1 /*- 2 * Copyright (c) 2000 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer 10 * in this position and unchanged. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/file.h> 35 #include <sys/fcntl.h> 36 #include <sys/imgact.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mman.h> 40 #include <sys/mutex.h> 41 #include <sys/sx.h> 42 #include <sys/priv.h> 43 #include <sys/proc.h> 44 #include <sys/queue.h> 45 #include <sys/resource.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/sysproto.h> 50 #include <sys/unistd.h> 51 #include <sys/wait.h> 52 #include <sys/sched.h> 53 54 #include <machine/frame.h> 55 #include <machine/psl.h> 56 #include <machine/segments.h> 57 #include <machine/sysarch.h> 58 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 63 #include <i386/linux/linux.h> 64 #include <i386/linux/linux_proto.h> 65 #include <compat/linux/linux_ipc.h> 66 #include <compat/linux/linux_signal.h> 67 #include <compat/linux/linux_util.h> 68 #include <compat/linux/linux_emul.h> 69 70 #include <i386/include/pcb.h> /* needed for pcb definition in linux_set_thread_area */ 71 72 #include "opt_posix.h" 73 74 extern struct sysentvec elf32_freebsd_sysvec; /* defined in i386/i386/elf_machdep.c */ 75 76 struct l_descriptor { 77 l_uint entry_number; 78 l_ulong base_addr; 79 l_uint limit; 80 l_uint seg_32bit:1; 81 l_uint contents:2; 82 l_uint read_exec_only:1; 83 l_uint limit_in_pages:1; 84 l_uint seg_not_present:1; 85 l_uint useable:1; 86 }; 87 88 struct l_old_select_argv { 89 l_int nfds; 90 l_fd_set *readfds; 91 l_fd_set *writefds; 92 l_fd_set *exceptfds; 93 struct l_timeval *timeout; 94 }; 95 96 static int linux_mmap_common(struct thread *td, l_uintptr_t addr, 97 l_size_t len, l_int prot, l_int flags, l_int fd, 98 l_loff_t pos); 99 100 int 101 linux_to_bsd_sigaltstack(int lsa) 102 { 103 int bsa = 0; 104 105 if (lsa & LINUX_SS_DISABLE) 106 bsa |= SS_DISABLE; 107 if (lsa & LINUX_SS_ONSTACK) 108 bsa |= SS_ONSTACK; 109 return (bsa); 110 } 111 112 int 113 bsd_to_linux_sigaltstack(int bsa) 114 { 115 int lsa = 0; 116 117 if (bsa & SS_DISABLE) 118 lsa |= LINUX_SS_DISABLE; 119 if (bsa & SS_ONSTACK) 120 lsa |= LINUX_SS_ONSTACK; 121 return (lsa); 122 } 123 124 int 125 linux_execve(struct thread *td, struct linux_execve_args *args) 126 { 127 int error; 128 char *newpath; 129 struct image_args eargs; 130 131 LCONVPATHEXIST(td, args->path, &newpath); 132 133 #ifdef DEBUG 134 if (ldebug(execve)) 135 printf(ARGS(execve, "%s"), newpath); 136 #endif 137 138 error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE, 139 args->argp, args->envp); 140 free(newpath, M_TEMP); 141 if (error == 0) 142 error = kern_execve(td, &eargs, NULL); 143 if (error == 0) 144 /* linux process can exec fbsd one, dont attempt 145 * to create emuldata for such process using 146 * linux_proc_init, this leads to a panic on KASSERT 147 * because such process has p->p_emuldata == NULL 148 */ 149 if (td->td_proc->p_sysent == &elf_linux_sysvec) 150 error = linux_proc_init(td, 0, 0); 151 return (error); 152 } 153 154 struct l_ipc_kludge { 155 struct l_msgbuf *msgp; 156 l_long msgtyp; 157 }; 158 159 int 160 linux_ipc(struct thread *td, struct linux_ipc_args *args) 161 { 162 163 switch (args->what & 0xFFFF) { 164 case LINUX_SEMOP: { 165 struct linux_semop_args a; 166 167 a.semid = args->arg1; 168 a.tsops = args->ptr; 169 a.nsops = args->arg2; 170 return (linux_semop(td, &a)); 171 } 172 case LINUX_SEMGET: { 173 struct linux_semget_args a; 174 175 a.key = args->arg1; 176 a.nsems = args->arg2; 177 a.semflg = args->arg3; 178 return (linux_semget(td, &a)); 179 } 180 case LINUX_SEMCTL: { 181 struct linux_semctl_args a; 182 int error; 183 184 a.semid = args->arg1; 185 a.semnum = args->arg2; 186 a.cmd = args->arg3; 187 error = copyin(args->ptr, &a.arg, sizeof(a.arg)); 188 if (error) 189 return (error); 190 return (linux_semctl(td, &a)); 191 } 192 case LINUX_MSGSND: { 193 struct linux_msgsnd_args a; 194 195 a.msqid = args->arg1; 196 a.msgp = args->ptr; 197 a.msgsz = args->arg2; 198 a.msgflg = args->arg3; 199 return (linux_msgsnd(td, &a)); 200 } 201 case LINUX_MSGRCV: { 202 struct linux_msgrcv_args a; 203 204 a.msqid = args->arg1; 205 a.msgsz = args->arg2; 206 a.msgflg = args->arg3; 207 if ((args->what >> 16) == 0) { 208 struct l_ipc_kludge tmp; 209 int error; 210 211 if (args->ptr == NULL) 212 return (EINVAL); 213 error = copyin(args->ptr, &tmp, sizeof(tmp)); 214 if (error) 215 return (error); 216 a.msgp = tmp.msgp; 217 a.msgtyp = tmp.msgtyp; 218 } else { 219 a.msgp = args->ptr; 220 a.msgtyp = args->arg5; 221 } 222 return (linux_msgrcv(td, &a)); 223 } 224 case LINUX_MSGGET: { 225 struct linux_msgget_args a; 226 227 a.key = args->arg1; 228 a.msgflg = args->arg2; 229 return (linux_msgget(td, &a)); 230 } 231 case LINUX_MSGCTL: { 232 struct linux_msgctl_args a; 233 234 a.msqid = args->arg1; 235 a.cmd = args->arg2; 236 a.buf = args->ptr; 237 return (linux_msgctl(td, &a)); 238 } 239 case LINUX_SHMAT: { 240 struct linux_shmat_args a; 241 242 a.shmid = args->arg1; 243 a.shmaddr = args->ptr; 244 a.shmflg = args->arg2; 245 a.raddr = (l_ulong *)args->arg3; 246 return (linux_shmat(td, &a)); 247 } 248 case LINUX_SHMDT: { 249 struct linux_shmdt_args a; 250 251 a.shmaddr = args->ptr; 252 return (linux_shmdt(td, &a)); 253 } 254 case LINUX_SHMGET: { 255 struct linux_shmget_args a; 256 257 a.key = args->arg1; 258 a.size = args->arg2; 259 a.shmflg = args->arg3; 260 return (linux_shmget(td, &a)); 261 } 262 case LINUX_SHMCTL: { 263 struct linux_shmctl_args a; 264 265 a.shmid = args->arg1; 266 a.cmd = args->arg2; 267 a.buf = args->ptr; 268 return (linux_shmctl(td, &a)); 269 } 270 default: 271 break; 272 } 273 274 return (EINVAL); 275 } 276 277 int 278 linux_old_select(struct thread *td, struct linux_old_select_args *args) 279 { 280 struct l_old_select_argv linux_args; 281 struct linux_select_args newsel; 282 int error; 283 284 #ifdef DEBUG 285 if (ldebug(old_select)) 286 printf(ARGS(old_select, "%p"), args->ptr); 287 #endif 288 289 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 290 if (error) 291 return (error); 292 293 newsel.nfds = linux_args.nfds; 294 newsel.readfds = linux_args.readfds; 295 newsel.writefds = linux_args.writefds; 296 newsel.exceptfds = linux_args.exceptfds; 297 newsel.timeout = linux_args.timeout; 298 return (linux_select(td, &newsel)); 299 } 300 301 int 302 linux_fork(struct thread *td, struct linux_fork_args *args) 303 { 304 int error; 305 struct proc *p2; 306 struct thread *td2; 307 308 #ifdef DEBUG 309 if (ldebug(fork)) 310 printf(ARGS(fork, "")); 311 #endif 312 313 if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0) 314 return (error); 315 316 if (error == 0) { 317 td->td_retval[0] = p2->p_pid; 318 td->td_retval[1] = 0; 319 } 320 321 if (td->td_retval[1] == 1) 322 td->td_retval[0] = 0; 323 error = linux_proc_init(td, td->td_retval[0], 0); 324 if (error) 325 return (error); 326 327 td2 = FIRST_THREAD_IN_PROC(p2); 328 329 /* 330 * Make this runnable after we are finished with it. 331 */ 332 thread_lock(td2); 333 TD_SET_CAN_RUN(td2); 334 sched_add(td2, SRQ_BORING); 335 thread_unlock(td2); 336 337 return (0); 338 } 339 340 int 341 linux_vfork(struct thread *td, struct linux_vfork_args *args) 342 { 343 int error; 344 struct proc *p2; 345 struct thread *td2; 346 347 #ifdef DEBUG 348 if (ldebug(vfork)) 349 printf(ARGS(vfork, "")); 350 #endif 351 352 /* exclude RFPPWAIT */ 353 if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0) 354 return (error); 355 if (error == 0) { 356 td->td_retval[0] = p2->p_pid; 357 td->td_retval[1] = 0; 358 } 359 /* Are we the child? */ 360 if (td->td_retval[1] == 1) 361 td->td_retval[0] = 0; 362 error = linux_proc_init(td, td->td_retval[0], 0); 363 if (error) 364 return (error); 365 366 PROC_LOCK(p2); 367 p2->p_flag |= P_PPWAIT; 368 PROC_UNLOCK(p2); 369 370 td2 = FIRST_THREAD_IN_PROC(p2); 371 372 /* 373 * Make this runnable after we are finished with it. 374 */ 375 thread_lock(td2); 376 TD_SET_CAN_RUN(td2); 377 sched_add(td2, SRQ_BORING); 378 thread_unlock(td2); 379 380 /* wait for the children to exit, ie. emulate vfork */ 381 PROC_LOCK(p2); 382 while (p2->p_flag & P_PPWAIT) 383 cv_wait(&p2->p_pwait, &p2->p_mtx); 384 PROC_UNLOCK(p2); 385 386 return (0); 387 } 388 389 int 390 linux_clone(struct thread *td, struct linux_clone_args *args) 391 { 392 int error, ff = RFPROC | RFSTOPPED; 393 struct proc *p2; 394 struct thread *td2; 395 int exit_signal; 396 struct linux_emuldata *em; 397 