1 /* 2 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 3 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> 4 * Copyright (c) 2000, BSDi 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 * 30 */ 31 32 #include <sys/param.h> /* XXX trim includes */ 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/malloc.h> 38 #include <vm/vm.h> 39 #include <vm/pmap.h> 40 #include <machine/md_var.h> 41 #include <dev/pci/pcivar.h> 42 #include <dev/pci/pcireg.h> 43 #include <isa/isavar.h> 44 #include <machine/pci_cfgreg.h> 45 #include <machine/segments.h> 46 #include <machine/pc/bios.h> 47 48 #ifdef APIC_IO 49 #include <machine/smp.h> 50 #endif /* APIC_IO */ 51 52 #include "pcib_if.h" 53 54 #define PRVERB(a) do { \ 55 if (bootverbose) \ 56 printf a ; \ 57 } while(0) 58 59 static int cfgmech; 60 static int devmax; 61 static int usebios; 62 static int enable_pcibios = 0; 63 64 TUNABLE_INT("hw.pci.enable_pcibios", &enable_pcibios); 65 66 static int pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq); 67 static int pci_cfgintr_unique(struct PIR_entry *pe, int pin); 68 static int pci_cfgintr_linked(struct PIR_entry *pe, int pin); 69 static int pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin); 70 static int pci_cfgintr_virgin(struct PIR_entry *pe, int pin); 71 72 static void pci_print_irqmask(u_int16_t irqs); 73 static void pci_print_route_table(struct PIR_table *prt, int size); 74 #ifdef USE_PCI_BIOS_FOR_READ_WRITE 75 static int pcibios_cfgread(int bus, int slot, int func, int reg, int bytes); 76 static void pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes); 77 #endif 78 static int pcibios_cfgopen(void); 79 static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes); 80 static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes); 81 static int pcireg_cfgopen(void); 82 83 static struct PIR_table *pci_route_table; 84 static int pci_route_count; 85 86 /* 87 * Some BIOS writers seem to want to ignore the spec and put 88 * 0 in the intline rather than 255 to indicate none. Some use 89 * numbers in the range 128-254 to indicate something strange and 90 * apparently undocumented anywhere. Assume these are completely bogus 91 * and map them to 255, which means "none". 92 */ 93 static __inline__ int 94 pci_i386_map_intline(int line) 95 { 96 if (line == 0 || line >= 128) 97 return (PCI_INVALID_IRQ); 98 return (line); 99 } 100 101 int 102 pci_pcibios_active(void) 103 { 104 return (usebios); 105 } 106 107 int 108 pci_kill_pcibios(void) 109 { 110 usebios = 0; 111 return (pcireg_cfgopen() != 0); 112 } 113 114 static u_int16_t 115 pcibios_get_version(void) 116 { 117 struct bios_regs args; 118 119 if (PCIbios.ventry == 0) { 120 PRVERB(("pcibios: No call entry point\n")); 121 return (0); 122 } 123 args.eax = PCIBIOS_BIOS_PRESENT; 124 if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) { 125 PRVERB(("pcibios: BIOS_PRESENT call failed\n")); 126 return (0); 127 } 128 if (args.edx != 0x20494350) { 129 PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n")); 130 return (0); 131 } 132 return (args.ebx & 0xffff); 133 } 134 135 /* 136 * Initialise access to PCI configuration space 137 */ 138 int 139 pci_cfgregopen(void) 140 { 141 static int opened = 0; 142 u_long sigaddr; 143 static struct PIR_table *pt; 144 u_int8_t ck, *cv; 145 int i; 146 147 if (opened) 148 return(1); 149 150 if (pcibios_cfgopen() != 0) 151 usebios = 1; 152 else if (pcireg_cfgopen() != 0) 153 usebios = 0; 154 else 155 return(0); 156 157 /* 158 * Look for the interrupt routing table. 