1 /*- 2 * Copyright (c) 2000 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer 10 * in this position and unchanged. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/file.h> 35 #include <sys/fcntl.h> 36 #include <sys/imgact.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mman.h> 40 #include <sys/mutex.h> 41 #include <sys/sx.h> 42 #include <sys/priv.h> 43 #include <sys/proc.h> 44 #include <sys/queue.h> 45 #include <sys/resource.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/sysproto.h> 50 #include <sys/unistd.h> 51 #include <sys/wait.h> 52 #include <sys/sched.h> 53 54 #include <machine/frame.h> 55 #include <machine/psl.h> 56 #include <machine/segments.h> 57 #include <machine/sysarch.h> 58 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 63 #include <i386/linux/linux.h> 64 #include <i386/linux/linux_proto.h> 65 #include <compat/linux/linux_ipc.h> 66 #include <compat/linux/linux_misc.h> 67 #include <compat/linux/linux_signal.h> 68 #include <compat/linux/linux_util.h> 69 #include <compat/linux/linux_emul.h> 70 71 #include <i386/include/pcb.h> /* needed for pcb definition in linux_set_thread_area */ 72 73 #include "opt_posix.h" 74 75 extern struct sysentvec elf32_freebsd_sysvec; /* defined in i386/i386/elf_machdep.c */ 76 77 struct l_descriptor { 78 l_uint entry_number; 79 l_ulong base_addr; 80 l_uint limit; 81 l_uint seg_32bit:1; 82 l_uint contents:2; 83 l_uint read_exec_only:1; 84 l_uint limit_in_pages:1; 85 l_uint seg_not_present:1; 86 l_uint useable:1; 87 }; 88 89 struct l_old_select_argv { 90 l_int nfds; 91 l_fd_set *readfds; 92 l_fd_set *writefds; 93 l_fd_set *exceptfds; 94 struct l_timeval *timeout; 95 }; 96 97 static int linux_mmap_common(struct thread *td, l_uintptr_t addr, 98 l_size_t len, l_int prot, l_int flags, l_int fd, 99 l_loff_t pos); 100 101 int 102 linux_to_bsd_sigaltstack(int lsa) 103 { 104 int bsa = 0; 105 106 if (lsa & LINUX_SS_DISABLE) 107 bsa |= SS_DISABLE; 108 if (lsa & LINUX_SS_ONSTACK) 109 bsa |= SS_ONSTACK; 110 return (bsa); 111 } 112 113 int 114 bsd_to_linux_sigaltstack(int bsa) 115 { 116 int lsa = 0; 117 118 if (bsa & SS_DISABLE) 119 lsa |= LINUX_SS_DISABLE; 120 if (bsa & SS_ONSTACK) 121 lsa |= LINUX_SS_ONSTACK; 122 return (lsa); 123 } 124 125 int 126 linux_execve(struct thread *td, struct linux_execve_args *args) 127 { 128 int error; 129 char *newpath; 130 struct image_args eargs; 131 132 LCONVPATHEXIST(td, args->path, &newpath); 133 134 #ifdef DEBUG 135 if (ldebug(execve)) 136 printf(ARGS(execve, "%s"), newpath); 137 #endif 138 139 error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE, 140 args->argp, args->envp); 141 free(newpath, M_TEMP); 142 if (error == 0) 143 error = kern_execve(td, &eargs, NULL); 144 if (error == 0) 145 /* linux process can exec fbsd one, dont attempt 146 * to create emuldata for such process using 147 * linux_proc_init, this leads to a panic on KASSERT 148 * because such process has p->p_emuldata == NULL 149 */ 150 if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX) 151 error = linux_proc_init(td, 0, 0); 152 return (error); 153 } 154 155 struct l_ipc_kludge { 156 struct l_msgbuf *msgp; 157 l_long msgtyp; 158 }; 159 160 int 161 linux_ipc(struct thread *td, struct linux_ipc_args *args) 162 { 163 164 switch (args->what & 0xFFFF) { 165 case LINUX_SEMOP: { 166 struct linux_semop_args a; 167 168 a.semid = args->arg1; 169 a.tsops = args->ptr; 170 a.nsops = args->arg2; 171 return (linux_semop(td, &a)); 172 } 173 case LINUX_SEMGET: { 174 struct linux_semget_args a; 175 176 a.key = args->arg1; 