xref: /freebsd/sys/i386/linux/linux_machdep.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 2000 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer
10  *    in this position and unchanged.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/file.h>
35 #include <sys/fcntl.h>
36 #include <sys/imgact.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mman.h>
40 #include <sys/mutex.h>
41 #include <sys/sx.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/queue.h>
45 #include <sys/resource.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysproto.h>
50 #include <sys/unistd.h>
51 #include <sys/wait.h>
52 #include <sys/sched.h>
53 
54 #include <machine/frame.h>
55 #include <machine/psl.h>
56 #include <machine/segments.h>
57 #include <machine/sysarch.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 
63 #include <i386/linux/linux.h>
64 #include <i386/linux/linux_proto.h>
65 #include <compat/linux/linux_ipc.h>
66 #include <compat/linux/linux_signal.h>
67 #include <compat/linux/linux_util.h>
68 #include <compat/linux/linux_emul.h>
69 
70 #include <i386/include/pcb.h>			/* needed for pcb definition in linux_set_thread_area */
71 
72 #include "opt_posix.h"
73 
74 extern struct sysentvec elf32_freebsd_sysvec;	/* defined in i386/i386/elf_machdep.c */
75 
76 struct l_descriptor {
77 	l_uint		entry_number;
78 	l_ulong		base_addr;
79 	l_uint		limit;
80 	l_uint		seg_32bit:1;
81 	l_uint		contents:2;
82 	l_uint		read_exec_only:1;
83 	l_uint		limit_in_pages:1;
84 	l_uint		seg_not_present:1;
85 	l_uint		useable:1;
86 };
87 
88 struct l_old_select_argv {
89 	l_int		nfds;
90 	l_fd_set	*readfds;
91 	l_fd_set	*writefds;
92 	l_fd_set	*exceptfds;
93 	struct l_timeval	*timeout;
94 };
95 
96 static int	linux_mmap_common(struct thread *td, l_uintptr_t addr,
97 		    l_size_t len, l_int prot, l_int flags, l_int fd,
98 		    l_loff_t pos);
99 
100 int
101 linux_to_bsd_sigaltstack(int lsa)
102 {
103 	int bsa = 0;
104 
105 	if (lsa & LINUX_SS_DISABLE)
106 		bsa |= SS_DISABLE;
107 	if (lsa & LINUX_SS_ONSTACK)
108 		bsa |= SS_ONSTACK;
109 	return (bsa);
110 }
111 
112 int
113 bsd_to_linux_sigaltstack(int bsa)
114 {
115 	int lsa = 0;
116 
117 	if (bsa & SS_DISABLE)
118 		lsa |= LINUX_SS_DISABLE;
119 	if (bsa & SS_ONSTACK)
120 		lsa |= LINUX_SS_ONSTACK;
121 	return (lsa);
122 }
123 
124 int
125 linux_execve(struct thread *td, struct linux_execve_args *args)
126 {
127 	int error;
128 	char *newpath;
129 	struct image_args eargs;
130 
131 	LCONVPATHEXIST(td, args->path, &newpath);
132 
133 #ifdef DEBUG
134 	if (ldebug(execve))
135 		printf(ARGS(execve, "%s"), newpath);
136 #endif
137 
138 	error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE,
139 	    args->argp, args->envp);
140 	free(newpath, M_TEMP);
141 	if (error == 0)
142 		error = kern_execve(td, &eargs, NULL);
143 	if (error == 0)
144 	   	/* linux process can exec fbsd one, dont attempt
145 		 * to create emuldata for such process using
146 		 * linux_proc_init, this leads to a panic on KASSERT
147 		 * because such process has p->p_emuldata == NULL
148 		 */
149 	   	if (td->td_proc->p_sysent == &elf_linux_sysvec)
150    		   	error = linux_proc_init(td, 0, 0);
151 	return (error);
152 }
153 
154 struct l_ipc_kludge {
155 	struct l_msgbuf *msgp;
156 	l_long msgtyp;
157 };
158 
159 int
160 linux_ipc(struct thread *td, struct linux_ipc_args *args)
161 {
162 
163 	switch (args->what & 0xFFFF) {
164 	case LINUX_SEMOP: {
165 		struct linux_semop_args a;
166 
167 		a.semid = args->arg1;
168 		a.tsops = args->ptr;
169 		a.nsops = args->arg2;
170 		return (linux_semop(td, &a));
171 	}
172 	case LINUX_SEMGET: {
173 		struct linux_semget_args a;
174 
175 		a.key = args->arg1;
176 		a.nsems = args->arg2;
177 		a.semflg = args->arg3;
178 		return (linux_semget(td, &a));
179 	}
180 	case LINUX_SEMCTL: {
181 		struct linux_semctl_args a;
182 		int error;
183 
184 		a.semid = args->arg1;
185 		a.semnum = args->arg2;
186 		a.cmd = args->arg3;
187 		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
188 		if (error)
189 			return (error);
190 		return (linux_semctl(td, &a));
191 	}
192 	case LINUX_MSGSND: {
193 		struct linux_msgsnd_args a;
194 
195 		a.msqid = args->arg1;