159 * 160 * We use PCI BIOS's PIR table if it's available $PIR is the 161 * standard way to do this. Sadly, some machines are not 162 * standards conforming and have _PIR instead. We shrug and cope 163 * by looking for both. 164 */ 165 if (pcibios_get_version() >= 0x0210 && pt == NULL) { 166 sigaddr = bios_sigsearch(0, "$PIR", 4, 16, 0); 167 if (sigaddr == 0) 168 sigaddr = bios_sigsearch(0, "_PIR", 4, 16, 0); 169 if (sigaddr != 0) { 170 pt = (struct PIR_table *)(uintptr_t) 171 BIOS_PADDRTOVADDR(sigaddr); 172 for (cv = (u_int8_t *)pt, ck = 0, i = 0; 173 i < (pt->pt_header.ph_length); i++) { 174 ck += cv[i]; 175 } 176 if (ck == 0 && pt->pt_header.ph_length > 177 sizeof(struct PIR_header)) { 178 pci_route_table = pt; 179 pci_route_count = (pt->pt_header.ph_length - 180 sizeof(struct PIR_header)) / 181 sizeof(struct PIR_entry); 182 printf("Using $PIR table, %d entries at %p\n", 183 pci_route_count, pci_route_table); 184 if (bootverbose) 185 pci_print_route_table(pci_route_table, 186 pci_route_count); 187 } 188 } 189 } 190 opened = 1; 191 return(1); 192 } 193 194 /* 195 * Read configuration space register 196 */ 197 static u_int32_t 198 pci_do_cfgregread(int bus, int slot, int func, int reg, int bytes) 199 { 200 #ifdef USE_PCI_BIOS_FOR_READ_WRITE 201 return(usebios ? 202 pcibios_cfgread(bus, slot, func, reg, bytes) : 203 pcireg_cfgread(bus, slot, func, reg, bytes)); 204 #else 205 return (pcireg_cfgread(bus, slot, func, reg, bytes)); 206 #endif 207 } 208 209 u_int32_t 210 pci_cfgregread(int bus, int slot, int func, int reg, int bytes) 211 { 212 uint32_t line; 213 #ifdef APIC_IO 214 uint32_t pin; 215 216 /* 217 * If we are using the APIC, the contents of the intline 218 * register will probably be wrong (since they are set up for 219 * use with the PIC. Rather than rewrite these registers 220 * (maybe that would be smarter) we trap attempts to read them 221 * and translate to our private vector numbers. 222 */ 223 if ((reg == PCIR_INTLINE) && (bytes == 1)) { 224 225 pin = pci_do_cfgregread(bus, slot, func, PCIR_INTPIN, 1); 226 line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1); 227 228 if (pin != 0) { 229 int airq; 230 231 airq = pci_apic_irq(bus, slot, pin); 232 if (airq >= 0) { 233 /* PCI specific entry found in MP table */ 234 if (airq != line) 235 undirect_pci_irq(line); 236 return(airq); 237 } else { 238 /* 239 * PCI interrupts might be redirected 240 * to the ISA bus according to some MP 241 * tables. Use the same methods as 242 * used by the ISA devices devices to 243 * find the proper IOAPIC int pin. 244 */ 245 airq = isa_apic_irq(line); 246 if ((airq >= 0) && (airq != line)) { 247 /* XXX: undirect_pci_irq() ? */ 248 undirect_isa_irq(line); 249 return(airq); 250 } 251 } 252 } 253 return(line); 254 } 255 #else 256 /* 257 * Some BIOS writers seem to want to ignore the spec and put 258 * 0 in the intline rather than 255 to indicate none. The rest of 259 * the code uses 255 as an invalid IRQ. 260 */ 261 if (reg == PCIR_INTLINE && bytes == 1) { 262 line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1); 