177 a.nsems = args->arg2; 178 a.semflg = args->arg3; 179 return (linux_semget(td, &a)); 180 } 181 case LINUX_SEMCTL: { 182 struct linux_semctl_args a; 183 int error; 184 185 a.semid = args->arg1; 186 a.semnum = args->arg2; 187 a.cmd = args->arg3; 188 error = copyin(args->ptr, &a.arg, sizeof(a.arg)); 189 if (error) 190 return (error); 191 return (linux_semctl(td, &a)); 192 } 193 case LINUX_MSGSND: { 194 struct linux_msgsnd_args a; 195 196 a.msqid = args->arg1; 197 a.msgp = args->ptr; 198 a.msgsz = args->arg2; 199 a.msgflg = args->arg3; 200 return (linux_msgsnd(td, &a)); 201 } 202 case LINUX_MSGRCV: { 203 struct linux_msgrcv_args a; 204 205 a.msqid = args->arg1; 206 a.msgsz = args->arg2; 207 a.msgflg = args->arg3; 208 if ((args->what >> 16) == 0) { 209 struct l_ipc_kludge tmp; 210 int error; 211 212 if (args->ptr == NULL) 213 return (EINVAL); 214 error = copyin(args->ptr, &tmp, sizeof(tmp)); 215 if (error) 216 return (error); 217 a.msgp = tmp.msgp; 218 a.msgtyp = tmp.msgtyp; 219 } else { 220 a.msgp = args->ptr; 221 a.msgtyp = args->arg5; 222 } 223 return (linux_msgrcv(td, &a)); 224 } 225 case LINUX_MSGGET: { 226 struct linux_msgget_args a; 227 228 a.key = args->arg1; 229 a.msgflg = args->arg2; 230 return (linux_msgget(td, &a)); 231 } 232 case LINUX_MSGCTL: { 233 struct linux_msgctl_args a; 234 235 a.msqid = args->arg1; 236 a.cmd = args->arg2; 237 a.buf = args->ptr; 238 return (linux_msgctl(td, &a)); 239 } 240 case LINUX_SHMAT: { 241 struct linux_shmat_args a; 242 243 a.shmid = args->arg1; 244 a.shmaddr = args->ptr; 245 a.shmflg = args->arg2; 246 a.raddr = (l_ulong *)args->arg3; 247 return (linux_shmat(td, &a)); 248 } 249 case LINUX_SHMDT: { 250 struct linux_shmdt_args a; 251 252 a.shmaddr = args->ptr; 253 return (linux_shmdt(td, &a)); 254 } 255 case LINUX_SHMGET: { 256 struct linux_shmget_args a; 257 258 a.key = args->arg1; 259 a.size = args->arg2; 260 a.shmflg = args->arg3; 261 return (linux_shmget(td, &a)); 262 } 263 case LINUX_SHMCTL: { 264 struct linux_shmctl_args a; 265 266 a.shmid = args->arg1; 267 a.cmd = args->arg2; 268 a.buf = args->ptr; 269 return (linux_shmctl(td, &a)); 270 } 271 default: 272 break; 273 } 274 275 return (EINVAL); 276 } 277 278 int 279 linux_old_select(struct thread *td, struct linux_old_select_args *args) 280 { 281 struct l_old_select_argv linux_args; 282 struct linux_select_args newsel; 283 int error; 284 285 #ifdef DEBUG 286 if (ldebug(old_select)) 287 printf(ARGS(old_select, "%p"), args->ptr); 288 #endif 289 290 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 291 if (error) 292 return (error); 293 294 newsel.nfds = linux_args.nfds; 295 newsel.readfds = linux_args.readfds; 296 newsel.writefds = linux_args.writefds; 297 newsel.exceptfds = linux_args.exceptfds; 298 newsel.timeout = linux_args.timeout; 299 return (linux_select(td, &newsel)); 300 } 301 302 int 303 linux_set_cloned_tls(struct thread *td, void *desc) 304 { 305 struct segment_descriptor sd; 306 struct l_user_desc info; 307 int idx, error; 308 int a[2]; 309 310 error = copyin(desc, &info, sizeof(struct l_user_desc)); 311 if (error) { 312 printf(LMSG("copyin failed!")); 313 } else { 314 idx = info.entry_number; 315 316 /* 317 * looks like we're getting the idx we returned 318 * in the set_thread_area() syscall 319 */ 320 if (idx != 6 && idx != 3) { 321 printf(LMSG("resetting idx!")); 322 idx = 3; 323 } 324 325 /* this doesnt happen in practice */ 326 if (idx == 6) { 327 /* we might copy out the entry_number as 3 */ 328 info.entry_number = 3; 329 error = copyout(&info, desc, sizeof(struct