398 #ifdef DEBUG 399 if (ldebug(clone)) { 400 printf(ARGS(clone, "flags %x, stack %x, parent tid: %x, child tid: %x"), 401 (unsigned int)args->flags, (unsigned int)args->stack, 402 (unsigned int)args->parent_tidptr, (unsigned int)args->child_tidptr); 403 } 404 #endif 405 406 exit_signal = args->flags & 0x000000ff; 407 if (LINUX_SIG_VALID(exit_signal)) { 408 if (exit_signal <= LINUX_SIGTBLSZ) 409 exit_signal = 410 linux_to_bsd_signal[_SIG_IDX(exit_signal)]; 411 } else if (exit_signal != 0) 412 return (EINVAL); 413 414 if (args->flags & LINUX_CLONE_VM) 415 ff |= RFMEM; 416 if (args->flags & LINUX_CLONE_SIGHAND) 417 ff |= RFSIGSHARE; 418 /* 419 * XXX: in linux sharing of fs info (chroot/cwd/umask) 420 * and open files is independant. in fbsd its in one 421 * structure but in reality it doesn't cause any problems 422 * because both of these flags are usually set together. 423 */ 424 if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS))) 425 ff |= RFFDG; 426 427 /* 428 * Attempt to detect when linux_clone(2) is used for creating 429 * kernel threads. Unfortunately despite the existence of the 430 * CLONE_THREAD flag, version of linuxthreads package used in 431 * most popular distros as of beginning of 2005 doesn't make 432 * any use of it. Therefore, this detection relies on 433 * empirical observation that linuxthreads sets certain 434 * combination of flags, so that we can make more or less 435 * precise detection and notify the FreeBSD kernel that several 436 * processes are in fact part of the same threading group, so 437 * that special treatment is necessary for signal delivery 438 * between those processes and fd locking. 439 */ 440 if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS) 441 ff |= RFTHREAD; 442 443 if (args->flags & LINUX_CLONE_PARENT_SETTID) 444 if (args->parent_tidptr == NULL) 445 return (EINVAL); 446 447 error = fork1(td, ff, 0, &p2); 448 if (error) 449 return (error); 450 451 if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) { 452 sx_xlock(&proctree_lock); 453 PROC_LOCK(p2); 454 proc_reparent(p2, td->td_proc->p_pptr); 455 PROC_UNLOCK(p2); 456 sx_xunlock(&proctree_lock); 457 } 458 459 /* create the emuldata */ 460 error = linux_proc_init(td, p2->p_pid, args->flags); 461 /* reference it - no need to check this */ 462 em = em_find(p2, EMUL_DOLOCK); 463 KASSERT(em != NULL, ("clone: emuldata not found.\n")); 464 /* and adjust it */ 465 466 if (args->flags & LINUX_CLONE_THREAD) { 467 /* XXX: linux mangles pgrp and pptr somehow 468 * I think it might be this but I am not sure. 469 */ 470 #ifdef notyet 471 PROC_LOCK(p2); 472 p2->p_pgrp = td->td_proc->p_pgrp; 473 PROC_UNLOCK(p2); 474 #endif 475 exit_signal = 0; 476 } 477 478 if (args->flags & LINUX_CLONE_CHILD_SETTID) 479 em->child_set_tid = args->child_tidptr; 480 else 481 em->child_set_tid = NULL; 482 483 if (args->flags & LINUX_CLONE_CHILD_CLEARTID) 484 em->child_clear_tid = args->child_tidptr; 485 else 486 em->child_clear_tid = NULL; 487 488 EMUL_UNLOCK(&emul_lock); 489 490 if (args->flags & LINUX_CLONE_PARENT_SETTID) { 491 error = copyout(&p2->p_pid, args->parent_tidptr, sizeof(p2->p_pid)); 492 if (error) 493 printf(LMSG("copyout failed!")); 494 } 495 496 PROC_LOCK(p2); 497 p2->p_sigparent = exit_signal; 498 PROC_UNLOCK(p2); 499 td2 = FIRST_THREAD_IN_PROC(p2); 500 /* 501 * in a case of stack = NULL we are supposed to COW calling process stack 502 * this is what normal fork() does so we just keep the tf_esp arg intact 503 */ 504 if (args->stack) 505 td2->td_frame->tf_esp = (unsigned int)args->stack; 506 507 if (args->flags & LINUX_CLONE_SETTLS) { 508 struct l_user_desc info; 509 int idx; 510 int a[2]; 511 struct segment_descriptor sd; 512 513 error = copyin((void *)td->td_frame->tf_esi, &info, sizeof(struct l_user_desc)); 514 if (error) { 515 printf(LMSG("copyin failed!")); 516 } else { 517 518 idx = info.entry_number; 519 520 /* 521 * looks like we're getting the idx we returned 522 * in the set_thread_area() syscall 523 */ 524 if (idx != 6 && idx != 3) { 525 printf(LMSG("resetting idx!")); 526 idx = 3; 527 } 528 529 /* this doesnt happen in practice */ 530 if (idx == 6) { 531 /* we might copy out the entry_number as 3 */ 532 info.entry_number = 3; 533 