196 		a.msgp = args->ptr;
197 		a.msgsz = args->arg2;
198 		a.msgflg = args->arg3;
199 		return (linux_msgsnd(td, &a));
200 	}
201 	case LINUX_MSGRCV: {
202 		struct linux_msgrcv_args a;
203 
204 		a.msqid = args->arg1;
205 		a.msgsz = args->arg2;
206 		a.msgflg = args->arg3;
207 		if ((args->what >> 16) == 0) {
208 			struct l_ipc_kludge tmp;
209 			int error;
210 
211 			if (args->ptr == NULL)
212 				return (EINVAL);
213 			error = copyin(args->ptr, &tmp, sizeof(tmp));
214 			if (error)
215 				return (error);
216 			a.msgp = tmp.msgp;
217 			a.msgtyp = tmp.msgtyp;
218 		} else {
219 			a.msgp = args->ptr;
220 			a.msgtyp = args->arg5;
221 		}
222 		return (linux_msgrcv(td, &a));
223 	}
224 	case LINUX_MSGGET: {
225 		struct linux_msgget_args a;
226 
227 		a.key = args->arg1;
228 		a.msgflg = args->arg2;
229 		return (linux_msgget(td, &a));
230 	}
231 	case LINUX_MSGCTL: {
232 		struct linux_msgctl_args a;
233 
234 		a.msqid = args->arg1;
235 		a.cmd = args->arg2;
236 		a.buf = args->ptr;
237 		return (linux_msgctl(td, &a));
238 	}
239 	case LINUX_SHMAT: {
240 		struct linux_shmat_args a;
241 
242 		a.shmid = args->arg1;
243 		a.shmaddr = args->ptr;
244 		a.shmflg = args->arg2;
245 		a.raddr = (l_ulong *)args->arg3;
246 		return (linux_shmat(td, &a));
247 	}
248 	case LINUX_SHMDT: {
249 		struct linux_shmdt_args a;
250 
251 		a.shmaddr = args->ptr;
252 		return (linux_shmdt(td, &a));
253 	}
254 	case LINUX_SHMGET: {
255 		struct linux_shmget_args a;
256 
257 		a.key = args->arg1;
258 		a.size = args->arg2;
259 		a.shmflg = args->arg3;
260 		return (linux_shmget(td, &a));
261 	}
262 	case LINUX_SHMCTL: {
263 		struct linux_shmctl_args a;
264 
265 		a.shmid = args->arg1;
266 		a.cmd = args->arg2;
267 		a.buf = args->ptr;
268 		return (linux_shmctl(td, &a));
269 	}
270 	default:
271 		break;
272 	}
273 
274 	return (EINVAL);
275 }
276 
277 int
278 linux_old_select(struct thread *td, struct linux_old_select_args *args)
279 {
280 	struct l_old_select_argv linux_args;
281 	struct linux_select_args newsel;
282 	int error;
283 
284 #ifdef DEBUG
285 	if (ldebug(old_select))
286 		printf(ARGS(old_select, "%p"), args->ptr);
287 #endif
288 
289 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
290 	if (error)
291 		return (error);
292 
293 	newsel.nfds = linux_args.nfds;
294 	newsel.readfds = linux_args.readfds;
295 	newsel.writefds = linux_args.writefds;
296 	newsel.exceptfds = linux_args.exceptfds;
297 	newsel.timeout = linux_args.timeout;
298 	return (linux_select(td, &newsel));
299 }
300 
301 int
302 linux_fork(struct thread *td, struct linux_fork_args *args)
303 {
304 	int error;
305 	struct proc *p2;
306 	struct thread *td2;
307 
308 #ifdef DEBUG
309 	if (ldebug(fork))
310 		printf(ARGS(fork, ""));
311 #endif
312 
313 	if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
314 		return (error);
315 
316 	if (error == 0) {
317 		td->td_retval[0] = p2->p_pid;
318 		td->td_retval[1] = 0;
319 	}
320 
321 	if (td->td_retval[1] == 1)
322 		td->td_retval[0] = 0;
323 	error = linux_proc_init(td, td->td_retval[0], 0);
324 	if (error)
325 		return (error);
326 
327 	td2 = FIRST_THREAD_IN_PROC(p2);
328 
329 	/*
330 	 * Make this runnable after we are finished with it.
331 	 */
332 	thread_lock(td2);
333 	TD_SET_CAN_RUN(td2);
334 	sched_add(td2, SRQ_BORING);
335 	thread_unlock(td2);
336 
337 	return (0);
338 }
339 
340 int
341 linux_vfork(struct thread *td, struct linux_vfork_args *args)
342 {
343 	int error;
344 	struct proc *p2;
345 	struct thread *td2;
346 
347 #ifdef DEBUG
348 	if (ldebug(vfork))
349 		printf(ARGS(vfork, ""));
350 #endif
351 
352 	/* exclude RFPPWAIT */
353 	if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
354 		return (error);
355 	if (error == 0) {
356 		td->td_retval[0] = p2->p_pid;
357 		td->td_retval[1] = 0;
358 	}
359 	/* Are we the child? */
360 	if (td->td_retval[1] == 1)
361 		td->td_retval[0] = 0;
362 	error = linux_proc_init(td, td->td_retval[0], 0);
363 	if (error)
364 		return (error);
365 
366 	PROC_LOCK(p2);
367 	p2->p_flag |= P_PPWAIT;
368 	PROC_UNLOCK(p2);
369 
370 	td2 = FIRST_THREAD_IN_PROC(p2);
371 
372 	/*
373 	 * Make this runnable after we are finished with it.
