1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * the Systems Programming Group of the University of Utah Computer 7 * Science Department and William Jolitz of UUNET Technologies Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Derived from hp300 version by Mike Hibler, this version by William 34 * Jolitz uses a recursive map [a pde points to the page directory] to 35 * map the page tables using the pagetables themselves. This is done to 36 * reduce the impact on kernel virtual memory for lots of sparse address 37 * space, and to reduce the cost of memory to each process. 38 * 39 * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 40 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 41 * $FreeBSD$ 42 */ 43 44 #ifndef _MACHINE_PMAP_H_ 45 #define _MACHINE_PMAP_H_ 46 47 /* 48 * Page-directory and page-table entries follow this format, with a few 49 * of the fields not present here and there, depending on a lot of things. 50 */ 51 /* ---- Intel Nomenclature ---- */ 52 #define PG_V 0x001 /* P Valid */ 53 #define PG_RW 0x002 /* R/W Read/Write */ 54 #define PG_U 0x004 /* U/S User/Supervisor */ 55 #define PG_NC_PWT 0x008 /* PWT Write through */ 56 #define PG_NC_PCD 0x010 /* PCD Cache disable */ 57 #define PG_A 0x020 /* A Accessed */ 58 #define PG_M 0x040 /* D Dirty */ 59 #define PG_PS 0x080 /* PS Page size (0=4k,1=4M) */ 60 #define PG_PTE_PAT 0x080 /* PAT PAT index */ 61 #define PG_G 0x100 /* G Global */ 62 #define PG_AVAIL1 0x200 /* / Available for system */ 63 #define PG_AVAIL2 0x400 /* < programmers use */ 64 #define PG_AVAIL3 0x800 /* \ */ 65 #define PG_PDE_PAT 0x1000 /* PAT PAT index */ 66 #ifdef PAE 67 #define PG_NX (1ull<<63) /* No-execute */ 68 #endif 69 70 71 /* Our various interpretations of the above */ 72 #define PG_W PG_AVAIL1 /* "Wired" pseudoflag */ 73 #define PG_MANAGED PG_AVAIL2 74 #ifdef PAE 75 #define PG_FRAME (0x000ffffffffff000ull) 76 #define PG_PS_FRAME (0x000fffffffe00000ull) 77 #else 78 #define PG_FRAME (~PAGE_MASK) 79 #define PG_PS_FRAME (0xffc00000) 80 #endif 81 #define PG_PROT (PG_RW|PG_U) /* all protection bits . */ 82 #define PG_N (PG_NC_PWT|PG_NC_PCD) /* Non-cacheable */ 83 84 /* Page level cache control fields used to determine the PAT type */ 85 #define PG_PDE_CACHE (PG_PDE_PAT | PG_NC_PWT | PG_NC_PCD) 86 #define PG_PTE_CACHE (PG_PTE_PAT | PG_NC_PWT | PG_NC_PCD) 87 88 /* 89 * Promotion to a 2 or 4MB (PDE) page mapping requires that the corresponding 90 * 4KB (PTE) page mappings have identical settings for the following fields: 91 */ 92 #define PG_PTE_PROMOTE (PG_MANAGED | PG_W | PG_G | PG_PTE_PAT | \ 93 PG_M | PG_A | PG_NC_PCD | PG_NC_PWT | PG_U | PG_RW | PG_V) 94 95 /* 96 * Page Protection Exception bits 97 */ 98 99 #define PGEX_P 0x01 /* Protection violation vs. not present */ 100 #define PGEX_W 0x02 /* during a Write cycle */ 101 #define PGEX_U 0x04 /* access from User mode (UPL) */ 102 #define PGEX_RSV 0x08 /* reserved PTE field is non-zero */ 103 #define PGEX_I 0x10 /* during an instruction fetch */ 104 105 /* 106 * Size of Kernel address space. This is the number of page table pages 107 * (4MB each) to use for the kernel. 256 pages == 1 Gigabyte. 