l_user_desc)); 330 if (error) 331 printf(LMSG("copyout failed!")); 332 } 333 334 a[0] = LINUX_LDT_entry_a(&info); 335 a[1] = LINUX_LDT_entry_b(&info); 336 337 memcpy(&sd, &a, sizeof(a)); 338 #ifdef DEBUG 339 if (ldebug(clone)) 340 printf("Segment created in clone with " 341 "CLONE_SETTLS: lobase: %x, hibase: %x, " 342 "lolimit: %x, hilimit: %x, type: %i, " 343 "dpl: %i, p: %i, xx: %i, def32: %i, " 344 "gran: %i\n", sd.sd_lobase, sd.sd_hibase, 345 sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, 346 sd.sd_dpl, sd.sd_p, sd.sd_xx, 347 sd.sd_def32, sd.sd_gran); 348 #endif 349 350 /* set %gs */ 351 td->td_pcb->pcb_gsd = sd; 352 td->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL); 353 } 354 355 return (error); 356 } 357 358 int 359 linux_set_upcall_kse(struct thread *td, register_t stack) 360 { 361 362 td->td_frame->tf_esp = stack; 363 364 return (0); 365 } 366 367 #define STACK_SIZE (2 * 1024 * 1024) 368 #define GUARD_SIZE (4 * PAGE_SIZE) 369 370 int 371 linux_mmap2(struct thread *td, struct linux_mmap2_args *args) 372 { 373 374 #ifdef DEBUG 375 if (ldebug(mmap2)) 376 printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), 377 (void *)args->addr, args->len, args->prot, 378 args->flags, args->fd, args->pgoff); 379 #endif 380 381 return (linux_mmap_common(td, args->addr, args->len, args->prot, 382 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * 383 PAGE_SIZE)); 384 } 385 386 int 387 linux_mmap(struct thread *td, struct linux_mmap_args *args) 388 { 389 int error; 390 struct l_mmap_argv linux_args; 391 392 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 393 if (error) 394 return (error); 395 396 #ifdef DEBUG 397 if (ldebug(mmap)) 398 printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), 399 (void *)linux_args.addr, linux_args.len, linux_args.prot, 400 linux_args.flags, linux_args.fd, linux_args.pgoff); 401 #endif 402 403 return (linux_mmap_common(td, linux_args.addr, linux_args.len, 404 linux_args.prot, linux_args.flags, linux_args.fd, 405 (uint32_t)linux_args.pgoff)); 406 } 407 408 static int 409 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, 410 l_int flags, l_int fd, l_loff_t pos) 411 { 412 struct proc *p = td->td_proc; 413 struct mmap_args /* { 414 caddr_t addr; 415 size_t len; 416 int prot; 417 int flags; 418 int fd; 419 long pad; 420 off_t pos; 421 } */ bsd_args; 422 int error; 423 struct file *fp; 424 425 error = 0; 426 bsd_args.flags = 0; 427 fp = NULL; 428 429 /* 430 * Linux mmap(2): 431 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE 432 */ 433 if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE))) 434 return (EINVAL); 435 436 if (flags & LINUX_MAP_SHARED) 437 bsd_args.flags |= MAP_SHARED; 438 if (flags & LINUX_MAP_PRIVATE) 439 bsd_args.flags |= MAP_PRIVATE; 440 if (flags & LINUX_MAP_FIXED) 441 bsd_args.flags |= MAP_FIXED; 442 if (flags & LINUX_MAP_ANON) { 443 /* Enforce pos to be on page boundary, then ignore. */ 444 if ((pos & PAGE_MASK) != 0) 445 return (EINVAL); 446 pos = 0; 447 bsd_args.flags |= MAP_ANON; 448 } else 449 bsd_args.flags |= MAP_NOSYNC; 450 if (flags & LINUX_MAP_GROWSDOWN) 451 bsd_args.flags |= MAP_STACK; 452 453 /* 454 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC 455 * on Linux/i386. We do this to ensure maximum compatibility. 