486 if (imgp->sysent->sv_hwcap != NULL) 1487 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1488 if (imgp->sysent->sv_hwcap2 != NULL) 1489 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1490 if (imgp->sysent->sv_hwcap3 != NULL) 1491 AUXARGS_ENTRY(pos, AT_HWCAP3, *imgp->sysent->sv_hwcap3); 1492 if (imgp->sysent->sv_hwcap4 != NULL) 1493 AUXARGS_ENTRY(pos, AT_HWCAP4, *imgp->sysent->sv_hwcap4); 1494 bsdflags = 0; 1495 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0; 1496 oc = atomic_load_int(&vm_overcommit); 1497 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) != 1498 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0; 1499 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags); 1500 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1501 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1502 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1503 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1504 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1505 #ifdef RANDOM_FENESTRASX 1506 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) { 1507 AUXARGS_ENTRY(pos, AT_FXRNG, 1508 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset); 1509 } 1510 #endif 1511 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) { 1512 AUXARGS_ENTRY(pos, AT_KPRELOAD, 1513 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset); 1514 } 1515 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop)); 1516 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 1517 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz); 1518 AUXARGS_ENTRY(pos, AT_NULL, 0); 1519 1520 free(imgp->auxargs, M_TEMP); 1521 imgp->auxargs = NULL; 1522 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1523 1524 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1525 free(argarray, M_TEMP); 1526 return (error); 1527 } 1528 1529 int 1530 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1531 { 1532 Elf_Addr *base; 1533 1534 base = (Elf_Addr *)*stack_base; 1535 base--; 1536 if (elf_suword(base, imgp->args->argc) == -1) 1537 return (EFAULT); 1538 *stack_base = (uintptr_t)base; 1539 return (0); 1540 } 1541 1542 /* 1543 * Code for generating ELF core dumps. 1544 */ 1545 1546 typedef void (*segment_callback)(vm_map_entry_t, void *); 1547 1548 /* Closure for cb_put_phdr(). */ 1549 struct phdr_closure { 1550 Elf_Phdr *phdr; /* Program header to fill in */ 1551 Elf_Off offset; /* Offset of segment in core file */ 1552 }; 1553 1554 struct note_info { 1555 int type; /* Note type. */ 1556 struct regset *regset; /* Register set. */ 1557 outfunc_t outfunc; /* Output function. */ 1558 void *outarg; /* Argument for the output function. */ 1559 size_t outsize; /* Output size. */ 1560 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1561 }; 1562 1563 TAILQ_HEAD(note_info_list, note_info); 1564 1565 extern int compress_user_cores; 1566 extern int compress_user_cores_level; 1567 1568 static void cb_put_phdr(vm_map_entry_t, void *); 1569 static void cb_size_segment(vm_map_entry_t, void *); 1570 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1571 int); 1572 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1573 struct note_info_list *, size_t, int); 1574 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1575 1576 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1577 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1578 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1579 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1580 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1581 static void __elfN(note_procstat_kqueues)(void *, struct sbuf *, size_t *); 1582 static void note_procstat_files(void *, struct sbuf *, size_t *); 1583 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1584 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1585 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1586 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1587 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1588 1589 static int 1590 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1591 { 1592 1593 return (core_write((struct coredump_params *)arg, base, len, offset, 1594 UIO_SYSSPACE, NULL)); 1595 } 1596 1597 int 1598 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1599 { 1600 struct ucred *cred = td->td_ucred; 1601 int compm, error = 0; 1602 struct sseg_closure seginfo; 1603 struct note_info_list notelst; 1604 struct coredump_params params; 1605 struct note_info *ninfo; 1606 void *hdr, *tmpbuf; 1607 size_t hdrsize, notesz, coresize; 1608 1609 hdr = NULL; 1610 tmpbuf = NULL; 1611 TAILQ_INIT(¬elst); 1612 1613 /* Size the program segments. */ 1614 __elfN(size_segments)(td, &seginfo, flags); 1615 1616 /* 1617 * Collect info about the core file header area. 1618 */ 1619 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1620 if (seginfo.count + 1 >= PN_XNUM) 1621 hdrsize += sizeof(Elf_Shdr); 1622 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1623 coresize = round_page(hdrsize + notesz) + seginfo.size; 1624 1625 /* Set up core dump parameters. */ 1626 params.offset = 0; 1627 params.active_cred = cred; 1628 params.file_cred = NOCRED; 1629 params.td = td; 1630 params.vp = vp; 1631 params.comp = NULL; 1632 1633 #ifdef RACCT 1634 if (racct_enable) { 1635 PROC_LOCK(td->td_proc); 1636 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1637 PROC_UNLOCK(td->td_proc); 1638 if (error != 0) { 1639 error = EFAULT; 1640 goto done; 1641 } 1642 } 1643 #endif 1644 if (coresize >= limit) { 1645 error = EFAULT; 1646 goto done; 1647 } 1648 1649 /* Create a compression stream if necessary. */ 1650 compm = compress_user_cores; 1651 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1652 compm == 0) 1653 compm = COMPRESS_GZIP; 1654 if (compm != 0) { 1655 params.comp = compressor_init(core_compressed_write, 1656 compm, CORE_BUF_SIZE, 1657 compress_user_cores_level, ¶ms); 1658 if (params.comp == NULL) { 1659 error = EFAULT; 1660 goto done; 1661 } 1662 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1663 } 1664 1665 /* 1666 * Allocate memory for building the header, fill it up, 1667 * and write it out following the notes. 