1 /*- 2 * Copyright (c) 2000 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer 10 * in this position and unchanged. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/capability.h> 35 #include <sys/file.h> 36 #include <sys/fcntl.h> 37 #include <sys/imgact.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mman.h> 41 #include <sys/mutex.h> 42 #include <sys/sx.h> 43 #include <sys/priv.h> 44 #include <sys/proc.h> 45 #include <sys/queue.h> 46 #include <sys/resource.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/syscallsubr.h> 50 #include <sys/sysproto.h> 51 #include <sys/unistd.h> 52 #include <sys/wait.h> 53 #include <sys/sched.h> 54 55 #include <machine/frame.h> 56 #include <machine/psl.h> 57 #include <machine/segments.h> 58 #include <machine/sysarch.h> 59 60 #include <vm/vm.h> 61 #include <vm/pmap.h> 62 #include <vm/vm_map.h> 63 64 #include <i386/linux/linux.h> 65 #include <i386/linux/linux_proto.h> 66 #include <compat/linux/linux_ipc.h> 67 #include <compat/linux/linux_misc.h> 68 #include <compat/linux/linux_signal.h> 69 #include <compat/linux/linux_util.h> 70 #include <compat/linux/linux_emul.h> 71 72 #include <i386/include/pcb.h> /* needed for pcb definition in linux_set_thread_area */ 73 74 #include "opt_posix.h" 75 76 extern struct sysentvec elf32_freebsd_sysvec; /* defined in i386/i386/elf_machdep.c */ 77 78 struct l_descriptor { 79 l_uint entry_number; 80 l_ulong base_addr; 81 l_uint limit; 82 l_uint seg_32bit:1; 83 l_uint contents:2; 84 l_uint read_exec_only:1; 85 l_uint limit_in_pages:1; 86 l_uint seg_not_present:1; 87 l_uint useable:1; 88 }; 89 90 struct l_old_select_argv { 91 l_int nfds; 92 l_fd_set *readfds; 93 l_fd_set *writefds; 94 l_fd_set *exceptfds; 95 struct l_timeval *timeout; 96 }; 97 98 static int linux_mmap_common(struct thread *td, l_uintptr_t addr, 99 l_size_t len, l_int prot, l_int flags, l_int fd, 100 l_loff_t pos); 101 102 int 103 linux_to_bsd_sigaltstack(int lsa) 104 { 105 int bsa = 0; 106 107 if (lsa & LINUX_SS_DISABLE) 108 bsa |= SS_DISABLE; 109 if (lsa & LINUX_SS_ONSTACK) 110 bsa |= SS_ONSTACK; 111 return (bsa); 112 } 113 114 int 115 bsd_to_linux_sigaltstack(int bsa) 116 { 117 int lsa = 0; 118 119 if (bsa & SS_DISABLE) 120 lsa |= LINUX_SS_DISABLE; 121 if (bsa & SS_ONSTACK) 122 lsa |= LINUX_SS_ONSTACK; 123 return (lsa); 124 } 125 126 int 127 linux_execve(struct thread *td, struct linux_execve_args *args) 128 { 129 int error; 130 char *newpath; 131 struct image_args eargs; 132 133 LCONVPATHEXIST(td, args->path, &newpath); 134 135 #ifdef DEBUG 136 if (ldebug(execve)) 137 printf(ARGS(execve, "%s"), newpath); 138 #endif 139 140 error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE, 141 args->argp, args->envp); 142 free(newpath, M_TEMP); 143 if (error == 0) 144 error = kern_execve(td, &eargs, NULL); 145 if (error == 0) 146 /* linux process can exec fbsd one, dont attempt 147 * to create emuldata for such process using 148 * linux_proc_init, this leads to a panic on KASSERT 149 * because such process has p->p_emuldata == NULL 150 */ 151 if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX) 152 error = linux_proc_init(td, 0, 0); 153 return (error); 154 } 155 156 struct l_ipc_kludge { 157 struct l_msgbuf *msgp; 158 l_long msgtyp; 159 }; 160 161 int 162 linux_ipc(struct thread *td, struct linux_ipc_args *args) 163 { 164 165 switch (args->what & 0xFFFF) { 166 case LINUX_SEMOP: { 167 struct linux_semop_args a; 168 169 a.semid = args->arg1; 170 a.tsops = args->ptr; 171 a.nsops = args->arg2; 172 return (linux_semop(td, &a)); 173 } 174 case LINUX_SEMGET: { 175 struct linux_semget_args a; 176 177 a.key = args->arg1; 178 a.nsems = args->arg2; 179 a.semflg = args->arg3; 180 return (linux_semget(td, &a)); 181 } 182 case LINUX_SEMCTL: { 183 struct linux_semctl_args a; 184 int error; 185 186 a.semid = args->arg1; 187 a.semnum = args->arg2; 188 a.cmd = args->arg3; 189 error = copyin(args->ptr, &a.arg, sizeof(a.arg)); 190 if (error) 191 return (error); 192 return (linux_semctl(td, &a)); 193 } 194 case LINUX_MSGSND: { 195 struct linux_msgsnd_args a; 196 197 a.msqid = args->arg1; 198 a.msgp = args->ptr; 199 a.msgsz = args->arg2; 200 a.msgflg = args->arg3; 201 return (linux_msgsnd(td, &a)); 202 } 203 case LINUX_MSGRCV: { 204 struct linux_msgrcv_args a; 205 206 a.msqid = args->arg1; 207 a.msgsz = args->arg2; 208 a.msgflg = args->arg3; 209 if ((args->what >> 16) == 0) { 210 struct l_ipc_kludge tmp; 211 int error; 212 213 if (args->ptr == NULL) 214 return (EINVAL); 215 error = copyin(args->ptr, &tmp, sizeof(tmp)); 216 if (error) 217 return (error); 218 a.msgp = tmp.msgp; 219 a.msgtyp = tmp.msgtyp; 220 } else { 221 a.msgp = args->ptr; 222 a.msgtyp = args->arg5; 223 } 224 return (linux_msgrcv(td, &a)); 225 } 226 case LINUX_MSGGET: { 227 struct linux_msgget_args a; 228 229 a.key = args->arg1; 230 a.msgflg = args->arg2; 231 return (linux_msgget(td, &a)); 232 } 233 case LINUX_MSGCTL: { 234 struct linux_msgctl_args a; 235 236 a.msqid = args->arg1; 237 a.cmd = args->arg2; 238 a.buf = args->ptr; 239 return (linux_msgctl(td, &a)); 240 } 241 case LINUX_SHMAT: { 242 struct linux_shmat_args a; 243 244 a.shmid = args->arg1; 245 a.shmaddr = args->ptr; 246 a.shmflg = args->arg2; 247 a.raddr = (l_ulong *)args->arg3; 248 return (linux_shmat(td, &a)); 249 } 250 case LINUX_SHMDT: { 251 struct linux_shmdt_args a; 252 253 a.shmaddr = args->ptr; 254 return (linux_shmdt(td, &a)); 255 } 256 case LINUX_SHMGET: { 257 struct linux_shmget_args a; 258 259 a.key = args->arg1; 260 a.size = args->arg2; 261 a.shmflg = args->arg3; 262 return (linux_shmget(td, &a)); 263 } 264 case LINUX_SHMCTL: { 265 struct linux_shmctl_args a; 266 267 a.shmid = args->arg1; 268 a.cmd = args->arg2; 269 a.buf = args->ptr; 270 return (linux_shmctl(td, &a)); 271 } 272 default: 273 break; 274 } 275 276 return (EINVAL); 277 } 278 279 int 280 linux_old_select(struct thread *td, struct linux_old_select_args *args) 281 { 282 struct l_old_select_argv linux_args; 283 struct linux_select_args newsel; 284 int error; 285 286 #ifdef DEBUG 287 if (ldebug(old_select)) 288 printf(ARGS(old_select, "%p"), args->ptr); 289 #endif 290 291 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 292 if (error) 293 return (error); 294 295 newsel.nfds = linux_args.nfds; 296 newsel.readfds = linux_args.readfds; 297 newsel.writefds = linux_args.writefds; 298 newsel.exceptfds = linux_args.exceptfds; 299 newsel.timeout = linux_args.timeout; 300 return (linux_select(td, &newsel)); 301 } 302 303 int 304 linux_set_cloned_tls(struct thread *td, void *desc) 305 { 306 struct segment_descriptor sd; 307 struct l_user_desc info; 308 int idx, error; 309 int a[2]; 310 311 error = copyin(desc, &info, sizeof(struct l_user_desc)); 312 if (error) { 313 printf(LMSG("copyin failed!")); 314 } else { 315 idx = info.entry_number; 316 317 /* 318 * looks like we're getting the idx we returned 319 * in the set_thread_area() syscall 320 */ 321 if (idx != 6 && idx != 3) { 322 printf(LMSG("resetting idx!")); 323 idx = 3; 324 } 325 326 /* this doesnt happen in practice */ 327 if (idx == 6) { 328 /* we might copy out the entry_number as 3 */ 329 info.entry_number = 3; 330 error = copyout(&info, desc, sizeof(struct l_user_desc)); 331 if (error) 332 printf(LMSG("copyout failed!")); 333 } 334 335 a[0] = LINUX_LDT_entry_a(&info); 336 a[1] = LINUX_LDT_entry_b(&info); 337 338 memcpy(&sd, &a, sizeof(a)); 339 #ifdef DEBUG 340 if (ldebug(clone)) 341 printf("Segment created in clone with " 342 "CLONE_SETTLS: lobase: %x, hibase: %x, " 343 "lolimit: %x, hilimit: %x, type: %i, " 344 "dpl: %i, p: %i, xx: %i, def32: %i, " 345 "gran: %i\n", sd.sd_lobase, sd.sd_hibase, 346 sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, 347 sd.sd_dpl, sd.sd_p, sd.sd_xx, 348 sd.sd_def32, sd.sd_gran); 349 #endif 350 351 /* set %gs */ 352 td->td_pcb->pcb_gsd = sd; 353 td->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL); 354 } 355 356 return (error); 357 } 358 359 int 360 linux_set_upcall_kse(struct thread *td, register_t stack) 361 { 362 363 td->td_frame->tf_esp = stack; 364 365 return (0); 366 } 367 368 #define STACK_SIZE (2 * 1024 * 1024) 369 #define GUARD_SIZE (4 * PAGE_SIZE) 370 371 int 372 linux_mmap2(struct thread *td, struct linux_mmap2_args *args) 373 { 374 375 #ifdef DEBUG 376 if (ldebug(mmap2)) 377 printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), 378 (void *)args->addr, args->len, args->prot, 379 args->flags, args->fd, args->pgoff); 380 #endif 381 382 return (linux_mmap_common(td, args->addr, args->len, args->prot, 383 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * 384 PAGE_SIZE)); 385 } 386 387 int 388 linux_mmap(struct thread *td, struct linux_mmap_args *args) 389 { 390 int error; 391 struct l_mmap_argv linux_args; 392 393 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 394 if (error) 395 return (error); 396 397 #ifdef DEBUG 398 if (ldebug(mmap)) 399 printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), 400 (void *)linux_args.addr, linux_args.len, linux_args.prot, 401 linux_args.flags, linux_args.fd, linux_args.pgoff); 402 #endif 403 404 return (linux_mmap_common(td, linux_args.addr, linux_args.len, 405 linux_args.prot, linux_args.flags, linux_args.fd, 406 (uint32_t)linux_args.pgoff)); 407 } 408 409 static int 410 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, 411 l_int flags, l_int fd, l_loff_t pos) 412 { 413 struct proc *p = td->td_proc; 414 struct mmap_args /* { 415 caddr_t addr; 416 size_t len; 417 int prot; 418 int flags; 419 int fd; 420 long pad; 421 off_t pos; 422 } */ bsd_args; 423 int error; 424 struct file *fp; 425 426 error = 0; 427 bsd_args.flags = 0; 428 fp = NULL; 429 430 /* 431 * Linux mmap(2): 432 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE 433 */ 434 if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE))) 435 return (EINVAL); 436 437 if (flags & LINUX_MAP_SHARED) 438 bsd_args.flags |= MAP_SHARED; 439 if (flags & LINUX_MAP_PRIVATE) 440 bsd_args.flags |= MAP_PRIVATE; 441 if (flags & LINUX_MAP_FIXED) 442 bsd_args.flags |= MAP_FIXED; 443 if (flags & LINUX_MAP_ANON) { 444 /* Enforce pos to be on page boundary, then ignore. */ 445 if ((pos & PAGE_MASK) != 0) 446 return (EINVAL); 447 pos = 0; 448 bsd_args.flags |= MAP_ANON; 449 } else 450 bsd_args.flags |= MAP_NOSYNC; 451 if (flags & LINUX_MAP_GROWSDOWN) 452 bsd_args.flags |= MAP_STACK; 453 454 /* 455 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC 456 * on Linux/i386. We do this to ensure maximum compatibility. 