error = copyout(&info, (void *) td->td_frame->tf_esi, sizeof(struct l_user_desc)); 534 if (error) 535 printf(LMSG("copyout failed!")); 536 } 537 538 a[0] = LINUX_LDT_entry_a(&info); 539 a[1] = LINUX_LDT_entry_b(&info); 540 541 memcpy(&sd, &a, sizeof(a)); 542 #ifdef DEBUG 543 if (ldebug(clone)) 544 printf("Segment created in clone with CLONE_SETTLS: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase, 545 sd.sd_hibase, 546 sd.sd_lolimit, 547 sd.sd_hilimit, 548 sd.sd_type, 549 sd.sd_dpl, 550 sd.sd_p, 551 sd.sd_xx, 552 sd.sd_def32, 553 sd.sd_gran); 554 #endif 555 556 /* set %gs */ 557 td2->td_pcb->pcb_gsd = sd; 558 td2->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL); 559 } 560 } 561 562 #ifdef DEBUG 563 if (ldebug(clone)) 564 printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"), 565 (long)p2->p_pid, args->stack, exit_signal); 566 #endif 567 if (args->flags & LINUX_CLONE_VFORK) { 568 PROC_LOCK(p2); 569 p2->p_flag |= P_PPWAIT; 570 PROC_UNLOCK(p2); 571 } 572 573 /* 574 * Make this runnable after we are finished with it. 575 */ 576 thread_lock(td2); 577 TD_SET_CAN_RUN(td2); 578 sched_add(td2, SRQ_BORING); 579 thread_unlock(td2); 580 581 td->td_retval[0] = p2->p_pid; 582 td->td_retval[1] = 0; 583 584 if (args->flags & LINUX_CLONE_VFORK) { 585 /* wait for the children to exit, ie. emulate vfork */ 586 PROC_LOCK(p2); 587 while (p2->p_flag & P_PPWAIT) 588 cv_wait(&p2->p_pwait, &p2->p_mtx); 589 PROC_UNLOCK(p2); 590 } 591 592 return (0); 593 } 594 595 #define STACK_SIZE (2 * 1024 * 1024) 596 #define GUARD_SIZE (4 * PAGE_SIZE) 597 598 int 599 linux_mmap2(struct thread *td, struct linux_mmap2_args *args) 600 { 601 602 #ifdef DEBUG 603 if (ldebug(mmap2)) 604 printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), 605 (void *)args->addr, args->len, args->prot, 606 args->flags, args->fd, args->pgoff); 607 #endif 608 609 return (linux_mmap_common(td, args->addr, args->len, args->prot, 610 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * 611 PAGE_SIZE)); 612 } 613 614 int 615 linux_mmap(struct thread *td, struct linux_mmap_args *args) 616 { 617 int error; 618 struct l_mmap_argv linux_args; 619 620 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 621 if (error) 622 return (error); 623 624 #ifdef DEBUG 625 if (ldebug(mmap)) 626 printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), 627 (void *)linux_args.addr, linux_args.len, linux_args.prot, 628 linux_args.flags, linux_args.fd, linux_args.pgoff); 629 #endif 630 631 return (linux_mmap_common(td, linux_args.addr, linux_args.len, 632 linux_args.prot, linux_args.flags, linux_args.fd, 633 (uint32_t)linux_args.pgoff)); 634 } 635 636 static int 637 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, 638 l_int flags, l_int fd, l_loff_t pos) 639 { 640 struct proc *p = td->td_proc; 641 struct mmap_args /* { 642 caddr_t addr; 643 size_t len; 644 int prot; 645 int flags; 646 int fd; 647 long pad; 648 off_t pos; 649 } */ bsd_args; 650 int error; 651 struct file *fp; 652 653 error = 0; 654 bsd_args.flags = 0; 655 fp = NULL; 656 657 /* 658 * Linux mmap(2): 659 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE 660 */ 661 if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE))) 662 return (EINVAL); 663 664 if (flags & LINUX_MAP_SHARED) 665 bsd_args.flags |= MAP_SHARED; 666 if (flags & LINUX_MAP_PRIVATE) 667 bsd_args.flags |= MAP_PRIVATE; 668 if (flags & LINUX_MAP_FIXED) 669 bsd_args.flags |= MAP_FIXED; 670 if (flags & LINUX_MAP_ANON) 671 bsd_args.flags |= MAP_ANON; 672 else 673 bsd_args.flags |= MAP_NOSYNC; 674 if (flags & LINUX_MAP_GROWSDOWN) 675 bsd_args.flags |= MAP_STACK; 676 677 /* 678 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC 679 * on Linux/i386. We do this to ensure maximum compatibility. 680 * Linux/ia64 does the same in i386 emulation mode. 681 */ 682 bsd_args.prot = prot; 683 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 684 bsd_args.prot |= PROT_READ | PROT_EXEC; 685 686 /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ 687 bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd; 688 if (bsd_args.fd != -1) { 689 /* 690 * Linux follows Solaris mmap(2) description: 691 * The file descriptor fildes is opened with 692 * read permission, regardless of the 693 * protection options specified. 