1 /*- 2 * Copyright (c) 2000 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer 10 * in this position and unchanged. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/capability.h> 35 #include <sys/file.h> 36 #include <sys/fcntl.h> 37 #include <sys/imgact.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mman.h> 41 #include <sys/mutex.h> 42 #include <sys/sx.h> 43 #include <sys/priv.h> 44 #include <sys/proc.h> 45 #include <sys/queue.h> 46 #include <sys/resource.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/syscallsubr.h> 50 #include <sys/sysproto.h> 51 #include <sys/unistd.h> 52 #include <sys/wait.h> 53 #include <sys/sched.h> 54 55 #include <machine/frame.h> 56 #include <machine/psl.h> 57 #include <machine/segments.h> 58 #include <machine/sysarch.h> 59 60 #include <vm/vm.h> 61 #include <vm/pmap.h> 62 #include <vm/vm_map.h> 63 64 #include <i386/linux/linux.h> 65 #include <i386/linux/linux_proto.h> 66 #include <compat/linux/linux_ipc.h> 67 #include <compat/linux/linux_misc.h> 68 #include <compat/linux/linux_signal.h> 69 #include <compat/linux/linux_util.h> 70 #include <compat/linux/linux_emul.h> 71 72 #include <i386/include/pcb.h> /* needed for pcb definition in linux_set_thread_area */ 73 74 #include "opt_posix.h" 75 76 extern struct sysentvec elf32_freebsd_sysvec; /* defined in i386/i386/elf_machdep.c */ 77 78 struct l_descriptor { 79 l_uint entry_number; 80 l_ulong base_addr; 81 l_uint limit; 82 l_uint seg_32bit:1; 83 l_uint contents:2; 84 l_uint read_exec_only:1; 85 l_uint limit_in_pages:1; 86 l_uint seg_not_present:1; 87 l_uint useable:1; 88 }; 89 90 struct l_old_select_argv { 91 l_int nfds; 92 l_fd_set *readfds; 93 l_fd_set *writefds; 94 l_fd_set *exceptfds; 95 struct l_timeval *timeout; 96 }; 97 98 static int linux_mmap_common(struct thread *td, l_uintptr_t addr, 99 l_size_t len, l_int prot, l_int flags, l_int fd, 100 l_loff_t pos); 101 102 int 103 linux_to_bsd_sigaltstack(int lsa) 104 { 105 int bsa = 0; 106 107 if (lsa & LINUX_SS_DISABLE) 108 bsa |= SS_DISABLE; 109 if (lsa & LINUX_SS_ONSTACK) 110 bsa |= SS_ONSTACK; 111 return (bsa); 112 } 113 114 int 115 bsd_to_linux_sigaltstack(int bsa) 116 { 117 int lsa = 0; 118 119 if (bsa & SS_DISABLE) 120 lsa |= LINUX_SS_DISABLE; 121 if (bsa & SS_ONSTACK) 122 lsa |= LINUX_SS_ONSTACK; 123 return (lsa); 124 } 125 126 int 127 linux_execve(struct thread *td, struct linux_execve_args *args) 128 { 129 int error; 130 char *newpath; 131 struct image_args eargs; 132 133 LCONVPATHEXIST(td, args->path, &newpath); 134 135 #ifdef DEBUG 136 if (ldebug(execve)) 137 printf(ARGS(execve, "%s"), newpath); 138 #endif 139 140 error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE, 141 args->argp, args->envp); 142 free(newpath, M_TEMP); 143 if (error == 0) 144 error = kern_execve(td, &eargs, NULL); 145 if (error == 0) 146 /* linux process can exec fbsd one, dont attempt 147 * to create emuldata for such process using 148 * linux_proc_init, this leads to a panic on KASSERT 149 * because such process has p->p_emuldata == NULL 150 */ 151 if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX) 152 error = linux_proc_init(td, 0, 0); 153 return (error); 154 } 155 156 struct l_ipc_kludge { 157 struct l_msgbuf *msgp; 158 l_long msgtyp; 159 }; 160 161 int 162 linux_ipc(struct thread *td, struct linux_ipc_args *args) 163 { 164 165 switch (args->what & 0xFFFF) { 166 case LINUX_SEMOP: { 167 struct linux_semop_args a; 168 169 a.semid = args->arg1; 170 a.tsops = args->ptr; 171 a.nsops = args->arg2; 172 return (linux_semop(td, &a)); 173 } 174 case LINUX_SEMGET: { 175 struct linux_semget_args a; 176 