xref: /freebsd/sys/i386/linux/linux_machdep.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 2000 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer
10  *    in this position and unchanged.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/file.h>
35 #include <sys/fcntl.h>
36 #include <sys/imgact.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mman.h>
40 #include <sys/mutex.h>
41 #include <sys/sx.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/queue.h>
45 #include <sys/resource.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysproto.h>
50 #include <sys/unistd.h>
51 #include <sys/wait.h>
52 #include <sys/sched.h>
53 
54 #include <machine/frame.h>
55 #include <machine/psl.h>
56 #include <machine/segments.h>
57 #include <machine/sysarch.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 
63 #include <i386/linux/linux.h>
64 #include <i386/linux/linux_proto.h>
65 #include <compat/linux/linux_ipc.h>
66 #include <compat/linux/linux_signal.h>
67 #include <compat/linux/linux_util.h>
68 #include <compat/linux/linux_emul.h>
69 
70 #include <i386/include/pcb.h>			/* needed for pcb definition in linux_set_thread_area */
71 
72 #include "opt_posix.h"
73 
74 extern struct sysentvec elf32_freebsd_sysvec;	/* defined in i386/i386/elf_machdep.c */
75 
76 struct l_descriptor {
77 	l_uint		entry_number;
78 	l_ulong		base_addr;
79 	l_uint		limit;
80 	l_uint		seg_32bit:1;
81 	l_uint		contents:2;
82 	l_uint		read_exec_only:1;
83 	l_uint		limit_in_pages:1;
84 	l_uint		seg_not_present:1;
85 	l_uint		useable:1;
86 };
87 
88 struct l_old_select_argv {
89 	l_int		nfds;
90 	l_fd_set	*readfds;
91 	l_fd_set	*writefds;
92 	l_fd_set	*exceptfds;
93 	struct l_timeval	*timeout;
94 };
95 
96 int
97 linux_to_bsd_sigaltstack(int lsa)
98 {
99 	int bsa = 0;
100 
101 	if (lsa & LINUX_SS_DISABLE)
102 		bsa |= SS_DISABLE;
103 	if (lsa & LINUX_SS_ONSTACK)
104 		bsa |= SS_ONSTACK;
105 	return (bsa);
106 }
107 
108 int
109 bsd_to_linux_sigaltstack(int bsa)
110 {
111 	int lsa = 0;
112 
113 	if (bsa & SS_DISABLE)
114 		lsa |= LINUX_SS_DISABLE;
115 	if (bsa & SS_ONSTACK)
116 		lsa |= LINUX_SS_ONSTACK;
117 	return (lsa);
118 }
119 
120 int
121 linux_execve(struct thread *td, struct linux_execve_args *args)
122 {
123 	int error;
124 	char *newpath;
125 	struct image_args eargs;
126 
127 	LCONVPATHEXIST(td, args->path, &newpath);
128 
129 #ifdef DEBUG
130 	if (ldebug(execve))
131 		printf(ARGS(execve, "%s"), newpath);
132 #endif
133 
134 	error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE,
135 	    args->argp, args->envp);
136 	free(newpath, M_TEMP);
137 	if (error == 0)
138 		error = kern_execve(td, &eargs, NULL);
139 	if (error == 0)
140 	   	/* linux process can exec fbsd one, dont attempt
141 		 * to create emuldata for such process using
142 		 * linux_proc_init, this leads to a panic on KASSERT
143 		 * because such process has p->p_emuldata == NULL
144 		 */
145 	   	if (td->td_proc->p_sysent == &elf_linux_sysvec)
146    		   	error = linux_proc_init(td, 0, 0);
147 	return (error);
148 }
149 
150 struct l_ipc_kludge {
151 	struct l_msgbuf *msgp;
152 	l_long msgtyp;
153 };
154 
155 int
156 linux_ipc(struct thread *td, struct linux_ipc_args *args)
157 {
158 
159 	switch (args->what & 0xFFFF) {
160 	case LINUX_SEMOP: {
161 		struct linux_semop_args a;
162 
163 		a.semid = args->arg1;
164 		a.tsops = args->ptr;
165 		a.nsops = args->arg2;
166 		return (linux_semop(td, &a));
167 	}
168 	case LINUX_SEMGET: {
169 		struct linux_semget_args a;
170 
171 		a.key = args->arg1;
172 		a.nsems = args->arg2;
173 		a.semflg = args->arg3;
174 		return (linux_semget(td, &a));
175 	}
176 	case LINUX_SEMCTL: {
177 		struct linux_semctl_args a;
178 		int error;
179 
180 		a.semid = args->arg1;
181 		a.semnum = args->arg2;
182 		a.cmd = args->arg3;
183 		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
184 		if (error)
185 			return (error);
186 		return (linux_semctl(td, &a));
187 	}
188 	case LINUX_MSGSND: {
189 		struct linux_msgsnd_args a;
190 
191 		a.msqid = args->arg1;
192 		a.msgp = args->ptr;
193 		a.msgsz = args->arg2;
194 		a.msgflg = args->arg3;