694 */ 695 696 if ((error = fget(td, bsd_args.fd, &fp)) != 0) 697 return (error); 698 if (fp->f_type != DTYPE_VNODE) { 699 fdrop(fp, td); 700 return (EINVAL); 701 } 702 703 /* Linux mmap() just fails for O_WRONLY files */ 704 if (!(fp->f_flag & FREAD)) { 705 fdrop(fp, td); 706 return (EACCES); 707 } 708 709 fdrop(fp, td); 710 } 711 712 if (flags & LINUX_MAP_GROWSDOWN) { 713 /* 714 * The Linux MAP_GROWSDOWN option does not limit auto 715 * growth of the region. Linux mmap with this option 716 * takes as addr the inital BOS, and as len, the initial 717 * region size. It can then grow down from addr without 718 * limit. However, linux threads has an implicit internal 719 * limit to stack size of STACK_SIZE. Its just not 720 * enforced explicitly in linux. But, here we impose 721 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack 722 * region, since we can do this with our mmap. 723 * 724 * Our mmap with MAP_STACK takes addr as the maximum 725 * downsize limit on BOS, and as len the max size of 726 * the region. It them maps the top SGROWSIZ bytes, 727 * and auto grows the region down, up to the limit 728 * in addr. 729 * 730 * If we don't use the MAP_STACK option, the effect 731 * of this code is to allocate a stack region of a 732 * fixed size of (STACK_SIZE - GUARD_SIZE). 733 */ 734 735 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) { 736 /* 737 * Some linux apps will attempt to mmap 738 * thread stacks near the top of their 739 * address space. If their TOS is greater 740 * than vm_maxsaddr, vm_map_growstack() 741 * will confuse the thread stack with the 742 * process stack and deliver a SEGV if they 743 * attempt to grow the thread stack past their 744 * current stacksize rlimit. To avoid this, 745 * adjust vm_maxsaddr upwards to reflect 746 * the current stacksize rlimit rather 747 * than the maximum possible stacksize. 748 * It would be better to adjust the 749 * mmap'ed region, but some apps do not check 750 * mmap's return value. 751 */ 752 PROC_LOCK(p); 753 p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - 754 lim_cur(p, RLIMIT_STACK); 755 PROC_UNLOCK(p); 756 } 757 758 /* 759 * This gives us our maximum stack size and a new BOS. 760 * If we're using VM_STACK, then mmap will just map 761 * the top SGROWSIZ bytes, and let the stack grow down 762 * to the limit at BOS. If we're not using VM_STACK 763 * we map the full stack, since we don't have a way 764 * to autogrow it. 765 */ 766 if (len > STACK_SIZE - GUARD_SIZE) { 767 bsd_args.addr = (caddr_t)PTRIN(addr); 768 bsd_args.len = len; 769 } else { 770 bsd_args.addr = (caddr_t)PTRIN(addr) - 771 (STACK_SIZE - GUARD_SIZE - len); 772 bsd_args.len = STACK_SIZE - GUARD_SIZE; 773 } 774 } else { 775 bsd_args.addr = (caddr_t)PTRIN(addr); 776 bsd_args.len = len; 777 } 778 bsd_args.pos = pos; 779 780 #ifdef DEBUG 781 if (ldebug(mmap)) 782 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", 783 __func__, 784 (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, 785 bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); 786 #endif 787 error = mmap(td, &bsd_args); 788 #ifdef DEBUG 789 if (ldebug(mmap)) 790 printf("-> %s() return: 0x%x (0x%08x)\n", 791 __func__, error, (u_int)td->td_retval[0]); 792 #endif 793 return (error); 794 } 795 796 int 797 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 798 { 799 struct mprotect_args bsd_args; 800 801 bsd_args.addr = uap->addr; 802 bsd_args.len = uap->len; 803 bsd_args.prot = uap->prot; 804 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 805 bsd_args.prot |= PROT_READ | PROT_EXEC; 806 return (mprotect(td, &bsd_args)); 807 } 808 809 int 810 linux_pipe(struct thread *td, struct linux_pipe_args *args) 811 { 812 int error; 813 int fildes[2]; 814 815 #ifdef DEBUG 816 if (ldebug(pipe)) 817 printf(ARGS(pipe, "*")); 818 #endif 819 820 error = kern_pipe(td, fildes); 821 if (error) 822 return (error); 823 824 /* XXX: Close descriptors on error. */ 825 return (copyout(fildes, args->pipefds, sizeof fildes)); 826 } 827 828 int 829 linux_ioperm(struct thread *td, struct linux_ioperm_args *args) 830 { 831 int error; 832 struct i386_ioperm_args iia; 833 834 iia.start = args->start; 835 