108 * This **MUST** be a multiple of 4 (eg: 252, 256, 260, etc). 109 * For PAE, the page table page unit size is 2MB. This means that 512 pages 110 * is 1 Gigabyte. Double everything. It must be a multiple of 8 for PAE. 111 */ 112 #ifndef KVA_PAGES 113 #ifdef PAE 114 #define KVA_PAGES 512 115 #else 116 #define KVA_PAGES 256 117 #endif 118 #endif 119 120 /* 121 * Pte related macros 122 */ 123 #define VADDR(pdi, pti) ((vm_offset_t)(((pdi)<<PDRSHIFT)|((pti)<<PAGE_SHIFT))) 124 125 /* 126 * The initial number of kernel page table pages that are constructed 127 * by locore must be sufficient to map vm_page_array. That number can 128 * be calculated as follows: 129 * max_phys / PAGE_SIZE * sizeof(struct vm_page) / NBPDR 130 * PAE: max_phys 16G, sizeof(vm_page) 76, NBPDR 2M, 152 page table pages. 131 * Non-PAE: max_phys 4G, sizeof(vm_page) 68, NBPDR 4M, 18 page table pages. 132 */ 133 #ifndef NKPT 134 #ifdef PAE 135 #define NKPT 240 136 #else 137 #define NKPT 30 138 #endif 139 #endif 140 141 #ifndef NKPDE 142 #define NKPDE (KVA_PAGES) /* number of page tables/pde's */ 143 #endif 144 145 /* 146 * The *PTDI values control the layout of virtual memory 147 * 148 * XXX This works for now, but I am not real happy with it, I'll fix it 149 * right after I fix locore.s and the magic 28K hole 150 */ 151 #define KPTDI (NPDEPTD-NKPDE) /* start of kernel virtual pde's */ 152 #define PTDPTDI (KPTDI-NPGPTD) /* ptd entry that points to ptd! */ 153 154 /* 155 * XXX doesn't really belong here I guess... 156 */ 157 #define ISA_HOLE_START 0xa0000 158 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) 159 160 #ifndef LOCORE 161 162 #include <sys/queue.h> 163 #include <sys/_cpuset.h> 164 #include <sys/_lock.h> 165 #include <sys/_mutex.h> 166 167 #include <vm/_vm_radix.h> 168 169 #ifdef PAE 170 171 typedef uint64_t pdpt_entry_t; 172 typedef uint64_t pd_entry_t; 173 typedef uint64_t pt_entry_t; 174 175 #define PTESHIFT (3) 176 #define PDESHIFT (3) 177 178 #else 179 180 typedef uint32_t pd_entry_t; 181 typedef uint32_t pt_entry_t; 182 183 #define PTESHIFT (2) 184 #define PDESHIFT (2) 185 186 #endif 187 188 /* 189 * Address of current address space page table maps and directories. 190 */ 191 #ifdef _KERNEL 192 extern pt_entry_t PTmap[]; 193 extern pd_entry_t PTD[]; 194 extern pd_entry_t PTDpde[]; 195 196 #ifdef PAE 197 extern pdpt_entry_t *IdlePDPT; 198 #endif 199 extern pd_entry_t *IdlePTD; /* physical address of "Idle" state directory */ 200 201 /* 202 * Translate a virtual address to the kernel virtual address of its page table 203 * entry (PTE). This can be used recursively. If the address of a PTE as 204 * previously returned by this macro is itself given as the argument, then the 205 * address of the page directory entry (PDE) that maps the PTE will be 206 * returned. 207 * 208 * This macro may be used before pmap_bootstrap() is called. 209 */ 210 #define vtopte(va) (PTmap + i386_btop(va)) 211 212 /* 213 * Translate a virtual address to its physical address. 214 * 215 * This macro may be used before pmap_bootstrap() is called. 