263 return pci_i386_map_intline(line); 264 } 265 #endif /* APIC_IO */ 266 return(pci_do_cfgregread(bus, slot, func, reg, bytes)); 267 } 268 269 /* 270 * Write configuration space register 271 */ 272 void 273 pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes) 274 { 275 #ifdef USE_PCI_BIOS_FOR_READ_WRITE 276 if (usebios) 277 pcibios_cfgwrite(bus, slot, func, reg, data, bytes); 278 else 279 pcireg_cfgwrite(bus, slot, func, reg, data, bytes); 280 #else 281 pcireg_cfgwrite(bus, slot, func, reg, data, bytes); 282 #endif 283 } 284 285 /* 286 * Route a PCI interrupt 287 */ 288 int 289 pci_cfgintr(int bus, int device, int pin, int oldirq) 290 { 291 struct PIR_entry *pe; 292 int i, irq; 293 struct bios_regs args; 294 u_int16_t v; 295 int already = 0; 296 int errok = 0; 297 298 v = pcibios_get_version(); 299 if (v < 0x0210) { 300 PRVERB(( 301 "pci_cfgintr: BIOS %x.%02x doesn't support interrupt routing\n", 302 (v & 0xff00) >> 8, v & 0xff)); 303 return (PCI_INVALID_IRQ); 304 } 305 if ((bus < 0) || (bus > 255) || (device < 0) || (device > 255) || 306 (pin < 1) || (pin > 4)) 307 return(PCI_INVALID_IRQ); 308 309 /* 310 * Scan the entry table for a contender 311 */ 312 for (i = 0, pe = &pci_route_table->pt_entry[0]; i < pci_route_count; 313 i++, pe++) { 314 if ((bus != pe->pe_bus) || (device != pe->pe_device)) 315 continue; 316 /* 317 * A link of 0 means that this intpin is not connected to 318 * any other device's interrupt pins and is not connected to 319 * any of the Interrupt Router's interrupt pins, so we can't 320 * route it. 321 */ 322 if (pe->pe_intpin[pin - 1].link == 0) 323 continue; 324 325 if (pci_cfgintr_valid(pe, pin, oldirq)) { 326 printf("pci_cfgintr: %d:%d INT%c BIOS irq %d\n", bus, 327 device, 'A' + pin - 1, oldirq); 328 return (oldirq); 329 } 330 331 /* 332 * We try to find a linked interrupt, then we look to see 333 * if the interrupt is uniquely routed, then we look for 334 * a virgin interrupt. The virgin interrupt should return 335 * an interrupt we can route, but if that fails, maybe we 336 * should try harder to route a different interrupt. 337 * However, experience has shown that that's rarely the 338 * failure mode we see. 339 */ 340 irq = pci_cfgintr_linked(pe, pin); 341 if (irq != PCI_INVALID_IRQ) 342 already = 1; 343 if (irq == PCI_INVALID_IRQ) { 344 irq = pci_cfgintr_unique(pe, pin); 345 if (irq != PCI_INVALID_IRQ) 346 errok = 1; 347 } 348 if (irq == PCI_INVALID_IRQ) 349 irq = pci_cfgintr_virgin(pe, pin); 350 if (irq == PCI_INVALID_IRQ) 351 break; 352 353 /* 354 * Ask the BIOS to route the interrupt. If we picked an 355 * interrupt that failed, we should really try other 356 * choices that the BIOS offers us. 357 * 358 * For uniquely routed interrupts, we need to try 359 * to route them on some machines. Yet other machines 360 * fail to route, so we have to pretend that in that 361 * case it worked. Isn't pc hardware fun? 362 * 363 * NOTE: if we want to whack hardware to do this, then 364 * I think the right way to do that would be to have 365 * bridge drivers that do this. I'm not sure that the 366 * $PIR table would be valid for those interrupt 367 * routers. 