456 * Linux/ia64 does the same in i386 emulation mode. 457 */ 458 bsd_args.prot = prot; 459 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 460 bsd_args.prot |= PROT_READ | PROT_EXEC; 461 462 /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ 463 bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd; 464 if (bsd_args.fd != -1) { 465 /* 466 * Linux follows Solaris mmap(2) description: 467 * The file descriptor fildes is opened with 468 * read permission, regardless of the 469 * protection options specified. 470 */ 471 472 if ((error = fget(td, bsd_args.fd, &fp)) != 0) 473 return (error); 474 if (fp->f_type != DTYPE_VNODE) { 475 fdrop(fp, td); 476 return (EINVAL); 477 } 478 479 /* Linux mmap() just fails for O_WRONLY files */ 480 if (!(fp->f_flag & FREAD)) { 481 fdrop(fp, td); 482 return (EACCES); 483 } 484 485 fdrop(fp, td); 486 } 487 488 if (flags & LINUX_MAP_GROWSDOWN) { 489 /* 490 * The Linux MAP_GROWSDOWN option does not limit auto 491 * growth of the region. Linux mmap with this option 492 * takes as addr the inital BOS, and as len, the initial 493 * region size. It can then grow down from addr without 494 * limit. However, linux threads has an implicit internal 495 * limit to stack size of STACK_SIZE. Its just not 496 * enforced explicitly in linux. But, here we impose 497 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack 498 * region, since we can do this with our mmap. 499 * 500 * Our mmap with MAP_STACK takes addr as the maximum 501 * downsize limit on BOS, and as len the max size of 502 * the region. It them maps the top SGROWSIZ bytes, 503 * and auto grows the region down, up to the limit 504 * in addr. 505 * 506 * If we don't use the MAP_STACK option, the effect 507 * of this code is to allocate a stack region of a 508 * fixed size of (STACK_SIZE - GUARD_SIZE). 509 */ 510 511 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) { 512 /* 513 * Some linux apps will attempt to mmap 514 * thread stacks near the top of their 515 * address space. If their TOS is greater 516 * than vm_maxsaddr, vm_map_growstack() 517 * will confuse the thread stack with the 518 * process stack and deliver a SEGV if they 519 * attempt to grow the thread stack past their 520 * current stacksize rlimit. To avoid this, 521 * adjust vm_maxsaddr upwards to reflect 522 * the current stacksize rlimit rather 523 * than the maximum possible stacksize. 524 * It would be better to adjust the 525 * mmap'ed region, but some apps do not check 526 * mmap's return value. 527 */ 528 PROC_LOCK(p); 529 p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - 530 lim_cur(p, RLIMIT_STACK); 531 PROC_UNLOCK(p); 532 } 533 534 /* 535 * This gives us our maximum stack size and a new BOS. 536 * If we're using VM_STACK, then mmap will just map 537 * the top SGROWSIZ bytes, and let the stack grow down 538 * to the limit at BOS. If we're not using VM_STACK 539 * we map the full stack, since we don't have a way 540 * to autogrow it. 541 */ 542 if (len > STACK_SIZE - GUARD_SIZE) { 543 bsd_args.addr = (caddr_t)PTRIN(addr); 544 bsd_args.len = len; 545 } else { 546 bsd_args.addr = (caddr_t)PTRIN(addr) - 547 (STACK_SIZE - GUARD_SIZE - len); 548 bsd_args.len = STACK_SIZE - GUARD_SIZE; 549 } 550 } else { 551 bsd_args.addr = (caddr_t)PTRIN(addr); 552 bsd_args.len = len; 553 } 554 bsd_args.pos = pos; 555 556 #ifdef DEBUG 557 if (ldebug(mmap)) 558 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", 559 __func__, 560 (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, 561 bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); 562 #endif 563 error = mmap(td, &bsd_args); 564 #ifdef DEBUG 565 if (ldebug(mmap)) 566 printf("-> %s() return: 0x%x (0x%08x)\n", 567 __func__, error, (u_int)td->td_retval[0]); 568 #endif 569 return (error); 570 } 571 