xref: /freebsd/sys/i386/pci/pci_pir.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
4  * Copyright (c) 2000, BSDi
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  *
30  */
31 
32 #include <sys/param.h>		/* XXX trim includes */
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/malloc.h>
38 #include <vm/vm.h>
39 #include <vm/pmap.h>
40 #include <machine/md_var.h>
41 #include <dev/pci/pcivar.h>
42 #include <dev/pci/pcireg.h>
43 #include <isa/isavar.h>
44 #include <machine/pci_cfgreg.h>
45 #include <machine/segments.h>
46 #include <machine/pc/bios.h>
47 
48 #ifdef APIC_IO
49 #include <machine/smp.h>
50 #endif /* APIC_IO */
51 
52 #include "pcib_if.h"
53 
54 #define PRVERB(a) do {							\
55 	if (bootverbose)						\
56 		printf a ;						\
57 } while(0)
58 
59 static int cfgmech;
60 static int devmax;
61 static int usebios;
62 static int enable_pcibios = 0;
63 
64 TUNABLE_INT("hw.pci.enable_pcibios", &enable_pcibios);
65 
66 static int	pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq);
67 static int	pci_cfgintr_unique(struct PIR_entry *pe, int pin);
68 static int	pci_cfgintr_linked(struct PIR_entry *pe, int pin);
69 static int	pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin);
70 static int	pci_cfgintr_virgin(struct PIR_entry *pe, int pin);
71 
72 static void	pci_print_irqmask(u_int16_t irqs);
73 static void	pci_print_route_table(struct PIR_table *prt, int size);
74 #ifdef USE_PCI_BIOS_FOR_READ_WRITE
75 static int	pcibios_cfgread(int bus, int slot, int func, int reg, int bytes);
76 static void	pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
77 #endif
78 static int	pcibios_cfgopen(void);
79 static int	pcireg_cfgread(int bus, int slot, int func, int reg, int bytes);
80 static void	pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
81 static int	pcireg_cfgopen(void);
82 
83 static struct PIR_table *pci_route_table;
84 static int pci_route_count;
85 
86 /*
87  * Some BIOS writers seem to want to ignore the spec and put
88  * 0 in the intline rather than 255 to indicate none.  Some use
89  * numbers in the range 128-254 to indicate something strange and
90  * apparently undocumented anywhere.  Assume these are completely bogus
91  * and map them to 255, which means "none".
92  */
93 static __inline__ int
94 pci_i386_map_intline(int line)
95 {
96 	if (line == 0 || line >= 128)
97 		return (PCI_INVALID_IRQ);
98 	return (line);
99 }
100 
101 int
102 pci_pcibios_active(void)
103 {
104 	return (usebios);
105 }
106 
107 int
108 pci_kill_pcibios(void)
109 {
110 	usebios = 0;
111 	return (pcireg_cfgopen() != 0);
112 }
113 
114 static u_int16_t
115 pcibios_get_version(void)
116 {
117 	struct bios_regs args;
118 
119 	if (PCIbios.ventry == 0) {
120 		PRVERB(("pcibios: No call entry point\n"));
121 		return (0);
122 	}
123 	args.eax = PCIBIOS_BIOS_PRESENT;
124 	if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) {
125 		PRVERB(("pcibios: BIOS_PRESENT call failed\n"));
126 		return (0);
127 	}
128 	if (args.edx != 0x20494350) {
129 		PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n"));
130 		return (0);
131 	}
132 	return (args.ebx & 0xffff);
133 }
134 
135 /*
136  * Initialise access to PCI configuration space
137  */
138 int
139 pci_cfgregopen(void)
140 {
141 	static int		opened = 0;
142 	u_long			sigaddr;
143 	static struct PIR_table	*pt;
144 	u_int8_t		ck, *cv;
145 	int			i;
146 
147 	if (opened)
148 		return(1);
149 
150 	if (pcibios_cfgopen() != 0)
151 		usebios = 1;
152 	else if (pcireg_cfgopen() != 0)
153 		usebios = 0;
154 	else
155 		return(0);
156 
157 	/*
158 	 * Look for the interrupt routing table.
159 	 *
160 	 * We use PCI BIOS's PIR table if it's available $PIR is the
161 	 * standard way to do this.  Sadly, some machines are not
162 	 * standards conforming and have _PIR instead.  We shrug and cope
163 	 * by looking for both.