1668 */ 1669 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1670 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1671 notesz, flags); 1672 1673 /* Write the contents of all of the writable segments. */ 1674 if (error == 0) { 1675 Elf_Phdr *php; 1676 off_t offset; 1677 int i; 1678 1679 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1680 offset = round_page(hdrsize + notesz); 1681 for (i = 0; i < seginfo.count; i++) { 1682 error = core_output((char *)(uintptr_t)php->p_vaddr, 1683 php->p_filesz, offset, ¶ms, tmpbuf); 1684 if (error != 0) 1685 break; 1686 offset += php->p_filesz; 1687 php++; 1688 } 1689 if (error == 0 && params.comp != NULL) 1690 error = compressor_flush(params.comp); 1691 } 1692 if (error) { 1693 log(LOG_WARNING, 1694 "Failed to write core file for process %s (error %d)\n", 1695 curproc->p_comm, error); 1696 } 1697 1698 done: 1699 free(tmpbuf, M_TEMP); 1700 if (params.comp != NULL) 1701 compressor_fini(params.comp); 1702 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1703 TAILQ_REMOVE(¬elst, ninfo, link); 1704 free(ninfo, M_TEMP); 1705 } 1706 if (hdr != NULL) 1707 free(hdr, M_TEMP); 1708 1709 return (error); 1710 } 1711 1712 /* 1713 * A callback for each_dumpable_segment() to write out the segment's 1714 * program header entry. 1715 */ 1716 static void 1717 cb_put_phdr(vm_map_entry_t entry, void *closure) 1718 { 1719 struct phdr_closure *phc = (struct phdr_closure *)closure; 1720 Elf_Phdr *phdr = phc->phdr; 1721 1722 phc->offset = round_page(phc->offset); 1723 1724 phdr->p_type = PT_LOAD; 1725 phdr->p_offset = phc->offset; 1726 phdr->p_vaddr = entry->start; 1727 phdr->p_paddr = 0; 1728 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1729 phdr->p_align = PAGE_SIZE; 1730 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1731 1732 phc->offset += phdr->p_filesz; 1733 phc->phdr++; 1734 } 1735 1736 /* 1737 * A callback for each_dumpable_segment() to gather information about 1738 * the number of segments and their total size. 1739 */ 1740 static void 1741 cb_size_segment(vm_map_entry_t entry, void *closure) 1742 { 1743 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1744 1745 ssc->count++; 1746 ssc->size += entry->end - entry->start; 1747 } 1748 1749 void 1750 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1751 int flags) 1752 { 1753 seginfo->count = 0; 1754 seginfo->size = 0; 1755 1756 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1757 } 1758 1759 /* 1760 * For each writable segment in the process's memory map, call the given 1761 * function with a pointer to the map entry and some arbitrary 1762 * caller-supplied data. 1763 */ 1764 static void 1765 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1766 int flags) 1767 { 1768 struct proc *p = td->td_proc; 1769 vm_map_t map = &p->p_vmspace->vm_map; 1770 vm_map_entry_t entry; 1771 vm_object_t backing_object, object; 1772 bool ignore_entry; 1773 1774 vm_map_lock_read(map); 1775 VM_MAP_ENTRY_FOREACH(entry, map) { 1776 /* 1777 * Don't dump inaccessible mappings, deal with legacy 1778 * coredump mode. 1779 * 1780 * Note that read-only segments related to the elf binary 1781 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1782 * need to arbitrarily ignore such segments. 1783 */ 1784 if ((flags & SVC_ALL) == 0) { 1785 if (elf_legacy_coredump) { 1786 if ((entry->protection & VM_PROT_RW) != 1787 VM_PROT_RW) 1788 continue; 1789 } else { 1790 if ((entry->protection & VM_PROT_ALL) == 0) 1791 continue; 1792 } 1793 } 1794 1795 /* 1796 * Dont include memory segment in the coredump if 1797 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1798 * madvise(2). Do not dump submaps (i.e. parts of the 1799 * kernel map). 1800 */ 1801 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1802 continue; 1803 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1804 (flags & SVC_ALL) == 0) 1805 continue; 1806 if ((object = entry->object.vm_object) == NULL) 1807 continue; 1808 1809 /* Ignore memory-mapped devices and such things. */ 1810 VM_OBJECT_RLOCK(object); 1811 while ((backing_object = object->backing_object) != NULL) { 1812 VM_OBJECT_RLOCK(backing_object); 1813 VM_OBJECT_RUNLOCK(object); 1814 object = backing_object; 1815 } 1816 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1817 VM_OBJECT_RUNLOCK(object); 1818 if (ignore_entry) 1819 continue; 1820 1821 (*func)(entry, closure); 1822 } 1823 vm_map_unlock_read(map); 1824 } 1825 1826 /* 1827 * Write the core file header to the file, including padding up to 1828 * the page boundary. 