572 int 573 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 574 { 575 struct mprotect_args bsd_args; 576 577 bsd_args.addr = uap->addr; 578 bsd_args.len = uap->len; 579 bsd_args.prot = uap->prot; 580 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 581 bsd_args.prot |= PROT_READ | PROT_EXEC; 582 return (mprotect(td, &bsd_args)); 583 } 584 585 int 586 linux_pipe(struct thread *td, struct linux_pipe_args *args) 587 { 588 int error; 589 int fildes[2]; 590 591 #ifdef DEBUG 592 if (ldebug(pipe)) 593 printf(ARGS(pipe, "*")); 594 #endif 595 596 error = kern_pipe(td, fildes); 597 if (error) 598 return (error); 599 600 /* XXX: Close descriptors on error. */ 601 return (copyout(fildes, args->pipefds, sizeof fildes)); 602 } 603 604 int 605 linux_ioperm(struct thread *td, struct linux_ioperm_args *args) 606 { 607 int error; 608 struct i386_ioperm_args iia; 609 610 iia.start = args->start; 611 iia.length = args->length; 612 iia.enable = args->enable; 613 error = i386_set_ioperm(td, &iia); 614 return (error); 615 } 616 617 int 618 linux_iopl(struct thread *td, struct linux_iopl_args *args) 619 { 620 int error; 621 622 if (args->level < 0 || args->level > 3) 623 return (EINVAL); 624 if ((error = priv_check(td, PRIV_IO)) != 0) 625 return (error); 626 if ((error = securelevel_gt(td->td_ucred, 0)) != 0) 627 return (error); 628 td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | 629 (args->level * (PSL_IOPL / 3)); 630 return (0); 631 } 632 633 int 634 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) 635 { 636 int error; 637 struct i386_ldt_args ldt; 638 struct l_descriptor ld; 639 union descriptor desc; 640 int size, written; 641 642 switch (uap->func) { 643 case 0x00: /* read_ldt */ 644 ldt.start = 0; 645 ldt.descs = uap->ptr; 646 ldt.num = uap->bytecount / sizeof(union descriptor); 647 error = i386_get_ldt(td, &ldt); 648 td->td_retval[0] *= sizeof(union descriptor); 649 break; 650 case 0x02: /* read_default_ldt = 0 */ 651 size = 5*sizeof(struct l_desc_struct); 652 if (size > uap->bytecount) 653 size = uap->bytecount; 654 for (written = error = 0; written < size && error == 0; written++) 655 error = subyte((char *)uap->ptr + written, 0); 656 td->td_retval[0] = written; 657 break; 658 case 0x01: /* write_ldt */ 659 case 0x11: /* write_ldt */ 660 if (uap->bytecount != sizeof(ld)) 661 return (EINVAL); 662 663 error = copyin(uap->ptr, &ld, sizeof(ld)); 664 if (error) 665 return (error); 666 667 ldt.start = ld.entry_number; 668 ldt.descs = &desc; 669 ldt.num = 1; 670 desc.sd.sd_lolimit = (ld.limit & 0x0000ffff); 671 desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; 672 desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff); 673 desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; 674 desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | 675 (ld.contents << 2); 676 desc.sd.sd_dpl = 3; 677 desc.sd.sd_p = (ld.seg_not_present ^ 1); 678 desc.sd.sd_xx = 0; 679 desc.sd.sd_def32 = ld.seg_32bit; 680 desc.sd.sd_gran = ld.limit_in_pages; 681 error = i386_set_ldt(td, &ldt, &desc); 682 break; 683 default: 684 error = ENOSYS; 685 break; 686 } 687 688 if (error == EOPNOTSUPP) { 689 printf("linux: modify_ldt needs kernel option USER_LDT\n"); 690 error = ENOSYS; 691 } 692 693 return (error); 694 } 695 696 int 697 linux_sigaction(struct thread *td, struct linux_sigaction_args *args) 698 { 699 l_osigaction_t osa; 700 l_sigaction_t act, oact; 701 int error; 702 703 #ifdef DEBUG 704 if (ldebug(sigaction)) 705 printf(ARGS(sigaction, "%d, %p, %p"), 706 args->sig, (void *)args->nsa, (void *)args->osa); 707 #endif 708 709 if (args->nsa != NULL) { 710 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); 711 if (error) 712 return (error); 713 act.lsa_handler = osa.lsa_handler; 714 act.lsa_flags = osa.lsa_flags; 715 act.lsa_restorer = osa.lsa_restorer; 716 LINUX_SIGEMPTYSET(act.lsa_mask); 717 act.lsa_mask.