164 	 */
165 	if (pcibios_get_version() >= 0x0210 && pt == NULL) {
166 		sigaddr = bios_sigsearch(0, "$PIR", 4, 16, 0);
167 		if (sigaddr == 0)
168 			sigaddr = bios_sigsearch(0, "_PIR", 4, 16, 0);
169 		if (sigaddr != 0) {
170 			pt = (struct PIR_table *)(uintptr_t)
171 			    BIOS_PADDRTOVADDR(sigaddr);
172 			for (cv = (u_int8_t *)pt, ck = 0, i = 0;
173 			     i < (pt->pt_header.ph_length); i++) {
174 				ck += cv[i];
175 			}
176 			if (ck == 0 && pt->pt_header.ph_length >
177 			    sizeof(struct PIR_header)) {
178 				pci_route_table = pt;
179 				pci_route_count = (pt->pt_header.ph_length -
180 				    sizeof(struct PIR_header)) /
181 				    sizeof(struct PIR_entry);
182 				printf("Using $PIR table, %d entries at %p\n",
183 				    pci_route_count, pci_route_table);
184 				if (bootverbose)
185 					pci_print_route_table(pci_route_table,
186 					    pci_route_count);
187 			}
188 		}
189 	}
190 	opened = 1;
191 	return(1);
192 }
193 
194 /*
195  * Read configuration space register
196  */
197 static u_int32_t
198 pci_do_cfgregread(int bus, int slot, int func, int reg, int bytes)
199 {
200 #ifdef USE_PCI_BIOS_FOR_READ_WRITE
201 	return(usebios ?
202 	    pcibios_cfgread(bus, slot, func, reg, bytes) :
203 	    pcireg_cfgread(bus, slot, func, reg, bytes));
204 #else
205 	return (pcireg_cfgread(bus, slot, func, reg, bytes));
206 #endif
207 }
208 
209 u_int32_t
210 pci_cfgregread(int bus, int slot, int func, int reg, int bytes)
211 {
212 	uint32_t line;
213 #ifdef APIC_IO
214 	uint32_t pin;
215 
216 	/*
217 	 * If we are using the APIC, the contents of the intline
218 	 * register will probably be wrong (since they are set up for
219 	 * use with the PIC.  Rather than rewrite these registers
220 	 * (maybe that would be smarter) we trap attempts to read them
221 	 * and translate to our private vector numbers.
222 	 */
223 	if ((reg == PCIR_INTLINE) && (bytes == 1)) {
224 
225 		pin = pci_do_cfgregread(bus, slot, func, PCIR_INTPIN, 1);
226 		line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1);
227 
228 		if (pin != 0) {
229 			int airq;
230 
231 			airq = pci_apic_irq(bus, slot, pin);
232 			if (airq >= 0) {
233 				/* PCI specific entry found in MP table */
234 				if (airq != line)
235 					undirect_pci_irq(line);
236 				return(airq);
237 			} else {
238 				/*
239 				 * PCI interrupts might be redirected
240 				 * to the ISA bus according to some MP
241 				 * tables. Use the same methods as
242 				 * used by the ISA devices devices to
243 				 * find the proper IOAPIC int pin.
244 				 */
245 				airq = isa_apic_irq(line);
246 				if ((airq >= 0) && (airq != line)) {
247 					/* XXX: undirect_pci_irq() ? */
248 					undirect_isa_irq(line);
249 					return(airq);
250 				}
251 			}
252 		}
253 		return(line);
254 	}
255 #else
256 	/*
257 	 * Some BIOS writers seem to want to ignore the spec and put
258 	 * 0 in the intline rather than 255 to indicate none.  The rest of
259 	 * the code uses 255 as an invalid IRQ.