457 * Linux/ia64 does the same in i386 emulation mode. 458 */ 459 bsd_args.prot = prot; 460 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 461 bsd_args.prot |= PROT_READ | PROT_EXEC; 462 463 /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ 464 bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd; 465 if (bsd_args.fd != -1) { 466 /* 467 * Linux follows Solaris mmap(2) description: 468 * The file descriptor fildes is opened with 469 * read permission, regardless of the 470 * protection options specified. 471 * 472 * Checking just CAP_MMAP is fine here, since the real work 473 * is done in the FreeBSD mmap(). 474 */ 475 476 if ((error = fget(td, bsd_args.fd, CAP_MMAP, &fp)) != 0) 477 return (error); 478 if (fp->f_type != DTYPE_VNODE) { 479 fdrop(fp, td); 480 return (EINVAL); 481 } 482 483 /* Linux mmap() just fails for O_WRONLY files */ 484 if (!(fp->f_flag & FREAD)) { 485 fdrop(fp, td); 486 return (EACCES); 487 } 488 489 fdrop(fp, td); 490 } 491 492 if (flags & LINUX_MAP_GROWSDOWN) { 493 /* 494 * The Linux MAP_GROWSDOWN option does not limit auto 495 * growth of the region. Linux mmap with this option 496 * takes as addr the inital BOS, and as len, the initial 497 * region size. It can then grow down from addr without 498 * limit. However, linux threads has an implicit internal 499 * limit to stack size of STACK_SIZE. Its just not 500 * enforced explicitly in linux. But, here we impose 501 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack 502 * region, since we can do this with our mmap. 503 * 504 * Our mmap with MAP_STACK takes addr as the maximum 505 * downsize limit on BOS, and as len the max size of 506 * the region. It them maps the top SGROWSIZ bytes, 507 * and auto grows the region down, up to the limit 508 * in addr. 509 * 510 * If we don't use the MAP_STACK option, the effect 511 * of this code is to allocate a stack region of a 512 * fixed size of (STACK_SIZE - GUARD_SIZE). 513 */ 514 515 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) { 516 /* 517 * Some linux apps will attempt to mmap 518 * thread stacks near the top of their 519 * address space. If their TOS is greater 520 * than vm_maxsaddr, vm_map_growstack() 521 * will confuse the thread stack with the 522 * process stack and deliver a SEGV if they 523 * attempt to grow the thread stack past their 524 * current stacksize rlimit. To avoid this, 525 * adjust vm_maxsaddr upwards to reflect 526 * the current stacksize rlimit rather 527 * than the maximum possible stacksize. 528 * It would be better to adjust the 529 * mmap'ed region, but some apps do not check 530 * mmap's return value. 531 */ 532 PROC_LOCK(p); 533 p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - 534 lim_cur(p, RLIMIT_STACK); 535 PROC_UNLOCK(p); 536 } 537 538 /* 539 * This gives us our maximum stack size and a new BOS. 540 * If we're using VM_STACK, then mmap will just map 541 * the top SGROWSIZ bytes, and let the stack grow down 542 * to the limit at BOS. If we're not using VM_STACK 543 * we map the full stack, since we don't have a way 544 * to autogrow it. 545 */ 546 if (len > STACK_SIZE - GUARD_SIZE) { 547 bsd_args.addr = (caddr_t)PTRIN(addr); 548 bsd_args.len = len; 549 } else { 550 bsd_args.addr = (caddr_t)PTRIN(addr) - 551 (STACK_SIZE - GUARD_SIZE - len); 552 bsd_args.len = STACK_SIZE - GUARD_SIZE; 553 } 554 } else { 555 bsd_args.addr = (caddr_t)PTRIN(addr); 556 bsd_args.len = len; 557 } 558 bsd_args.pos = pos; 559 560 #ifdef DEBUG 561 if (ldebug(mmap)) 562 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", 563 __func__, 564 (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, 565 bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); 566 #endif 567 error = sys_mmap(td, &bsd_args); 568 #ifdef DEBUG 569 if (ldebug(mmap)) 570 printf("-> %s() return: 0x%x (0x%08x)\n", 571 __func__, error, (u_int)td->td_retval[0]); 572 #endif 573 return (error); 574 } 575 576 int 577 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 578 { 579 struct mprotect_args bsd_args; 580 581 bsd_args.addr = uap->addr; 582 bsd_args.len = uap->len; 583 bsd_args.prot = uap->prot; 584 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 585 bsd_args.prot |= PROT_READ | PROT_EXEC; 586 return (sys_mprotect(td, &bsd_args)); 587 } 588 589 int 590 linux_ioperm(struct thread *td, struct linux_ioperm_args *args) 591 { 592 int error; 593 struct i386_ioperm_args iia; 594 595 iia.start = args->start; 596 iia.length = args->length; 597 iia.enable = args->enable; 598 error = i386_set_ioperm(td, &iia); 599 return (error); 600 } 601 602 int 603 linux_iopl(struct thread *td, struct linux_iopl_args *args) 604 { 605 int error; 606 607 if (args->level < 0 || args->level > 3) 608 return (EINVAL); 609 if ((error = priv_check(td, PRIV_IO)) != 0) 610 return (error); 611 if ((error = securelevel_gt(td->td_ucred, 0)) != 0) 612 return (error); 613 td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | 614 (args->level * (PSL_IOPL / 3)); 615 return (0); 616 } 617 618 int 619 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) 620 { 621 int error; 622 struct i386_ldt_args ldt; 623 struct l_descriptor ld; 624 union descriptor desc; 625 int size, written; 626 627 switch (uap->func) { 628 case 0x00: /* read_ldt */ 629 ldt.start = 0; 630 ldt.descs = uap->ptr; 631 ldt.num = uap->bytecount / sizeof(union descriptor); 632 error = i386_get_ldt(td, &ldt); 633 td->td_retval[0] *= sizeof(union descriptor); 634 break; 635 case 0x02: /* read_default_ldt = 0 */ 636 size = 5*sizeof(struct l_desc_struct); 637 if (size > uap->bytecount) 638 size = uap->bytecount; 639 for (written = error = 0; written < size && error == 0; written++) 640 error = subyte((char *)uap->ptr + written, 0); 641 td->td_retval[0] = written; 642 break; 643 case 0x01: /* write_ldt */ 644 case 0x11: /* write_ldt */ 645 if (uap->bytecount != sizeof(ld)) 646 return (EINVAL); 647 648 error = copyin(uap->ptr, &ld, sizeof(ld)); 649 if (error) 650 return (error); 651 652 ldt.start = ld.entry_number; 653 ldt.descs = &desc; 654 ldt.num = 1; 655 desc.sd.sd_lolimit = (ld.limit & 0x0000ffff); 656 desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; 657 desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff); 658 desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; 659 desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | 660 (ld.contents << 2); 661 desc.sd.sd_dpl = 3; 662 desc.sd.sd_p = (ld.seg_not_present ^ 1); 663 desc.sd.sd_xx = 0; 664 desc.sd.sd_def32 = ld.seg_32bit; 665 desc.sd.sd_gran = ld.limit_in_pages; 666 error = i386_set_ldt(td, &ldt, &desc); 667 break; 668 default: 669 error = ENOSYS; 670 break; 671 } 672 673 if (error == EOPNOTSUPP) { 674 printf("linux: modify_ldt needs kernel option USER_LDT\n"); 675 error = ENOSYS; 676 } 677 678 return (error); 679 } 680 681 int 682 linux_sigaction(struct thread *td, struct linux_sigaction_args *args) 683 { 684 l_osigaction_t osa; 685 l_sigaction_t act, oact; 686 int error; 687 688 #ifdef DEBUG 689 if (ldebug(sigaction)) 690 printf(ARGS(sigaction, "%d, %p, %p"), 691 args->sig, (void *)args->nsa, (void *)args->osa); 692 #endif 693 694 if (args->nsa != NULL) { 695 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); 696 if (error) 697 return (error); 698 act.lsa_handler = osa.lsa_handler; 699 act.lsa_flags = osa.lsa_flags; 700 act.lsa_restorer = osa.lsa_restorer; 701 LINUX_SIGEMPTYSET(act.lsa_mask); 702 act.lsa_mask.