216 */ 217 #define vtophys(va) pmap_kextract((vm_offset_t)(va)) 218 219 #if defined(XEN) 220 #include <sys/param.h> 221 222 #include <xen/xen-os.h> 223 224 #include <machine/xen/xenvar.h> 225 #include <machine/xen/xenpmap.h> 226 227 extern pt_entry_t pg_nx; 228 229 #define PG_KERNEL (PG_V | PG_A | PG_RW | PG_M) 230 231 #define MACH_TO_VM_PAGE(ma) PHYS_TO_VM_PAGE(xpmap_mtop((ma))) 232 #define VM_PAGE_TO_MACH(m) xpmap_ptom(VM_PAGE_TO_PHYS((m))) 233 234 #define VTOM(va) xpmap_ptom(VTOP(va)) 235 236 static __inline vm_paddr_t 237 pmap_kextract_ma(vm_offset_t va) 238 { 239 vm_paddr_t ma; 240 if ((ma = PTD[va >> PDRSHIFT]) & PG_PS) { 241 ma = (ma & ~(NBPDR - 1)) | (va & (NBPDR - 1)); 242 } else { 243 ma = (*vtopte(va) & PG_FRAME) | (va & PAGE_MASK); 244 } 245 return ma; 246 } 247 248 static __inline vm_paddr_t 249 pmap_kextract(vm_offset_t va) 250 { 251 return xpmap_mtop(pmap_kextract_ma(va)); 252 } 253 #define vtomach(va) pmap_kextract_ma(((vm_offset_t) (va))) 254 255 vm_paddr_t pmap_extract_ma(struct pmap *pmap, vm_offset_t va); 256 257 void pmap_kenter_ma(vm_offset_t va, vm_paddr_t pa); 258 void pmap_map_readonly(struct pmap *pmap, vm_offset_t va, int len); 259 void pmap_map_readwrite(struct pmap *pmap, vm_offset_t va, int len); 260 261 static __inline pt_entry_t 262 pte_load_store(pt_entry_t *ptep, pt_entry_t v) 263 { 264 pt_entry_t r; 265 266 r = *ptep; 267 PT_SET_VA(ptep, v, TRUE); 268 return (r); 269 } 270 271 static __inline pt_entry_t 272 pte_load_store_ma(pt_entry_t *ptep, pt_entry_t v) 273 { 274 pt_entry_t r; 275 276 r = *ptep; 277 PT_SET_VA_MA(ptep, v, TRUE); 278 return (r); 279 } 280 281 #define pte_load_clear(ptep) pte_load_store((ptep), (pt_entry_t)0ULL) 282 283 #define pte_store(ptep, pte) pte_load_store((ptep), (pt_entry_t)pte) 284 #define pte_store_ma(ptep, pte) pte_load_store_ma((ptep), (pt_entry_t)pte) 285 #define pde_store_ma(ptep, pte) pte_load_store_ma((ptep), (pt_entry_t)pte) 286 287 #elif !defined(XEN) 288 289 /* 290 * KPTmap is a linear mapping of the kernel page table. It differs from the 291 * recursive mapping in two ways: (1) it only provides access to kernel page 292 * table pages, and not user page table pages, and (2) it provides access to 293 * a kernel page table page after the corresponding virtual addresses have 294 * been promoted to a 2/4MB page mapping. 295 * 296 * KPTmap is first initialized by locore to support just NPKT page table 297 * pages. Later, it is reinitialized by pmap_bootstrap() to allow for 298 * expansion of the kernel page table. 299 */ 300 extern pt_entry_t *KPTmap; 301 302 /* 303 * Extract from the kernel page table the physical address that is mapped by 304 * the given virtual address "va". 305 * 306 * This function may be used before pmap_bootstrap() is called. 307 */ 308 static __inline vm_paddr_t 309 pmap_kextract(vm_offset_t va) 310 { 311 vm_paddr_t pa; 312 313 if ((pa = PTD[va >> PDRSHIFT]) & PG_PS) { 314 pa = (pa & PG_PS_FRAME) | (va & PDRMASK); 315 } else { 316 /* 317 * Beware of a concurrent promotion that changes the PDE at 318 * this point! For example, vtopte() must not be used to 319 * access the PTE because it would use the new PDE. It is, 320 * however, safe to use the old PDE because the page table 321 * page is preserved by the promotion. 