1 /*- 2 * Copyright (c) 2000 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer 10 * in this position and unchanged. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/imgact.h> 35 #include <sys/lock.h> 36 #include <sys/malloc.h> 37 #include <sys/mman.h> 38 #include <sys/mutex.h> 39 #include <sys/proc.h> 40 #include <sys/resource.h> 41 #include <sys/resourcevar.h> 42 #include <sys/signalvar.h> 43 #include <sys/syscallsubr.h> 44 #include <sys/sysproto.h> 45 #include <sys/unistd.h> 46 47 #include <machine/frame.h> 48 #include <machine/psl.h> 49 #include <machine/segments.h> 50 #include <machine/sysarch.h> 51 52 #include <vm/vm.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 56 #include <i386/linux/linux.h> 57 #include <i386/linux/linux_proto.h> 58 #include <compat/linux/linux_ipc.h> 59 #include <compat/linux/linux_signal.h> 60 #include <compat/linux/linux_util.h> 61 62 struct l_descriptor { 63 l_uint entry_number; 64 l_ulong base_addr; 65 l_uint limit; 66 l_uint seg_32bit:1; 67 l_uint contents:2; 68 l_uint read_exec_only:1; 69 l_uint limit_in_pages:1; 70 l_uint seg_not_present:1; 71 l_uint useable:1; 72 }; 73 74 struct l_old_select_argv { 75 l_int nfds; 76 l_fd_set *readfds; 77 l_fd_set *writefds; 78 l_fd_set *exceptfds; 79 struct l_timeval *timeout; 80 }; 81 82 int 83 linux_to_bsd_sigaltstack(int lsa) 84 { 85 int bsa = 0; 86 87 if (lsa & LINUX_SS_DISABLE) 88 bsa |= SS_DISABLE; 89 if (lsa & LINUX_SS_ONSTACK) 90 bsa |= SS_ONSTACK; 91 return (bsa); 92 } 93 94 int 95 bsd_to_linux_sigaltstack(int bsa) 96 { 97 int lsa = 0; 98 99 if (bsa & SS_DISABLE) 100 lsa |= LINUX_SS_DISABLE; 101 if (bsa & SS_ONSTACK) 102 lsa |= LINUX_SS_ONSTACK; 103 return (lsa); 104 } 105 106 int 107 linux_execve(struct thread *td, struct linux_execve_args *args) 108 { 109 int error; 110 char *newpath; 111 struct image_args eargs; 112 113 LCONVPATHEXIST(td, args->path, &newpath); 114 115 #ifdef DEBUG 116 if (ldebug(execve)) 117 printf(ARGS(execve, "%s"), newpath); 118 #endif 119 120 error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE, 121 args->argp, args->envp); 122 free(newpath, M_TEMP); 123 if (error == 0) 124 error = kern_execve(td, &eargs, NULL); 125 exec_free_args(&eargs); 126 return (error); 127 } 128 129 struct l_ipc_kludge { 130 struct l_msgbuf *msgp; 131 l_long msgtyp; 132 }; 133 134 int 135 linux_ipc(struct thread *td, struct linux_ipc_args *args) 136 { 137 138 switch (args->what & 0xFFFF) { 139 case LINUX_SEMOP: { 140 struct linux_semop_args a; 141 142 a.semid = args->arg1; 143 a.tsops = args->ptr; 144 a.nsops = args->arg2; 145 return (linux_semop(td, &a)); 146 } 147 case LINUX_SEMGET: { 148 struct linux_semget_args a; 149 150 a.key = args->arg1; 151 a.nsems = args->arg2; 152 a.semflg = args->arg3; 153 return (linux_semget(td, &a)); 154 } 155 case LINUX_SEMCTL: { 156 struct linux_semctl_args a; 157 int error; 158 159 a.semid = args->arg1; 160 a.semnum = args->arg2; 161 a.cmd = args->arg3; 162 error = copyin(args->ptr, &a.arg, sizeof(a.arg)); 163 if (error) 164 return (error); 165 return (linux_semctl(td, &a)); 166 } 167 case LINUX_MSGSND: { 168 struct linux_msgsnd_args a; 169 170 a.msqid = args->arg1; 171 a.msgp = args->ptr; 172 a.msgsz = args->arg2; 173 a.msgflg = args->arg3; 174 return (linux_msgsnd(td, &a)); 175 } 176 case LINUX_MSGRCV: { 177 struct linux_msgrcv_args a; 178 179 a.msqid = args->arg1; 180 a.msgsz = args->arg2; 181 a.msgflg = args->arg3; 182 if ((args->what >> 16) == 0) { 183 struct l_ipc_kludge tmp; 184 int error; 185 186 if (args->ptr == NULL) 187 return (EINVAL); 188 error = copyin(args->ptr, &tmp, sizeof(tmp)); 