368 */ 369 args.eax = PCIBIOS_ROUTE_INTERRUPT; 370 args.ebx = (bus << 8) | (device << 3); 371 /* pin value is 0xa - 0xd */ 372 args.ecx = (irq << 8) | (0xa + pin - 1); 373 if (!already && 374 bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL)) && 375 !errok) { 376 PRVERB(("pci_cfgintr: ROUTE_INTERRUPT failed.\n")); 377 return(PCI_INVALID_IRQ); 378 } 379 printf("pci_cfgintr: %d:%d INT%c routed to irq %d\n", bus, 380 device, 'A' + pin - 1, irq); 381 return(irq); 382 } 383 384 PRVERB(("pci_cfgintr: can't route an interrupt to %d:%d INT%c\n", bus, 385 device, 'A' + pin - 1)); 386 return(PCI_INVALID_IRQ); 387 } 388 389 /* 390 * Check to see if an existing IRQ setting is valid. 391 */ 392 static int 393 pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq) 394 { 395 uint32_t irqmask; 396 397 if (!PCI_INTERRUPT_VALID(irq)) 398 return (0); 399 irqmask = pe->pe_intpin[pin - 1].irqs; 400 if (irqmask & (1 << irq)) { 401 PRVERB(("pci_cfgintr_valid: BIOS irq %d is valid\n", irq)); 402 return (1); 403 } 404 return (0); 405 } 406 407 /* 408 * Look to see if the routing table claims this pin is uniquely routed. 409 */ 410 static int 411 pci_cfgintr_unique(struct PIR_entry *pe, int pin) 412 { 413 int irq; 414 uint32_t irqmask; 415 416 irqmask = pe->pe_intpin[pin - 1].irqs; 417 if (irqmask != 0 && powerof2(irqmask)) { 418 irq = ffs(irqmask) - 1; 419 PRVERB(("pci_cfgintr_unique: hard-routed to irq %d\n", irq)); 420 return(irq); 421 } 422 return(PCI_INVALID_IRQ); 423 } 424 425 /* 426 * Look for another device which shares the same link byte and 427 * already has a unique IRQ, or which has had one routed already. 428 */ 429 static int 430 pci_cfgintr_linked(struct PIR_entry *pe, int pin) 431 { 432 struct PIR_entry *oe; 433 struct PIR_intpin *pi; 434 int i, j, irq; 435 436 /* 437 * Scan table slots. 438 */ 439 for (i = 0, oe = &pci_route_table->pt_entry[0]; i < pci_route_count; 440 i++, oe++) { 441 /* scan interrupt pins */ 442 for (j = 0, pi = &oe->pe_intpin[0]; j < 4; j++, pi++) { 443 444 /* don't look at the entry we're trying to match */ 445 if ((pe == oe) && (i == (pin - 1))) 446 continue; 447 /* compare link bytes */ 448 if (pi->link != pe->pe_intpin[pin - 1].link) 449 continue; 450 /* link destination mapped to a unique interrupt? */ 451 if (pi->irqs != 0 && powerof2(pi->irqs)) { 452 irq = ffs(pi->irqs) - 1; 453 PRVERB(("pci_cfgintr_linked: linked (%x) to hard-routed irq %d\n", 454 pi->link, irq)); 455 return(irq); 456 } 457 458 /* 459 * look for the real PCI device that matches this 460 * table entry 461 */ 462 irq = pci_cfgintr_search(pe, oe->pe_bus, oe->pe_device, 463 j, pin); 464 if (irq != PCI_INVALID_IRQ) 465 return(irq); 466 } 467 } 468 return(PCI_INVALID_IRQ); 469 } 470 471 /* 472 * Scan for the real PCI device at (bus)/(device) using intpin (matchpin) and 473 * see if it has already been assigned an interrupt. 474 */ 475 static int 476 pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin) 477 { 478 devclass_t pci_devclass; 479 device_t *pci_devices; 480 int pci_count; 481 device_t *pci_children; 482 int pci_childcount; 483 device_t *busp, *childp; 484 int i, j, irq; 485 486 /* 487 * Find all the PCI busses. 