195 		return (linux_msgsnd(td, &a));
196 	}
197 	case LINUX_MSGRCV: {
198 		struct linux_msgrcv_args a;
199 
200 		a.msqid = args->arg1;
201 		a.msgsz = args->arg2;
202 		a.msgflg = args->arg3;
203 		if ((args->what >> 16) == 0) {
204 			struct l_ipc_kludge tmp;
205 			int error;
206 
207 			if (args->ptr == NULL)
208 				return (EINVAL);
209 			error = copyin(args->ptr, &tmp, sizeof(tmp));
210 			if (error)
211 				return (error);
212 			a.msgp = tmp.msgp;
213 			a.msgtyp = tmp.msgtyp;
214 		} else {
215 			a.msgp = args->ptr;
216 			a.msgtyp = args->arg5;
217 		}
218 		return (linux_msgrcv(td, &a));
219 	}
220 	case LINUX_MSGGET: {
221 		struct linux_msgget_args a;
222 
223 		a.key = args->arg1;
224 		a.msgflg = args->arg2;
225 		return (linux_msgget(td, &a));
226 	}
227 	case LINUX_MSGCTL: {
228 		struct linux_msgctl_args a;
229 
230 		a.msqid = args->arg1;
231 		a.cmd = args->arg2;
232 		a.buf = args->ptr;
233 		return (linux_msgctl(td, &a));
234 	}
235 	case LINUX_SHMAT: {
236 		struct linux_shmat_args a;
237 
238 		a.shmid = args->arg1;
239 		a.shmaddr = args->ptr;
240 		a.shmflg = args->arg2;
241 		a.raddr = (l_ulong *)args->arg3;
242 		return (linux_shmat(td, &a));
243 	}
244 	case LINUX_SHMDT: {
245 		struct linux_shmdt_args a;
246 
247 		a.shmaddr = args->ptr;
248 		return (linux_shmdt(td, &a));
249 	}
250 	case LINUX_SHMGET: {
251 		struct linux_shmget_args a;
252 
253 		a.key = args->arg1;
254 		a.size = args->arg2;
255 		a.shmflg = args->arg3;
256 		return (linux_shmget(td, &a));
257 	}
258 	case LINUX_SHMCTL: {
259 		struct linux_shmctl_args a;
260 
261 		a.shmid = args->arg1;
262 		a.cmd = args->arg2;
263 		a.buf = args->ptr;
264 		return (linux_shmctl(td, &a));
265 	}
266 	default:
267 		break;
268 	}
269 
270 	return (EINVAL);
271 }
272 
273 int
274 linux_old_select(struct thread *td, struct linux_old_select_args *args)
275 {
276 	struct l_old_select_argv linux_args;
277 	struct linux_select_args newsel;
278 	int error;
279 
280 #ifdef DEBUG
281 	if (ldebug(old_select))
282 		printf(ARGS(old_select, "%p"), args->ptr);
283 #endif
284 
285 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
286 	if (error)
287 		return (error);
288 
289 	newsel.nfds = linux_args.nfds;
290 	newsel.readfds = linux_args.readfds;
291 	newsel.writefds = linux_args.writefds;
292 	newsel.exceptfds = linux_args.exceptfds;
293 	newsel.timeout = linux_args.timeout;
294 	return (linux_select(td, &newsel));
295 }
296 
297 int
298 linux_fork(struct thread *td, struct linux_fork_args *args)
299 {
300 	int error;
301 	struct proc *p2;
302 	struct thread *td2;
303 
304 #ifdef DEBUG
305 	if (ldebug(fork))
306 		printf(ARGS(fork, ""));
307 #endif
308 
309 	if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
310 		return (error);
311 
312 	if (error == 0) {
313 		td->td_retval[0] = p2->p_pid;
314 		td->td_retval[1] = 0;
315 	}
316 
317 	if (td->td_retval[1] == 1)
318 		td->td_retval[0] = 0;
319 	error = linux_proc_init(td, td->td_retval[0], 0);
320 	if (error)
321 		return (error);
322 
323 	td2 = FIRST_THREAD_IN_PROC(p2);
324 
325 	/*
326 	 * Make this runnable after we are finished with it.
327 	 */
328 	thread_lock(td2);
329 	TD_SET_CAN_RUN(td2);
330 	sched_add(td2, SRQ_BORING);
331 	thread_unlock(td2);
332 
333 	return (0);
334 }
335 
336 int
337 linux_vfork(struct thread *td, struct linux_vfork_args *args)
338 {
339 	int error;
340 	struct proc *p2;
341 	struct thread *td2;
342 
343 #ifdef DEBUG
344 	if (ldebug(vfork))
345 		printf(ARGS(vfork, ""));
346 #endif
347 
348 	/* exclude RFPPWAIT */
349 	if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
350 		return (error);
351 	if (error == 0) {
352 		td->td_retval[0] = p2->p_pid;
353 		td->td_retval[1] = 0;
354 	}
355 	/* Are we the child? */
356 	if (td->td_retval[1] == 1)
357 		td->td_retval[0] = 0;
358 	error = linux_proc_init(td, td->td_retval[0], 0);
359 	if (error)
360 		return (error);
361 
362 	PROC_LOCK(p2);
363 	p2->p_flag |= P_PPWAIT;
364 	PROC_UNLOCK(p2);
365 
366 	td2 = FIRST_THREAD_IN_PROC(p2);
367 
368 	/*
369 	 * Make this runnable after we are finished with it.