374 	 */
375 	thread_lock(td2);
376 	TD_SET_CAN_RUN(td2);
377 	sched_add(td2, SRQ_BORING);
378 	thread_unlock(td2);
379 
380 	/* wait for the children to exit, ie. emulate vfork */
381 	PROC_LOCK(p2);
382 	while (p2->p_flag & P_PPWAIT)
383 		cv_wait(&p2->p_pwait, &p2->p_mtx);
384 	PROC_UNLOCK(p2);
385 
386 	return (0);
387 }
388 
389 int
390 linux_clone(struct thread *td, struct linux_clone_args *args)
391 {
392 	int error, ff = RFPROC | RFSTOPPED;
393 	struct proc *p2;
394 	struct thread *td2;
395 	int exit_signal;
396 	struct linux_emuldata *em;
397 
398 #ifdef DEBUG
399 	if (ldebug(clone)) {
400    	   	printf(ARGS(clone, "flags %x, stack %x, parent tid: %x, child tid: %x"),
401 		    (unsigned int)args->flags, (unsigned int)args->stack,
402 		    (unsigned int)args->parent_tidptr, (unsigned int)args->child_tidptr);
403 	}
404 #endif
405 
406 	exit_signal = args->flags & 0x000000ff;
407 	if (LINUX_SIG_VALID(exit_signal)) {
408 		if (exit_signal <= LINUX_SIGTBLSZ)
409 			exit_signal =
410 			    linux_to_bsd_signal[_SIG_IDX(exit_signal)];
411 	} else if (exit_signal != 0)
412 		return (EINVAL);
413 
414 	if (args->flags & LINUX_CLONE_VM)
415 		ff |= RFMEM;
416 	if (args->flags & LINUX_CLONE_SIGHAND)
417 		ff |= RFSIGSHARE;
418 	/*
419 	 * XXX: in linux sharing of fs info (chroot/cwd/umask)
420 	 * and open files is independant. in fbsd its in one
421 	 * structure but in reality it doesn't cause any problems
422 	 * because both of these flags are usually set together.
423 	 */
424 	if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
425 		ff |= RFFDG;
426 
427 	/*
428 	 * Attempt to detect when linux_clone(2) is used for creating
429 	 * kernel threads. Unfortunately despite the existence of the
430 	 * CLONE_THREAD flag, version of linuxthreads package used in
431 	 * most popular distros as of beginning of 2005 doesn't make
432 	 * any use of it. Therefore, this detection relies on
433 	 * empirical observation that linuxthreads sets certain
434 	 * combination of flags, so that we can make more or less
435 	 * precise detection and notify the FreeBSD kernel that several
436 	 * processes are in fact part of the same threading group, so
437 	 * that special treatment is necessary for signal delivery
438 	 * between those processes and fd locking.
439 	 */
440 	if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
441 		ff |= RFTHREAD;
442 
443 	if (args->flags & LINUX_CLONE_PARENT_SETTID)
444 		if (args->parent_tidptr == NULL)
445 			return (EINVAL);
446 
447 	error = fork1(td, ff, 0, &p2);
448 	if (error)
449 		return (error);
450 
451 	if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
452 	   	sx_xlock(&proctree_lock);
453 		PROC_LOCK(p2);
454 		proc_reparent(p2, td->td_proc->p_pptr);
455 		PROC_UNLOCK(p2);
456 		sx_xunlock(&proctree_lock);
457 	}
458 
459 	/* create the emuldata */
460 	error = linux_proc_init(td, p2->p_pid, args->flags);
461 	/* reference it - no need to check this */
462 	em = em_find(p2, EMUL_DOLOCK);
463 	KASSERT(em != NULL, ("clone: emuldata not found.\n"));
464 	/* and adjust it */
465 
466 	if (args->flags & LINUX_CLONE_THREAD) {
467 	   	/* XXX: linux mangles pgrp and pptr somehow
468 		 * I think it might be this but I am not sure.