488 */ 489 pci_count = 0; 490 if ((pci_devclass = devclass_find("pci")) != NULL) 491 devclass_get_devices(pci_devclass, &pci_devices, &pci_count); 492 493 /* 494 * Scan all the PCI busses/devices looking for this one. 495 */ 496 irq = PCI_INVALID_IRQ; 497 for (i = 0, busp = pci_devices; (i < pci_count) && (irq == PCI_INVALID_IRQ); 498 i++, busp++) { 499 pci_childcount = 0; 500 device_get_children(*busp, &pci_children, &pci_childcount); 501 502 for (j = 0, childp = pci_children; j < pci_childcount; j++, 503 childp++) { 504 if ((pci_get_bus(*childp) == bus) && 505 (pci_get_slot(*childp) == device) && 506 (pci_get_intpin(*childp) == matchpin)) { 507 irq = pci_i386_map_intline(pci_get_irq(*childp)); 508 if (irq != PCI_INVALID_IRQ) 509 PRVERB(("pci_cfgintr_search: linked (%x) to configured irq %d at %d:%d:%d\n", 510 pe->pe_intpin[pin - 1].link, irq, 511 pci_get_bus(*childp), 512 pci_get_slot(*childp), 513 pci_get_function(*childp))); 514 break; 515 } 516 } 517 if (pci_children != NULL) 518 free(pci_children, M_TEMP); 519 } 520 if (pci_devices != NULL) 521 free(pci_devices, M_TEMP); 522 return(irq); 523 } 524 525 /* 526 * Pick a suitable IRQ from those listed as routable to this device. 527 */ 528 static int 529 pci_cfgintr_virgin(struct PIR_entry *pe, int pin) 530 { 531 int irq, ibit; 532 533 /* 534 * first scan the set of PCI-only interrupts and see if any of these 535 * are routable 536 */ 537 for (irq = 0; irq < 16; irq++) { 538 ibit = (1 << irq); 539 540 /* can we use this interrupt? */ 541 if ((pci_route_table->pt_header.ph_pci_irqs & ibit) && 542 (pe->pe_intpin[pin - 1].irqs & ibit)) { 543 PRVERB(("pci_cfgintr_virgin: using routable PCI-only interrupt %d\n", irq)); 544 return(irq); 545 } 546 } 547 548 /* life is tough, so just pick an interrupt */ 549 for (irq = 0; irq < 16; irq++) { 550 ibit = (1 << irq); 551 if (pe->pe_intpin[pin - 1].irqs & ibit) { 552 PRVERB(("pci_cfgintr_virgin: using routable interrupt %d\n", irq)); 553 return(irq); 554 } 555 } 556 return(PCI_INVALID_IRQ); 557 } 558 559 static void 560 pci_print_irqmask(u_int16_t irqs) 561 { 562 int i, first; 563 564 if (irqs == 0) { 565 printf("none"); 566 return; 567 } 568 first = 1; 569 for (i = 0; i < 16; i++, irqs >>= 1) 570 if (irqs & 1) { 571 if (!first) 572 printf(" "); 573 else 574 first = 0; 575 printf("%d", i); 576 } 577 } 578 579 /* 580 * Dump the contents of a PCI BIOS Interrupt Routing Table to the console. 581 */ 582 static void 583 pci_print_route_table(struct PIR_table *prt, int size) 584 { 585 struct PIR_entry *entry; 586 struct PIR_intpin *intpin; 587 int i, pin; 588 589 printf("PCI-Only Interrupts: "); 590 pci_print_irqmask(prt->pt_header.ph_pci_irqs); 591 printf("\nLocation Bus Device Pin Link IRQs\n"); 592 entry = &prt->pt_entry[0]; 593 for (i = 0; i < size; i++, entry++) { 594 intpin = &entry->pe_intpin[0]; 595 for (pin = 0; pin < 4; pin++, intpin++) 596 if (intpin->link != 0) { 597 if (entry->pe_slot == 0) 598 printf("embedded "); 599 else 600 printf("slot %-3d ", entry->pe_slot); 601 printf(" %3d %3d %c 0x%02x ", 602 entry->pe_bus, entry->pe_device, 603 'A' + pin, intpin->link); 604 pci_print_irqmask(intpin->irqs); 605 printf("\n"); 606 } 607 } 608 } 609 610 /* 611 * See if any interrupts for a given PCI bus are routed in the PIR. Don't 612 * even bother looking if the BIOS doesn't support routing anyways. 