370 	 */
371 	thread_lock(td2);
372 	TD_SET_CAN_RUN(td2);
373 	sched_add(td2, SRQ_BORING);
374 	thread_unlock(td2);
375 
376 	/* wait for the children to exit, ie. emulate vfork */
377 	PROC_LOCK(p2);
378 	while (p2->p_flag & P_PPWAIT)
379 	   	msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
380 	PROC_UNLOCK(p2);
381 
382 	return (0);
383 }
384 
385 int
386 linux_clone(struct thread *td, struct linux_clone_args *args)
387 {
388 	int error, ff = RFPROC | RFSTOPPED;
389 	struct proc *p2;
390 	struct thread *td2;
391 	int exit_signal;
392 	struct linux_emuldata *em;
393 
394 #ifdef DEBUG
395 	if (ldebug(clone)) {
396    	   	printf(ARGS(clone, "flags %x, stack %x, parent tid: %x, child tid: %x"),
397 		    (unsigned int)args->flags, (unsigned int)args->stack,
398 		    (unsigned int)args->parent_tidptr, (unsigned int)args->child_tidptr);
399 	}
400 #endif
401 
402 	exit_signal = args->flags & 0x000000ff;
403 	if (LINUX_SIG_VALID(exit_signal)) {
404 		if (exit_signal <= LINUX_SIGTBLSZ)
405 			exit_signal =
406 			    linux_to_bsd_signal[_SIG_IDX(exit_signal)];
407 	} else if (exit_signal != 0)
408 		return (EINVAL);
409 
410 	if (args->flags & LINUX_CLONE_VM)
411 		ff |= RFMEM;
412 	if (args->flags & LINUX_CLONE_SIGHAND)
413 		ff |= RFSIGSHARE;
414 	/*
415 	 * XXX: in linux sharing of fs info (chroot/cwd/umask)
416 	 * and open files is independant. in fbsd its in one
417 	 * structure but in reality it doesn't cause any problems
418 	 * because both of these flags are usually set together.
419 	 */
420 	if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
421 		ff |= RFFDG;
422 
423 	/*
424 	 * Attempt to detect when linux_clone(2) is used for creating
425 	 * kernel threads. Unfortunately despite the existence of the
426 	 * CLONE_THREAD flag, version of linuxthreads package used in
427 	 * most popular distros as of beginning of 2005 doesn't make
428 	 * any use of it. Therefore, this detection relies on
429 	 * empirical observation that linuxthreads sets certain
430 	 * combination of flags, so that we can make more or less
431 	 * precise detection and notify the FreeBSD kernel that several
432 	 * processes are in fact part of the same threading group, so
433 	 * that special treatment is necessary for signal delivery
434 	 * between those processes and fd locking.
435 	 */
436 	if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
437 		ff |= RFTHREAD;
438 
439 	if (args->flags & LINUX_CLONE_PARENT_SETTID)
440 		if (args->parent_tidptr == NULL)
441 			return (EINVAL);
442 
443 	error = fork1(td, ff, 0, &p2);
444 	if (error)
445 		return (error);
446 
447 	if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
448 	   	sx_xlock(&proctree_lock);
449 		PROC_LOCK(p2);
450 		proc_reparent(p2, td->td_proc->p_pptr);
451 		PROC_UNLOCK(p2);
452 		sx_xunlock(&proctree_lock);
453 	}
454 
455 	/* create the emuldata */
456 	error = linux_proc_init(td, p2->p_pid, args->flags);
457 	/* reference it - no need to check this */
458 	em = em_find(p2, EMUL_DOLOCK);
459 	KASSERT(em != NULL, ("clone: emuldata not found.\n"));
460 	/* and adjust it */
461 
462 	if (args->flags & LINUX_CLONE_THREAD) {
463 	   	/* XXX: linux mangles pgrp and pptr somehow
464 		 * I think it might be this but I am not sure.
465 		 */
466 #ifdef notyet
467 	   	PROC_LOCK(p2);
468 	   	p2->p_pgrp = td->td_proc->p_pgrp;
469 	   	PROC_UNLOCK(p2);
470 #endif
471 	 	exit_signal = 0;
472 	}
473 
474 	if (args->flags & LINUX_CLONE_CHILD_SETTID)
475 		em->child_set_tid = args->child_tidptr;
476 	else
477 	   	em->child_set_tid = NULL;
478 
479 	if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
480 		em->child_clear_tid = args->child_tidptr;
481 	else
482 	   	em->child_clear_tid = NULL;
483 
484 	EMUL_UNLOCK(&emul_lock);
485 
486 	if (args->flags & LINUX_CLONE_PARENT_SETTID) {
487 		error = copyout(&p2->p_pid, args->parent_tidptr, sizeof(p2->p_pid));
488 		if (error)
489 			printf(LMSG("copyout failed!"));
490 	}
491 
492 	PROC_LOCK(p2);
493 	p2->p_sigparent = exit_signal;
494 	PROC_UNLOCK(p2);
495 	td2 = FIRST_THREAD_IN_PROC(p2);
496 	/*
497 	 * in a case of stack = NULL we are supposed to COW calling process stack
498 	 * this is what normal fork() does so we just keep the tf_esp arg intact
499 	 */
500 	if (args->stack)
501    	   	td2->td_frame->tf_esp = (unsigned int)args->stack;
502 
503 	if (args->flags & LINUX_CLONE_SETTLS) {
504    	   	struct l_user_desc info;
505    	   	int idx;
506 	   	int a[2];
507 		struct segment_descriptor sd;
508 
509 	   	error = copyin((void *)td->td_frame->tf_esi, &info, sizeof(struct l_user_desc));
510 		if (error) {
511 			printf(LMSG("copyin failed!"));