260 	 */
261 	if (reg == PCIR_INTLINE && bytes == 1) {
262 		line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1);
263 		return pci_i386_map_intline(line);
264 	}
265 #endif /* APIC_IO */
266 	return(pci_do_cfgregread(bus, slot, func, reg, bytes));
267 }
268 
269 /*
270  * Write configuration space register
271  */
272 void
273 pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes)
274 {
275 #ifdef USE_PCI_BIOS_FOR_READ_WRITE
276 	if (usebios)
277 		pcibios_cfgwrite(bus, slot, func, reg, data, bytes);
278 	else
279 		pcireg_cfgwrite(bus, slot, func, reg, data, bytes);
280 #else
281 	pcireg_cfgwrite(bus, slot, func, reg, data, bytes);
282 #endif
283 }
284 
285 /*
286  * Route a PCI interrupt
287  */
288 int
289 pci_cfgintr(int bus, int device, int pin, int oldirq)
290 {
291 	struct PIR_entry	*pe;
292 	int			i, irq;
293 	struct bios_regs	args;
294 	u_int16_t		v;
295  	int already = 0;
296  	int errok = 0;
297 
298 	v = pcibios_get_version();
299 	if (v < 0x0210) {
300 		PRVERB((
301 		"pci_cfgintr: BIOS %x.%02x doesn't support interrupt routing\n",
302 		    (v & 0xff00) >> 8, v & 0xff));
303 		return (PCI_INVALID_IRQ);
304 	}
305 	if ((bus < 0) || (bus > 255) || (device < 0) || (device > 255) ||
306 	    (pin < 1) || (pin > 4))
307 		return(PCI_INVALID_IRQ);
308 
309 	/*
310 	 * Scan the entry table for a contender
311 	 */
312 	for (i = 0, pe = &pci_route_table->pt_entry[0]; i < pci_route_count;
313 	     i++, pe++) {
314 		if ((bus != pe->pe_bus) || (device != pe->pe_device))
315 			continue;
316 		/*
317 		 * A link of 0 means that this intpin is not connected to
318 		 * any other device's interrupt pins and is not connected to
319 		 * any of the Interrupt Router's interrupt pins, so we can't
320 		 * route it.
321 		 */
322 		if (pe->pe_intpin[pin - 1].link == 0)
323 			continue;
324 
325 		if (pci_cfgintr_valid(pe, pin, oldirq)) {
326 			printf("pci_cfgintr: %d:%d INT%c BIOS irq %d\n", bus,
327 			    device, 'A' + pin - 1, oldirq);
328 			return (oldirq);
329 		}
330 
331 		/*
332 		 * We try to find a linked interrupt, then we look to see
333 		 * if the interrupt is uniquely routed, then we look for
334 		 * a virgin interrupt.  The virgin interrupt should return
335 		 * an interrupt we can route, but if that fails, maybe we
336 		 * should try harder to route a different interrupt.
337 		 * However, experience has shown that that's rarely the
338 		 * failure mode we see.
339 		 */
340 		irq = pci_cfgintr_linked(pe, pin);
341 		if (irq != PCI_INVALID_IRQ)
342 			already = 1;
343 		if (irq == PCI_INVALID_IRQ) {
344 			irq = pci_cfgintr_unique(pe, pin);
345 			if (irq != PCI_INVALID_IRQ)
346 				errok = 1;
347 		}
348 		if (irq == PCI_INVALID_IRQ)
349 			irq = pci_cfgintr_virgin(pe, pin);
350 		if (irq == PCI_INVALID_IRQ)
351 			break;
352 
353 		/*
354 		 * Ask the BIOS to route the interrupt.  If we picked an
355 		 * interrupt that failed, we should really try other
356 		 * choices that the BIOS offers us.
357 		 *
358 		 * For uniquely routed interrupts, we need to try
359 		 * to route them on some machines.  Yet other machines
360 		 * fail to route, so we have to pretend that in that
361 		 * case it worked.  Isn't pc hardware fun?
362 		 *
363 		 * NOTE: if we want to whack hardware to do this, then
364 		 * I think the right way to do that would be to have
365 		 * bridge drivers that do this.  I'm not sure that the
366 		 * $PIR table would be valid for those interrupt
367 		 * routers.
368 		 */
369 		args.eax = PCIBIOS_ROUTE_INTERRUPT;
370 		args.ebx = (bus << 8) | (device << 3);
371 		/* pin value is 0xa - 0xd */
372 		args.ecx = (irq << 8) | (0xa + pin - 1);
373 		if (!already &&
374 		    bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL)) &&
375 		    !errok) {
376 			PRVERB(("pci_cfgintr: ROUTE_INTERRUPT failed.\n"));
377 			return(PCI_INVALID_IRQ);
378 		}
379 		printf("pci_cfgintr: %d:%d INT%c routed to irq %d\n", bus,
380 		    device, 'A' + pin - 1, irq);
381 		return(irq);
382 	}
383 
384 	PRVERB(("pci_cfgintr: can't route an interrupt to %d:%d INT%c\n", bus,
385 	    device, 'A' + pin - 1));
386 	return(PCI_INVALID_IRQ);
387 }
388 
389 /*
390  * Check to see if an existing IRQ setting is valid.