613 */ 614 int 615 pci_probe_route_table(int bus) 616 { 617 int i; 618 u_int16_t v; 619 620 v = pcibios_get_version(); 621 if (v < 0x0210) 622 return (0); 623 for (i = 0; i < pci_route_count; i++) 624 if (pci_route_table->pt_entry[i].pe_bus == bus) 625 return (1); 626 return (0); 627 } 628 629 #ifdef USE_PCI_BIOS_FOR_READ_WRITE 630 /* 631 * Config space access using BIOS functions 632 */ 633 static int 634 pcibios_cfgread(int bus, int slot, int func, int reg, int bytes) 635 { 636 struct bios_regs args; 637 u_int mask; 638 639 switch(bytes) { 640 case 1: 641 args.eax = PCIBIOS_READ_CONFIG_BYTE; 642 mask = 0xff; 643 break; 644 case 2: 645 args.eax = PCIBIOS_READ_CONFIG_WORD; 646 mask = 0xffff; 647 break; 648 case 4: 649 args.eax = PCIBIOS_READ_CONFIG_DWORD; 650 mask = 0xffffffff; 651 break; 652 default: 653 return(-1); 654 } 655 args.ebx = (bus << 8) | (slot << 3) | func; 656 args.edi = reg; 657 bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL)); 658 /* check call results? */ 659 return(args.ecx & mask); 660 } 661 662 static void 663 pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes) 664 { 665 struct bios_regs args; 666 667 switch(bytes) { 668 case 1: 669 args.eax = PCIBIOS_WRITE_CONFIG_BYTE; 670 break; 671 case 2: 672 args.eax = PCIBIOS_WRITE_CONFIG_WORD; 673 break; 674 case 4: 675 args.eax = PCIBIOS_WRITE_CONFIG_DWORD; 676 break; 677 default: 678 return; 679 } 680 args.ebx = (bus << 8) | (slot << 3) | func; 681 args.ecx = data; 682 args.edi = reg; 683 bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL)); 684 } 685 #endif 686 687 /* 688 * Determine whether there is a PCI BIOS present 689 */ 690 static int 691 pcibios_cfgopen(void) 692 { 693 u_int16_t v = 0; 694 695 if (PCIbios.ventry != 0 && enable_pcibios) { 696 v = pcibios_get_version(); 697 if (v > 0) 698 printf("pcibios: BIOS version %x.%02x\n", 699 (v & 0xff00) >> 8, v & 0xff); 700 } 701 return (v > 0); 702 } 703 704 /* 705 * Configuration space access using direct register operations 706 */ 707 708 /* enable configuration space accesses and return data port address */ 709 static int 710 pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes) 711 { 712 int dataport = 0; 713 714 if (bus <= PCI_BUSMAX 715 && slot < devmax 716 && func <= PCI_FUNCMAX 717 && reg <= PCI_REGMAX 718 && bytes != 3 719 && (unsigned) bytes <= 4 720 && (reg & (bytes - 1)) == 0) { 721 switch (cfgmech) { 722 case 1: 723 outl(CONF1_ADDR_PORT, (1 << 31) 724 | (bus << 16) | (slot << 11) 725 | (func << 8) | (reg & ~0x03)); 726 dataport = CONF1_DATA_PORT + (reg & 0x03); 727 break; 728 case 2: 729 outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1)); 730 outb(CONF2_FORWARD_PORT, bus); 731 dataport = 0xc000 | (slot << 8) | reg; 732 break; 733 } 734 } 735 return (dataport); 736 } 737 738 /* disable configuration space accesses */ 739 static void 740 pci_cfgdisable(void) 741 { 742 switch (cfgmech) { 743 case 1: 744 outl(CONF1_ADDR_PORT, 0); 745 break; 746 case 2: 747 outb(CONF2_ENABLE_PORT, 0); 748 outb(CONF2_FORWARD_PORT, 0); 749 break; 750 } 751 } 752 753 static int 754 pcireg_cfgread(int bus, int slot, int func, int reg, int bytes) 755 { 756 int data = -1; 757 int port; 758 759 port = pci_cfgenable(bus, slot, func, reg, bytes); 760 761 if (port != 0) { 762 switch (bytes) { 763 case 1: 764 data = inb(port); 765 break; 766 case 2: 767 data = inw(port); 768 break; 769 case 4: 770 data = inl(port); 771 break; 772 } 773 pci_cfgdisable(); 774 } 775 