512 		} else {
513 
514 			idx = info.entry_number;
515 
516 			/*
517 			 * looks like we're getting the idx we returned
518 			 * in the set_thread_area() syscall
519 			 */
520 			if (idx != 6 && idx != 3) {
521 				printf(LMSG("resetting idx!"));
522 				idx = 3;
523 			}
524 
525 			/* this doesnt happen in practice */
526 			if (idx == 6) {
527 		   		/* we might copy out the entry_number as 3 */
528 			   	info.entry_number = 3;
529 				error = copyout(&info, (void *) td->td_frame->tf_esi, sizeof(struct l_user_desc));
530 				if (error)
531 					printf(LMSG("copyout failed!"));
532 			}
533 
534 			a[0] = LINUX_LDT_entry_a(&info);
535 			a[1] = LINUX_LDT_entry_b(&info);
536 
537 			memcpy(&sd, &a, sizeof(a));
538 #ifdef DEBUG
539 		if (ldebug(clone))
540 		   	printf("Segment created in clone with CLONE_SETTLS: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
541 			sd.sd_hibase,
542 			sd.sd_lolimit,
543 			sd.sd_hilimit,
544 			sd.sd_type,
545 			sd.sd_dpl,
546 			sd.sd_p,
547 			sd.sd_xx,
548 			sd.sd_def32,
549 			sd.sd_gran);
550 #endif
551 
552 			/* set %gs */
553 			td2->td_pcb->pcb_gsd = sd;
554 			td2->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL);
555 		}
556 	}
557 
558 #ifdef DEBUG
559 	if (ldebug(clone))
560 		printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
561 		    (long)p2->p_pid, args->stack, exit_signal);
562 #endif
563 	if (args->flags & LINUX_CLONE_VFORK) {
564 	   	PROC_LOCK(p2);
565 		p2->p_flag |= P_PPWAIT;
566 	   	PROC_UNLOCK(p2);
567 	}
568 
569 	/*
570 	 * Make this runnable after we are finished with it.
571 	 */
572 	thread_lock(td2);
573 	TD_SET_CAN_RUN(td2);
574 	sched_add(td2, SRQ_BORING);
575 	thread_unlock(td2);
576 
577 	td->td_retval[0] = p2->p_pid;
578 	td->td_retval[1] = 0;
579 
580 	if (args->flags & LINUX_CLONE_VFORK) {
581    	   	/* wait for the children to exit, ie. emulate vfork */
582    	   	PROC_LOCK(p2);
583 		while (p2->p_flag & P_PPWAIT)
584    		   	msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
585 		PROC_UNLOCK(p2);
586 	}
587 
588 	return (0);
589 }
590 
591 #define STACK_SIZE  (2 * 1024 * 1024)
592 #define GUARD_SIZE  (4 * PAGE_SIZE)
593 
594 static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
595 
596 int
597 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
598 {
599 	struct l_mmap_argv linux_args;
600 
601 #ifdef DEBUG
602 	if (ldebug(mmap2))
603 		printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
604 		    (void *)args->addr, args->len, args->prot,
605 		    args->flags, args->fd, args->pgoff);
606 #endif
607 
608 	linux_args.addr = args->addr;
609 	linux_args.len = args->len;
610 	linux_args.prot = args->prot;
611 	linux_args.flags = args->flags;
612 	linux_args.fd = args->fd;
613 	linux_args.pgoff = args->pgoff * PAGE_SIZE;
614 
615 	return (linux_mmap_common(td, &linux_args));
616 }
617 
618 int
619 linux_mmap(struct thread *td, struct linux_mmap_args *args)
620 {
621 	int error;
622 	struct l_mmap_argv linux_args;
623 
624 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
625 	if (error)
626 		return (error);
627 
628 #ifdef DEBUG
629 	if (ldebug(mmap))
630 		printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
631 		    (void *)linux_args.addr, linux_args.len, linux_args.prot,
632 		    linux_args.flags, linux_args.fd, linux_args.pgoff);
633 #endif
634 
635 	return (linux_mmap_common(td, &linux_args));
636 }
637 
638 static int
639 linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
640 {
641 	struct proc *p = td->td_proc;
642 	struct mmap_args /* {
643 		caddr_t addr;
644 		size_t len;
645 		int prot;
646 		int flags;
647 		int fd;
648 		long pad;
649 		off_t pos;
650 	} */ bsd_args;
651 	int error;
652 	struct file *fp;
653 
654 	error = 0;
655 	bsd_args.flags = 0;
656 	fp = NULL;
657 
658 	/*
659 	 * Linux mmap(2):
660 	 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
661 	 */
662 	if (! ((linux_args->flags & LINUX_MAP_SHARED) ^
663 	    (linux_args->flags & LINUX_MAP_PRIVATE)))
664 		return (EINVAL);
665 
666 	if (linux_args->flags & LINUX_MAP_SHARED)
667 		bsd_args.flags |= MAP_SHARED;
668 	if (linux_args->flags & LINUX_MAP_PRIVATE)
669 		bsd_args.flags |= MAP_PRIVATE;
670 	if (linux_args->flags & LINUX_MAP_FIXED)
671 		bsd_args.flags |= MAP_FIXED;
672 	if (linux_args->flags & LINUX_MAP_ANON)
673 		bsd_args.flags |= MAP_ANON;
674 	else
675 		bsd_args.flags |= MAP_NOSYNC;
676 	if (linux_args->flags & LINUX_MAP_GROWSDOWN)
677 		bsd_args.flags |= MAP_STACK;
678 
679 	/*
680 	 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
681 	 * on Linux/i386. We do this to ensure maximum compatibility.