1829 */ 1830 static int 1831 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1832 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1833 int flags) 1834 { 1835 struct note_info *ninfo; 1836 struct sbuf *sb; 1837 int error; 1838 1839 /* Fill in the header. */ 1840 bzero(hdr, hdrsize); 1841 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1842 1843 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1844 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1845 sbuf_start_section(sb, NULL); 1846 sbuf_bcat(sb, hdr, hdrsize); 1847 TAILQ_FOREACH(ninfo, notelst, link) 1848 __elfN(putnote)(p->td, ninfo, sb); 1849 /* Align up to a page boundary for the program segments. */ 1850 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1851 error = sbuf_finish(sb); 1852 sbuf_delete(sb); 1853 1854 return (error); 1855 } 1856 1857 void 1858 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1859 size_t *sizep) 1860 { 1861 struct proc *p; 1862 struct thread *thr; 1863 size_t size; 1864 1865 p = td->td_proc; 1866 size = 0; 1867 1868 size += __elfN(register_note)(td, list, NT_PRPSINFO, 1869 __elfN(note_prpsinfo), p); 1870 1871 /* 1872 * To have the debugger select the right thread (LWP) as the initial 1873 * thread, we dump the state of the thread passed to us in td first. 1874 * This is the thread that causes the core dump and thus likely to 1875 * be the right thread one wants to have selected in the debugger. 1876 */ 1877 thr = td; 1878 while (thr != NULL) { 1879 size += __elfN(prepare_register_notes)(td, list, thr); 1880 size += __elfN(register_note)(td, list, -1, 1881 __elfN(note_threadmd), thr); 1882 1883 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1884 TAILQ_NEXT(thr, td_plist); 1885 if (thr == td) 1886 thr = TAILQ_NEXT(thr, td_plist); 1887 } 1888 1889 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1890 __elfN(note_procstat_proc), p); 1891 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1892 note_procstat_files, p); 1893 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1894 note_procstat_vmmap, p); 1895 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1896 note_procstat_groups, p); 1897 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1898 note_procstat_umask, p); 1899 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1900 note_procstat_rlimit, p); 1901 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1902 note_procstat_osrel, p); 1903 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1904 __elfN(note_procstat_psstrings), p); 1905 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1906 __elfN(note_procstat_auxv), p); 1907 size += __elfN(register_note)(td, list, NT_PROCSTAT_KQUEUES, 1908 __elfN(note_procstat_kqueues), p); 1909 1910 *sizep = size; 1911 } 1912 1913 void 1914 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1915 size_t notesz, int flags) 1916 { 1917 Elf_Ehdr *ehdr; 1918 Elf_Phdr *phdr; 1919 Elf_Shdr *shdr; 1920 struct phdr_closure phc; 1921 Elf_Brandinfo *bi; 1922 1923 ehdr = (Elf_Ehdr *)hdr; 1924 bi = td->td_proc->p_elf_brandinfo; 1925 1926 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1927 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1928 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1929 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1930 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1931 ehdr->e_ident[EI_DATA] = ELF_DATA; 1932 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1933 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1934 ehdr->e_ident[EI_ABIVERSION] = 0; 1935 ehdr->e_ident[EI_PAD] = 0; 1936 ehdr->e_type = ET_CORE; 1937 ehdr->e_machine = bi->machine; 1938 ehdr->e_version = EV_CURRENT; 1939 ehdr->e_entry = 0; 1940 ehdr->e_phoff = sizeof(Elf_Ehdr); 1941 ehdr->e_flags = td->td_proc->p_elf_flags; 1942 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1943 ehdr->e_phentsize = sizeof(Elf_Phdr); 1944 ehdr->e_shentsize = sizeof(Elf_Shdr); 1945 ehdr->e_shstrndx = SHN_UNDEF; 1946 if (numsegs + 1 < PN_XNUM) { 1947 ehdr->e_phnum = numsegs + 1; 1948 ehdr->e_shnum = 0; 1949 } else { 1950 ehdr->e_phnum = PN_XNUM; 1951 ehdr->e_shnum = 1; 1952 1953 ehdr->e_shoff = ehdr->e_phoff + 1954 (numsegs + 1) * ehdr->e_phentsize; 1955 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1956 ("e_shoff: %zu, hdrsize - shdr: %zu", 1957 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1958 1959 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1960 memset(shdr, 0, sizeof(*shdr)); 1961 /* 1962 * A special first section is used to hold large segment and 1963 * section counts. This was proposed by Sun Microsystems in 1964 * Solaris and has been adopted by Linux; the standard ELF 1965 * tools are already familiar with the technique. 1966 * 1967 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1968 * (or 12-7 depending on the version of the document) for more 1969 * details. 1970 */ 1971 shdr->sh_type = SHT_NULL; 1972 shdr->sh_size = ehdr->e_shnum; 1973 shdr->sh_link = ehdr->e_shstrndx; 1974 shdr->sh_info = numsegs + 1; 1975 } 1976 1977 /* 1978 * Fill in the program header entries. 1979 */ 1980 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1981 1982 /* The note segement. */ 1983 phdr->p_type = PT_NOTE; 1984 phdr->p_offset = hdrsize; 1985 phdr->p_vaddr = 0; 1986 phdr->p_paddr = 0; 1987 phdr->p_filesz = notesz; 1988 phdr->p_memsz = 0; 1989 phdr->p_flags = PF_R; 1990 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1991 phdr++; 1992 1993 /* All the writable segments from the program. */ 1994 phc.phdr = phdr; 1995 phc.offset = round_page(hdrsize + notesz); 1996 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1997 } 1998 1999 static size_t 2000 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list, 2001 struct regset *regset, struct thread *target_td) 2002 { 2003 const struct sysentvec *sv; 2004 struct note_info *ninfo; 2005 size_t size, notesize; 2006 2007 size = 0; 2008 if (!regset->get(regset, target_td, NULL, &size) || size == 0) 2009 return (0); 2010 2011 