xref: /freebsd/sys/i386/include/pmap.h (revision a812392203d7c4c3f0db9d8a0f3391374c49c71f)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Derived from hp300 version by Mike Hibler, this version by William
34  * Jolitz uses a recursive map [a pde points to the page directory] to
35  * map the page tables using the pagetables themselves. This is done to
36  * reduce the impact on kernel virtual memory for lots of sparse address
37  * space, and to reduce the cost of memory to each process.
38  *
39  *	from: hp300: @(#)pmap.h	7.2 (Berkeley) 12/16/90
40  *	from: @(#)pmap.h	7.4 (Berkeley) 5/12/91
41  * $FreeBSD$
42  */
43 
44 #ifndef _MACHINE_PMAP_H_
45 #define	_MACHINE_PMAP_H_
46 
47 /*
48  * Page-directory and page-table entries follow this format, with a few
49  * of the fields not present here and there, depending on a lot of things.
50  */
51 				/* ---- Intel Nomenclature ---- */
52 #define	PG_V		0x001	/* P	Valid			*/
53 #define PG_RW		0x002	/* R/W	Read/Write		*/
54 #define PG_U		0x004	/* U/S  User/Supervisor		*/
55 #define	PG_NC_PWT	0x008	/* PWT	Write through		*/
56 #define	PG_NC_PCD	0x010	/* PCD	Cache disable		*/
57 #define PG_A		0x020	/* A	Accessed		*/
58 #define	PG_M		0x040	/* D	Dirty			*/
59 #define	PG_PS		0x080	/* PS	Page size (0=4k,1=4M)	*/
60 #define	PG_PTE_PAT	0x080	/* PAT	PAT index		*/
61 #define	PG_G		0x100	/* G	Global			*/
62 #define	PG_AVAIL1	0x200	/*    /	Available for system	*/
63 #define	PG_AVAIL2	0x400	/*   <	programmers use		*/
64 #define	PG_AVAIL3	0x800	/*    \				*/
65 #define	PG_PDE_PAT	0x1000	/* PAT	PAT index		*/
66 #ifdef PAE
67 #define	PG_NX		(1ull<<63) /* No-execute */
68 #endif
69 
70 
71 /* Our various interpretations of the above */
72 #define PG_W		PG_AVAIL1	/* "Wired" pseudoflag */
73 #define	PG_MANAGED	PG_AVAIL2
74 #ifdef PAE
75 #define	PG_FRAME	(0x000ffffffffff000ull)
76 #define	PG_PS_FRAME	(0x000fffffffe00000ull)
77 #else
78 #define	PG_FRAME	(~PAGE_MASK)
79 #define	PG_PS_FRAME	(0xffc00000)
80 #endif
81 #define	PG_PROT		(PG_RW|PG_U)	/* all protection bits . */
82 #define PG_N		(PG_NC_PWT|PG_NC_PCD)	/* Non-cacheable */
83 
84 /* Page level cache control fields used to determine the PAT type */
85 #define PG_PDE_CACHE	(PG_PDE_PAT | PG_NC_PWT | PG_NC_PCD)
86 #define PG_PTE_CACHE	(PG_PTE_PAT | PG_NC_PWT | PG_NC_PCD)
87 
88 /*
89  * Promotion to a 2 or 4MB (PDE) page mapping requires that the corresponding
90  * 4KB (PTE) page mappings have identical settings for the following fields:
91  */
92 #define PG_PTE_PROMOTE	(PG_MANAGED | PG_W | PG_G | PG_PTE_PAT | \
93 	    PG_M | PG_A | PG_NC_PCD | PG_NC_PWT | PG_U | PG_RW | PG_V)
94 
95 /*
96  * Page Protection Exception bits
97  */
98 
99 #define PGEX_P		0x01	/* Protection violation vs. not present */
100 #define PGEX_W		0x02	/* during a Write cycle */
101 #define PGEX_U		0x04	/* access from User mode (UPL) */
102 #define PGEX_RSV	0x08	/* reserved PTE field is non-zero */
103 #define PGEX_I		0x10	/* during an instruction fetch */
104 
105 /*
106  * Size of Kernel address space.  This is the number of page table pages
107  * (4MB each) to use for the kernel.  256 pages == 1 Gigabyte.
108  * This **MUST** be a multiple of 4 (eg: 252, 256, 260, etc).
109  * For PAE, the page table page unit size is 2MB.  This means that 512 pages
110  * is 1 Gigabyte.  Double everything.  It must be a multiple of 8 for PAE.