469 		 */
470 #ifdef notyet
471 	   	PROC_LOCK(p2);
472 	   	p2->p_pgrp = td->td_proc->p_pgrp;
473 	   	PROC_UNLOCK(p2);
474 #endif
475 	 	exit_signal = 0;
476 	}
477 
478 	if (args->flags & LINUX_CLONE_CHILD_SETTID)
479 		em->child_set_tid = args->child_tidptr;
480 	else
481 	   	em->child_set_tid = NULL;
482 
483 	if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
484 		em->child_clear_tid = args->child_tidptr;
485 	else
486 	   	em->child_clear_tid = NULL;
487 
488 	EMUL_UNLOCK(&emul_lock);
489 
490 	if (args->flags & LINUX_CLONE_PARENT_SETTID) {
491 		error = copyout(&p2->p_pid, args->parent_tidptr, sizeof(p2->p_pid));
492 		if (error)
493 			printf(LMSG("copyout failed!"));
494 	}
495 
496 	PROC_LOCK(p2);
497 	p2->p_sigparent = exit_signal;
498 	PROC_UNLOCK(p2);
499 	td2 = FIRST_THREAD_IN_PROC(p2);
500 	/*
501 	 * in a case of stack = NULL we are supposed to COW calling process stack
502 	 * this is what normal fork() does so we just keep the tf_esp arg intact
503 	 */
504 	if (args->stack)
505    	   	td2->td_frame->tf_esp = (unsigned int)args->stack;
506 
507 	if (args->flags & LINUX_CLONE_SETTLS) {
508    	   	struct l_user_desc info;
509    	   	int idx;
510 	   	int a[2];
511 		struct segment_descriptor sd;
512 
513 	   	error = copyin((void *)td->td_frame->tf_esi, &info, sizeof(struct l_user_desc));
514 		if (error) {
515 			printf(LMSG("copyin failed!"));
516 		} else {
517 
518 			idx = info.entry_number;
519 
520 			/*
521 			 * looks like we're getting the idx we returned
522 			 * in the set_thread_area() syscall
523 			 */
524 			if (idx != 6 && idx != 3) {
525 				printf(LMSG("resetting idx!"));
526 				idx = 3;
527 			}
528 
529 			/* this doesnt happen in practice */
530 			if (idx == 6) {
531 		   		/* we might copy out the entry_number as 3 */
532 			   	info.entry_number = 3;
533 				error = copyout(&info, (void *) td->td_frame->tf_esi, sizeof(struct l_user_desc));
534 				if (error)
535 					printf(LMSG("copyout failed!"));
536 			}
537 
538 			a[0] = LINUX_LDT_entry_a(&info);
539 			a[1] = LINUX_LDT_entry_b(&info);
540 
541 			memcpy(&sd, &a, sizeof(a));
542 #ifdef DEBUG
543 		if (ldebug(clone))
544 		   	printf("Segment created in clone with CLONE_SETTLS: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
545 			sd.sd_hibase,
546 			sd.sd_lolimit,
547 			sd.sd_hilimit,
548 			sd.sd_type,
549 			sd.sd_dpl,
550 			sd.sd_p,
551 			sd.sd_xx,
552 			sd.sd_def32,
553 			sd.sd_gran);
554 #endif
555 
556 			/* set %gs */
557 			td2->td_pcb->pcb_gsd = sd;
558 			td2->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL);
559 		}
560 	}
561 
562 #ifdef DEBUG
563 	if (ldebug(clone))
564 		printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
565 		    (long)p2->p_pid, args->stack, exit_signal);
566 #endif
567 	if (args->flags & LINUX_CLONE_VFORK) {
568 	   	PROC_LOCK(p2);
569 		p2->p_flag |= P_PPWAIT;
570 	   	PROC_UNLOCK(p2);
571 	}
572 
573 	/*
574 	 * Make this runnable after we are finished with it.
575 	 */
576 	thread_lock(td2);
577 	TD_SET_CAN_RUN(td2);
578 	sched_add(td2, SRQ_BORING);
579 	thread_unlock(td2);
580 
581 	td->td_retval[0] = p2->p_pid;
582 	td->td_retval[1] = 0;
583 
584 	if (args->flags & LINUX_CLONE_VFORK) {
585    	   	/* wait for the children to exit, ie. emulate vfork */
586    	   	PROC_LOCK(p2);
587 		while (p2->p_flag & P_PPWAIT)
588 			cv_wait(&p2->p_pwait, &p2->p_mtx);
589 		PROC_UNLOCK(p2);
590 	}
591 
592 	return (0);
593 }
594 
595 #define STACK_SIZE  (2 * 1024 * 1024)
596 #define GUARD_SIZE  (4 * PAGE_SIZE)
597 
598 int
599 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
600 {
601 
602 #ifdef DEBUG
603 	if (ldebug(mmap2))
604 		printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
605 		    (void *)args->addr, args->len, args->prot,
606 		    args->flags, args->fd, args->pgoff);
607 #endif
608 
609 	return (linux_mmap_common(td, args->addr, args->len, args->prot,
610 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
611 		PAGE_SIZE));
612 }
613 
614 int
615 linux_mmap(struct thread *td, struct linux_mmap_args *args)
616 {
617 	int error;
618 	struct l_mmap_argv linux_args;
619 
620 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
621 	if (error)
622 		return (error);
623 
624 #ifdef DEBUG
625 	if (ldebug(mmap))
626 		printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
627 		    (void *)linux_args.addr, linux_args.len, linux_args.prot,
628 		    linux_args.flags, linux_args.fd, linux_args.pgoff);
629 #endif
630 
631 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
632 	    linux_args.prot, linux_args.flags, linux_args.fd,
633 	    (uint32_t)linux_args.pgoff));
634 }
635 
636 static int
637 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
638     l_int flags, l_int fd, l_loff_t pos)
639 {
640 	struct proc *p = td->td_proc;
641 	struct mmap_args /* {
642 		caddr_t addr;
643 		size_t len;
644 		int prot;
645 		int flags;
646 		int fd;
647 		long pad;
648 		off_t pos;
649 	} */ bsd_args;
650 	int error;
651 	struct file *fp;
652 
653 	error = 0;
654 	bsd_args.flags = 0;
655 	fp = NULL;
656 
657 	/*
658 	 * Linux mmap(2):
659 	 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
660 	 */
661 	if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
662 		return (EINVAL);
663 
664 	if (flags & LINUX_MAP_SHARED)
665 		bsd_args.flags |= MAP_SHARED;
666 	if (flags & LINUX_MAP_PRIVATE)
667 		bsd_args.flags |= MAP_PRIVATE;
668 	if (flags & LINUX_MAP_FIXED)
669 		bsd_args.flags |= MAP_FIXED;
670 	if (flags & LINUX_MAP_ANON)
671 		bsd_args.flags |= MAP_ANON;
672 	else
673 		bsd_args.flags |= MAP_NOSYNC;
674 	if (flags & LINUX_MAP_GROWSDOWN)
675 		bsd_args.flags |= MAP_STACK;
676 
677 	/*
678 	 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
679 	 * on Linux/i386. We do this to ensure maximum compatibility.