682 	 * Linux/ia64 does the same in i386 emulation mode.
683 	 */
684 	bsd_args.prot = linux_args->prot;
685 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
686 		bsd_args.prot |= PROT_READ | PROT_EXEC;
687 
688 	/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
689 	bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : linux_args->fd;
690 	if (bsd_args.fd != -1) {
691 		/*
692 		 * Linux follows Solaris mmap(2) description:
693 		 * The file descriptor fildes is opened with
694 		 * read permission, regardless of the
695 		 * protection options specified.
696 		 */
697 
698 		if ((error = fget(td, bsd_args.fd, &fp)) != 0)
699 			return (error);
700 		if (fp->f_type != DTYPE_VNODE) {
701 			fdrop(fp, td);
702 			return (EINVAL);
703 		}
704 
705 		/* Linux mmap() just fails for O_WRONLY files */
706 		if (!(fp->f_flag & FREAD)) {
707 			fdrop(fp, td);
708 			return (EACCES);
709 		}
710 
711 		fdrop(fp, td);
712 	}
713 
714 	if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
715 		/*
716 		 * The linux MAP_GROWSDOWN option does not limit auto
717 		 * growth of the region.  Linux mmap with this option
718 		 * takes as addr the inital BOS, and as len, the initial
719 		 * region size.  It can then grow down from addr without
720 		 * limit.  However, linux threads has an implicit internal
721 		 * limit to stack size of STACK_SIZE.  Its just not
722 		 * enforced explicitly in linux.  But, here we impose
723 		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
724 		 * region, since we can do this with our mmap.
725 		 *
726 		 * Our mmap with MAP_STACK takes addr as the maximum
727 		 * downsize limit on BOS, and as len the max size of
728 		 * the region.  It them maps the top SGROWSIZ bytes,
729 		 * and auto grows the region down, up to the limit
730 		 * in addr.
731 		 *
732 		 * If we don't use the MAP_STACK option, the effect
733 		 * of this code is to allocate a stack region of a
734 		 * fixed size of (STACK_SIZE - GUARD_SIZE).
735 		 */
736 
737 		if ((caddr_t)PTRIN(linux_args->addr) + linux_args->len >
738 		    p->p_vmspace->vm_maxsaddr) {
739 			/*
740 			 * Some linux apps will attempt to mmap
741 			 * thread stacks near the top of their
742 			 * address space.  If their TOS is greater
743 			 * than vm_maxsaddr, vm_map_growstack()
744 			 * will confuse the thread stack with the
745 			 * process stack and deliver a SEGV if they
746 			 * attempt to grow the thread stack past their
747 			 * current stacksize rlimit.  To avoid this,
748 			 * adjust vm_maxsaddr upwards to reflect
749 			 * the current stacksize rlimit rather
750 			 * than the maximum possible stacksize.
751 			 * It would be better to adjust the
752 			 * mmap'ed region, but some apps do not check
753 			 * mmap's return value.
754 			 */
755 			PROC_LOCK(p);
756 			p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
757 			    lim_cur(p, RLIMIT_STACK);
758 			PROC_UNLOCK(p);
759 		}
760 
761 		/* This gives us our maximum stack size */
762 		if (linux_args->len > STACK_SIZE - GUARD_SIZE)
763 			bsd_args.len = linux_args->len;
764 		else
765 			bsd_args.len  = STACK_SIZE - GUARD_SIZE;
766 
767 		/*
768 		 * This gives us a new BOS.  If we're using VM_STACK, then
769 		 * mmap will just map the top SGROWSIZ bytes, and let
770 		 * the stack grow down to the limit at BOS.  If we're
771 		 * not using VM_STACK we map the full stack, since we
772 		 * don't have a way to autogrow it.