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2012 ninfo->type = regset->note; 2013 ninfo->regset = regset; 2014 ninfo->outarg = target_td; 2015 ninfo->outsize = size; 2016 TAILQ_INSERT_TAIL(list, ninfo, link); 2017 2018 sv = td->td_proc->p_sysent; 2019 notesize = sizeof(Elf_Note) + /* note header */ 2020 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2021 /* note name */ 2022 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2023 2024 return (notesize); 2025 } 2026 2027 size_t 2028 __elfN(register_note)(struct thread *td, struct note_info_list *list, 2029 int type, outfunc_t out, void *arg) 2030 { 2031 const struct sysentvec *sv; 2032 struct note_info *ninfo; 2033 size_t size, notesize; 2034 2035 sv = td->td_proc->p_sysent; 2036 size = 0; 2037 out(arg, NULL, &size); 2038 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2039 ninfo->type = type; 2040 ninfo->outfunc = out; 2041 ninfo->outarg = arg; 2042 ninfo->outsize = size; 2043 TAILQ_INSERT_TAIL(list, ninfo, link); 2044 2045 if (type == -1) 2046 return (size); 2047 2048 notesize = sizeof(Elf_Note) + /* note header */ 2049 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2050 /* note name */ 2051 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2052 2053 return (notesize); 2054 } 2055 2056 static size_t 2057 append_note_data(const void *src, void *dst, size_t len) 2058 { 2059 size_t padded_len; 2060 2061 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2062 if (dst != NULL) { 2063 bcopy(src, dst, len); 2064 bzero((char *)dst + len, padded_len - len); 2065 } 2066 return (padded_len); 2067 } 2068 2069 size_t 2070 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2071 { 2072 Elf_Note *note; 2073 char *buf; 2074 size_t notesize; 2075 2076 buf = dst; 2077 if (buf != NULL) { 2078 note = (Elf_Note *)buf; 2079 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2080 note->n_descsz = size; 2081 note->n_type = type; 2082 buf += sizeof(*note); 2083 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2084 sizeof(FREEBSD_ABI_VENDOR)); 2085 append_note_data(src, buf, size); 2086 if (descp != NULL) 2087 *descp = buf; 2088 } 2089 2090 notesize = sizeof(Elf_Note) + /* note header */ 2091 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2092 /* note name */ 2093 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2094 2095 return (notesize); 2096 } 2097 2098 static void 2099 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2100 { 2101 Elf_Note note; 2102 const struct sysentvec *sv; 2103 ssize_t old_len, sect_len; 2104 size_t new_len, descsz, i; 2105 2106 if (ninfo->type == -1) { 2107 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2108 return; 2109 } 2110 2111 sv = td->td_proc->p_sysent; 2112 2113 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2114 note.n_descsz = ninfo->outsize; 2115 note.n_type = ninfo->type; 2116 2117 sbuf_bcat(sb, ¬e, sizeof(note)); 2118 sbuf_start_section(sb, &old_len); 2119 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2120 strlen(sv->sv_elf_core_abi_vendor) + 1); 2121 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2122 if (note.n_descsz == 0) 2123 return; 2124 sbuf_start_section(sb, &old_len); 2125 if (ninfo->regset != NULL) { 2126 struct regset *regset = ninfo->regset; 2127 void *buf; 2128 2129 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK); 2130 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize); 2131 sbuf_bcat(sb, buf, ninfo->outsize); 2132 free(buf, M_TEMP); 2133 } else 2134 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2135 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2136 if (sect_len < 0) 2137 return; 2138 2139 new_len = (size_t)sect_len; 2140 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2141 if (new_len < descsz) { 2142 /* 2143 * It is expected that individual note emitters will correctly 2144 * predict their expected output size and fill up to that size 2145 * themselves, padding in a format-specific way if needed. 2146 * However, in case they don't, just do it here with zeros. 2147 */ 2148 for (i = 0; i < descsz - new_len; i++) 2149 sbuf_putc(sb, 0); 2150 } else if (new_len > descsz) { 2151 /* 2152 * We can't always truncate sb -- we may have drained some 2153 * of it already. 2154 */ 2155 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2156 "read it (%zu > %zu). Since it is longer than " 2157 "expected, this coredump's notes are corrupt. THIS " 2158 "IS A BUG in the note_procstat routine for type %u.\n", 2159 __func__, (unsigned)note.n_type, new_len, descsz, 2160 (unsigned)note.n_type)); 2161 } 2162 } 2163 2164 /* 2165 * Miscellaneous note out functions. 2166 */ 2167 2168 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2169 #include <compat/freebsd32/freebsd32.h> 2170 #include <compat/freebsd32/freebsd32_signal.h> 2171 2172 typedef struct prstatus32 elf_prstatus_t; 2173 typedef struct prpsinfo32 elf_prpsinfo_t; 2174 typedef struct fpreg32 elf_prfpregset_t; 2175 typedef struct fpreg32 elf_fpregset_t; 2176 typedef struct reg32 elf_gregset_t; 2177 typedef struct thrmisc32 elf_thrmisc_t; 2178 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t; 2179 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2180 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2181 typedef uint32_t elf_ps_strings_t; 2182 #else 2183 typedef prstatus_t elf_prstatus_t; 2184 typedef prpsinfo_t elf_prpsinfo_t; 2185 typedef prfpregset_t elf_prfpregset_t; 2186 typedef prfpregset_t elf_fpregset_t; 2187 typedef gregset_t elf_gregset_t; 2188 typedef thrmisc_t elf_thrmisc_t; 2189 typedef struct ptrace_lwpinfo