391  */
392 static int
393 pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq)
394 {
395 	uint32_t irqmask;
396 
397 	if (!PCI_INTERRUPT_VALID(irq))
398 		return (0);
399 	irqmask = pe->pe_intpin[pin - 1].irqs;
400 	if (irqmask & (1 << irq)) {
401 		PRVERB(("pci_cfgintr_valid: BIOS irq %d is valid\n", irq));
402 		return (1);
403 	}
404 	return (0);
405 }
406 
407 /*
408  * Look to see if the routing table claims this pin is uniquely routed.
409  */
410 static int
411 pci_cfgintr_unique(struct PIR_entry *pe, int pin)
412 {
413 	int		irq;
414 	uint32_t	irqmask;
415 
416 	irqmask = pe->pe_intpin[pin - 1].irqs;
417 	if (irqmask != 0 && powerof2(irqmask)) {
418 		irq = ffs(irqmask) - 1;
419 		PRVERB(("pci_cfgintr_unique: hard-routed to irq %d\n", irq));
420 		return(irq);
421 	}
422 	return(PCI_INVALID_IRQ);
423 }
424 
425 /*
426  * Look for another device which shares the same link byte and
427  * already has a unique IRQ, or which has had one routed already.
428  */
429 static int
430 pci_cfgintr_linked(struct PIR_entry *pe, int pin)
431 {
432 	struct PIR_entry	*oe;
433 	struct PIR_intpin	*pi;
434 	int			i, j, irq;
435 
436 	/*
437 	 * Scan table slots.
438 	 */
439 	for (i = 0, oe = &pci_route_table->pt_entry[0]; i < pci_route_count;
440 	     i++, oe++) {
441 		/* scan interrupt pins */
442 		for (j = 0, pi = &oe->pe_intpin[0]; j < 4; j++, pi++) {
443 
444 			/* don't look at the entry we're trying to match */
445 			if ((pe == oe) && (i == (pin - 1)))
446 				continue;
447 			/* compare link bytes */
448 			if (pi->link != pe->pe_intpin[pin - 1].link)
449 				continue;
450 			/* link destination mapped to a unique interrupt? */
451 			if (pi->irqs != 0 && powerof2(pi->irqs)) {
452 				irq = ffs(pi->irqs) - 1;
453 				PRVERB(("pci_cfgintr_linked: linked (%x) to hard-routed irq %d\n",
454 				    pi->link, irq));
455 				return(irq);
456 			}
457 
458 			/*
459 			 * look for the real PCI device that matches this
460 			 * table entry
461 			 */
462 			irq = pci_cfgintr_search(pe, oe->pe_bus, oe->pe_device,
463 			    j, pin);
464 			if (irq != PCI_INVALID_IRQ)
465 				return(irq);
466 		}
467 	}
468 	return(PCI_INVALID_IRQ);
469 }
470 
471 /*
472  * Scan for the real PCI device at (bus)/(device) using intpin (matchpin) and
473  * see if it has already been assigned an interrupt.
474  */
475 static int
476 pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin)
477 {
478 	devclass_t		pci_devclass;
479 	device_t		*pci_devices;
480 	int			pci_count;
481 	device_t		*pci_children;
482 	int			pci_childcount;
483 	device_t		*busp, *childp;
484 	int			i, j, irq;
485 
486 	/*
487 	 * Find all the PCI busses.
488 	 */
489 	pci_count = 0;
490 	if ((pci_devclass = devclass_find("pci")) != NULL)
491 		devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
492 
493 	/*
494 	 * Scan all the PCI busses/devices looking for this one.