177 a.key = args->arg1; 178 a.nsems = args->arg2; 179 a.semflg = args->arg3; 180 return (linux_semget(td, &a)); 181 } 182 case LINUX_SEMCTL: { 183 struct linux_semctl_args a; 184 int error; 185 186 a.semid = args->arg1; 187 a.semnum = args->arg2; 188 a.cmd = args->arg3; 189 error = copyin(args->ptr, &a.arg, sizeof(a.arg)); 190 if (error) 191 return (error); 192 return (linux_semctl(td, &a)); 193 } 194 case LINUX_MSGSND: { 195 struct linux_msgsnd_args a; 196 197 a.msqid = args->arg1; 198 a.msgp = args->ptr; 199 a.msgsz = args->arg2; 200 a.msgflg = args->arg3; 201 return (linux_msgsnd(td, &a)); 202 } 203 case LINUX_MSGRCV: { 204 struct linux_msgrcv_args a; 205 206 a.msqid = args->arg1; 207 a.msgsz = args->arg2; 208 a.msgflg = args->arg3; 209 if ((args->what >> 16) == 0) { 210 struct l_ipc_kludge tmp; 211 int error; 212 213 if (args->ptr == NULL) 214 return (EINVAL); 215 error = copyin(args->ptr, &tmp, sizeof(tmp)); 216 if (error) 217 return (error); 218 a.msgp = tmp.msgp; 219 a.msgtyp = tmp.msgtyp; 220 } else { 221 a.msgp = args->ptr; 222 a.msgtyp = args->arg5; 223 } 224 return (linux_msgrcv(td, &a)); 225 } 226 case LINUX_MSGGET: { 227 struct linux_msgget_args a; 228 229 a.key = args->arg1; 230 a.msgflg = args->arg2; 231 return (linux_msgget(td, &a)); 232 } 233 case LINUX_MSGCTL: { 234 struct linux_msgctl_args a; 235 236 a.msqid = args->arg1; 237 a.cmd = args->arg2; 238 a.buf = args->ptr; 239 return (linux_msgctl(td, &a)); 240 } 241 case LINUX_SHMAT: { 242 struct linux_shmat_args a; 243 244 a.shmid = args->arg1; 245 a.shmaddr = args->ptr; 246 a.shmflg = args->arg2; 247 a.raddr = (l_ulong *)args->arg3; 248 return (linux_shmat(td, &a)); 249 } 250 case LINUX_SHMDT: { 251 struct linux_shmdt_args a; 252 253 a.shmaddr = args->ptr; 254 return (linux_shmdt(td, &a)); 255 } 256 case LINUX_SHMGET: { 257 struct linux_shmget_args a; 258 259 a.key = args->arg1; 260 a.size = args->arg2; 261 a.shmflg = args->arg3; 262 return (linux_shmget(td, &a)); 263 } 264 case LINUX_SHMCTL: { 265 struct linux_shmctl_args a; 266 267 a.shmid = args->arg1; 268 a.cmd = args->arg2; 269 a.buf = args->ptr; 270 return (linux_shmctl(td, &a)); 271 } 272 default: 273 break; 274 } 275 276 return (EINVAL); 277 } 278 279 int 280 linux_old_select(struct thread *td, struct linux_old_select_args *args) 281 { 282 struct l_old_select_argv linux_args; 283 struct linux_select_args newsel; 284 int error; 285 286 #ifdef DEBUG 287 if (ldebug(old_select)) 288 printf(ARGS(old_select, "%p"), args->ptr); 289 #endif 290 291 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 292 if (error) 293 return (error); 294 295 newsel.nfds = linux_args.nfds; 296 newsel.readfds = linux_args.readfds; 297 newsel.writefds = linux_args.writefds; 298 newsel.exceptfds = linux_args.exceptfds; 299 newsel.timeout = linux_args.timeout; 300 return (linux_select(td, &newsel)); 301 } 302 303 int 304 linux_set_cloned_tls(struct thread *td, void *desc) 305 { 306 struct segment_descriptor sd; 307 struct l_user_desc info; 308 int idx, error; 309 int a[2]; 310 311 error = copyin(desc, &info, sizeof(struct l_user_desc)); 312 if (error) { 313 printf(LMSG("copyin failed!")); 314 } else { 315 idx = info.entry_number; 316 317 /* 318 * looks like we're getting the idx we returned 319 * in the set_thread_area() syscall 320 */ 321 if (idx != 6 && idx != 3) { 322 printf(LMSG("resetting idx!")); 323 idx = 3; 324 } 325 326 /* this doesnt happen in practice */ 327 if (idx == 6) { 328 /* we might copy out the entry_number as 3 */ 329 info.entry_number = 3; 330 error = copyout(&info, desc, sizeof(struct l_user_desc)); 331 if (error) 332 printf(LMSG("copyout failed!")); 333 } 334 335 a[0] = LINUX_LDT_entry_a(&info); 336 a[1] = LINUX_LDT_entry_b(&info); 337 338 memcpy(&sd, &a, sizeof(a)); 339 #ifdef DEBUG 340 if (ldebug(clone)) 341 printf("Segment created in clone with " 342 "CLONE_SETTLS: lobase: %x, hibase: %x, " 343 "lolimit: %x, hilimit: %x, type: %i, " 344 "dpl: %i, p: %i, xx: %i, def32: %i, " 345 "gran: %i\n", sd.sd_lobase, sd.sd_hibase, 346 sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, 347 sd.sd_dpl, sd.sd_p, sd.sd_xx, 348 sd.sd_def32, sd.sd_gran); 349 #endif 350 351 /* set %gs */ 352 td->td_pcb->pcb_gsd = sd; 353 td->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL); 354 } 355 356 return (error); 357 } 358 359 int 360 linux_set_upcall_kse(struct thread *td, register_t stack) 361 { 362 363 td->td_frame->tf_esp = stack; 364 365 return (0); 366 } 367 368 #define STACK_SIZE (2 * 1024 * 1024) 369 #define GUARD_SIZE (4 * PAGE_SIZE) 370 371 int 372 linux_mmap2(struct thread *td, struct linux_mmap2_args *args) 373 { 374 375 #ifdef DEBUG 376 if (ldebug(mmap2)) 377 printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"), 378 (void *)args->addr, args->len, args->prot, 379 args->flags, args->fd, args->pgoff); 380 #endif 381 382 return (linux_mmap_common(td, args->addr, args->len, args->prot, 383 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * 384 PAGE_SIZE)); 385 } 386 387 int 388 linux_mmap(struct thread *td, struct linux_mmap_args *args) 389 { 390 int error; 391 struct l_mmap_argv linux_args; 392 393 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 394 if (error) 395 return (error); 396 397 #ifdef DEBUG 398 if (ldebug(mmap)) 399 printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"), 400 (void *)linux_args.addr, linux_args.len, linux_args.prot, 401 linux_args.flags, linux_args.fd, linux_args.pgoff); 402 #endif 403 404 return (linux_mmap_common(td, linux_args.addr, linux_args.len, 405 linux_args.prot, linux_args.flags, linux_args.fd, 406 (uint32_t)linux_args.pgoff)); 407 } 408 409 static int 410 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, 411 l_int flags, l_int fd, l_loff_t pos) 412 { 413 struct proc *p = td->td_proc; 414 struct mmap_args /* { 415 caddr_t addr; 416 size_t len; 417 int prot; 418 int flags; 419 int fd; 420 long pad; 421 off_t pos; 422 } */ bsd_args; 423 int error; 424 struct file *fp; 425 426 error = 0; 427 bsd_args.flags = 0; 428 fp = NULL; 429 430 /* 431 * Linux mmap(2): 432 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE 433 */ 434 if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE))) 435 return (EINVAL); 436 437 if (flags & LINUX_MAP_SHARED) 438 bsd_args.flags |= MAP_SHARED; 439 if (flags & LINUX_MAP_PRIVATE) 440 bsd_args.flags |= MAP_PRIVATE; 441 if (flags & LINUX_MAP_FIXED) 442 bsd_args.flags |= MAP_FIXED; 443 if (flags & LINUX_MAP_ANON) { 444 /* Enforce pos to be on page boundary, then ignore. */ 445 if ((pos & PAGE_MASK) != 0) 446 return (EINVAL); 447 pos = 0; 448 bsd_args.flags |= MAP_ANON; 449 } else 450 bsd_args.flags |= MAP_NOSYNC; 451 if (flags & LINUX_MAP_GROWSDOWN) 452 bsd_args.flags |= MAP_STACK; 453 454 /* 455 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC 456 * on Linux/i386. We do this to ensure maximum compatibility. 457 * Linux/ia64 does the same in i386 emulation mode. 458 */ 459 bsd_args.prot = prot; 460 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 461 bsd_args.prot |= PROT_READ | PROT_EXEC; 462 463 /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ 464 bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd; 465 if (bsd_args.fd != -1) { 466 /* 467 * Linux follows Solaris mmap(2) description: 468 * The file descriptor fildes is opened with 469 * read permission, regardless of the 470 * protection options specified. 