773 		 */
774 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) -
775 		    bsd_args.len;
776 	} else {
777 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr);
778 		bsd_args.len  = linux_args->len;
779 	}
780 	bsd_args.pos = linux_args->pgoff;
781 
782 #ifdef DEBUG
783 	if (ldebug(mmap))
784 		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
785 		    __func__,
786 		    (void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
787 		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
788 #endif
789 	error = mmap(td, &bsd_args);
790 #ifdef DEBUG
791 	if (ldebug(mmap))
792 		printf("-> %s() return: 0x%x (0x%08x)\n",
793 			__func__, error, (u_int)td->td_retval[0]);
794 #endif
795 	return (error);
796 }
797 
798 int
799 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
800 {
801 	struct mprotect_args bsd_args;
802 
803 	bsd_args.addr = uap->addr;
804 	bsd_args.len = uap->len;
805 	bsd_args.prot = uap->prot;
806 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
807 		bsd_args.prot |= PROT_READ | PROT_EXEC;
808 	return (mprotect(td, &bsd_args));
809 }
810 
811 int
812 linux_pipe(struct thread *td, struct linux_pipe_args *args)
813 {
814 	int error;
815 	int reg_edx;
816 
817 #ifdef DEBUG
818 	if (ldebug(pipe))
819 		printf(ARGS(pipe, "*"));
820 #endif
821 
822 	reg_edx = td->td_retval[1];
823 	error = pipe(td, 0);
824 	if (error) {
825 		td->td_retval[1] = reg_edx;
826 		return (error);
827 	}
828 
829 	error = copyout(td->td_retval, args->pipefds, 2*sizeof(int));
830 	if (error) {
831 		td->td_retval[1] = reg_edx;
832 		return (error);
833 	}
834 
835 	td->td_retval[1] = reg_edx;
836 	td->td_retval[0] = 0;
837 	return (0);
838 }
839 
840 int
841 linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
842 {
843 	int error;
844 	struct i386_ioperm_args iia;
845 
846 	iia.start = args->start;
847 	iia.length = args->length;
848 	iia.enable = args->enable;
849 	error = i386_set_ioperm(td, &iia);
850 	return (error);
851 }
852 
853 int
854 linux_iopl(struct thread *td, struct linux_iopl_args *args)
855 {
856 	int error;
857 
858 	if (args->level < 0 || args->level > 3)
859 		return (EINVAL);
860 	if ((error = priv_check(td, PRIV_IO)) != 0)
861 		return (error);
862 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
863 		return (error);
864 	td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
865 	    (args->level * (PSL_IOPL / 3));
866 	return (0);
867 }
868 
869 int
870 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
871 {
872 	int error;
873 	struct i386_ldt_args ldt;
874 	struct l_descriptor ld;
875 	union descriptor desc;
876 	int size, written;
877 
878 	if (uap->ptr == NULL)
879 		return (EINVAL);
880 
881 	switch (uap->func) {
882 	case 0x00: /* read_ldt */
883 		ldt.start = 0;
884 		ldt.descs = uap->ptr;
885 		ldt.num = uap->bytecount / sizeof(union descriptor);
886 		error = i386_get_ldt(td, &ldt);
887 		td->td_retval[0] *= sizeof(union descriptor);
888 		break;
889 	case 0x02: /* read_default_ldt = 0 */
890 		size = 5*sizeof(struct l_desc_struct);
891 		if (size > uap->bytecount)
892 			size = uap->bytecount;
893 		for (written = error = 0; written < size && error == 0; written++)
894 			error = subyte((char *)uap->ptr + written, 0);
895 		td->td_retval[0] = written;
896 		break;
897 	case 0x01: /* write_ldt */
898 	case 0x11: /* write_ldt */
899 		if (uap->bytecount != sizeof(ld))
900 			return (EINVAL);
901 
902 		error = copyin(uap->ptr, &ld, sizeof(ld));
903 		if (error)
904 			return (error);
905 
906 		ldt.start = ld.entry_number;
907 		ldt.descs = &desc;
908 		ldt.num = 1;
909 		desc.sd.sd_lolimit = (ld.limit & 0x0000ffff);
910 		desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
911 		desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff);
912 		desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
913 		desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
914 			(ld.contents << 2);
915 		desc.sd.sd_dpl = 3;
916 		desc.sd.sd_p = (ld.seg_not_present ^ 1);
917 		desc.sd.sd_xx = 0;
918 		desc.sd.sd_def32 = ld.seg_32bit;
919 		desc.sd.sd_gran = ld.limit_in_pages;
920 		error = i386_set_ldt(td, &ldt, &desc);
921 		break;
922 	default:
923 		error = EINVAL;
924 		break;
925 	}
926 
927 	if (error == EOPNOTSUPP) {
928 		printf("linux: modify_ldt needs kernel option USER_LDT\n");
929 		error = ENOSYS;
930 	}
931 
932 	return (error);
933 }
934 
935 int
936 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
937 {
938 	l_osigaction_t osa;
939 	l_sigaction_t act, oact;
940 	int error;
941 
942 #ifdef DEBUG
943 	if (ldebug(sigaction))
944 		printf(ARGS(sigaction, "%d, %p, %p"),
945 		    args->sig, (void *)args->nsa, (void *)args->osa);
946 #endif
947 
948 	if (args->nsa != NULL) {
949 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
950 		if (error)
951 			return (error);
952 		act.lsa_handler = osa.lsa_handler;
953 		act.lsa_flags = osa.lsa_flags;
954 		act.lsa_restorer = osa.lsa_restorer;
955 		LINUX_SIGEMPTYSET(act.lsa_mask);
956 		act.lsa_mask.__bits[0] = osa.lsa_mask;
957 	}
958 
959 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
960 	    args->osa ? &oact : NULL);
961 
962 	if (args->osa != NULL && !error) {
963 		osa.lsa_handler = oact.lsa_handler;
964 		osa.lsa_flags = oact.lsa_flags;
965 		osa.lsa_restorer = oact.lsa_restorer;
966 		osa.lsa_mask = oact.lsa_mask.__bits[0];
967 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
968 	}
969 
970 	return (error);
971 }
972 
973 /*
974  * Linux has two extra args, restart and oldmask.  We dont use these,
975  * but it seems that "restart" is actually a context pointer that
976  * enables the signal to happen with a different register set.