iia.length = args->length; 836 iia.enable = args->enable; 837 error = i386_set_ioperm(td, &iia); 838 return (error); 839 } 840 841 int 842 linux_iopl(struct thread *td, struct linux_iopl_args *args) 843 { 844 int error; 845 846 if (args->level < 0 || args->level > 3) 847 return (EINVAL); 848 if ((error = priv_check(td, PRIV_IO)) != 0) 849 return (error); 850 if ((error = securelevel_gt(td->td_ucred, 0)) != 0) 851 return (error); 852 td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | 853 (args->level * (PSL_IOPL / 3)); 854 return (0); 855 } 856 857 int 858 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) 859 { 860 int error; 861 struct i386_ldt_args ldt; 862 struct l_descriptor ld; 863 union descriptor desc; 864 int size, written; 865 866 switch (uap->func) { 867 case 0x00: /* read_ldt */ 868 ldt.start = 0; 869 ldt.descs = uap->ptr; 870 ldt.num = uap->bytecount / sizeof(union descriptor); 871 error = i386_get_ldt(td, &ldt); 872 td->td_retval[0] *= sizeof(union descriptor); 873 break; 874 case 0x02: /* read_default_ldt = 0 */ 875 size = 5*sizeof(struct l_desc_struct); 876 if (size > uap->bytecount) 877 size = uap->bytecount; 878 for (written = error = 0; written < size && error == 0; written++) 879 error = subyte((char *)uap->ptr + written, 0); 880 td->td_retval[0] = written; 881 break; 882 case 0x01: /* write_ldt */ 883 case 0x11: /* write_ldt */ 884 if (uap->bytecount != sizeof(ld)) 885 return (EINVAL); 886 887 error = copyin(uap->ptr, &ld, sizeof(ld)); 888 if (error) 889 return (error); 890 891 ldt.start = ld.entry_number; 892 ldt.descs = &desc; 893 ldt.num = 1; 894 desc.sd.sd_lolimit = (ld.limit & 0x0000ffff); 895 desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; 896 desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff); 897 desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; 898 desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | 899 (ld.contents << 2); 900 desc.sd.sd_dpl = 3; 901 desc.sd.sd_p = (ld.seg_not_present ^ 1); 902 desc.sd.sd_xx = 0; 903 desc.sd.sd_def32 = ld.seg_32bit; 904 desc.sd.sd_gran = ld.limit_in_pages; 905 error = i386_set_ldt(td, &ldt, &desc); 906 break; 907 default: 908 error = ENOSYS; 909 break; 910 } 911 912 if (error == EOPNOTSUPP) { 913 printf("linux: modify_ldt needs kernel option USER_LDT\n"); 914 error = ENOSYS; 915 } 916 917 return (error); 918 } 919 920 int 921 linux_sigaction(struct thread *td, struct linux_sigaction_args *args) 922 { 923 l_osigaction_t osa; 924 l_sigaction_t act, oact; 925 int error; 926 927 #ifdef DEBUG 928 if (ldebug(sigaction)) 929 printf(ARGS(sigaction, "%d, %p, %p"), 930 args->sig, (void *)args->nsa, (void *)args->osa); 931 #endif 932 933 if (args->nsa != NULL) { 934 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); 935 if (error) 936 return (error); 937 act.lsa_handler = osa.lsa_handler; 938 act.lsa_flags = osa.lsa_flags; 939 act.lsa_restorer = osa.lsa_restorer; 940 LINUX_SIGEMPTYSET(act.lsa_mask); 941 act.lsa_mask.__bits[0] = osa.lsa_mask; 942 } 943 944 error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, 945 args->osa ? &oact : NULL); 946 947 if (args->osa != NULL && !error) { 948 osa.lsa_handler = oact.lsa_handler; 949 osa.lsa_flags = oact.lsa_flags; 950 osa.lsa_restorer = oact.lsa_restorer; 951 osa.lsa_mask = oact.lsa_mask.__bits[0]; 952 error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); 953 } 954 955 return (error); 956 } 957 958 /* 959 * Linux has two extra args, restart and oldmask. We dont use these, 960 * but it seems that "restart" is actually a context pointer that 961 * enables the signal to happen with a different register set. 962 */ 963 int 964 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) 965 { 966 sigset_t sigmask; 967 l_sigset_t mask; 968 969 #ifdef DEBUG 970 if (ldebug(sigsuspend)) 971 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); 972 #endif 973 974 LINUX_SIGEMPTYSET(mask); 975 mask.