495 	 */
496 	irq = PCI_INVALID_IRQ;
497 	for (i = 0, busp = pci_devices; (i < pci_count) && (irq == PCI_INVALID_IRQ);
498 	     i++, busp++) {
499 		pci_childcount = 0;
500 		device_get_children(*busp, &pci_children, &pci_childcount);
501 
502 		for (j = 0, childp = pci_children; j < pci_childcount; j++,
503 		    childp++) {
504 			if ((pci_get_bus(*childp) == bus) &&
505 			    (pci_get_slot(*childp) == device) &&
506 			    (pci_get_intpin(*childp) == matchpin)) {
507 				irq = pci_i386_map_intline(pci_get_irq(*childp));
508 				if (irq != PCI_INVALID_IRQ)
509 					PRVERB(("pci_cfgintr_search: linked (%x) to configured irq %d at %d:%d:%d\n",
510 					    pe->pe_intpin[pin - 1].link, irq,
511 					    pci_get_bus(*childp),
512 					    pci_get_slot(*childp),
513 					    pci_get_function(*childp)));
514 				break;
515 			}
516 		}
517 		if (pci_children != NULL)
518 			free(pci_children, M_TEMP);
519 	}
520 	if (pci_devices != NULL)
521 		free(pci_devices, M_TEMP);
522 	return(irq);
523 }
524 
525 /*
526  * Pick a suitable IRQ from those listed as routable to this device.
527  */
528 static int
529 pci_cfgintr_virgin(struct PIR_entry *pe, int pin)
530 {
531 	int		irq, ibit;
532 
533 	/*
534 	 * first scan the set of PCI-only interrupts and see if any of these
535 	 * are routable
536 	 */
537 	for (irq = 0; irq < 16; irq++) {
538 		ibit = (1 << irq);
539 
540 		/* can we use this interrupt? */
541 		if ((pci_route_table->pt_header.ph_pci_irqs & ibit) &&
542 		    (pe->pe_intpin[pin - 1].irqs & ibit)) {
543 			PRVERB(("pci_cfgintr_virgin: using routable PCI-only interrupt %d\n", irq));
544 			return(irq);
545 		}
546 	}
547 
548 	/* life is tough, so just pick an interrupt */
549 	for (irq = 0; irq < 16; irq++) {
550 		ibit = (1 << irq);
551 		if (pe->pe_intpin[pin - 1].irqs & ibit) {
552 			PRVERB(("pci_cfgintr_virgin: using routable interrupt %d\n", irq));
553 			return(irq);
554 		}
555 	}
556 	return(PCI_INVALID_IRQ);
557 }
558 
559 static void
560 pci_print_irqmask(u_int16_t irqs)
561 {
562 	int i, first;
563 
564 	if (irqs == 0) {
565 		printf("none");
566 		return;
567 	}
568 	first = 1;
569 	for (i = 0; i < 16; i++, irqs >>= 1)
570 		if (irqs & 1) {
571 			if (!first)
572 				printf(" ");
573 			else
574 				first = 0;
575 			printf("%d", i);
576 		}
577 }
578 
579 /*
580  * Dump the contents of a PCI BIOS Interrupt Routing Table to the console.
581  */
582 static void
583 pci_print_route_table(struct PIR_table *prt, int size)
584 {
585 	struct PIR_entry *entry;
586 	struct PIR_intpin *intpin;
587 	int i, pin;
588 
589 	printf("PCI-Only Interrupts: ");
590 	pci_print_irqmask(prt->pt_header.ph_pci_irqs);
591 	printf("\nLocation  Bus Device Pin  Link  IRQs\n");
592 	entry = &prt->pt_entry[0];
593 	for (i = 0; i < size; i++, entry++) {
594 		intpin = &entry->pe_intpin[0];
595 		for (pin = 0; pin < 4; pin++, intpin++)
596 			if (intpin->link != 0) {
597 				if (entry->pe_slot == 0)
598 					printf("embedded ");
599 				else
600 					printf("slot %-3d ", entry->pe_slot);
601 				printf(" %3d  %3d    %c   0x%02x  ",
602 				    entry->pe_bus, entry->pe_device,
603 				    'A' + pin, intpin->link);
604 				pci_print_irqmask(intpin->irqs);
605 				printf("\n");
606 			}
607 	}
608 }
609 
610 /*
611  * See if any interrupts for a given PCI bus are routed in the PIR.  Don't
612  * even bother looking if the BIOS doesn't support routing anyways.