__bits[0] = osa.lsa_mask; 718 } 719 720 error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, 721 args->osa ? &oact : NULL); 722 723 if (args->osa != NULL && !error) { 724 osa.lsa_handler = oact.lsa_handler; 725 osa.lsa_flags = oact.lsa_flags; 726 osa.lsa_restorer = oact.lsa_restorer; 727 osa.lsa_mask = oact.lsa_mask.__bits[0]; 728 error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); 729 } 730 731 return (error); 732 } 733 734 /* 735 * Linux has two extra args, restart and oldmask. We dont use these, 736 * but it seems that "restart" is actually a context pointer that 737 * enables the signal to happen with a different register set. 738 */ 739 int 740 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) 741 { 742 sigset_t sigmask; 743 l_sigset_t mask; 744 745 #ifdef DEBUG 746 if (ldebug(sigsuspend)) 747 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); 748 #endif 749 750 LINUX_SIGEMPTYSET(mask); 751 mask.__bits[0] = args->mask; 752 linux_to_bsd_sigset(&mask, &sigmask); 753 return (kern_sigsuspend(td, sigmask)); 754 } 755 756 int 757 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) 758 { 759 l_sigset_t lmask; 760 sigset_t sigmask; 761 int error; 762 763 #ifdef DEBUG 764 if (ldebug(rt_sigsuspend)) 765 printf(ARGS(rt_sigsuspend, "%p, %d"), 766 (void *)uap->newset, uap->sigsetsize); 767 #endif 768 769 if (uap->sigsetsize != sizeof(l_sigset_t)) 770 return (EINVAL); 771 772 error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); 773 if (error) 774 return (error); 775 776 linux_to_bsd_sigset(&lmask, &sigmask); 777 return (kern_sigsuspend(td, sigmask)); 778 } 779 780 int 781 linux_pause(struct thread *td, struct linux_pause_args *args) 782 { 783 struct proc *p = td->td_proc; 784 sigset_t sigmask; 785 786 #ifdef DEBUG 787 if (ldebug(pause)) 788 printf(ARGS(pause, "")); 789 #endif 790 791 PROC_LOCK(p); 792 sigmask = td->td_sigmask; 793 PROC_UNLOCK(p); 794 return (kern_sigsuspend(td, sigmask)); 795 } 796 797 int 798 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) 799 { 800 stack_t ss, oss; 801 l_stack_t lss; 802 int error; 803 804 #ifdef DEBUG 805 if (ldebug(sigaltstack)) 806 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); 807 #endif 808 809 if (uap->uss != NULL) { 810 error = copyin(uap->uss, &lss, sizeof(l_stack_t)); 811 if (error) 812 return (error); 813 814 ss.ss_sp = lss.ss_sp; 815 ss.ss_size = lss.ss_size; 816 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); 817 } 818 error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, 819 (uap->uoss != NULL) ? &oss : NULL); 820 if (!error && uap->uoss != NULL) { 821 lss.ss_sp = oss.ss_sp; 822 lss.ss_size = oss.ss_size; 823 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); 824 error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); 825 } 826 827 return (error); 828 } 829 830 int 831 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) 832 { 833 struct ftruncate_args sa; 834 835 #ifdef DEBUG 836 if (ldebug(ftruncate64)) 837 printf(ARGS(ftruncate64, "%u, %jd"), args->fd, 838 (intmax_t)args->length); 839 #endif 840 841 sa.fd = args->fd; 842 sa.length = args->length; 843 return ftruncate(td, &sa); 844 } 845 846 int 847 