111  */
112 #ifndef KVA_PAGES
113 #ifdef PAE
114 #define KVA_PAGES	512
115 #else
116 #define KVA_PAGES	256
117 #endif
118 #endif
119 
120 /*
121  * Pte related macros
122  */
123 #define VADDR(pdi, pti) ((vm_offset_t)(((pdi)<<PDRSHIFT)|((pti)<<PAGE_SHIFT)))
124 
125 /* Initial number of kernel page tables. */
126 #ifndef NKPT
127 #ifdef PAE
128 /* 152 page tables needed to map 16G (76B "struct vm_page", 2M page tables). */
129 #define	NKPT		240
130 #else
131 /* 18 page tables needed to map 4G (72B "struct vm_page", 4M page tables). */
132 #define	NKPT		30
133 #endif
134 #endif
135 
136 #ifndef NKPDE
137 #define NKPDE	(KVA_PAGES)	/* number of page tables/pde's */
138 #endif
139 
140 /*
141  * The *PTDI values control the layout of virtual memory
142  *
143  * XXX This works for now, but I am not real happy with it, I'll fix it
144  * right after I fix locore.s and the magic 28K hole
145  */
146 #define	KPTDI		(NPDEPTD-NKPDE)	/* start of kernel virtual pde's */
147 #define	PTDPTDI		(KPTDI-NPGPTD)	/* ptd entry that points to ptd! */
148 
149 /*
150  * XXX doesn't really belong here I guess...
151  */
152 #define ISA_HOLE_START    0xa0000
153 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
154 
155 #ifndef LOCORE
156 
157 #include <sys/queue.h>
158 #include <sys/_cpuset.h>
159 #include <sys/_lock.h>
160 #include <sys/_mutex.h>
161 
162 #include <vm/_vm_radix.h>
163 
164 #ifdef PAE
165 
166 typedef uint64_t pdpt_entry_t;
167 typedef uint64_t pd_entry_t;
168 typedef uint64_t pt_entry_t;
169 
170 #define	PTESHIFT	(3)
171 #define	PDESHIFT	(3)
172 
173 #else
174 
175 typedef uint32_t pd_entry_t;
176 typedef uint32_t pt_entry_t;
177 
178 #define	PTESHIFT	(2)
179 #define	PDESHIFT	(2)
180 
181 #endif
182 
183 /*
184  * Address of current address space page table maps and directories.
185  */
186 #ifdef _KERNEL
187 extern pt_entry_t PTmap[];
188 extern pd_entry_t PTD[];
189 extern pd_entry_t PTDpde[];
190 
191 #ifdef PAE
192 extern pdpt_entry_t *IdlePDPT;
193 #endif
194 extern pd_entry_t *IdlePTD;	/* physical address of "Idle" state directory */
195 
196 /*
197  * Translate a virtual address to the kernel virtual address of its page table
198  * entry (PTE).  This can be used recursively.  If the address of a PTE as
199  * previously returned by this macro is itself given as the argument, then the
200  * address of the page directory entry (PDE) that maps the PTE will be
201  * returned.
202  *
203  * This macro may be used before pmap_bootstrap() is called.
204  */
205 #define	vtopte(va)	(PTmap + i386_btop(va))
206 
207 /*
208  * Translate a virtual address to its physical address.
209  *
210  * This macro may be used before pmap_bootstrap() is called.