680 	 * Linux/ia64 does the same in i386 emulation mode.
681 	 */
682 	bsd_args.prot = prot;
683 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
684 		bsd_args.prot |= PROT_READ | PROT_EXEC;
685 
686 	/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
687 	bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
688 	if (bsd_args.fd != -1) {
689 		/*
690 		 * Linux follows Solaris mmap(2) description:
691 		 * The file descriptor fildes is opened with
692 		 * read permission, regardless of the
693 		 * protection options specified.
694 		 */
695 
696 		if ((error = fget(td, bsd_args.fd, &fp)) != 0)
697 			return (error);
698 		if (fp->f_type != DTYPE_VNODE) {
699 			fdrop(fp, td);
700 			return (EINVAL);
701 		}
702 
703 		/* Linux mmap() just fails for O_WRONLY files */
704 		if (!(fp->f_flag & FREAD)) {
705 			fdrop(fp, td);
706 			return (EACCES);
707 		}
708 
709 		fdrop(fp, td);
710 	}
711 
712 	if (flags & LINUX_MAP_GROWSDOWN) {
713 		/*
714 		 * The Linux MAP_GROWSDOWN option does not limit auto
715 		 * growth of the region.  Linux mmap with this option
716 		 * takes as addr the inital BOS, and as len, the initial
717 		 * region size.  It can then grow down from addr without
718 		 * limit.  However, linux threads has an implicit internal
719 		 * limit to stack size of STACK_SIZE.  Its just not
720 		 * enforced explicitly in linux.  But, here we impose
721 		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
722 		 * region, since we can do this with our mmap.
723 		 *
724 		 * Our mmap with MAP_STACK takes addr as the maximum
725 		 * downsize limit on BOS, and as len the max size of
726 		 * the region.  It them maps the top SGROWSIZ bytes,
727 		 * and auto grows the region down, up to the limit
728 		 * in addr.
729 		 *
730 		 * If we don't use the MAP_STACK option, the effect
731 		 * of this code is to allocate a stack region of a
732 		 * fixed size of (STACK_SIZE - GUARD_SIZE).
733 		 */
734 
735 		if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
736 			/*
737 			 * Some linux apps will attempt to mmap
738 			 * thread stacks near the top of their
739 			 * address space.  If their TOS is greater
740 			 * than vm_maxsaddr, vm_map_growstack()
741 			 * will confuse the thread stack with the
742 			 * process stack and deliver a SEGV if they
743 			 * attempt to grow the thread stack past their
744 			 * current stacksize rlimit.  To avoid this,
745 			 * adjust vm_maxsaddr upwards to reflect
746 			 * the current stacksize rlimit rather
747 			 * than the maximum possible stacksize.
748 			 * It would be better to adjust the
749 			 * mmap'ed region, but some apps do not check
750 			 * mmap's return value.
751 			 */
752 			PROC_LOCK(p);
753 			p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
754 			    lim_cur(p, RLIMIT_STACK);
755 			PROC_UNLOCK(p);
756 		}
757 
758 		/*
759 		 * This gives us our maximum stack size and a new BOS.
760 		 * If we're using VM_STACK, then mmap will just map
761 		 * the top SGROWSIZ bytes, and let the stack grow down
762 		 * to the limit at BOS.  If we're not using VM_STACK
763 		 * we map the full stack, since we don't have a way
764 		 * to autogrow it.