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) 848 { 849 struct l_user_desc info; 850 int error; 851 int idx; 852 int a[2]; 853 struct segment_descriptor sd; 854 855 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 856 if (error) 857 return (error); 858 859 #ifdef DEBUG 860 if (ldebug(set_thread_area)) 861 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"), 862 info.entry_number, 863 info.base_addr, 864 info.limit, 865 info.seg_32bit, 866 info.contents, 867 info.read_exec_only, 868 info.limit_in_pages, 869 info.seg_not_present, 870 info.useable); 871 #endif 872 873 idx = info.entry_number; 874 /* 875 * Semantics of linux version: every thread in the system has array of 876 * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This 877 * syscall loads one of the selected tls decriptors with a value and 878 * also loads GDT descriptors 6, 7 and 8 with the content of the 879 * per-thread descriptors. 880 * 881 * Semantics of fbsd version: I think we can ignore that linux has 3 882 * per-thread descriptors and use just the 1st one. The tls_array[] 883 * is used only in set/get-thread_area() syscalls and for loading the 884 * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so 885 * we will load just one. 886 * 887 * XXX: this doesn't work when a user space process tries to use more 888 * than 1 TLS segment. Comment in the linux sources says wine might do 889 * this. 890 */ 891 892 /* 893 * we support just GLIBC TLS now 894 * we should let 3 proceed as well because we use this segment so 895 * if code does two subsequent calls it should succeed 896 */ 897 if (idx != 6 && idx != -1 && idx != 3) 898 return (EINVAL); 899 900 /* 901 * we have to copy out the GDT entry we use 902 * FreeBSD uses GDT entry #3 for storing %gs so load that 903 * 904 * XXX: what if a user space program doesn't check this value and tries 905 * to use 6, 7 or 8? 906 */ 907 idx = info.entry_number = 3; 908 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 909 if (error) 910 return (error); 911 912 if (LINUX_LDT_empty(&info)) { 913 a[0] = 0; 914 a[1] = 0; 915 } else { 916 a[0] = LINUX_LDT_entry_a(&info); 917 a[1] = LINUX_LDT_entry_b(&info); 918 } 919 920 memcpy(&sd, &a, sizeof(a)); 921 #ifdef DEBUG 922 if (ldebug(set_thread_area)) 923 printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase, 924 sd.sd_hibase, 925 sd.sd_lolimit, 926 sd.sd_hilimit, 927 sd.sd_type, 928 sd.sd_dpl, 929 sd.sd_p, 930 sd.sd_xx, 931 sd.sd_def32, 932 sd.sd_gran); 933 #endif 934 935 /* this is taken from i386 version of cpu_set_user_tls() */ 936 critical_enter(); 937 /* set %gs */ 938 td->td_pcb->pcb_gsd = sd; 939 PCPU_GET(fsgs_gdt)[1] = sd; 940 load_gs(GSEL(GUGS_SEL, SEL_UPL)); 941 critical_exit(); 942 943 return (0); 944 } 945 946 int 947 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args) 948 { 949 950 struct l_user_desc info; 951 int error; 952 int idx; 953 struct l_desc_struct desc; 954 struct segment_descriptor sd; 955 956 #ifdef DEBUG 957 if (ldebug(get_thread_area)) 958 printf(ARGS(get_thread_area, "%p"), args->desc); 959 #endif 960 961 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 962 if (error) 963 return (error); 964 965 idx = info.entry_number; 966 /* XXX: I am not sure if we want 3 to be allowed too. */ 967 if (idx != 6 && idx != 3) 968 return (EINVAL); 969 970 idx = 3; 971 972 memset(&info, 0, sizeof(info)); 973 974 sd = PCPU_GET(fsgs_gdt)[1]; 975 976 memcpy(&desc, &sd, sizeof(desc)); 977 978 info.entry_number = idx; 979 info.base_addr = LINUX_GET_BASE(&desc); 980 info.limit = LINUX_GET_LIMIT(&desc); 