211  */
212 #define	vtophys(va)	pmap_kextract((vm_offset_t)(va))
213 
214 #if defined(XEN)
215 #include <sys/param.h>
216 
217 #include <xen/xen-os.h>
218 
219 #include <machine/xen/xenvar.h>
220 #include <machine/xen/xenpmap.h>
221 
222 extern pt_entry_t pg_nx;
223 
224 #define PG_KERNEL  (PG_V | PG_A | PG_RW | PG_M)
225 
226 #define MACH_TO_VM_PAGE(ma) PHYS_TO_VM_PAGE(xpmap_mtop((ma)))
227 #define VM_PAGE_TO_MACH(m) xpmap_ptom(VM_PAGE_TO_PHYS((m)))
228 
229 #define VTOM(va) xpmap_ptom(VTOP(va))
230 
231 static __inline vm_paddr_t
232 pmap_kextract_ma(vm_offset_t va)
233 {
234         vm_paddr_t ma;
235         if ((ma = PTD[va >> PDRSHIFT]) & PG_PS) {
236                 ma = (ma & ~(NBPDR - 1)) | (va & (NBPDR - 1));
237         } else {
238                 ma = (*vtopte(va) & PG_FRAME) | (va & PAGE_MASK);
239         }
240         return ma;
241 }
242 
243 static __inline vm_paddr_t
244 pmap_kextract(vm_offset_t va)
245 {
246         return xpmap_mtop(pmap_kextract_ma(va));
247 }
248 #define vtomach(va)     pmap_kextract_ma(((vm_offset_t) (va)))
249 
250 vm_paddr_t pmap_extract_ma(struct pmap *pmap, vm_offset_t va);
251 
252 void    pmap_kenter_ma(vm_offset_t va, vm_paddr_t pa);
253 void    pmap_map_readonly(struct pmap *pmap, vm_offset_t va, int len);
254 void    pmap_map_readwrite(struct pmap *pmap, vm_offset_t va, int len);
255 
256 static __inline pt_entry_t
257 pte_load_store(pt_entry_t *ptep, pt_entry_t v)
258 {
259 	pt_entry_t r;
260 
261 	r = *ptep;
262 	PT_SET_VA(ptep, v, TRUE);
263 	return (r);
264 }
265 
266 static __inline pt_entry_t
267 pte_load_store_ma(pt_entry_t *ptep, pt_entry_t v)
268 {
269 	pt_entry_t r;
270 
271 	r = *ptep;
272 	PT_SET_VA_MA(ptep, v, TRUE);
273 	return (r);
274 }
275 
276 #define	pte_load_clear(ptep)	pte_load_store((ptep), (pt_entry_t)0ULL)
277 
278 #define	pte_store(ptep, pte)	pte_load_store((ptep), (pt_entry_t)pte)
279 #define	pte_store_ma(ptep, pte)	pte_load_store_ma((ptep), (pt_entry_t)pte)
280 #define	pde_store_ma(ptep, pte)	pte_load_store_ma((ptep), (pt_entry_t)pte)
281 
282 #elif !defined(XEN)
283 
284 /*
285  * KPTmap is a linear mapping of the kernel page table.  It differs from the
286  * recursive mapping in two ways: (1) it only provides access to kernel page
287  * table pages, and not user page table pages, and (2) it provides access to
288  * a kernel page table page after the corresponding virtual addresses have
289  * been promoted to a 2/4MB page mapping.
290  *
291  * KPTmap is first initialized by locore to support just NPKT page table
292  * pages.  Later, it is reinitialized by pmap_bootstrap() to allow for
293  * expansion of the kernel page table.
294  */
295 extern pt_entry_t *KPTmap;
296 
297 /*
298  * Extract from the kernel page table the physical address that is mapped by
299  * the given virtual address "va".
300  *
301  * This function may be used before pmap_bootstrap() is called.
302  */
303 static __inline vm_paddr_t
304 pmap_kextract(vm_offset_t va)
305 {
306 	vm_paddr_t pa;
307 
308 	if ((pa = PTD[va >> PDRSHIFT]) & PG_PS) {
309 		pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
310 	} else {
311 		/*
312 		 * Beware of a concurrent promotion that changes the PDE at
313 		 * this point!  For example, vtopte() must not be used to
314 		 * access the PTE because it would use the new PDE.  It is,
315 		 * however, safe to use the old PDE because the page table
316 		 * page is preserved by the promotion.