__bits[0] = osa.lsa_mask; 703 } 704 705 error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, 706 args->osa ? &oact : NULL); 707 708 if (args->osa != NULL && !error) { 709 osa.lsa_handler = oact.lsa_handler; 710 osa.lsa_flags = oact.lsa_flags; 711 osa.lsa_restorer = oact.lsa_restorer; 712 osa.lsa_mask = oact.lsa_mask.__bits[0]; 713 error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); 714 } 715 716 return (error); 717 } 718 719 /* 720 * Linux has two extra args, restart and oldmask. We dont use these, 721 * but it seems that "restart" is actually a context pointer that 722 * enables the signal to happen with a different register set. 723 */ 724 int 725 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) 726 { 727 sigset_t sigmask; 728 l_sigset_t mask; 729 730 #ifdef DEBUG 731 if (ldebug(sigsuspend)) 732 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); 733 #endif 734 735 LINUX_SIGEMPTYSET(mask); 736 mask.__bits[0] = args->mask; 737 linux_to_bsd_sigset(&mask, &sigmask); 738 return (kern_sigsuspend(td, sigmask)); 739 } 740 741 int 742 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) 743 { 744 l_sigset_t lmask; 745 sigset_t sigmask; 746 int error; 747 748 #ifdef DEBUG 749 if (ldebug(rt_sigsuspend)) 750 printf(ARGS(rt_sigsuspend, "%p, %d"), 751 (void *)uap->newset, uap->sigsetsize); 752 #endif 753 754 if (uap->sigsetsize != sizeof(l_sigset_t)) 755 return (EINVAL); 756 757 error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); 758 if (error) 759 return (error); 760 761 linux_to_bsd_sigset(&lmask, &sigmask); 762 return (kern_sigsuspend(td, sigmask)); 763 } 764 765 int 766 linux_pause(struct thread *td, struct linux_pause_args *args) 767 { 768 struct proc *p = td->td_proc; 769 sigset_t sigmask; 770 771 #ifdef DEBUG 772 if (ldebug(pause)) 773 printf(ARGS(pause, "")); 774 #endif 775 776 PROC_LOCK(p); 777 sigmask = td->td_sigmask; 778 PROC_UNLOCK(p); 779 return (kern_sigsuspend(td, sigmask)); 780 } 781 782 int 783 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) 784 { 785 stack_t ss, oss; 786 l_stack_t lss; 787 int error; 788 789 #ifdef DEBUG 790 if (ldebug(sigaltstack)) 791 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); 792 #endif 793 794 if (uap->uss != NULL) { 795 error = copyin(uap->uss, &lss, sizeof(l_stack_t)); 796 if (error) 797 return (error); 798 799 ss.ss_sp = lss.ss_sp; 800 ss.ss_size = lss.ss_size; 801 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); 802 } 803 error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, 804 (uap->uoss != NULL) ? &oss : NULL); 805 if (!error && uap->uoss != NULL) { 806 lss.ss_sp = oss.ss_sp; 807 lss.ss_size = oss.ss_size; 808 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); 809 error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); 810 } 811 812 return (error); 813 } 814 815 int 816 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) 817 { 818 struct ftruncate_args sa; 819 820 #ifdef DEBUG 821 if (ldebug(ftruncate64)) 822 printf(ARGS(ftruncate64, "%u, %jd"), args->fd, 823 (intmax_t)args->length); 824 #endif 825 826 sa.fd = args->fd; 827 sa.length = args->length; 828 return sys_ftruncate(td, &sa); 829 } 830 831 int 832 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) 833 { 834 struct l_user_desc