765 		 */
766 		if (len > STACK_SIZE - GUARD_SIZE) {
767 			bsd_args.addr = (caddr_t)PTRIN(addr);
768 			bsd_args.len = len;
769 		} else {
770 			bsd_args.addr = (caddr_t)PTRIN(addr) -
771 			    (STACK_SIZE - GUARD_SIZE - len);
772 			bsd_args.len = STACK_SIZE - GUARD_SIZE;
773 		}
774 	} else {
775 		bsd_args.addr = (caddr_t)PTRIN(addr);
776 		bsd_args.len  = len;
777 	}
778 	bsd_args.pos = pos;
779 
780 #ifdef DEBUG
781 	if (ldebug(mmap))
782 		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
783 		    __func__,
784 		    (void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
785 		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
786 #endif
787 	error = mmap(td, &bsd_args);
788 #ifdef DEBUG
789 	if (ldebug(mmap))
790 		printf("-> %s() return: 0x%x (0x%08x)\n",
791 			__func__, error, (u_int)td->td_retval[0]);
792 #endif
793 	return (error);
794 }
795 
796 int
797 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
798 {
799 	struct mprotect_args bsd_args;
800 
801 	bsd_args.addr = uap->addr;
802 	bsd_args.len = uap->len;
803 	bsd_args.prot = uap->prot;
804 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
805 		bsd_args.prot |= PROT_READ | PROT_EXEC;
806 	return (mprotect(td, &bsd_args));
807 }
808 
809 int
810 linux_pipe(struct thread *td, struct linux_pipe_args *args)
811 {
812 	int error;
813 	int fildes[2];
814 
815 #ifdef DEBUG
816 	if (ldebug(pipe))
817 		printf(ARGS(pipe, "*"));
818 #endif
819 
820 	error = kern_pipe(td, fildes);
821 	if (error)
822 		return (error);
823 
824 	/* XXX: Close descriptors on error. */
825 	return (copyout(fildes, args->pipefds, sizeof fildes));
826 }
827 
828 int
829 linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
830 {
831 	int error;
832 	struct i386_ioperm_args iia;
833 
834 	iia.start = args->start;
835 	iia.length = args->length;
836 	iia.enable = args->enable;
837 	error = i386_set_ioperm(td, &iia);
838 	return (error);
839 }
840 
841 int
842 linux_iopl(struct thread *td, struct linux_iopl_args *args)
843 {
844 	int error;
845 
846 	if (args->level < 0 || args->level > 3)
847 		return (EINVAL);
848 	if ((error = priv_check(td, PRIV_IO)) != 0)
849 		return (error);
850 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
851 		return (error);
852 	td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
853 	    (args->level * (PSL_IOPL / 3));
854 	return (0);
855 }
856 
857 int
858 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
859 {
860 	int error;
861 	struct i386_ldt_args ldt;
862 	struct l_descriptor ld;
863 	union descriptor desc;
864 	int size, written;
865 
866 	switch (uap->func) {
867 	case 0x00: /* read_ldt */
868 		ldt.start = 0;
869 		ldt.descs = uap->ptr;
870 		ldt.num = uap->bytecount / sizeof(union descriptor);
871 		error = i386_get_ldt(td, &ldt);
872 		td->td_retval[0] *= sizeof(union descriptor);
873 		break;
874 	case 0x02: /* read_default_ldt = 0 */
875 		size = 5*sizeof(struct l_desc_struct);
876 		if (size > uap->bytecount)
877 			size = uap->bytecount;
878 		for (written = error = 0; written < size && error == 0; written++)
879 			error = subyte((char *)uap->ptr + written, 0);
880 		td->td_retval[0] = written;
881 		break;
882 	case 0x01: /* write_ldt */
883 	case 0x11: /* write_ldt */
884 		if (uap->bytecount != sizeof(ld))
885 			return (EINVAL);
886 
887 		error = copyin(uap->ptr, &ld, sizeof(ld));
888 		if (error)
889 			return (error);
890 
891 		ldt.start = ld.entry_number;
892 		ldt.descs = &desc;
893 		ldt.num = 1;
894 		desc.sd.sd_lolimit = (ld.limit & 0x0000ffff);
895 		desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
896 		desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff);
897 		desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
898 		desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
899 			(ld.contents << 2);
900 		desc.sd.sd_dpl = 3;
901 		desc.sd.sd_p = (ld.seg_not_present ^ 1);
902 		desc.sd.sd_xx = 0;
903 		desc.sd.sd_def32 = ld.seg_32bit;
904 		desc.sd.sd_gran = ld.limit_in_pages;
905 		error = i386_set_ldt(td, &ldt, &desc);
906 		break;
907 	default:
908 		error = ENOSYS;
909 		break;
910 	}
911 
912 	if (error == EOPNOTSUPP) {
913 		printf("linux: modify_ldt needs kernel option USER_LDT\n");
914 		error = ENOSYS;
915 	}
916 
917 	return (error);
918 }
919 
920 int
921 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
922 {
923 	l_osigaction_t osa;
924 	l_sigaction_t act, oact;
925 	int error;
926 
927 #ifdef DEBUG
928 	if (ldebug(sigaction))
929 		printf(ARGS(sigaction, "%d, %p, %p"),
930 		    args->sig, (void *)args->nsa, (void *)args->osa);
931 #endif
932 
933 	if (args->nsa != NULL) {
934 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
935 		if (error)
936 			return (error);
937 		act.lsa_handler = osa.lsa_handler;
938 		act.lsa_flags = osa.lsa_flags;
939 		act.lsa_restorer = osa.lsa_restorer;
940 		LINUX_SIGEMPTYSET(act.lsa_mask);
941 		act.lsa_mask.__bits[0] = osa.lsa_mask;
942 	}
943 
944 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
945 	    args->osa ? &oact : NULL);
946 
947 	if (args->osa != NULL && !error) {
948 		osa.lsa_handler = oact.lsa_handler;
949 		osa.lsa_flags = oact.lsa_flags;
950 		osa.lsa_restorer = oact.lsa_restorer;
951 		osa.lsa_mask = oact.lsa_mask.__bits[0];
952 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
953 	}
954 
955 	return (error);
956 }
957 
958 /*
959  * Linux has two extra args, restart and oldmask.  We dont use these,
960  * but it seems that "restart" is actually a context pointer that
961  * enables the signal to happen with a different register set.