977  */
978 int
979 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
980 {
981 	sigset_t sigmask;
982 	l_sigset_t mask;
983 
984 #ifdef DEBUG
985 	if (ldebug(sigsuspend))
986 		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
987 #endif
988 
989 	LINUX_SIGEMPTYSET(mask);
990 	mask.__bits[0] = args->mask;
991 	linux_to_bsd_sigset(&mask, &sigmask);
992 	return (kern_sigsuspend(td, sigmask));
993 }
994 
995 int
996 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
997 {
998 	l_sigset_t lmask;
999 	sigset_t sigmask;
1000 	int error;
1001 
1002 #ifdef DEBUG
1003 	if (ldebug(rt_sigsuspend))
1004 		printf(ARGS(rt_sigsuspend, "%p, %d"),
1005 		    (void *)uap->newset, uap->sigsetsize);
1006 #endif
1007 
1008 	if (uap->sigsetsize != sizeof(l_sigset_t))
1009 		return (EINVAL);
1010 
1011 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
1012 	if (error)
1013 		return (error);
1014 
1015 	linux_to_bsd_sigset(&lmask, &sigmask);
1016 	return (kern_sigsuspend(td, sigmask));
1017 }
1018 
1019 int
1020 linux_pause(struct thread *td, struct linux_pause_args *args)
1021 {
1022 	struct proc *p = td->td_proc;
1023 	sigset_t sigmask;
1024 
1025 #ifdef DEBUG
1026 	if (ldebug(pause))
1027 		printf(ARGS(pause, ""));
1028 #endif
1029 
1030 	PROC_LOCK(p);
1031 	sigmask = td->td_sigmask;
1032 	PROC_UNLOCK(p);
1033 	return (kern_sigsuspend(td, sigmask));
1034 }
1035 
1036 int
1037 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
1038 {
1039 	stack_t ss, oss;
1040 	l_stack_t lss;
1041 	int error;
1042 
1043 #ifdef DEBUG
1044 	if (ldebug(sigaltstack))
1045 		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
1046 #endif
1047 
1048 	if (uap->uss != NULL) {
1049 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
1050 		if (error)
1051 			return (error);
1052 
1053 		ss.ss_sp = lss.ss_sp;
1054 		ss.ss_size = lss.ss_size;
1055 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
1056 	}
1057 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
1058 	    (uap->uoss != NULL) ? &oss : NULL);
1059 	if (!error && uap->uoss != NULL) {
1060 		lss.ss_sp = oss.ss_sp;
1061 		lss.ss_size = oss.ss_size;
1062 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
1063 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
1064 	}
1065 
1066 	return (error);
1067 }
1068 
1069 int
1070 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
1071 {
1072 	struct ftruncate_args sa;
1073 
1074 #ifdef DEBUG
1075 	if (ldebug(ftruncate64))
1076 		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
1077 		    (intmax_t)args->length);
1078 #endif
1079 
1080 	sa.fd = args->fd;
1081 	sa.length = args->length;
1082 	return ftruncate(td, &sa);
1083 }
1084 
1085 int
1086 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args)
1087 {
1088 	struct l_user_desc info;
1089 	int error;
1090 	int idx;
1091 	int a[2];
1092 	struct segment_descriptor sd;
1093 
1094 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1095 	if (error)
1096 		return (error);
1097 
1098 #ifdef DEBUG
1099 	if (ldebug(set_thread_area))
1100 	   	printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"),
1101 		      info.entry_number,
1102       		      info.base_addr,
1103       		      info.limit,
1104       		      info.seg_32bit,
1105 		      info.contents,
1106       		      info.read_exec_only,
1107       		      info.limit_in_pages,
1108       		      info.seg_not_present,
1109       		      info.useable);
1110 #endif
1111 
1112 	idx = info.entry_number;
1113 	/*
1114 	 * Semantics of linux version: every thread in the system has array of
1115 	 * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This
1116 	 * syscall loads one of the selected tls decriptors with a value and
1117 	 * also loads GDT descriptors 6, 7 and 8 with the content of the
1118 	 * per-thread descriptors.
1119 	 *
1120 	 * Semantics of fbsd version: I think we can ignore that linux has 3
1121 	 * per-thread descriptors and use just the 1st one. The tls_array[]
1122 	 * is used only in set/get-thread_area() syscalls and for loading the
1123 	 * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so
1124 	 * we will load just one.
1125 	 *
1126 	 * XXX: this doesn't work when a user space process tries to use more
1127 	 * than 1 TLS segment. Comment in the linux sources says wine might do
1128 	 * this.
1129 	 */
1130 
1131 	/*
1132 	 * we support just GLIBC TLS now
1133 	 * we should let 3 proceed as well because we use this segment so
1134 	 * if code does two subsequent calls it should succeed
1135 	 */
1136 	if (idx != 6 && idx != -1 && idx != 3)
1137 		return (EINVAL);
1138 
1139 	/*
1140 	 * we have to copy out the GDT entry we use
1141 	 * FreeBSD uses GDT entry #3 for storing %gs so load that
1142 	 *
1143 	 * XXX: what if a user space program doesn't check this value and tries
1144 	 * to use 6, 7 or 8?