__bits[0] = args->mask; 976 linux_to_bsd_sigset(&mask, &sigmask); 977 return (kern_sigsuspend(td, sigmask)); 978 } 979 980 int 981 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) 982 { 983 l_sigset_t lmask; 984 sigset_t sigmask; 985 int error; 986 987 #ifdef DEBUG 988 if (ldebug(rt_sigsuspend)) 989 printf(ARGS(rt_sigsuspend, "%p, %d"), 990 (void *)uap->newset, uap->sigsetsize); 991 #endif 992 993 if (uap->sigsetsize != sizeof(l_sigset_t)) 994 return (EINVAL); 995 996 error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); 997 if (error) 998 return (error); 999 1000 linux_to_bsd_sigset(&lmask, &sigmask); 1001 return (kern_sigsuspend(td, sigmask)); 1002 } 1003 1004 int 1005 linux_pause(struct thread *td, struct linux_pause_args *args) 1006 { 1007 struct proc *p = td->td_proc; 1008 sigset_t sigmask; 1009 1010 #ifdef DEBUG 1011 if (ldebug(pause)) 1012 printf(ARGS(pause, "")); 1013 #endif 1014 1015 PROC_LOCK(p); 1016 sigmask = td->td_sigmask; 1017 PROC_UNLOCK(p); 1018 return (kern_sigsuspend(td, sigmask)); 1019 } 1020 1021 int 1022 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) 1023 { 1024 stack_t ss, oss; 1025 l_stack_t lss; 1026 int error; 1027 1028 #ifdef DEBUG 1029 if (ldebug(sigaltstack)) 1030 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); 1031 #endif 1032 1033 if (uap->uss != NULL) { 1034 error = copyin(uap->uss, &lss, sizeof(l_stack_t)); 1035 if (error) 1036 return (error); 1037 1038 ss.ss_sp = lss.ss_sp; 1039 ss.ss_size = lss.ss_size; 1040 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); 1041 } 1042 error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, 1043 (uap->uoss != NULL) ? &oss : NULL); 1044 if (!error && uap->uoss != NULL) { 1045 lss.ss_sp = oss.ss_sp; 1046 lss.ss_size = oss.ss_size; 1047 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); 1048 error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); 1049 } 1050 1051 return (error); 1052 } 1053 1054 int 1055 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) 1056 { 1057 struct ftruncate_args sa; 1058 1059 #ifdef DEBUG 1060 if (ldebug(ftruncate64)) 1061 printf(ARGS(ftruncate64, "%u, %jd"), args->fd, 1062 (intmax_t)args->length); 1063 #endif 1064 1065 sa.fd = args->fd; 1066 sa.length = args->length; 1067 return ftruncate(td, &sa); 1068 } 1069 1070 int 1071 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) 1072 { 1073 struct l_user_desc info; 1074 int error; 1075 int idx; 1076 int a[2]; 1077 struct segment_descriptor sd; 1078 1079 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 1080 if (error) 1081 return (error); 1082 1083 #ifdef DEBUG 1084 if (ldebug(set_thread_area)) 1085 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"), 1086 info.entry_number, 1087 info.base_addr, 1088 info.limit, 1089 info.seg_32bit, 1090 info.contents, 1091 info.read_exec_only, 1092 info.limit_in_pages, 1093 info.seg_not_present, 1094 info.useable); 1095 #endif 1096 1097 idx = info.entry_number; 1098 /* 1099 * Semantics of linux version: every thread in the system has array of 1100 * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This 1101 * syscall loads one of the selected tls decriptors with a value and 1102 * also loads GDT descriptors 6, 7 and 8 with the content of the 1103 * per-thread descriptors. 1104 * 1105 * Semantics of fbsd version: I think we can ignore that linux has 3 1106 * per-thread descriptors and use just the 1st one. The tls_array[] 1107 * is used only in set/get-thread_area() syscalls and for loading the 1108 * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so 1109 * we will load just one. 1110 * 1111 * XXX: this doesn't work when a user space process tries to use more 1112 * than 1 TLS segment. Comment in the linux sources says wine might do 1113 * this. 1114 */ 1115 1116 /* 1117 * we support just GLIBC TLS now 1118 * we should let 3 proceed as well because we use this segment so 1119 * if code does two subsequent calls it should succeed 1120 */ 1121 if (idx != 6 && idx != -1 && idx != 3) 1122 return (EINVAL); 1123 1124 /* 1125 * we have to copy out the GDT entry we use 1126 * FreeBSD uses GDT entry #3 for storing %gs so load that 1127 * 1128 * XXX: what if a user space program doesn't check this value and tries 1129 * to use 6, 7 or 8? 