471 * 472 * Checking just CAP_MMAP is fine here, since the real work 473 * is done in the FreeBSD mmap(). 474 */ 475 476 if ((error = fget(td, bsd_args.fd, CAP_MMAP, &fp)) != 0) 477 return (error); 478 if (fp->f_type != DTYPE_VNODE) { 479 fdrop(fp, td); 480 return (EINVAL); 481 } 482 483 /* Linux mmap() just fails for O_WRONLY files */ 484 if (!(fp->f_flag & FREAD)) { 485 fdrop(fp, td); 486 return (EACCES); 487 } 488 489 fdrop(fp, td); 490 } 491 492 if (flags & LINUX_MAP_GROWSDOWN) { 493 /* 494 * The Linux MAP_GROWSDOWN option does not limit auto 495 * growth of the region. Linux mmap with this option 496 * takes as addr the inital BOS, and as len, the initial 497 * region size. It can then grow down from addr without 498 * limit. However, linux threads has an implicit internal 499 * limit to stack size of STACK_SIZE. Its just not 500 * enforced explicitly in linux. But, here we impose 501 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack 502 * region, since we can do this with our mmap. 503 * 504 * Our mmap with MAP_STACK takes addr as the maximum 505 * downsize limit on BOS, and as len the max size of 506 * the region. It them maps the top SGROWSIZ bytes, 507 * and auto grows the region down, up to the limit 508 * in addr. 509 * 510 * If we don't use the MAP_STACK option, the effect 511 * of this code is to allocate a stack region of a 512 * fixed size of (STACK_SIZE - GUARD_SIZE). 513 */ 514 515 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) { 516 /* 517 * Some linux apps will attempt to mmap 518 * thread stacks near the top of their 519 * address space. If their TOS is greater 520 * than vm_maxsaddr, vm_map_growstack() 521 * will confuse the thread stack with the 522 * process stack and deliver a SEGV if they 523 * attempt to grow the thread stack past their 524 * current stacksize rlimit. To avoid this, 525 * adjust vm_maxsaddr upwards to reflect 526 * the current stacksize rlimit rather 527 * than the maximum possible stacksize. 528 * It would be better to adjust the 529 * mmap'ed region, but some apps do not check 530 * mmap's return value. 531 */ 532 PROC_LOCK(p); 533 p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - 534 lim_cur(p, RLIMIT_STACK); 535 PROC_UNLOCK(p); 536 } 537 538 /* 539 * This gives us our maximum stack size and a new BOS. 540 * If we're using VM_STACK, then mmap will just map 541 * the top SGROWSIZ bytes, and let the stack grow down 542 * to the limit at BOS. If we're not using VM_STACK 543 * we map the full stack, since we don't have a way 544 * to autogrow it. 545 */ 546 if (len > STACK_SIZE - GUARD_SIZE) { 547 bsd_args.addr = (caddr_t)PTRIN(addr); 548 bsd_args.len = len; 549 } else { 550 bsd_args.addr = (caddr_t)PTRIN(addr) - 551 (STACK_SIZE - GUARD_SIZE - len); 552 bsd_args.len = STACK_SIZE - GUARD_SIZE; 553 } 554 } else { 555 bsd_args.addr = (caddr_t)PTRIN(addr); 556 bsd_args.len = len; 557 } 558 bsd_args.pos = pos; 559 560 #ifdef DEBUG 561 if (ldebug(mmap)) 562 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", 563 __func__, 564 (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, 565 bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); 566 #endif 567 error = sys_mmap(td, &bsd_args); 568 #ifdef DEBUG 569 if (ldebug(mmap)) 570 printf("-> %s() return: 0x%x (0x%08x)\n", 571 __func__, error, (u_int)td->td_retval[0]); 572 #endif 573 return (error); 574 } 575 576 int 577 