info; 835 int error; 836 int idx; 837 int a[2]; 838 struct segment_descriptor sd; 839 840 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 841 if (error) 842 return (error); 843 844 #ifdef DEBUG 845 if (ldebug(set_thread_area)) 846 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"), 847 info.entry_number, 848 info.base_addr, 849 info.limit, 850 info.seg_32bit, 851 info.contents, 852 info.read_exec_only, 853 info.limit_in_pages, 854 info.seg_not_present, 855 info.useable); 856 #endif 857 858 idx = info.entry_number; 859 /* 860 * Semantics of linux version: every thread in the system has array of 861 * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This 862 * syscall loads one of the selected tls decriptors with a value and 863 * also loads GDT descriptors 6, 7 and 8 with the content of the 864 * per-thread descriptors. 865 * 866 * Semantics of fbsd version: I think we can ignore that linux has 3 867 * per-thread descriptors and use just the 1st one. The tls_array[] 868 * is used only in set/get-thread_area() syscalls and for loading the 869 * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so 870 * we will load just one. 871 * 872 * XXX: this doesn't work when a user space process tries to use more 873 * than 1 TLS segment. Comment in the linux sources says wine might do 874 * this. 875 */ 876 877 /* 878 * we support just GLIBC TLS now 879 * we should let 3 proceed as well because we use this segment so 880 * if code does two subsequent calls it should succeed 881 */ 882 if (idx != 6 && idx != -1 && idx != 3) 883 return (EINVAL); 884 885 /* 886 * we have to copy out the GDT entry we use 887 * FreeBSD uses GDT entry #3 for storing %gs so load that 888 * 889 * XXX: what if a user space program doesn't check this value and tries 890 * to use 6, 7 or 8? 891 */ 892 idx = info.entry_number = 3; 893 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 894 if (error) 895 return (error); 896 897 if (LINUX_LDT_empty(&info)) { 898 a[0] = 0; 899 a[1] = 0; 900 } else { 901 a[0] = LINUX_LDT_entry_a(&info); 902 a[1] = LINUX_LDT_entry_b(&info); 903 } 904 905 memcpy(&sd, &a, sizeof(a)); 906 #ifdef DEBUG 907 if (ldebug(set_thread_area)) 908 printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase, 909 sd.sd_hibase, 910 sd.sd_lolimit, 911 sd.sd_hilimit, 912 sd.sd_type, 913 sd.sd_dpl, 914 sd.sd_p, 915 sd.sd_xx, 916 sd.sd_def32, 917 sd.sd_gran); 918 #endif 919 920 /* this is taken from i386 version of cpu_set_user_tls() */ 921 critical_enter(); 922 /* set %gs */ 923 td->td_pcb->pcb_gsd = sd; 924 PCPU_GET(fsgs_gdt)[1] = sd; 925 load_gs(GSEL(GUGS_SEL, SEL_UPL)); 926 critical_exit(); 927 928 return (0); 929 } 930 931 int 932 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args) 933 { 934 935 struct l_user_desc info; 936 int error; 937 int idx; 938 struct l_desc_struct desc; 939 struct segment_descriptor sd; 940 941 #ifdef DEBUG 942 if (ldebug(get_thread_area)) 943 printf(ARGS(get_thread_area, "%p"), args->desc); 944 #endif 945 946 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 947 if (error) 948 return (error); 949 950 idx = info.entry_number; 951 /* XXX: I am not sure if we want 3 to be allowed too. */ 952 if (idx != 6 && idx != 3) 953 return (EINVAL); 954 955 idx = 3; 956 957 memset(&info, 0, sizeof(info)); 958 959 sd = PCPU_GET(fsgs_gdt)[1]; 960 961 memcpy(&desc, &sd, sizeof(desc)); 962 963 info.entry_number = idx; 964 info.base_addr = LINUX_GET_BASE(&desc); 965 info.limit = LINUX_GET_LIMIT(&desc); 966 info.seg_32bit = LINUX_GET_32BIT(&desc); 