1130 */ 1131 idx = info.entry_number = 3; 1132 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 1133 if (error) 1134 return (error); 1135 1136 if (LINUX_LDT_empty(&info)) { 1137 a[0] = 0; 1138 a[1] = 0; 1139 } else { 1140 a[0] = LINUX_LDT_entry_a(&info); 1141 a[1] = LINUX_LDT_entry_b(&info); 1142 } 1143 1144 memcpy(&sd, &a, sizeof(a)); 1145 #ifdef DEBUG 1146 if (ldebug(set_thread_area)) 1147 printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase, 1148 sd.sd_hibase, 1149 sd.sd_lolimit, 1150 sd.sd_hilimit, 1151 sd.sd_type, 1152 sd.sd_dpl, 1153 sd.sd_p, 1154 sd.sd_xx, 1155 sd.sd_def32, 1156 sd.sd_gran); 1157 #endif 1158 1159 /* this is taken from i386 version of cpu_set_user_tls() */ 1160 critical_enter(); 1161 /* set %gs */ 1162 td->td_pcb->pcb_gsd = sd; 1163 PCPU_GET(fsgs_gdt)[1] = sd; 1164 load_gs(GSEL(GUGS_SEL, SEL_UPL)); 1165 critical_exit(); 1166 1167 return (0); 1168 } 1169 1170 int 1171 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args) 1172 { 1173 1174 struct l_user_desc info; 1175 int error; 1176 int idx; 1177 struct l_desc_struct desc; 1178 struct segment_descriptor sd; 1179 1180 #ifdef DEBUG 1181 if (ldebug(get_thread_area)) 1182 printf(ARGS(get_thread_area, "%p"), args->desc); 1183 #endif 1184 1185 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 1186 if (error) 1187 return (error); 1188 1189 idx = info.entry_number; 1190 /* XXX: I am not sure if we want 3 to be allowed too. */ 1191 if (idx != 6 && idx != 3) 1192 return (EINVAL); 1193 1194 idx = 3; 1195 1196 memset(&info, 0, sizeof(info)); 1197 1198 sd = PCPU_GET(fsgs_gdt)[1]; 1199 1200 memcpy(&desc, &sd, sizeof(desc)); 1201 1202 info.entry_number = idx; 1203 info.base_addr = LINUX_GET_BASE(&desc); 1204 info.limit = LINUX_GET_LIMIT(&desc); 1205 info.seg_32bit = LINUX_GET_32BIT(&desc); 1206 info.contents = LINUX_GET_CONTENTS(&desc); 1207 info.read_exec_only = !LINUX_GET_WRITABLE(&desc); 1208 info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc); 1209 info.seg_not_present = !LINUX_GET_PRESENT(&desc); 1210 info.useable = LINUX_GET_USEABLE(&desc); 1211 1212 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 1213 if (error) 1214 return (EFAULT); 1215 1216 return (0); 1217 } 1218 1219 /* copied from kern/kern_time.c */ 1220 int 1221 linux_timer_create(struct thread *td, struct linux_timer_create_args *args) 1222 { 1223 return ktimer_create(td, (struct ktimer_create_args *) args); 1224 } 1225 1226 int 1227 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args) 1228 { 1229 return ktimer_settime(td, (struct ktimer_settime_args *) args); 1230 } 1231 1232 int 1233 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args) 1234 { 1235 return ktimer_gettime(td, (struct ktimer_gettime_args *) args); 1236 } 1237 1238 int 1239 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args) 1240 { 1241 return ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args); 1242 } 1243 1244 int 1245 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args) 1246 { 1247 return ktimer_delete(td, (struct ktimer_delete_args *) args); 1248 } 1249 1250 /* XXX: this wont work with module - convert it */ 1251 int 1252 linux_mq_open(struct thread *td, struct linux_mq_open_args *args) 1253 { 1254 #ifdef P1003_1B_MQUEUE 1255 return kmq_open(td, (struct kmq_open_args *) args); 1256 #else 1257 return (ENOSYS); 1258 #endif 1259 } 1260 1261 int 1262 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) 1263 { 1264 #ifdef P1003_1B_MQUEUE 1265 return kmq_unlink(td, (struct kmq_unlink_args *) args); 1266 #else 1267 return (ENOSYS); 1268 #endif 1269 } 1270 1271 int 1272 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) 1273 { 1274 #ifdef P1003_1B_MQUEUE 1275 return kmq_timedsend(td, (struct kmq_timedsend_args *) args); 1276 #else 1277 return (ENOSYS); 1278 #endif 1279 } 1280 1281 int 1282 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) 1283 { 1284 #ifdef P1003_1B_MQUEUE 1285 return kmq_timedreceive(td, (struct kmq_timedreceive_args *) args); 1286 #else 1287 return (ENOSYS); 1288 #endif 1289 } 1290 1291 int 1292 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) 1293 { 1294 #ifdef P1003_1B_MQUEUE 1295 return kmq_notify(td, (struct kmq_notify_args *) args); 1296 #else 1297 return (ENOSYS); 1298 #endif 1299 } 1300 1301 int 1302 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) 1303 { 1304 #ifdef P1003_1B_MQUEUE 1305 return kmq_setattr(td, (struct kmq_setattr_args *) args); 1306 #else 1307 return (ENOSYS); 1308 #endif 1309 } 1310 1311