981 info.seg_32bit = LINUX_GET_32BIT(&desc); 982 info.contents = LINUX_GET_CONTENTS(&desc); 983 info.read_exec_only = !LINUX_GET_WRITABLE(&desc); 984 info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc); 985 info.seg_not_present = !LINUX_GET_PRESENT(&desc); 986 info.useable = LINUX_GET_USEABLE(&desc); 987 988 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 989 if (error) 990 return (EFAULT); 991 992 return (0); 993 } 994 995 /* copied from kern/kern_time.c */ 996 int 997 linux_timer_create(struct thread *td, struct linux_timer_create_args *args) 998 { 999 return ktimer_create(td, (struct ktimer_create_args *) args); 1000 } 1001 1002 int 1003 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args) 1004 { 1005 return ktimer_settime(td, (struct ktimer_settime_args *) args); 1006 } 1007 1008 int 1009 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args) 1010 { 1011 return ktimer_gettime(td, (struct ktimer_gettime_args *) args); 1012 } 1013 1014 int 1015 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args) 1016 { 1017 return ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args); 1018 } 1019 1020 int 1021 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args) 1022 { 1023 return ktimer_delete(td, (struct ktimer_delete_args *) args); 1024 } 1025 1026 /* XXX: this wont work with module - convert it */ 1027 int 1028 linux_mq_open(struct thread *td, struct linux_mq_open_args *args) 1029 { 1030 #ifdef P1003_1B_MQUEUE 1031 return kmq_open(td, (struct kmq_open_args *) args); 1032 #else 1033 return (ENOSYS); 1034 #endif 1035 } 1036 1037 int 1038 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) 1039 { 1040 #ifdef P1003_1B_MQUEUE 1041 return kmq_unlink(td, (struct kmq_unlink_args *) args); 1042 #else 1043 return (ENOSYS); 1044 #endif 1045 } 1046 1047 int 1048 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) 1049 { 1050 #ifdef P1003_1B_MQUEUE 1051 return kmq_timedsend(td, (struct kmq_timedsend_args *) args); 1052 #else 1053 return (ENOSYS); 1054 #endif 1055 } 1056 1057 int 1058 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) 1059 { 1060 #ifdef P1003_1B_MQUEUE 1061 return kmq_timedreceive(td, (struct kmq_timedreceive_args *) args); 1062 #else 1063 return (ENOSYS); 1064 #endif 1065 } 1066 1067 int 1068 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) 1069 { 1070 #ifdef P1003_1B_MQUEUE 1071 return kmq_notify(td, (struct kmq_notify_args *) args); 1072 #else 1073 return (ENOSYS); 1074 #endif 1075 } 1076 1077 int 1078 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) 1079 { 1080 #ifdef P1003_1B_MQUEUE 1081 return kmq_setattr(td, (struct kmq_setattr_args *) args); 1082 #else 1083 return (ENOSYS); 1084 #endif 1085 } 1086 1087 int 1088 linux_wait4(struct thread *td, struct linux_wait4_args *args) 1089 { 1090 int error, options; 1091 struct rusage ru, *rup; 1092 1093 #ifdef DEBUG 1094 if (ldebug(wait4)) 1095 printf(ARGS(wait4, "%d, %p, %d, %p"), 1096 args->pid, (void *)args->status, args->options, 1097 (void *)args->rusage); 1098 #endif 1099 1100 options = (args->options & (WNOHANG | WUNTRACED)); 1101 /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ 1102 if (args->options & __WCLONE) 1103 options |= WLINUXCLONE; 1104 1105 if (args->rusage != NULL) 1106 rup = &ru; 1107 else 1108 rup = NULL; 1109 error = linux_common_wait(td, args->pid, args->status, options, rup); 1110 if (error) 1111 return (error); 1112 if (args->rusage != NULL) 1113 error = copyout(&ru, args->rusage, sizeof(ru)); 1114 1115 return (error); 1116 } 1117