189 if (error) 190 return (error); 191 a.msgp = tmp.msgp; 192 a.msgtyp = tmp.msgtyp; 193 } else { 194 a.msgp = args->ptr; 195 a.msgtyp = args->arg5; 196 } 197 return (linux_msgrcv(td, &a)); 198 } 199 case LINUX_MSGGET: { 200 struct linux_msgget_args a; 201 202 a.key = args->arg1; 203 a.msgflg = args->arg2; 204 return (linux_msgget(td, &a)); 205 } 206 case LINUX_MSGCTL: { 207 struct linux_msgctl_args a; 208 209 a.msqid = args->arg1; 210 a.cmd = args->arg2; 211 a.buf = args->ptr; 212 return (linux_msgctl(td, &a)); 213 } 214 case LINUX_SHMAT: { 215 struct linux_shmat_args a; 216 217 a.shmid = args->arg1; 218 a.shmaddr = args->ptr; 219 a.shmflg = args->arg2; 220 a.raddr = (l_ulong *)args->arg3; 221 return (linux_shmat(td, &a)); 222 } 223 case LINUX_SHMDT: { 224 struct linux_shmdt_args a; 225 226 a.shmaddr = args->ptr; 227 return (linux_shmdt(td, &a)); 228 } 229 case LINUX_SHMGET: { 230 struct linux_shmget_args a; 231 232 a.key = args->arg1; 233 a.size = args->arg2; 234 a.shmflg = args->arg3; 235 return (linux_shmget(td, &a)); 236 } 237 case LINUX_SHMCTL: { 238 struct linux_shmctl_args a; 239 240 a.shmid = args->arg1; 241 a.cmd = args->arg2; 242 a.buf = args->ptr; 243 return (linux_shmctl(td, &a)); 244 } 245 default: 246 break; 247 } 248 249 return (EINVAL); 250 } 251 252 int 253 linux_old_select(struct thread *td, struct linux_old_select_args *args) 254 { 255 struct l_old_select_argv linux_args; 256 struct linux_select_args newsel; 257 int error; 258 259 #ifdef DEBUG 260 if (ldebug(old_select)) 261 printf(ARGS(old_select, "%p"), args->ptr); 262 #endif 263 264 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 265 if (error) 266 return (error); 267 268 newsel.nfds = linux_args.nfds; 269 newsel.readfds = linux_args.readfds; 270 newsel.writefds = linux_args.writefds; 271 newsel.exceptfds = linux_args.exceptfds; 272 newsel.timeout = linux_args.timeout; 273 return (linux_select(td, &newsel)); 274 } 275 276 int 277 linux_fork(struct thread *td, struct linux_fork_args *args) 278 { 279 int error; 280 281 #ifdef DEBUG 282 if (ldebug(fork)) 283 printf(ARGS(fork, "")); 284 #endif 285 286 if ((error = fork(td, (struct fork_args *)args)) != 0) 287 return (error); 288 289 if (td->td_retval[1] == 1) 290 td->td_retval[0] = 0; 291 return (0); 292 } 293 294 int 295 linux_vfork(struct thread *td, struct linux_vfork_args *args) 296 { 297 int error; 298 299 #ifdef DEBUG 300 if (ldebug(vfork)) 301 printf(ARGS(vfork, "")); 302 #endif 303 304 if ((error = vfork(td, (struct vfork_args *)args)) != 0) 305 return (error); 306 /* Are we the child? */ 307 if (td->td_retval[1] == 1) 308 td->td_retval[0] = 0; 309 return (0); 310 } 311 312 #define CLONE_VM 0x100 313 #define CLONE_FS 0x200 314 #define CLONE_FILES 0x400 315 #define CLONE_SIGHAND 0x800 316 #define CLONE_PID 0x1000 317 #define CLONE_THREAD 0x10000 318 319 #define THREADING_FLAGS (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 320 321 int 322 linux_clone(struct thread *td, struct linux_clone_args *args) 323 { 324 int error, ff = RFPROC | RFSTOPPED; 325 struct proc *p2; 326 struct thread *td2; 327 int exit_signal; 328 329 #ifdef DEBUG 330 if (ldebug(clone)) { 331 printf(ARGS(clone, "flags %x, stack %x"), 332 (unsigned int)args->flags, (unsigned int)args->stack); 333 if (args->flags & CLONE_PID) 334 printf(LMSG("CLONE_PID not yet supported")); 335 } 336 #endif 337 338 if (!args->stack) 339 return (EINVAL); 340 341 exit_signal = args->flags & 0x000000ff; 342 if (exit_signal >= LINUX_NSIG) 343 return (EINVAL); 344 345 if (exit_signal <= LINUX_SIGTBLSZ) 346 exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)]; 347 348 if (args->flags & CLONE_VM) 349 ff |= RFMEM; 350 if (args->flags & CLONE_SIGHAND) 351 ff |= RFSIGSHARE; 352 if (!