613  */
614 int
615 pci_probe_route_table(int bus)
616 {
617 	int i;
618 	u_int16_t v;
619 
620 	v = pcibios_get_version();
621 	if (v < 0x0210)
622 		return (0);
623 	for (i = 0; i < pci_route_count; i++)
624 		if (pci_route_table->pt_entry[i].pe_bus == bus)
625 			return (1);
626 	return (0);
627 }
628 
629 #ifdef USE_PCI_BIOS_FOR_READ_WRITE
630 /*
631  * Config space access using BIOS functions
632  */
633 static int
634 pcibios_cfgread(int bus, int slot, int func, int reg, int bytes)
635 {
636 	struct bios_regs args;
637 	u_int mask;
638 
639 	switch(bytes) {
640 	case 1:
641 		args.eax = PCIBIOS_READ_CONFIG_BYTE;
642 		mask = 0xff;
643 		break;
644 	case 2:
645 		args.eax = PCIBIOS_READ_CONFIG_WORD;
646 		mask = 0xffff;
647 		break;
648 	case 4:
649 		args.eax = PCIBIOS_READ_CONFIG_DWORD;
650 		mask = 0xffffffff;
651 		break;
652 	default:
653 		return(-1);
654 	}
655 	args.ebx = (bus << 8) | (slot << 3) | func;
656 	args.edi = reg;
657 	bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
658 	/* check call results? */
659 	return(args.ecx & mask);
660 }
661 
662 static void
663 pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
664 {
665 	struct bios_regs args;
666 
667 	switch(bytes) {
668 	case 1:
669 		args.eax = PCIBIOS_WRITE_CONFIG_BYTE;
670 		break;
671 	case 2:
672 		args.eax = PCIBIOS_WRITE_CONFIG_WORD;
673 		break;
674 	case 4:
675 		args.eax = PCIBIOS_WRITE_CONFIG_DWORD;
676 		break;
677 	default:
678 		return;
679 	}
680 	args.ebx = (bus << 8) | (slot << 3) | func;
681 	args.ecx = data;
682 	args.edi = reg;
683 	bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
684 }
685 #endif
686 
687 /*
688  * Determine whether there is a PCI BIOS present
689  */
690 static int
691 pcibios_cfgopen(void)
692 {
693 	u_int16_t		v = 0;
694 
695 	if (PCIbios.ventry != 0 && enable_pcibios) {
696 		v = pcibios_get_version();
697 		if (v > 0)
698 			printf("pcibios: BIOS version %x.%02x\n",
699 			    (v & 0xff00) >> 8, v & 0xff);
700 	}
701 	return (v > 0);
702 }
703 
704 /*
705  * Configuration space access using direct register operations
706  */
707 
708 /* enable configuration space accesses and return data port address */
709 static int
710 pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes)
711 {
712 	int dataport = 0;
713 
714 	if (bus <= PCI_BUSMAX
715 	    && slot < devmax
716 	    && func <= PCI_FUNCMAX
717 	    && reg <= PCI_REGMAX
718 	    && bytes != 3
719 	    && (unsigned) bytes <= 4
720 	    && (reg & (bytes - 1)) == 0) {
721 		switch (cfgmech) {
722 		case 1:
723 			outl(CONF1_ADDR_PORT, (1 << 31)
724 			    | (bus << 16) | (slot << 11)
725 			    | (func << 8) | (reg & ~0x03));
726 			dataport = CONF1_DATA_PORT + (reg & 0x03);
727 			break;
728 		case 2:
729 			outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1));
730 			outb(CONF2_FORWARD_PORT, bus);
731 			dataport = 0xc000 | (slot << 8) | reg;
732 			break;
733 		}
734 	}
735 	return (dataport);
736 }
737 
738 /* disable configuration space accesses */
739 static void
740 pci_cfgdisable(void)
741 {
742 	switch (cfgmech) {
743 	case 1:
744 		outl(CONF1_ADDR_PORT, 0);
745 		break;
746 	case 2:
747 		outb(CONF2_ENABLE_PORT, 0);
748 		outb(CONF2_FORWARD_PORT, 0);
749 		break;
750 	}
751 }
752 
753 static int
754 pcireg_cfgread(int bus, int slot, int func, int reg, int bytes)
755 {
756 	int data = -1;
757 	int port;
758 
759 	port = pci_cfgenable(bus, slot, func, reg, bytes);
760 
761 	if (port != 0) {
762 		switch (bytes) {
763 		case 1:
764 			data = inb(port);
765 			break;
766 		case 2:
767 			data = inw(port);
768 			break;
769 		case 4:
770 			data = inl(port);