1145 	 */
1146 	idx = info.entry_number = 3;
1147 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1148 	if (error)
1149 		return (error);
1150 
1151 	if (LINUX_LDT_empty(&info)) {
1152 		a[0] = 0;
1153 		a[1] = 0;
1154 	} else {
1155 		a[0] = LINUX_LDT_entry_a(&info);
1156 		a[1] = LINUX_LDT_entry_b(&info);
1157 	}
1158 
1159 	memcpy(&sd, &a, sizeof(a));
1160 #ifdef DEBUG
1161 	if (ldebug(set_thread_area))
1162 	   	printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase,
1163 			sd.sd_hibase,
1164 			sd.sd_lolimit,
1165 			sd.sd_hilimit,
1166 			sd.sd_type,
1167 			sd.sd_dpl,
1168 			sd.sd_p,
1169 			sd.sd_xx,
1170 			sd.sd_def32,
1171 			sd.sd_gran);
1172 #endif
1173 
1174 	/* this is taken from i386 version of cpu_set_user_tls() */
1175 	critical_enter();
1176 	/* set %gs */
1177 	td->td_pcb->pcb_gsd = sd;
1178 	PCPU_GET(fsgs_gdt)[1] = sd;
1179 	load_gs(GSEL(GUGS_SEL, SEL_UPL));
1180 	critical_exit();
1181 
1182 	return (0);
1183 }
1184 
1185 int
1186 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args)
1187 {
1188 
1189 	struct l_user_desc info;
1190 	int error;
1191 	int idx;
1192 	struct l_desc_struct desc;
1193 	struct segment_descriptor sd;
1194 
1195 #ifdef DEBUG
1196 	if (ldebug(get_thread_area))
1197 		printf(ARGS(get_thread_area, "%p"), args->desc);
1198 #endif
1199 
1200 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1201 	if (error)
1202 		return (error);
1203 
1204 	idx = info.entry_number;
1205 	/* XXX: I am not sure if we want 3 to be allowed too. */
1206 	if (idx != 6 && idx != 3)
1207 		return (EINVAL);
1208 
1209 	idx = 3;
1210 
1211 	memset(&info, 0, sizeof(info));
1212 
1213 	sd = PCPU_GET(fsgs_gdt)[1];
1214 
1215 	memcpy(&desc, &sd, sizeof(desc));
1216 
1217 	info.entry_number = idx;
1218 	info.base_addr = LINUX_GET_BASE(&desc);
1219 	info.limit = LINUX_GET_LIMIT(&desc);
1220 	info.seg_32bit = LINUX_GET_32BIT(&desc);
1221 	info.contents = LINUX_GET_CONTENTS(&desc);
1222 	info.read_exec_only = !LINUX_GET_WRITABLE(&desc);
1223 	info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc);
1224 	info.seg_not_present = !LINUX_GET_PRESENT(&desc);
1225 	info.useable = LINUX_GET_USEABLE(&desc);
1226 
1227 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1228 	if (error)
1229 	   	return (EFAULT);
1230 
1231 	return (0);
1232 }
1233 
1234 /* copied from kern/kern_time.c */
1235 int
1236 linux_timer_create(struct thread *td, struct linux_timer_create_args *args)
1237 {
1238    	return ktimer_create(td, (struct ktimer_create_args *) args);
1239 }
1240 
1241 int
1242 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args)
1243 {
1244    	return ktimer_settime(td, (struct ktimer_settime_args *) args);
1245 }
1246 
1247 int
1248 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args)
1249 {
1250    	return ktimer_gettime(td, (struct ktimer_gettime_args *) args);
1251 }
1252 
1253 int
1254 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args)
1255 {
1256    	return ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args);
1257 }
1258 
1259 int
1260 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args)
1261 {
1262    	return ktimer_delete(td, (struct ktimer_delete_args *) args);
1263 }
1264 
1265 /* XXX: this wont work with module - convert it */
1266 int
1267 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
1268 {
1269 #ifdef P1003_1B_MQUEUE
1270    	return kmq_open(td, (struct kmq_open_args *) args);
1271 #else
1272 	return (ENOSYS);
1273 #endif
1274 }
1275 
1276 int
1277 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
1278 {
1279 #ifdef P1003_1B_MQUEUE
1280    	return kmq_unlink(td, (struct kmq_unlink_args *) args);
1281 #else
1282 	return (ENOSYS);
1283 #endif
1284 }
1285 
1286 int
1287 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
1288 {
1289 #ifdef P1003_1B_MQUEUE
1290    	return kmq_timedsend(td, (struct kmq_timedsend_args *) args);
1291 #else
1292 	return (ENOSYS);
1293 #endif
1294 }
1295 
1296 int
1297 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
1298 {
1299 #ifdef P1003_1B_MQUEUE
1300    	return kmq_timedreceive(td, (struct kmq_timedreceive_args *) args);
1301 #else
1302 	return (ENOSYS);
1303 #endif
1304 }
1305 
1306 int
1307 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
1308 {
1309 #ifdef P1003_1B_MQUEUE
1310 	return kmq_notify(td, (struct kmq_notify_args *) args);
1311 #else
1312 	return (ENOSYS);
1313 #endif
1314 }
1315 
1316 int
1317 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
1318 {
1319 #ifdef P1003_1B_MQUEUE
1320    	return kmq_setattr(td, (struct kmq_setattr_args *) args);
1321 #else
1322 	return (ENOSYS);
1323 #endif
1324 }
1325 
1326