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 578 { 579 struct mprotect_args bsd_args; 580 581 bsd_args.addr = uap->addr; 582 bsd_args.len = uap->len; 583 bsd_args.prot = uap->prot; 584 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 585 bsd_args.prot |= PROT_READ | PROT_EXEC; 586 return (sys_mprotect(td, &bsd_args)); 587 } 588 589 int 590 linux_pipe(struct thread *td, struct linux_pipe_args *args) 591 { 592 int error; 593 int fildes[2]; 594 595 #ifdef DEBUG 596 if (ldebug(pipe)) 597 printf(ARGS(pipe, "*")); 598 #endif 599 600 error = kern_pipe(td, fildes); 601 if (error) 602 return (error); 603 604 /* XXX: Close descriptors on error. */ 605 return (copyout(fildes, args->pipefds, sizeof fildes)); 606 } 607 608 int 609 linux_ioperm(struct thread *td, struct linux_ioperm_args *args) 610 { 611 int error; 612 struct i386_ioperm_args iia; 613 614 iia.start = args->start; 615 iia.length = args->length; 616 iia.enable = args->enable; 617 error = i386_set_ioperm(td, &iia); 618 return (error); 619 } 620 621 int 622 linux_iopl(struct thread *td, struct linux_iopl_args *args) 623 { 624 int error; 625 626 if (args->level < 0 || args->level > 3) 627 return (EINVAL); 628 if ((error = priv_check(td, PRIV_IO)) != 0) 629 return (error); 630 if ((error = securelevel_gt(td->td_ucred, 0)) != 0) 631 return (error); 632 td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | 633 (args->level * (PSL_IOPL / 3)); 634 return (0); 635 } 636 637 int 638 linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) 639 { 640 int error; 641 struct i386_ldt_args ldt; 642 struct l_descriptor ld; 643 union descriptor desc; 644 int size, written; 645 646 switch (uap->func) { 647 case 0x00: /* read_ldt */ 648 ldt.start = 0; 649 ldt.descs = uap->ptr; 650 ldt.num = uap->bytecount / sizeof(union descriptor); 651 error = i386_get_ldt(td, &ldt); 652 td->td_retval[0] *= sizeof(union descriptor); 653 break; 654 case 0x02: /* read_default_ldt = 0 */ 655 size = 5*sizeof(struct l_desc_struct); 656 if (size > uap->bytecount) 657 size = uap->bytecount; 658 for (written = error = 0; written < size && error == 0; written++) 659 error = subyte((char *)uap->ptr + written, 0); 660 td->td_retval[0] = written; 661 break; 662 case 0x01: /* write_ldt */ 663 case 0x11: /* write_ldt */ 664 if (uap->bytecount != sizeof(ld)) 665 return (EINVAL); 666 667 error = copyin(uap->ptr, &ld, sizeof(ld)); 668 if (error) 669 return (error); 670 671 ldt.start = ld.entry_number; 672 ldt.descs = &desc; 673 ldt.num = 1; 674 desc.sd.sd_lolimit = (ld.limit & 0x0000ffff); 675 desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; 676 desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff); 677 desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; 678 desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | 679 (ld.contents << 2); 680 desc.sd.sd_dpl = 3; 681 desc.sd.sd_p = (ld.seg_not_present ^ 1); 682 desc.sd.sd_xx = 0; 683 desc.sd.sd_def32 = ld.seg_32bit; 684 desc.sd.sd_gran = ld.limit_in_pages; 685 error = i386_set_ldt(td, &ldt, &desc); 686 break; 687 default: 688 error = ENOSYS; 689 break; 690 } 691 692 if (error == EOPNOTSUPP) { 693 printf("linux: modify_ldt needs kernel option USER_LDT\n"); 694 error = ENOSYS; 695 } 696 697 return (error); 698 } 699 700 int 701 linux_sigaction(struct thread *td, struct linux_sigaction_args *args) 702 { 703 l_osigaction_t osa; 704 l_sigaction_t act, oact; 705 int error; 706 707 #ifdef DEBUG 708 if (ldebug(sigaction)) 709 printf(ARGS(sigaction, "%d, %p, %p"), 710 args->sig, (void *)args->nsa, (void *)args->osa); 711 #endif 712 713 if (args->nsa != NULL) { 714 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); 715 if (error) 716 return (error); 717 act.lsa_handler = osa.lsa_handler; 718 act.lsa_flags = osa.lsa_flags; 719 act.lsa_restorer = osa.lsa_restorer; 720 LINUX_SIGEMPTYSET(act.lsa_mask); 721 act.lsa_mask.