elf_lwpinfo_t; 2190 #define ELF_KERN_PROC_MASK 0 2191 typedef struct kinfo_proc elf_kinfo_proc_t; 2192 typedef vm_offset_t elf_ps_strings_t; 2193 #endif 2194 2195 static void 2196 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2197 { 2198 struct sbuf sbarg; 2199 size_t len; 2200 char *cp, *end; 2201 struct proc *p; 2202 elf_prpsinfo_t *psinfo; 2203 int error; 2204 2205 p = arg; 2206 if (sb != NULL) { 2207 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2208 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2209 psinfo->pr_version = PRPSINFO_VERSION; 2210 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2211 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2212 PROC_LOCK(p); 2213 if (p->p_args != NULL) { 2214 len = sizeof(psinfo->pr_psargs) - 1; 2215 if (len > p->p_args->ar_length) 2216 len = p->p_args->ar_length; 2217 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2218 PROC_UNLOCK(p); 2219 error = 0; 2220 } else { 2221 _PHOLD(p); 2222 PROC_UNLOCK(p); 2223 sbuf_new(&sbarg, psinfo->pr_psargs, 2224 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2225 error = proc_getargv(curthread, p, &sbarg); 2226 PRELE(p); 2227 if (sbuf_finish(&sbarg) == 0) { 2228 len = sbuf_len(&sbarg); 2229 if (len > 0) 2230 len--; 2231 } else { 2232 len = sizeof(psinfo->pr_psargs) - 1; 2233 } 2234 sbuf_delete(&sbarg); 2235 } 2236 if (error != 0 || len == 0 || (ssize_t)len == -1) 2237 strlcpy(psinfo->pr_psargs, p->p_comm, 2238 sizeof(psinfo->pr_psargs)); 2239 else { 2240 KASSERT(len < sizeof(psinfo->pr_psargs), 2241 ("len is too long: %zu vs %zu", len, 2242 sizeof(psinfo->pr_psargs))); 2243 cp = psinfo->pr_psargs; 2244 end = cp + len - 1; 2245 for (;;) { 2246 cp = memchr(cp, '\0', end - cp); 2247 if (cp == NULL) 2248 break; 2249 *cp = ' '; 2250 } 2251 } 2252 psinfo->pr_pid = p->p_pid; 2253 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2254 free(psinfo, M_TEMP); 2255 } 2256 *sizep = sizeof(*psinfo); 2257 } 2258 2259 static bool 2260 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2261 size_t *sizep) 2262 { 2263 elf_prstatus_t *status; 2264 2265 if (buf != NULL) { 2266 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2267 __func__)); 2268 status = buf; 2269 memset(status, 0, *sizep); 2270 status->pr_version = PRSTATUS_VERSION; 2271 status->pr_statussz = sizeof(elf_prstatus_t); 2272 status->pr_gregsetsz = sizeof(elf_gregset_t); 2273 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2274 status->pr_osreldate = osreldate; 2275 status->pr_cursig = td->td_proc->p_sig; 2276 status->pr_pid = td->td_tid; 2277 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2278 fill_regs32(td, &status->pr_reg); 2279 #else 2280 fill_regs(td, &status->pr_reg); 2281 #endif 2282 } 2283 *sizep = sizeof(*status); 2284 return (true); 2285 } 2286 2287 static bool 2288 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2289 size_t size) 2290 { 2291 elf_prstatus_t *status; 2292 2293 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2294 status = buf; 2295 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2296 set_regs32(td, &status->pr_reg); 2297 #else 2298 set_regs(td, &status->pr_reg); 2299 #endif 2300 return (true); 2301 } 2302 2303 static struct regset __elfN(regset_prstatus) = { 2304 .note = NT_PRSTATUS, 2305 .size = sizeof(elf_prstatus_t), 2306 .get = __elfN(get_prstatus), 2307 .set = __elfN(set_prstatus), 2308 }; 2309 ELF_REGSET(__elfN(regset_prstatus)); 2310 2311 static bool 2312 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2313 size_t *sizep) 2314 { 2315 elf_prfpregset_t *fpregset; 2316 2317 if (buf != NULL) { 2318 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2319 __func__)); 2320 fpregset = buf; 2321 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2322 fill_fpregs32(td, fpregset); 2323 #else 2324 fill_fpregs(td, fpregset); 2325 #endif 2326 } 2327 *sizep = sizeof(*fpregset); 2328 return (true); 2329 } 2330 2331 static bool 2332 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2333 size_t size) 2334 { 2335 elf_prfpregset_t *fpregset; 2336 2337 fpregset = buf; 2338 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2339 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2340 set_fpregs32(td, fpregset); 2341 #else 2342 set_fpregs(td, fpregset); 2343 #endif 2344 return (true); 2345 } 2346 2347 static struct regset __elfN(regset_fpregset) = { 2348 .note = NT_FPREGSET, 2349 .size = sizeof(elf_prfpregset_t), 2350 .get = __elfN(get_fpregset), 2351 .set = __elfN(set_fpregset), 2352 }; 2353 ELF_REGSET(__elfN(regset_fpregset)); 2354 2355 static bool 2356 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf, 2357 size_t *sizep) 2358 { 2359 elf_thrmisc_t *thrmisc; 2360 2361 if (buf != NULL) { 2362 KASSERT(*sizep == sizeof(*thrmisc), 2363 ("%s: invalid size", __func__)); 2364 thrmisc = buf; 2365 bzero(thrmisc, sizeof(*thrmisc)); 2366 strcpy(thrmisc->pr_tname, td->td_name); 2367 } 2368 *sizep = sizeof(*thrmisc); 2369 return (true); 2370 } 2371 2372 static struct regset __elfN(regset_thrmisc) = { 2373 .note = NT_THRMISC, 2374 .size = sizeof(elf_thrmisc_t), 2375 .get = __elfN(get_thrmisc), 2376 }; 2377 ELF_REGSET(__elfN(regset_thrmisc)); 2378 2379 static bool 2380 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf, 2381 size_t *sizep) 2382 { 2383 elf_lwpinfo_t pl; 2384 size_t size; 2385 int structsize; 2386 2387 size = sizeof(structsize) + sizeof(pl); 2388 if (buf != NULL) { 2389 KASSERT(*sizep == size, ("%s: invalid size", __func__)); 2390 structsize = sizeof(pl); 2391 memcpy(buf, &structsize, sizeof(structsize)); 2392 