962  */
963 int
964 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
965 {
966 	sigset_t sigmask;
967 	l_sigset_t mask;
968 
969 #ifdef DEBUG
970 	if (ldebug(sigsuspend))
971 		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
972 #endif
973 
974 	LINUX_SIGEMPTYSET(mask);
975 	mask.__bits[0] = args->mask;
976 	linux_to_bsd_sigset(&mask, &sigmask);
977 	return (kern_sigsuspend(td, sigmask));
978 }
979 
980 int
981 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
982 {
983 	l_sigset_t lmask;
984 	sigset_t sigmask;
985 	int error;
986 
987 #ifdef DEBUG
988 	if (ldebug(rt_sigsuspend))
989 		printf(ARGS(rt_sigsuspend, "%p, %d"),
990 		    (void *)uap->newset, uap->sigsetsize);
991 #endif
992 
993 	if (uap->sigsetsize != sizeof(l_sigset_t))
994 		return (EINVAL);
995 
996 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
997 	if (error)
998 		return (error);
999 
1000 	linux_to_bsd_sigset(&lmask, &sigmask);
1001 	return (kern_sigsuspend(td, sigmask));
1002 }
1003 
1004 int
1005 linux_pause(struct thread *td, struct linux_pause_args *args)
1006 {
1007 	struct proc *p = td->td_proc;
1008 	sigset_t sigmask;
1009 
1010 #ifdef DEBUG
1011 	if (ldebug(pause))
1012 		printf(ARGS(pause, ""));
1013 #endif
1014 
1015 	PROC_LOCK(p);
1016 	sigmask = td->td_sigmask;
1017 	PROC_UNLOCK(p);
1018 	return (kern_sigsuspend(td, sigmask));
1019 }
1020 
1021 int
1022 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
1023 {
1024 	stack_t ss, oss;
1025 	l_stack_t lss;
1026 	int error;
1027 
1028 #ifdef DEBUG
1029 	if (ldebug(sigaltstack))
1030 		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
1031 #endif
1032 
1033 	if (uap->uss != NULL) {
1034 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
1035 		if (error)
1036 			return (error);
1037 
1038 		ss.ss_sp = lss.ss_sp;
1039 		ss.ss_size = lss.ss_size;
1040 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
1041 	}
1042 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
1043 	    (uap->uoss != NULL) ? &oss : NULL);
1044 	if (!error && uap->uoss != NULL) {
1045 		lss.ss_sp = oss.ss_sp;
1046 		lss.ss_size = oss.ss_size;
1047 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
1048 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
1049 	}
1050 
1051 	return (error);
1052 }
1053 
1054 int
1055 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
1056 {
1057 	struct ftruncate_args sa;
1058 
1059 #ifdef DEBUG
1060 	if (ldebug(ftruncate64))
1061 		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
1062 		    (intmax_t)args->length);
1063 #endif
1064 
1065 	sa.fd = args->fd;
1066 	sa.length = args->length;
1067 	return ftruncate(td, &sa);
1068 }
1069 
1070 int
1071 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args)
1072 {
1073 	struct l_user_desc info;
1074 	int error;
1075 	int idx;
1076 	int a[2];
1077 	struct segment_descriptor sd;
1078 
1079 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1080 	if (error)
1081 		return (error);
1082 
1083 #ifdef DEBUG
1084 	if (ldebug(set_thread_area))
1085 	   	printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"),
1086 		      info.entry_number,
1087       		      info.base_addr,
1088       		      info.limit,
1089       		      info.seg_32bit,
1090 		      info.contents,
1091       		      info.read_exec_only,
1092       		      info.limit_in_pages,
1093       		      info.seg_not_present,
1094       		      info.useable);
1095 #endif
1096 
1097 	idx = info.entry_number;
1098 	/*
1099 	 * Semantics of linux version: every thread in the system has array of
1100 	 * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This
1101 	 * syscall loads one of the selected tls decriptors with a value and
1102 	 * also loads GDT descriptors 6, 7 and 8 with the content of the
1103 	 * per-thread descriptors.
1104 	 *
1105 	 * Semantics of fbsd version: I think we can ignore that linux has 3
1106 	 * per-thread descriptors and use just the 1st one. The tls_array[]
1107 	 * is used only in set/get-thread_area() syscalls and for loading the
1108 	 * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so
1109 	 * we will load just one.
1110 	 *
1111 	 * XXX: this doesn't work when a user space process tries to use more
1112 	 * than 1 TLS segment. Comment in the linux sources says wine might do
1113 	 * this.
1114 	 */
1115 
1116 	/*
1117 	 * we support just GLIBC TLS now
1118 	 * we should let 3 proceed as well because we use this segment so
1119 	 * if code does two subsequent calls it should succeed
1120 	 */
1121 	if (idx != 6 && idx != -1 && idx != 3)
1122 		return (EINVAL);
1123 
1124 	/*
1125 	 * we have to copy out the GDT entry we use
1126 	 * FreeBSD uses GDT entry #3 for storing %gs so load that
1127 	 *
1128 	 * XXX: what if a user space program doesn't check this value and tries
1129 	 * to use 6, 7 or 8?