967 info.contents = LINUX_GET_CONTENTS(&desc); 968 info.read_exec_only = !LINUX_GET_WRITABLE(&desc); 969 info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc); 970 info.seg_not_present = !LINUX_GET_PRESENT(&desc); 971 info.useable = LINUX_GET_USEABLE(&desc); 972 973 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 974 if (error) 975 return (EFAULT); 976 977 return (0); 978 } 979 980 /* copied from kern/kern_time.c */ 981 int 982 linux_timer_create(struct thread *td, struct linux_timer_create_args *args) 983 { 984 return sys_ktimer_create(td, (struct ktimer_create_args *) args); 985 } 986 987 int 988 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args) 989 { 990 return sys_ktimer_settime(td, (struct ktimer_settime_args *) args); 991 } 992 993 int 994 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args) 995 { 996 return sys_ktimer_gettime(td, (struct ktimer_gettime_args *) args); 997 } 998 999 int 1000 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args) 1001 { 1002 return sys_ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args); 1003 } 1004 1005 int 1006 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args) 1007 { 1008 return sys_ktimer_delete(td, (struct ktimer_delete_args *) args); 1009 } 1010 1011 /* XXX: this wont work with module - convert it */ 1012 int 1013 linux_mq_open(struct thread *td, struct linux_mq_open_args *args) 1014 { 1015 #ifdef P1003_1B_MQUEUE 1016 return sys_kmq_open(td, (struct kmq_open_args *) args); 1017 #else 1018 return (ENOSYS); 1019 #endif 1020 } 1021 1022 int 1023 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) 1024 { 1025 #ifdef P1003_1B_MQUEUE 1026 return sys_kmq_unlink(td, (struct kmq_unlink_args *) args); 1027 #else 1028 return (ENOSYS); 1029 #endif 1030 } 1031 1032 int 1033 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) 1034 { 1035 #ifdef P1003_1B_MQUEUE 1036 return sys_kmq_timedsend(td, (struct kmq_timedsend_args *) args); 1037 #else 1038 return (ENOSYS); 1039 #endif 1040 } 1041 1042 int 1043 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) 1044 { 1045 #ifdef P1003_1B_MQUEUE 1046 return sys_kmq_timedreceive(td, (struct kmq_timedreceive_args *) args); 1047 #else 1048 return (ENOSYS); 1049 #endif 1050 } 1051 1052 int 1053 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) 1054 { 1055 #ifdef P1003_1B_MQUEUE 1056 return sys_kmq_notify(td, (struct kmq_notify_args *) args); 1057 #else 1058 return (ENOSYS); 1059 #endif 1060 } 1061 1062 int 1063 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) 1064 { 1065 #ifdef P1003_1B_MQUEUE 1066 return sys_kmq_setattr(td, (struct kmq_setattr_args *) args); 1067 #else 1068 return (ENOSYS); 1069 #endif 1070 } 1071 1072 int 1073 linux_wait4(struct thread *td, struct linux_wait4_args *args) 1074 { 1075 int error, options; 1076 struct rusage ru, *rup; 1077 1078 #ifdef DEBUG 1079 if (ldebug(wait4)) 1080 printf(ARGS(wait4, "%d, %p, %d, %p"), 1081 args->pid, (void *)args->status, args->options, 1082 (void *)args->rusage); 1083 #endif 1084 1085 options = (args->options & (WNOHANG | WUNTRACED)); 1086 /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ 1087 if (args->options & __WCLONE) 1088 options |= WLINUXCLONE; 1089 1090 if (args->rusage != NULL) 1091 rup = &ru; 1092 else 1093 rup = NULL; 1094 error = linux_common_wait(td, args->pid, args->status, options, rup); 1095 if (error) 1096 return (error); 1097 if (args->rusage != NULL) 1098 error = copyout(&ru, args->rusage, sizeof(ru)); 1099 1100 return (error); 1101 } 1102