(args->flags & CLONE_FILES)) 353 ff |= RFFDG; 354 355 /* 356 * Attempt to detect when linux_clone(2) is used for creating 357 * kernel threads. Unfortunately despite the existence of the 358 * CLONE_THREAD flag, version of linuxthreads package used in 359 * most popular distros as of beginning of 2005 doesn't make 360 * any use of it. Therefore, this detection relay fully on 361 * empirical observation that linuxthreads sets certain 362 * combination of flags, so that we can make more or less 363 * precise detection and notify the FreeBSD kernel that several 364 * processes are in fact part of the same threading group, so 365 * that special treatment is necessary for signal delivery 366 * between those processes and fd locking. 367 */ 368 if ((args->flags & 0xffffff00) == THREADING_FLAGS) 369 ff |= RFTHREAD; 370 371 error = fork1(td, ff, 0, &p2); 372 if (error) 373 return (error); 374 375 376 PROC_LOCK(p2); 377 p2->p_sigparent = exit_signal; 378 PROC_UNLOCK(p2); 379 td2 = FIRST_THREAD_IN_PROC(p2); 380 td2->td_frame->tf_esp = (unsigned int)args->stack; 381 382 #ifdef DEBUG 383 if (ldebug(clone)) 384 printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"), 385 (long)p2->p_pid, args->stack, exit_signal); 386 #endif 387 388 /* 389 * Make this runnable after we are finished with it. 390 */ 391 mtx_lock_spin(&sched_lock); 392 TD_SET_CAN_RUN(td2); 393 setrunqueue(td2, SRQ_BORING); 394 mtx_unlock_spin(&sched_lock); 395 396 td->td_retval[0] = p2->p_pid; 397 td->td_retval[1] = 0; 398 return (0); 399 } 400 401 /* XXX move */ 402 struct l_mmap_argv { 403 l_caddr_t addr; 404 l_int len; 405 l_int prot; 406 l_int flags; 407 l_int fd; 408 l_int pos; 409 }; 410 411 #define STACK_SIZE (2 * 1024 * 1024) 412 #define GUARD_SIZE (4 * PAGE_SIZE) 413 414 static int linux_mmap_common(struct thread *, struct l_mmap_argv *); 415 416 int 417 linux_mmap2(struct thread *td, struct linux_mmap2_args *args) 418 { 419 struct l_mmap_argv linux_args; 420 421 #ifdef DEBUG 422 if (ldebug(mmap2)) 423 printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), 424 (void *)args->addr, args->len, args->prot, 425 args->flags, args->fd, args->pgoff); 426 #endif 427 428 linux_args.addr = (l_caddr_t)args->addr; 429 linux_args.len = args->len; 430 linux_args.prot = args->prot; 431 linux_args.flags = args->flags; 432 linux_args.fd = args->fd; 433 linux_args.pos = args->pgoff * PAGE_SIZE; 434 435 return (linux_mmap_common(td, &linux_args)); 436 } 437 438 int 439 linux_mmap(struct thread *td, struct linux_mmap_args *args) 440 { 441 int error; 442 struct l_mmap_argv linux_args; 443 444 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 445 if (error) 446 return (error); 447 448 #ifdef DEBUG 449 if (ldebug(mmap)) 450 printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), 451 (void *)linux_args.addr, linux_args.len, linux_args.prot, 452 linux_args.flags, linux_args.fd, linux_args.pos); 453 #endif 454 455 return (linux_mmap_common(td, &linux_args)); 456 } 457 458 static int 459 linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args) 460 { 461 struct proc *p = td->td_proc; 462 struct mmap_args /* { 463 caddr_t addr; 464 size_t len; 465 int prot; 466 int flags; 467 int fd; 468 long pad; 469 off_t pos; 470 } */ bsd_args; 471 int error; 472 473 error = 0; 474 bsd_args.flags = 0; 475 if (linux_args->flags & LINUX_MAP_SHARED) 476 bsd_args.flags |= MAP_SHARED; 477 if (linux_args->flags & LINUX_MAP_PRIVATE) 478 bsd_args.flags |= MAP_PRIVATE; 479 if (linux_args->flags & LINUX_MAP_FIXED) 480 bsd_args.flags |= MAP_FIXED; 481 if (linux_args->flags & LINUX_MAP_ANON) 482 bsd_args.flags |= MAP_ANON; 483 else 484 bsd_args.flags |= MAP_NOSYNC; 485 if (linux_args->flags & LINUX_MAP_GROWSDOWN) { 486 bsd_args.flags |= MAP_STACK; 487 488 /* The linux MAP_GROWSDOWN option does not limit auto 489 * growth of the region. Linux mmap with this option 490 * takes as addr the inital BOS, and as len, the initial 491 * region size. It can then grow down from addr without 492 * limit. However, linux threads has an implicit internal 493 * limit to stack size of STACK_SIZE. Its just not 494 * enforced explicitly in linux. But, here we impose 495 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack 496 * region, since we can do this with our mmap. 497 * 498 * Our mmap with MAP_STACK takes addr as the maximum 499 * downsize limit on BOS, and as len the max size of 500 * the region. It them maps the top SGROWSIZ bytes, 501 * and autgrows the region down, up to the limit 502 * in addr. 503 * 504 * If we don't use the MAP_STACK option, the effect 505 * of this code is to allocate a stack region of a 506 * fixed size of (STACK_SIZE - GUARD_SIZE). 507 */ 508 509 /* This gives us TOS */ 510 bsd_args.addr = linux_args->addr + linux_args->len; 511 512 if (bsd_args.addr > p->p_vmspace->vm_maxsaddr) { 513 /* Some linux apps will attempt to mmap 514 * thread stacks near the top of their 515 * address space. If their TOS is greater 516 * than vm_maxsaddr, vm_map_growstack() 517 * will confuse the thread stack with the 518 * process stack and deliver a SEGV if they 519 * attempt to grow the thread stack past their 520 * current stacksize rlimit. To avoid this, 521 * adjust vm_maxsaddr upwards to reflect 522 * the current stacksize rlimit rather 523 * than the maximum possible stacksize. 524 * It would be better to adjust the 525 * mmap'ed region, but some apps do not check 526 * mmap's return value. 527 */ 528 PROC_LOCK(p); 529 p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - 530 lim_cur(p, RLIMIT_STACK); 531 PROC_UNLOCK(p); 532 } 533 534 /* This gives us our maximum stack size */ 535 if (linux_args->len > STACK_SIZE - GUARD_SIZE) 536 bsd_args.len = linux_args->len; 537 else 538 bsd_args.len = STACK_SIZE - GUARD_SIZE; 539 540 /* This gives us a new BOS. If we're using VM_STACK, then 541 * mmap will just map the top SGROWSIZ bytes, and let 542 * the stack grow down to the limit at BOS. If we're 543 * not using VM_STACK we map the full stack, since we 544 * don't have a way to autogrow it. 545 */ 546 bsd_args.addr -= bsd_args.len; 547 } else { 548 bsd_args.addr = linux_args->addr; 549 bsd_args.len = linux_args->len; 550 } 551 552 bsd_args.prot = linux_args->prot | PROT_READ; /* always required */ 553 if (linux_args->flags & LINUX_MAP_ANON) 554 bsd_args.fd = -1; 555 else 556 bsd_args.fd = linux_args->fd; 557 bsd_args.pos = linux_args->pos; 558 bsd_args.pad = 0; 559 560 #ifdef DEBUG 561 if (ldebug(mmap)) 562 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", 563 __func__, 564 (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, 565 bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); 566 #endif 567 error = mmap(td, &bsd_args); 568 #ifdef DEBUG 569 if (ldebug(mmap)) 570 printf("-> %s() return: 0x%x (0x%08x)\n", 571 __func__, error, (u_int)td->td_retval[0]); 572 #endif 573 return (error); 574 } 575 576 int 577 linux_pipe(struct thread *td, struct linux_pipe_args *args) 578 { 579 int error; 580 int reg_edx; 581 582 #ifdef DEBUG 583 if (ldebug(pipe)) 584 printf(ARGS(pipe, "*")); 585 #endif 586 587 reg_edx = td->td_retval[1]; 588 error = pipe(td, 0); 589 if (error) { 590 td->td_retval[1] = reg_edx; 591 return (error); 592 } 593 594 error = copyout(td->td_retval, args->pipefds, 2*sizeof(int)); 595 if (error) { 596 td->td_retval[1] = reg_edx; 597 return (error); 598 } 599 600 td->td_retval[1] = reg_edx; 601 td->td_retval[0] = 0; 602 return (0); 603 } 604 605 int 606 linux_ioperm(struct thread *td, struct linux_ioperm_args *args) 607 { 608 int error; 609 struct i386_ioperm_args iia; 610 611 iia.start = args->start; 612 iia.length = args->length; 613 iia.enable = args->enable; 614 mtx_lock(&Giant); 615 error = i386_set_ioperm(td, &iia); 616 mtx_unlock(&Giant); 617 return (error); 618 } 619 620 int 621 linux_iopl(struct thread *td, struct linux_iopl_args *args) 622 { 623 int error; 624 625 if (args->level < 0 || args->level > 3) 626 return (EINVAL); 627 if ((error = suser(td)) != 0) 628 return (error); 629 if ((error = securelevel_gt(td->td_ucred, 0)) != 0) 630 return (error); 631 td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | 632 (args->level * (PSL_IOPL / 3)); 633 return (0); 634 } 635 636 int 637 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) 638 { 639 int error; 640 struct i386_ldt_args ldt; 641 struct l_descriptor ld; 642 union descriptor desc; 643 644 if (uap->ptr == NULL) 645 return (EINVAL); 646 647 switch (uap->func) { 648 case 0x00: /* read_ldt */ 649 ldt.start = 0; 650 ldt.descs = uap->ptr; 651 ldt.num = uap->bytecount / sizeof(union descriptor); 652 mtx_lock(&Giant); 653 error = i386_get_ldt(td, &ldt); 654 td->td_retval[0] *= sizeof(union descriptor); 655 mtx_unlock(&Giant); 656 break; 657 case 0x01: /* write_ldt */ 658 case 0x11: /* write_ldt */ 659 if (uap->bytecount != sizeof(ld)) 660 return (EINVAL); 661 662 error = copyin(uap->ptr, &ld, sizeof(ld)); 663 if (error) 664 return (error); 665 666 ldt.start = ld.entry_number; 667 ldt.descs = &desc; 668 ldt.num = 1; 669 desc.sd.sd_lolimit = (ld.limit & 0x0000ffff); 670 desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; 671 desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff); 672 desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; 673 desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | 674 (ld.contents << 2); 675 desc.sd.sd_dpl = 3; 676 desc.sd.sd_p = (ld.seg_not_present ^ 1); 677 desc.sd.sd_xx = 0; 678 desc.sd.sd_def32 = ld.seg_32bit; 679 desc.sd.sd_gran = ld.limit_in_pages; 680 mtx_lock(&Giant); 681 error = i386_set_ldt(td, &ldt, &desc); 682 mtx_unlock(&Giant); 683 break; 684 default: 685 error = EINVAL; 686 break; 687 } 688 689 if (error == EOPNOTSUPP) { 690 printf("linux: modify_ldt needs kernel option USER_LDT\n"); 691 error = ENOSYS; 692 } 693 694 return (error); 695 } 696 697 int 698 linux_sigaction(struct thread *td, struct linux_sigaction_args *args) 699 { 700 l_osigaction_t osa; 701 l_sigaction_t act, oact; 702 int error; 703 704 #ifdef DEBUG 705 if (ldebug(sigaction)) 706 printf(ARGS(sigaction, "%d, %p, %p"), 707 args->sig, (void *)args->nsa, (void *)args->osa); 708 #endif 709 710 if (args->nsa != NULL) { 711 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); 712 if (error) 713 return (error); 714 act.lsa_handler = osa.lsa_handler; 715 act.lsa_flags = osa.lsa_flags; 716 act.lsa_restorer = osa.lsa_restorer; 717 LINUX_SIGEMPTYSET(act.lsa_mask); 718 act.lsa_mask.