__bits[0] = osa.lsa_mask; 722 } 723 724 error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, 725 args->osa ? &oact : NULL); 726 727 if (args->osa != NULL && !error) { 728 osa.lsa_handler = oact.lsa_handler; 729 osa.lsa_flags = oact.lsa_flags; 730 osa.lsa_restorer = oact.lsa_restorer; 731 osa.lsa_mask = oact.lsa_mask.__bits[0]; 732 error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); 733 } 734 735 return (error); 736 } 737 738 /* 739 * Linux has two extra args, restart and oldmask. We dont use these, 740 * but it seems that "restart" is actually a context pointer that 741 * enables the signal to happen with a different register set. 742 */ 743 int 744 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) 745 { 746 sigset_t sigmask; 747 l_sigset_t mask; 748 749 #ifdef DEBUG 750 if (ldebug(sigsuspend)) 751 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); 752 #endif 753 754 LINUX_SIGEMPTYSET(mask); 755 mask.__bits[0] = args->mask; 756 linux_to_bsd_sigset(&mask, &sigmask); 757 return (kern_sigsuspend(td, sigmask)); 758 } 759 760 int 761 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) 762 { 763 l_sigset_t lmask; 764 sigset_t sigmask; 765 int error; 766 767 #ifdef DEBUG 768 if (ldebug(rt_sigsuspend)) 769 printf(ARGS(rt_sigsuspend, "%p, %d"), 770 (void *)uap->newset, uap->sigsetsize); 771 #endif 772 773 if (uap->sigsetsize != sizeof(l_sigset_t)) 774 return (EINVAL); 775 776 error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); 777 if (error) 778 return (error); 779 780 linux_to_bsd_sigset(&lmask, &sigmask); 781 return (kern_sigsuspend(td, sigmask)); 782 } 783 784 int 785 linux_pause(struct thread *td, struct linux_pause_args *args) 786 { 787 struct proc *p = td->td_proc; 788 sigset_t sigmask; 789 790 #ifdef DEBUG 791 if (ldebug(pause)) 792 printf(ARGS(pause, "")); 793 #endif 794 795 PROC_LOCK(p); 796 sigmask = td->td_sigmask; 797 PROC_UNLOCK(p); 798 return (kern_sigsuspend(td, sigmask)); 799 } 800 801 int 802 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) 803 { 804 stack_t ss, oss; 805 l_stack_t lss; 806 int error; 807 808 #ifdef DEBUG 809 if (ldebug(sigaltstack)) 810 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); 811 #endif 812 813 if (uap->uss != NULL) { 814 error = copyin(uap->uss, &lss, sizeof(l_stack_t)); 815 if (error) 816 return (error); 817 818 ss.ss_sp = lss.ss_sp; 819 ss.ss_size = lss.ss_size; 820 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); 821 } 822 error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, 823 (uap->uoss != NULL) ? &oss : NULL); 824 if (!error && uap->uoss != NULL) { 825 lss.ss_sp = oss.ss_sp; 826 lss.ss_size = oss.ss_size; 827 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); 828 error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); 829 } 830 831 return (error); 832 } 833 834 int 835 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) 836 { 837 struct ftruncate_args sa; 838 839 #ifdef DEBUG 840 if (ldebug(ftruncate64)) 841 printf(ARGS(ftruncate64, "%u, %jd"), args->fd, 842 (intmax_t)args->length); 843 #endif 844 845 sa.fd = args->fd; 846 sa.length = args->length; 847 return sys_ftruncate(td, &sa); 848 } 849 850 int 851 linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) 852 { 853 struct l_user_desc info; 854 int error; 855 int idx; 856 int a[2]; 857 struct segment_descriptor sd; 