bzero(&pl, sizeof(pl)); 2393 pl.pl_lwpid = td->td_tid; 2394 pl.pl_event = PL_EVENT_NONE; 2395 pl.pl_sigmask = td->td_sigmask; 2396 pl.pl_siglist = td->td_siglist; 2397 if (td->td_si.si_signo != 0) { 2398 pl.pl_event = PL_EVENT_SIGNAL; 2399 pl.pl_flags |= PL_FLAG_SI; 2400 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2401 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2402 #else 2403 pl.pl_siginfo = td->td_si; 2404 #endif 2405 } 2406 strcpy(pl.pl_tdname, td->td_name); 2407 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2408 memcpy((int *)buf + 1, &pl, sizeof(pl)); 2409 } 2410 *sizep = size; 2411 return (true); 2412 } 2413 2414 static struct regset __elfN(regset_lwpinfo) = { 2415 .note = NT_PTLWPINFO, 2416 .size = sizeof(int) + sizeof(elf_lwpinfo_t), 2417 .get = __elfN(get_lwpinfo), 2418 }; 2419 ELF_REGSET(__elfN(regset_lwpinfo)); 2420 2421 static size_t 2422 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list, 2423 struct thread *target_td) 2424 { 2425 struct sysentvec *sv = td->td_proc->p_sysent; 2426 struct regset **regsetp, **regset_end, *regset; 2427 size_t size; 2428 2429 size = 0; 2430 2431 if (target_td == td) 2432 cpu_update_pcb(target_td); 2433 2434 /* NT_PRSTATUS must be the first register set note. */ 2435 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus), 2436 target_td); 2437 2438 regsetp = sv->sv_regset_begin; 2439 if (regsetp == NULL) { 2440 /* XXX: This shouldn't be true for any FreeBSD ABIs. */ 2441 size += __elfN(register_regset_note)(td, list, 2442 &__elfN(regset_fpregset), target_td); 2443 return (size); 2444 } 2445 regset_end = sv->sv_regset_end; 2446 MPASS(regset_end != NULL); 2447 for (; regsetp < regset_end; regsetp++) { 2448 regset = *regsetp; 2449 if (regset->note == NT_PRSTATUS) 2450 continue; 2451 size += __elfN(register_regset_note)(td, list, regset, 2452 target_td); 2453 } 2454 return (size); 2455 } 2456 2457 /* 2458 * Allow for MD specific notes, as well as any MD 2459 * specific preparations for writing MI notes. 2460 */ 2461 static void 2462 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2463 { 2464 struct thread *td; 2465 void *buf; 2466 size_t size; 2467 2468 td = (struct thread *)arg; 2469 size = *sizep; 2470 if (size != 0 && sb != NULL) 2471 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2472 else 2473 buf = NULL; 2474 size = 0; 2475 __elfN(dump_thread)(td, buf, &size); 2476 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2477 if (size != 0 && sb != NULL) 2478 sbuf_bcat(sb, buf, size); 2479 free(buf, M_TEMP); 2480 *sizep = size; 2481 } 2482 2483 #ifdef KINFO_PROC_SIZE 2484 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2485 #endif 2486 2487 static void 2488 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2489 { 2490 struct proc *p; 2491 size_t size; 2492 int structsize; 2493 2494 p = arg; 2495 size = sizeof(structsize) + p->p_numthreads * 2496 sizeof(elf_kinfo_proc_t); 2497 2498 if (sb != NULL) { 2499 KASSERT(*sizep == size, ("invalid size")); 2500 structsize = sizeof(elf_kinfo_proc_t); 2501 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2502 sx_slock(&proctree_lock); 2503 PROC_LOCK(p); 2504 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2505 sx_sunlock(&proctree_lock); 2506 } 2507 *sizep = size; 2508 } 2509 2510 #ifdef KINFO_FILE_SIZE 2511 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2512 #endif 2513 2514 static void 2515 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2516 { 2517 struct proc *p; 2518 size_t size, sect_sz, i; 2519 ssize_t start_len, sect_len; 2520 int structsize, filedesc_flags; 2521 2522 if (coredump_pack_fileinfo) 2523 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2524 else 2525 filedesc_flags = 0; 2526 2527 p = arg; 2528 structsize = sizeof(struct kinfo_file); 2529 if (sb == NULL) { 2530 size = 0; 2531 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2532 sbuf_set_drain(sb, sbuf_count_drain, &size); 2533 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2534 PROC_LOCK(p); 2535 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2536 sbuf_finish(sb); 2537 sbuf_delete(sb); 2538 *sizep = size; 2539 } else { 2540 sbuf_start_section(sb, &start_len); 2541 2542 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2543 PROC_LOCK(p); 2544 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2545 filedesc_flags); 2546 2547 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2548 if (sect_len < 0) 2549 return; 2550 sect_sz = sect_len; 2551 2552 KASSERT(sect_sz <= *sizep, 2553 ("kern_proc_filedesc_out did not respect maxlen; " 2554 "requested %zu, got %zu", *sizep - sizeof(structsize), 2555 sect_sz - sizeof(structsize))); 2556 2557 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2558 sbuf_putc(sb, 0); 2559 } 2560 } 2561 2562 #ifdef KINFO_VMENTRY_SIZE 2563 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2564 #endif 2565 2566 static void 2567 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2568 { 2569 struct proc *p; 2570 size_t size; 2571 int structsize, vmmap_flags; 2572 2573 if (coredump_pack_vmmapinfo) 2574 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2575 else 2576 vmmap_flags = 0; 2577 2578 p = arg; 2579 structsize = sizeof(struct kinfo_vmentry); 2580 if (sb == NULL) { 2581 size = 0; 2582 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2583 sbuf_set_drain(sb, sbuf_count_drain, &size); 2584 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2585 PROC_LOCK(p); 2586 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2587 sbuf_finish(sb); 2588 sbuf_delete(sb); 2589 *sizep = size; 