317 		 */
318 		pa = KPTmap[i386_btop(va)];
319 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
320 	}
321 	return (pa);
322 }
323 #endif
324 
325 #if !defined(XEN)
326 #define PT_UPDATES_FLUSH()
327 #endif
328 
329 #if defined(PAE) && !defined(XEN)
330 
331 #define	pde_cmpset(pdep, old, new)	atomic_cmpset_64_i586(pdep, old, new)
332 #define	pte_load_store(ptep, pte)	atomic_swap_64_i586(ptep, pte)
333 #define	pte_load_clear(ptep)		atomic_swap_64_i586(ptep, 0)
334 #define	pte_store(ptep, pte)		atomic_store_rel_64_i586(ptep, pte)
335 
336 extern pt_entry_t pg_nx;
337 
338 #elif !defined(PAE) && !defined(XEN)
339 
340 #define	pde_cmpset(pdep, old, new)	atomic_cmpset_int(pdep, old, new)
341 #define	pte_load_store(ptep, pte)	atomic_swap_int(ptep, pte)
342 #define	pte_load_clear(ptep)		atomic_swap_int(ptep, 0)
343 #define	pte_store(ptep, pte) do { \
344 	*(u_int *)(ptep) = (u_int)(pte); \
345 } while (0)
346 
347 #endif /* PAE */
348 
349 #define	pte_clear(ptep)			pte_store(ptep, 0)
350 
351 #define	pde_store(pdep, pde)		pte_store(pdep, pde)
352 
353 #endif /* _KERNEL */
354 
355 /*
356  * Pmap stuff
357  */
358 struct	pv_entry;
359 struct	pv_chunk;
360 
361 struct md_page {
362 	TAILQ_HEAD(,pv_entry)	pv_list;
363 	int			pat_mode;
364 };
365 
366 struct pmap {
367 	struct mtx		pm_mtx;
368 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
369 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
370 	cpuset_t		pm_active;	/* active on cpus */
371 	struct pmap_statistics	pm_stats;	/* pmap statistics */
372 	LIST_ENTRY(pmap) 	pm_list;	/* List of all pmaps */
373 #ifdef PAE
374 	pdpt_entry_t		*pm_pdpt;	/* KVA of page director pointer
375 						   table */
376 #endif
377 	struct vm_radix		pm_root;	/* spare page table pages */
378 };
379 
380 typedef struct pmap	*pmap_t;
381 
382 #ifdef _KERNEL
383 extern struct pmap	kernel_pmap_store;
384 #define kernel_pmap	(&kernel_pmap_store)
385 
386 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
387 #define	PMAP_LOCK_ASSERT(pmap, type) \
388 				mtx_assert(&(pmap)->pm_mtx, (type))
389 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
390 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
391 				    NULL, MTX_DEF | MTX_DUPOK)
392 #define	PMAP_LOCKED(pmap)	mtx_owned(&(pmap)->pm_mtx)
393 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
394 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
395 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
396 #endif
397 
398 /*
399  * For each vm_page_t, there is a list of all currently valid virtual
400  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
401  */
402 typedef struct pv_entry {
403 	vm_offset_t	pv_va;		/* virtual address for mapping */
404 	TAILQ_ENTRY(pv_entry)	pv_next;
405 } *pv_entry_t;
406 
407 /*
408  * pv_entries are allocated in chunks per-process.  This avoids the
409  * need to track per-pmap assignments.
410  */
411 #define	_NPCM	11
412 #define	_NPCPV	336
413 struct pv_chunk {
414 	pmap_t			pc_pmap;
415 	TAILQ_ENTRY(pv_chunk)	pc_list;
416 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
417 	TAILQ_ENTRY(pv_chunk)	pc_lru;
418 	struct pv_entry		pc_pventry[_NPCPV];
419 };
420 
421 #ifdef	_KERNEL
422 
423 extern caddr_t	CADDR3;
424 extern pt_entry_t *CMAP3;
425 extern vm_paddr_t phys_avail[];
426 extern vm_paddr_t dump_avail[];
427 extern int pseflag;
428 extern int pgeflag;
429 extern char *ptvmmap;		/* poor name! */
430 extern vm_offset_t virtual_avail;
431 extern vm_offset_t virtual_end;
432 
433 #define	pmap_page_get_memattr(m)	((vm_memattr_t)(m)->md.pat_mode)
434 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
435 #define	pmap_unmapbios(va, sz)	pmap_unmapdev((va), (sz))
436 
437 /*
438  * Only the following functions or macros may be used before pmap_bootstrap()
439  * is called: pmap_kenter(), pmap_kextract(), pmap_kremove(), vtophys(), and
440  * vtopte().
441  */
442 void	pmap_bootstrap(vm_paddr_t);
443 int	pmap_cache_bits(int mode, boolean_t is_pde);
444 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
445 void	pmap_init_pat(void);
446 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
447 void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
448 void	pmap_kremove(vm_offset_t);
449 void	*pmap_mapbios(vm_paddr_t, vm_size_t);
450 void	*pmap_mapdev(vm_paddr_t, vm_size_t);
451 void	*pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
452 boolean_t pmap_page_is_mapped(vm_page_t m);
453 void	pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
454 void	pmap_unmapdev(vm_offset_t, vm_size_t);
455 pt_entry_t *pmap_pte(pmap_t, vm_offset_t) __pure2;
456 void	pmap_invalidate_page(pmap_t, vm_offset_t);
457 void	pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
458 void	pmap_invalidate_all(pmap_t);
459 void	pmap_invalidate_cache(void);
460 void	pmap_invalidate_cache_pages(vm_page_t *pages, int count);
461 void	pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva,
462 	    boolean_t force);
463 
464 #endif /* _KERNEL */
465 
466 #endif /* !LOCORE */
467 
468 #endif /* !_MACHINE_PMAP_H_ */
469