858 859 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 860 if (error) 861 return (error); 862 863 #ifdef DEBUG 864 if (ldebug(set_thread_area)) 865 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, %i, %i, %i\n"), 866 info.entry_number, 867 info.base_addr, 868 info.limit, 869 info.seg_32bit, 870 info.contents, 871 info.read_exec_only, 872 info.limit_in_pages, 873 info.seg_not_present, 874 info.useable); 875 #endif 876 877 idx = info.entry_number; 878 /* 879 * Semantics of linux version: every thread in the system has array of 880 * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This 881 * syscall loads one of the selected tls decriptors with a value and 882 * also loads GDT descriptors 6, 7 and 8 with the content of the 883 * per-thread descriptors. 884 * 885 * Semantics of fbsd version: I think we can ignore that linux has 3 886 * per-thread descriptors and use just the 1st one. The tls_array[] 887 * is used only in set/get-thread_area() syscalls and for loading the 888 * GDT descriptors. In fbsd we use just one GDT descriptor for TLS so 889 * we will load just one. 890 * 891 * XXX: this doesn't work when a user space process tries to use more 892 * than 1 TLS segment. Comment in the linux sources says wine might do 893 * this. 894 */ 895 896 /* 897 * we support just GLIBC TLS now 898 * we should let 3 proceed as well because we use this segment so 899 * if code does two subsequent calls it should succeed 900 */ 901 if (idx != 6 && idx != -1 && idx != 3) 902 return (EINVAL); 903 904 /* 905 * we have to copy out the GDT entry we use 906 * FreeBSD uses GDT entry #3 for storing %gs so load that 907 * 908 * XXX: what if a user space program doesn't check this value and tries 909 * to use 6, 7 or 8? 910 */ 911 idx = info.entry_number = 3; 912 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 913 if (error) 914 return (error); 915 916 if (LINUX_LDT_empty(&info)) { 917 a[0] = 0; 918 a[1] = 0; 919 } else { 920 a[0] = LINUX_LDT_entry_a(&info); 921 a[1] = LINUX_LDT_entry_b(&info); 922 } 923 924 memcpy(&sd, &a, sizeof(a)); 925 #ifdef DEBUG 926 if (ldebug(set_thread_area)) 927 printf("Segment created in set_thread_area: lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, type: %i, dpl: %i, p: %i, xx: %i, def32: %i, gran: %i\n", sd.sd_lobase, 928 sd.sd_hibase, 929 sd.sd_lolimit, 930 sd.sd_hilimit, 931 sd.sd_type, 932 sd.sd_dpl, 933 sd.sd_p, 934 sd.sd_xx, 935 sd.sd_def32, 936 sd.sd_gran); 937 #endif 938 939 /* this is taken from i386 version of cpu_set_user_tls() */ 940 critical_enter(); 941 /* set %gs */ 942 td->td_pcb->pcb_gsd = sd; 943 PCPU_GET(fsgs_gdt)[1] = sd; 944 load_gs(GSEL(GUGS_SEL, SEL_UPL)); 945 critical_exit(); 946 947 return (0); 948 } 949 950 int 951 linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args) 952 { 953 954 struct l_user_desc info; 955 int error; 956 int idx; 957 struct l_desc_struct desc; 958 struct segment_descriptor sd; 959 960 #ifdef DEBUG 961 if (ldebug(get_thread_area)) 962 printf(ARGS(get_thread_area, "%p"), args->desc); 963 #endif 964 965 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 966 if (error) 967 return (error); 968 969 idx = info.entry_number; 970 /* XXX: I am not sure if we want 3 to be allowed too. */ 971 if (idx != 6 && idx != 3) 972 return (EINVAL); 973 974 idx = 3; 975 976 memset(&info, 0, sizeof(info)); 977 978 sd = PCPU_GET(fsgs_gdt)[1]; 979 980 memcpy(&desc, &sd, sizeof(desc)); 981 982 info.entry_number = idx; 983 info.base_addr = LINUX_GET_BASE(&desc); 984 info.limit = LINUX_GET_LIMIT(&desc); 985 info.seg_32bit = LINUX_GET_32BIT(&desc); 986 info.contents = LINUX_GET_CONTENTS(&desc); 987 info.read_exec_only = !LINUX_GET_WRITABLE(&desc); 988 info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc); 989 info.seg_not_present = !LINUX_GET_PRESENT(&desc); 990 info.useable = LINUX_GET_USEABLE(&desc); 991 992 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 993 if (error) 994 return (EFAULT); 995 996 return (0); 997 } 998 999 /* copied from kern/kern_time.c */ 1000 int 1001 linux_timer_create(struct thread *td, struct linux_timer_create_args *args) 1002 { 1003 return sys_ktimer_create(td, (struct ktimer_create_args *) args); 1004 } 1005 1006 int 1007 linux_timer_settime(struct thread *td, struct linux_timer_settime_args *args) 1008 { 1009 return sys_ktimer_settime(td, (struct ktimer_settime_args *) args); 1010 } 1011 1012 int 1013 linux_timer_gettime(struct thread *td, struct linux_timer_gettime_args *args) 1014 { 1015 return sys_ktimer_gettime(td, (struct ktimer_gettime_args *) args); 1016 } 1017 1018 int 1019 linux_timer_getoverrun(struct thread *td, struct linux_timer_getoverrun_args *args) 1020 { 1021 return sys_ktimer_getoverrun(td, (struct ktimer_getoverrun_args *) args); 1022 } 1023 1024 int 1025 linux_timer_delete(struct thread *td, struct linux_timer_delete_args *args) 1026 { 1027 return sys_ktimer_delete(td, (struct ktimer_delete_args *) args); 1028 } 1029 1030 /* XXX: this wont work with module - convert it */ 1031 int 1032 linux_mq_open(struct thread *td, struct linux_mq_open_args *args) 1033 { 1034 #ifdef P1003_1B_MQUEUE 1035 return sys_kmq_open(td, (struct kmq_open_args *) args); 1036 #else 1037 return (ENOSYS); 1038 #endif 1039 } 1040 1041 int 1042 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) 1043 { 1044 #ifdef P1003_1B_MQUEUE 1045 return sys_kmq_unlink(td, (struct kmq_unlink_args *) args); 1046 #else 1047 return (ENOSYS); 1048 #endif 1049 } 1050 1051 int 1052 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) 1053 { 1054 #ifdef P1003_1B_MQUEUE 1055 return sys_kmq_timedsend(td, (struct kmq_timedsend_args *) args); 1056 #else 1057 return (ENOSYS); 1058 #endif 1059 } 1060 1061 int 1062 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) 1063 { 1064 #ifdef P1003_1B_MQUEUE 1065 return sys_kmq_timedreceive(td, (struct kmq_timedreceive_args *) args); 1066 #else 1067 return (ENOSYS); 1068 #endif 1069 } 1070 1071 int 1072 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) 1073 { 1074 #ifdef P1003_1B_MQUEUE 1075 return sys_kmq_notify(td, (struct kmq_notify_args *) args); 1076 #else 1077 return (ENOSYS); 1078 #endif 1079 } 1080 1081 int 1082 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) 1083 { 1084 #ifdef P1003_1B_MQUEUE 1085 return sys_kmq_setattr(td, (struct kmq_setattr_args *) args); 1086 #else 1087 return (ENOSYS); 1088 #endif 1089 } 1090 1091 int 1092 linux_wait4(struct thread *td, struct linux_wait4_args *args) 1093 { 1094 int error, options; 1095 struct rusage ru, *rup; 1096 1097 #ifdef DEBUG 1098 if (ldebug(wait4)) 1099 printf(ARGS(wait4, "%d, %p, %d, %p"), 1100 args->pid, (void *)args->status, args->options, 1101 (void *)args->rusage); 1102 #endif 1103 1104 options = (args->options & (WNOHANG | WUNTRACED)); 1105 /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ 1106 if (args->options & __WCLONE) 1107 options |= WLINUXCLONE; 1108 1109 if (args->rusage != NULL) 1110 rup = &ru; 1111 else 1112 rup = NULL; 1113 error = linux_common_wait(td, args->pid, args->status, options, rup); 1114 if (error) 1115 return (error); 1116 if (args->rusage != NULL) 1117 error = copyout(&ru, args->rusage, sizeof(ru)); 1118 1119 return (error); 1120 } 1121