2590 } else { 2591 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2592 PROC_LOCK(p); 2593 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2594 vmmap_flags); 2595 } 2596 } 2597 2598 static void 2599 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2600 { 2601 struct proc *p; 2602 size_t size; 2603 int structsize; 2604 2605 p = arg; 2606 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2607 if (sb != NULL) { 2608 KASSERT(*sizep == size, ("invalid size")); 2609 structsize = sizeof(gid_t); 2610 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2611 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2612 sizeof(gid_t)); 2613 } 2614 *sizep = size; 2615 } 2616 2617 static void 2618 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2619 { 2620 struct proc *p; 2621 size_t size; 2622 int structsize; 2623 2624 p = arg; 2625 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2626 if (sb != NULL) { 2627 KASSERT(*sizep == size, ("invalid size")); 2628 structsize = sizeof(p->p_pd->pd_cmask); 2629 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2630 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2631 } 2632 *sizep = size; 2633 } 2634 2635 static void 2636 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2637 { 2638 struct proc *p; 2639 struct rlimit rlim[RLIM_NLIMITS]; 2640 size_t size; 2641 int structsize, i; 2642 2643 p = arg; 2644 size = sizeof(structsize) + sizeof(rlim); 2645 if (sb != NULL) { 2646 KASSERT(*sizep == size, ("invalid size")); 2647 structsize = sizeof(rlim); 2648 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2649 PROC_LOCK(p); 2650 for (i = 0; i < RLIM_NLIMITS; i++) 2651 lim_rlimit_proc(p, i, &rlim[i]); 2652 PROC_UNLOCK(p); 2653 sbuf_bcat(sb, rlim, sizeof(rlim)); 2654 } 2655 *sizep = size; 2656 } 2657 2658 static void 2659 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2660 { 2661 struct proc *p; 2662 size_t size; 2663 int structsize; 2664 2665 p = arg; 2666 size = sizeof(structsize) + sizeof(p->p_osrel); 2667 if (sb != NULL) { 2668 KASSERT(*sizep == size, ("invalid size")); 2669 structsize = sizeof(p->p_osrel); 2670 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2671 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2672 } 2673 *sizep = size; 2674 } 2675 2676 static void 2677 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2678 { 2679 struct proc *p; 2680 elf_ps_strings_t ps_strings; 2681 size_t size; 2682 int structsize; 2683 2684 p = arg; 2685 size = sizeof(structsize) + sizeof(ps_strings); 2686 if (sb != NULL) { 2687 KASSERT(*sizep == size, ("invalid size")); 2688 structsize = sizeof(ps_strings); 2689 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2690 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2691 #else 2692 ps_strings = PROC_PS_STRINGS(p); 2693 #endif 2694 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2695 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2696 } 2697 *sizep = size; 2698 } 2699 2700 static void 2701 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2702 { 2703 struct proc *p; 2704 size_t size; 2705 int structsize; 2706 2707 p = arg; 2708 if (sb == NULL) { 2709 size = 0; 2710 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2711 SBUF_FIXEDLEN); 2712 sbuf_set_drain(sb, sbuf_count_drain, &size); 2713 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2714 PHOLD(p); 2715 proc_getauxv(curthread, p, sb); 2716 PRELE(p); 2717 sbuf_finish(sb); 2718 sbuf_delete(sb); 2719 *sizep = size; 2720 } else { 2721 structsize = sizeof(Elf_Auxinfo); 2722 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2723 PHOLD(p); 2724 proc_getauxv(curthread, p, sb); 2725 PRELE(p); 2726 } 2727 } 2728 2729 static void 2730 __elfN(note_procstat_kqueues)(void *arg, struct sbuf *sb, size_t *sizep) 2731 { 2732 struct proc *p; 2733 size_t size, sect_sz, i; 2734 ssize_t start_len, sect_len; 2735 int structsize; 2736 bool compat32; 2737 2738 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2739 compat32 = true; 2740 structsize = sizeof(struct kinfo_knote32); 2741 #else 2742 compat32 = false; 2743 structsize = sizeof(struct kinfo_knote); 2744 #endif 2745 p = arg; 2746 if (sb == NULL) { 2747 size = 0; 2748 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2749 sbuf_set_drain(sb, sbuf_count_drain, &size); 2750 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2751 kern_proc_kqueues_out(p, sb, -1, compat32); 2752 sbuf_finish(sb); 2753 sbuf_delete(sb); 2754 *sizep = size; 2755 } else { 2756 sbuf_start_section(sb, &start_len); 2757 2758 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2759 kern_proc_kqueues_out(p, sb, *sizep - sizeof(structsize), 2760 compat32); 2761 2762 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2763 if (sect_len < 0) 2764 return; 2765 sect_sz = sect_len; 2766 2767 KASSERT(sect_sz <= *sizep, 2768 ("kern_proc_kqueue_out did not respect maxlen; " 2769 "requested %zu, got %zu", *sizep - sizeof(structsize), 2770 sect_sz - sizeof(structsize))); 2771 2772 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2773 sbuf_putc(sb, 0); 2774 } 2775 } 2776 2777 #define MAX_NOTES_LOOP 4096 2778 bool 2779 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote, 2780 const char *note_vendor, const Elf_Phdr *pnote, 2781 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2782 { 2783 const Elf_Note *note, *note0, *note_end; 2784 const char *note_name; 2785 char *buf; 2786 int i, error; 2787 bool res; 2788 2789 /* We need some limit, might as well use PAGE_SIZE. */ 2790 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2791 return (false); 