return (data); 776 } 777 778 static void 779 pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes) 780 { 781 int port; 782 783 port = pci_cfgenable(bus, slot, func, reg, bytes); 784 if (port != 0) { 785 switch (bytes) { 786 case 1: 787 outb(port, data); 788 break; 789 case 2: 790 outw(port, data); 791 break; 792 case 4: 793 outl(port, data); 794 break; 795 } 796 pci_cfgdisable(); 797 } 798 } 799 800 /* check whether the configuration mechanism has been correctly identified */ 801 static int 802 pci_cfgcheck(int maxdev) 803 { 804 uint32_t id, class; 805 uint8_t header; 806 uint8_t device; 807 808 if (bootverbose) 809 printf("pci_cfgcheck:\tdevice "); 810 811 for (device = 0; device < maxdev; device++) { 812 if (bootverbose) 813 printf("%d ", device); 814 815 id = inl(pci_cfgenable(0, device, 0, 0, 4)); 816 if (id == 0 || id == 0xffffffff) 817 continue; 818 819 class = inl(pci_cfgenable(0, device, 0, 8, 4)) >> 8; 820 if (bootverbose) 821 printf("[class=%06x] ", class); 822 if (class == 0 || (class & 0xf870ff) != 0) 823 continue; 824 825 header = inb(pci_cfgenable(0, device, 0, 14, 1)); 826 if (bootverbose) 827 printf("[hdr=%02x] ", header); 828 if ((header & 0x7e) != 0) 829 continue; 830 831 if (bootverbose) 832 printf("is there (id=%08x)\n", id); 833 834 pci_cfgdisable(); 835 return (1); 836 } 837 if (bootverbose) 838 printf("-- nothing found\n"); 839 840 pci_cfgdisable(); 841 return (0); 842 } 843 844 static int 845 pcireg_cfgopen(void) 846 { 847 uint32_t mode1res, oldval1; 848 uint8_t mode2res, oldval2; 849 850 oldval1 = inl(CONF1_ADDR_PORT); 851 852 if (bootverbose) { 853 printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08x\n", 854 oldval1); 855 } 856 857 if ((oldval1 & CONF1_ENABLE_MSK) == 0) { 858 859 cfgmech = 1; 860 devmax = 32; 861 862 outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK); 863 outb(CONF1_ADDR_PORT + 3, 0); 864 mode1res = inl(CONF1_ADDR_PORT); 865 outl(CONF1_ADDR_PORT, oldval1); 866 867 if (bootverbose) 868 printf("pci_open(1a):\tmode1res=0x%08x (0x%08lx)\n", 869 mode1res, CONF1_ENABLE_CHK); 870 871 if (mode1res) { 872 if (pci_cfgcheck(32)) 873 return (cfgmech); 874 } 875 876 outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1); 877 mode1res = inl(CONF1_ADDR_PORT); 878 outl(CONF1_ADDR_PORT, oldval1); 879 880 if (bootverbose) 881 printf("pci_open(1b):\tmode1res=0x%08x (0x%08lx)\n", 882 mode1res, CONF1_ENABLE_CHK1); 883 884 if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) { 885 if (pci_cfgcheck(32)) 886 return (cfgmech); 887 } 888 } 889 890 oldval2 = inb(CONF2_ENABLE_PORT); 891 892 if (bootverbose) { 893 printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n", 894 oldval2); 895 } 896 897 if ((oldval2 & 0xf0) == 0) { 898 899 cfgmech = 2; 900 devmax = 16; 901 902 outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK); 903 mode2res = inb(CONF2_ENABLE_PORT); 904 outb(CONF2_ENABLE_PORT, oldval2); 905 906 if (bootverbose) 907 printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n", 908 mode2res, CONF2_ENABLE_CHK); 909 910 if (mode2res == CONF2_ENABLE_RES) { 911 if (bootverbose) 912 printf("pci_open(2a):\tnow trying mechanism 2\n"); 913 914 if (pci_cfgcheck(16)) 915 return (cfgmech); 916 } 917 } 918 919 cfgmech = 0; 920 devmax = 0; 921 return (cfgmech); 922 } 923 924