771 			break;
772 		}
773 		pci_cfgdisable();
774 	}
775 	return (data);
776 }
777 
778 static void
779 pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
780 {
781 	int port;
782 
783 	port = pci_cfgenable(bus, slot, func, reg, bytes);
784 	if (port != 0) {
785 		switch (bytes) {
786 		case 1:
787 			outb(port, data);
788 			break;
789 		case 2:
790 			outw(port, data);
791 			break;
792 		case 4:
793 			outl(port, data);
794 			break;
795 		}
796 		pci_cfgdisable();
797 	}
798 }
799 
800 /* check whether the configuration mechanism has been correctly identified */
801 static int
802 pci_cfgcheck(int maxdev)
803 {
804 	uint32_t id, class;
805 	uint8_t header;
806 	uint8_t device;
807 
808 	if (bootverbose)
809 		printf("pci_cfgcheck:\tdevice ");
810 
811 	for (device = 0; device < maxdev; device++) {
812 		if (bootverbose)
813 			printf("%d ", device);
814 
815 		id = inl(pci_cfgenable(0, device, 0, 0, 4));
816 		if (id == 0 || id == 0xffffffff)
817 			continue;
818 
819 		class = inl(pci_cfgenable(0, device, 0, 8, 4)) >> 8;
820 		if (bootverbose)
821 			printf("[class=%06x] ", class);
822 		if (class == 0 || (class & 0xf870ff) != 0)
823 			continue;
824 
825 		header = inb(pci_cfgenable(0, device, 0, 14, 1));
826 		if (bootverbose)
827 			printf("[hdr=%02x] ", header);
828 		if ((header & 0x7e) != 0)
829 			continue;
830 
831 		if (bootverbose)
832 			printf("is there (id=%08x)\n", id);
833 
834 		pci_cfgdisable();
835 		return (1);
836 	}
837 	if (bootverbose)
838 		printf("-- nothing found\n");
839 
840 	pci_cfgdisable();
841 	return (0);
842 }
843 
844 static int
845 pcireg_cfgopen(void)
846 {
847 	uint32_t mode1res, oldval1;
848 	uint8_t mode2res, oldval2;
849 
850 	oldval1 = inl(CONF1_ADDR_PORT);
851 
852 	if (bootverbose) {
853 		printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08x\n",
854 		    oldval1);
855 	}
856 
857 	if ((oldval1 & CONF1_ENABLE_MSK) == 0) {
858 
859 		cfgmech = 1;
860 		devmax = 32;
861 
862 		outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK);
863 		outb(CONF1_ADDR_PORT + 3, 0);
864 		mode1res = inl(CONF1_ADDR_PORT);
865 		outl(CONF1_ADDR_PORT, oldval1);
866 
867 		if (bootverbose)
868 			printf("pci_open(1a):\tmode1res=0x%08x (0x%08lx)\n",
869 			    mode1res, CONF1_ENABLE_CHK);
870 
871 		if (mode1res) {
872 			if (pci_cfgcheck(32))
873 				return (cfgmech);
874 		}
875 
876 		outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1);
877 		mode1res = inl(CONF1_ADDR_PORT);
878 		outl(CONF1_ADDR_PORT, oldval1);
879 
880 		if (bootverbose)
881 			printf("pci_open(1b):\tmode1res=0x%08x (0x%08lx)\n",
882 			    mode1res, CONF1_ENABLE_CHK1);
883 
884 		if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) {
885 			if (pci_cfgcheck(32))
886 				return (cfgmech);
887 		}
888 	}
889 
890 	oldval2 = inb(CONF2_ENABLE_PORT);
891 
892 	if (bootverbose) {
893 		printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n",
894 		    oldval2);
895 	}
896 
897 	if ((oldval2 & 0xf0) == 0) {
898 
899 		cfgmech = 2;
900 		devmax = 16;
901 
902 		outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK);
903 		mode2res = inb(CONF2_ENABLE_PORT);
904 		outb(CONF2_ENABLE_PORT, oldval2);
905 
906 		if (bootverbose)
907 			printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n",
908 			    mode2res, CONF2_ENABLE_CHK);
909 
910 		if (mode2res == CONF2_ENABLE_RES) {
911 			if (bootverbose)
912 				printf("pci_open(2a):\tnow trying mechanism 2\n");
913 
914 			if (pci_cfgcheck(16))
915 				return (cfgmech);
916 		}
917 	}
918 
919 	cfgmech = 0;
920 	devmax = 0;
921 	return (cfgmech);
922 }
923 
924