2792 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2793 if (pnote->p_offset > PAGE_SIZE || 2794 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2795 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2796 if (buf == NULL) { 2797 VOP_UNLOCK(imgp->vp); 2798 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2799 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2800 } 2801 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2802 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2803 curthread->td_ucred, NOCRED, NULL, curthread); 2804 if (error != 0) { 2805 uprintf("i/o error PT_NOTE\n"); 2806 goto retf; 2807 } 2808 note = note0 = (const Elf_Note *)buf; 2809 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2810 } else { 2811 note = note0 = (const Elf_Note *)(imgp->image_header + 2812 pnote->p_offset); 2813 note_end = (const Elf_Note *)(imgp->image_header + 2814 pnote->p_offset + pnote->p_filesz); 2815 buf = NULL; 2816 } 2817 for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end; 2818 i++) { 2819 if (!aligned(note, Elf32_Addr)) { 2820 uprintf("Unaligned ELF note\n"); 2821 goto retf; 2822 } 2823 if ((const char *)note_end - (const char *)note < 2824 sizeof(Elf_Note)) { 2825 uprintf("ELF note to short\n"); 2826 goto retf; 2827 } 2828 if (note->n_namesz != checknote->n_namesz || 2829 note->n_descsz != checknote->n_descsz || 2830 note->n_type != checknote->n_type) 2831 goto nextnote; 2832 note_name = (const char *)(note + 1); 2833 if (note_name + checknote->n_namesz >= 2834 (const char *)note_end || strncmp(note_vendor, 2835 note_name, checknote->n_namesz) != 0) 2836 goto nextnote; 2837 2838 if (cb(note, cb_arg, &res)) 2839 goto ret; 2840 nextnote: 2841 note = (const Elf_Note *)((const char *)(note + 1) + 2842 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2843 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2844 } 2845 if (i >= MAX_NOTES_LOOP) 2846 uprintf("ELF note parser reached %d notes\n", i); 2847 retf: 2848 res = false; 2849 ret: 2850 free(buf, M_TEMP); 2851 return (res); 2852 } 2853 2854 struct brandnote_cb_arg { 2855 Elf_Brandnote *brandnote; 2856 int32_t *osrel; 2857 }; 2858 2859 static bool 2860 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2861 { 2862 struct brandnote_cb_arg *arg; 2863 2864 arg = arg0; 2865 2866 /* 2867 * Fetch the osreldate for binary from the ELF OSABI-note if 2868 * necessary. 2869 */ 2870 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2871 arg->brandnote->trans_osrel != NULL ? 2872 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2873 2874 return (true); 2875 } 2876 2877 static Elf_Note fctl_note = { 2878 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2879 .n_descsz = sizeof(uint32_t), 2880 .n_type = NT_FREEBSD_FEATURE_CTL, 2881 }; 2882 2883 struct fctl_cb_arg { 2884 bool *has_fctl0; 2885 uint32_t *fctl0; 2886 }; 2887 2888 static bool 2889 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2890 { 2891 struct fctl_cb_arg *arg; 2892 const Elf32_Word *desc; 2893 uintptr_t p; 2894 2895 arg = arg0; 2896 p = (uintptr_t)(note + 1); 2897 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2898 desc = (const Elf32_Word *)p; 2899 *arg->has_fctl0 = true; 2900 *arg->fctl0 = desc[0]; 2901 *res = true; 2902 return (true); 2903 } 2904 2905 /* 2906 * Try to find the appropriate ABI-note section for checknote, fetch 2907 * the osreldate and feature control flags for binary from the ELF 2908 * OSABI-note. Only the first page of the image is searched, the same 2909 * as for headers. 2910 */ 2911 static bool 2912 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2913 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2914 { 2915 const Elf_Phdr *phdr; 2916 const Elf_Ehdr *hdr; 2917 struct brandnote_cb_arg b_arg; 2918 struct fctl_cb_arg f_arg; 2919 int i, j; 2920 2921 hdr = (const Elf_Ehdr *)imgp->image_header; 2922 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2923 b_arg.brandnote = brandnote; 2924 b_arg.osrel = osrel; 2925 f_arg.has_fctl0 = has_fctl0; 2926 f_arg.fctl0 = fctl0; 2927 2928 for (i = 0; i < hdr->e_phnum; i++) { 2929 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2930 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2931 &b_arg)) { 2932 for (j = 0; j < hdr->e_phnum; j++) { 2933 if (phdr[j].p_type == PT_NOTE && 2934 __elfN(parse_notes)(imgp, &fctl_note, 2935 FREEBSD_ABI_VENDOR, &phdr[j], 2936 note_fctl_cb, &f_arg)) 2937 break; 2938 } 2939 return (true); 2940 } 2941 } 2942 return (false); 2943 2944 } 2945 2946 /* 2947 * Tell kern_execve.c about it, with a little help from the linker. 2948 */ 2949 static struct execsw __elfN(execsw) = { 2950 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2951 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2952 }; 2953 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2954 2955 static vm_prot_t 2956 __elfN(trans_prot)(Elf_Word flags) 2957 { 2958 vm_prot_t prot; 2959 2960 prot = 0; 2961 if (flags & PF_X) 2962 prot |= VM_PROT_EXECUTE; 2963 if (flags & PF_W) 2964 prot |= VM_PROT_WRITE; 2965 if (flags & PF_R) 2966 prot |= VM_PROT_READ; 2967 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2968 if (i386_read_exec && (flags & PF_R)) 2969 prot |= VM_PROT_EXECUTE; 2970 #endif 2971 return (prot); 2972 } 2973 2974 static Elf_Word 2975 __elfN(untrans_prot)(vm_prot_t prot) 2976 { 2977 Elf_Word flags; 2978 2979 flags = 0; 2980 if (prot & VM_PROT_EXECUTE) 2981 flags |= PF_X; 2982 if (prot & VM_PROT_READ) 2983 flags |= PF_R; 2984 if (prot & VM_PROT_WRITE) 2985 flags |= PF_W; 2986 return (flags); 2987 } 2988