__bits[0] = osa.lsa_mask; 719 } 720 721 error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, 722 args->osa ? &oact : NULL); 723 724 if (args->osa != NULL && !error) { 725 osa.lsa_handler = oact.lsa_handler; 726 osa.lsa_flags = oact.lsa_flags; 727 osa.lsa_restorer = oact.lsa_restorer; 728 osa.lsa_mask = oact.lsa_mask.__bits[0]; 729 error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); 730 } 731 732 return (error); 733 } 734 735 /* 736 * Linux has two extra args, restart and oldmask. We dont use these, 737 * but it seems that "restart" is actually a context pointer that 738 * enables the signal to happen with a different register set. 739 */ 740 int 741 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) 742 { 743 sigset_t sigmask; 744 l_sigset_t mask; 745 746 #ifdef DEBUG 747 if (ldebug(sigsuspend)) 748 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); 749 #endif 750 751 LINUX_SIGEMPTYSET(mask); 752 mask.__bits[0] = args->mask; 753 linux_to_bsd_sigset(&mask, &sigmask); 754 return (kern_sigsuspend(td, sigmask)); 755 } 756 757 int 758 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) 759 { 760 l_sigset_t lmask; 761 sigset_t sigmask; 762 int error; 763 764 #ifdef DEBUG 765 if (ldebug(rt_sigsuspend)) 766 printf(ARGS(rt_sigsuspend, "%p, %d"), 767 (void *)uap->newset, uap->sigsetsize); 768 #endif 769 770 if (uap->sigsetsize != sizeof(l_sigset_t)) 771 return (EINVAL); 772 773 error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); 774 if (error) 775 return (error); 776 777 linux_to_bsd_sigset(&lmask, &sigmask); 778 return (kern_sigsuspend(td, sigmask)); 779 } 780 781 int 782 linux_pause(struct thread *td, struct linux_pause_args *args) 783 { 784 struct proc *p = td->td_proc; 785 sigset_t sigmask; 786 787 #ifdef DEBUG 788 if (ldebug(pause)) 789 printf(ARGS(pause, "")); 790 #endif 791 792 PROC_LOCK(p); 793 sigmask = td->td_sigmask; 794 PROC_UNLOCK(p); 795 return (kern_sigsuspend(td, sigmask)); 796 } 797 798 int 799 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) 800 { 801 stack_t ss, oss; 802 l_stack_t lss; 803 int error; 804 805 #ifdef DEBUG 806 if (ldebug(sigaltstack)) 807 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); 808 #endif 809 810 if (uap->uss != NULL) { 811 error = copyin(uap->uss, &lss, sizeof(l_stack_t)); 812 if (error) 813 return (error); 814 815 ss.ss_sp = lss.ss_sp; 816 ss.ss_size = lss.ss_size; 817 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); 818 } 819 error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, 820 (uap->uoss != NULL) ? &oss : NULL); 821 if (!error && uap->uoss != NULL) { 822 lss.ss_sp = oss.ss_sp; 823 lss.ss_size = oss.ss_size; 824 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); 825 error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); 826 } 827 828 return (error); 829 } 830 831 int 832 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) 833 { 834 struct ftruncate_args sa; 835 836 #ifdef DEBUG 837 if (ldebug(ftruncate64)) 838 printf(ARGS(ftruncate64, "%u, %jd"), args->fd, 839 (intmax_t)args->length); 840 #endif 841 842 sa.fd = args->fd; 843 sa.pad = 0; 844 sa.length = args->length; 845 return ftruncate(td, &sa); 846 } 847 848 int 849 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) 850 { 851 /* 852 * Return an error code instead of raising a SIGSYS so that 853 * the caller will fall back to simpler LDT methods. 854 */ 855 return (ENOSYS); 856 } 857 858 int 859 linux_gettid(struct thread *td, struct linux_gettid_args *args) 860 { 861 862 td->td_retval[0] = td->td_proc->p_pid; 863 return (0); 864 } 865 866 int 867 linux_tkill(struct thread *td, struct linux_tkill_args *args) 868 { 869 870 return (linux_kill(td, (struct linux_kill_args *) args)); 871 } 872 873