1130 	 */
1131 	idx = info.entry_number = 3;
1132 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1133 	if (error)
1134 		return (error);
1135 
1136 	if (LINUX_LDT_empty(&info)) {
1137 		a[0] = 0;
1138 		a[1] = 0;
1139 	} else {
1140 		a[0] = LINUX_LDT_entry_a(&info);
1141 		a[1] = LINUX_LDT_entry_b(&info);
1142 	}
1143 
1144 	memcpy(&sd, &a, sizeof(a));
1145 #ifdef DEBUG
1146 	if (ldebug(set_thread_area))
1147 	   	printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
1148 			sd.sd_hibase,
1149 			sd.sd_lolimit,
1150 			sd.sd_hilimit,
1151 			sd.sd_type,
1152 			sd.sd_dpl,
1153 			sd.sd_p,
1154 			sd.sd_xx,
1155 			sd.sd_def32,
1156 			sd.sd_gran);
1157 #endif
1158 
1159 	/* this is taken from i386 version of cpu_set_user_tls() */
1160 	critical_enter();
1161 	/* set %gs */
1162 	td->td_pcb->pcb_gsd = sd;
1163 	PCPU_GET(fsgs_gdt)[1] = sd;
1164 	load_gs(GSEL(GUGS_SEL, SEL_UPL));
1165 	critical_exit();
1166 
1167 	return (0);
1168 }
1169 
1170 int
1171 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args)
1172 {
1173 
1174 	struct l_user_desc info;
1175 	int error;
1176 	int idx;
1177 	struct l_desc_struct desc;
1178 	struct segment_descriptor sd;
1179 
1180 #ifdef DEBUG
1181 	if (ldebug(get_thread_area))
1182 		printf(ARGS(get_thread_area, "%p"), args->desc);
1183 #endif
1184 
1185 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1186 	if (error)
1187 		return (error);
1188 
1189 	idx = info.entry_number;
1190 	/* XXX: I am not sure if we want 3 to be allowed too. */
1191 	if (idx != 6 && idx != 3)
1192 		return (EINVAL);
1193 
1194 	idx = 3;
1195 
1196 	memset(&info, 0, sizeof(info));
1197 
1198 	sd = PCPU_GET(fsgs_gdt)[1];
1199 
1200 	memcpy(&desc, &sd, sizeof(desc));
1201 
1202 	info.entry_number = idx;
1203 	info.base_addr = LINUX_GET_BASE(&desc);
1204 	info.limit = LINUX_GET_LIMIT(&desc);
1205 	info.seg_32bit = LINUX_GET_32BIT(&desc);
1206 	info.contents = LINUX_GET_CONTENTS(&desc);
1207 	info.read_exec_only = !LINUX_GET_WRITABLE(&desc);
1208 	info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc);
1209 	info.seg_not_present = !LINUX_GET_PRESENT(&desc);
1210 	info.useable = LINUX_GET_USEABLE(&desc);
1211 
1212 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1213 	if (error)
1214 	   	return (EFAULT);
1215 
1216 	return (0);
1217 }
1218 
1219 /* copied from kern/kern_time.c */
1220 int
1221 linux_timer_create(struct thread *td, struct linux_timer_create_args *args)
1222 {
1223    	return ktimer_create(td, (struct ktimer_create_args *) args);
1224 }
1225 
1226 int
1227 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args)
1228 {
1229    	return ktimer_settime(td, (struct ktimer_settime_args *) args);
1230 }
1231 
1232 int
1233 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args)
1234 {
1235    	return ktimer_gettime(td, (struct ktimer_gettime_args *) args);
1236 }
1237 
1238 int
1239 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args)
1240 {
1241    	return ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args);
1242 }
1243 
1244 int
1245 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args)
1246 {
1247    	return ktimer_delete(td, (struct ktimer_delete_args *) args);
1248 }
1249 
1250 /* XXX: this wont work with module - convert it */
1251 int
1252 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
1253 {
1254 #ifdef P1003_1B_MQUEUE
1255    	return kmq_open(td, (struct kmq_open_args *) args);
1256 #else
1257 	return (ENOSYS);
1258 #endif
1259 }
1260 
1261 int
1262 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
1263 {
1264 #ifdef P1003_1B_MQUEUE
1265    	return kmq_unlink(td, (struct kmq_unlink_args *) args);
1266 #else
1267 	return (ENOSYS);
1268 #endif
1269 }
1270 
1271 int
1272 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
1273 {
1274 #ifdef P1003_1B_MQUEUE
1275    	return kmq_timedsend(td, (struct kmq_timedsend_args *) args);
1276 #else
1277 	return (ENOSYS);
1278 #endif
1279 }
1280 
1281 int
1282 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
1283 {
1284 #ifdef P1003_1B_MQUEUE
1285    	return kmq_timedreceive(td, (struct kmq_timedreceive_args *) args);
1286 #else
1287 	return (ENOSYS);
1288 #endif
1289 }
1290 
1291 int
1292 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
1293 {
1294 #ifdef P1003_1B_MQUEUE
1295 	return kmq_notify(td, (struct kmq_notify_args *) args);
1296 #else
1297 	return (ENOSYS);
1298 #endif
1299 }
1300 
1301 int
1302 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
1303 {
1304 #ifdef P1003_1B_MQUEUE
1305    	return kmq_setattr(td, (struct kmq_setattr_args *) args);
1306 #else
1307 	return (ENOSYS);
1308 #endif
1309 }
1310 
1311