322 */ 323 pa = KPTmap[i386_btop(va)]; 324 pa = (pa & PG_FRAME) | (va & PAGE_MASK); 325 } 326 return (pa); 327 } 328 #endif 329 330 #if !defined(XEN) 331 #define PT_UPDATES_FLUSH() 332 #endif 333 334 #if defined(PAE) && !defined(XEN) 335 336 #define pde_cmpset(pdep, old, new) atomic_cmpset_64_i586(pdep, old, new) 337 #define pte_load_store(ptep, pte) atomic_swap_64_i586(ptep, pte) 338 #define pte_load_clear(ptep) atomic_swap_64_i586(ptep, 0) 339 #define pte_store(ptep, pte) atomic_store_rel_64_i586(ptep, pte) 340 341 extern pt_entry_t pg_nx; 342 343 #elif !defined(PAE) && !defined(XEN) 344 345 #define pde_cmpset(pdep, old, new) atomic_cmpset_int(pdep, old, new) 346 #define pte_load_store(ptep, pte) atomic_swap_int(ptep, pte) 347 #define pte_load_clear(ptep) atomic_swap_int(ptep, 0) 348 #define pte_store(ptep, pte) do { \ 349 *(u_int *)(ptep) = (u_int)(pte); \ 350 } while (0) 351 352 #endif /* PAE */ 353 354 #define pte_clear(ptep) pte_store(ptep, 0) 355 356 #define pde_store(pdep, pde) pte_store(pdep, pde) 357 358 #endif /* _KERNEL */ 359 360 /* 361 * Pmap stuff 362 */ 363 struct pv_entry; 364 struct pv_chunk; 365 366 struct md_page { 367 TAILQ_HEAD(,pv_entry) pv_list; 368 int pat_mode; 369 }; 370 371 struct pmap { 372 struct mtx pm_mtx; 373 pd_entry_t *pm_pdir; /* KVA of page directory */ 374 TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ 375 cpuset_t pm_active; /* active on cpus */ 376 struct pmap_statistics pm_stats; /* pmap statistics */ 377 LIST_ENTRY(pmap) pm_list; /* List of all pmaps */ 378 #ifdef PAE 379 pdpt_entry_t *pm_pdpt; /* KVA of page director pointer 380 table */ 381 #endif 382 struct vm_radix pm_root; /* spare page table pages */ 383 }; 384 385 typedef struct pmap *pmap_t; 386 387 #ifdef _KERNEL 388 extern struct pmap kernel_pmap_store; 389 #define kernel_pmap (&kernel_pmap_store) 390 391 #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) 392 #define PMAP_LOCK_ASSERT(pmap, type) \ 393 mtx_assert(&(pmap)->pm_mtx, (type)) 394 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) 395 #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ 396 NULL, MTX_DEF | MTX_DUPOK) 397 #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) 398 #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) 399 #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) 400 #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) 401 #endif 402 403 /* 404 * For each vm_page_t, there is a list of all currently valid virtual 405 * mappings of that page. An entry is a pv_entry_t, the list is pv_list. 406 */ 407 typedef struct pv_entry { 408 vm_offset_t pv_va; /* virtual address for mapping */ 409 TAILQ_ENTRY(pv_entry) pv_next; 410 } *pv_entry_t; 411 412 /* 413 * pv_entries are allocated in chunks per-process. This avoids the 414 * need to track per-pmap assignments. 415 */ 416 #define _NPCM 11 417 #define _NPCPV 336 418 struct pv_chunk { 419 pmap_t pc_pmap; 420 TAILQ_ENTRY(pv_chunk) pc_list; 421 uint32_t pc_map[_NPCM]; /* bitmap; 1 = free */ 422 TAILQ_ENTRY(pv_chunk) pc_lru; 423 struct pv_entry pc_pventry[_NPCPV]; 424 }; 425 426 #ifdef _KERNEL 427 428 extern caddr_t CADDR3; 429 extern pt_entry_t *CMAP3; 430 extern vm_paddr_t phys_avail[]; 431 extern vm_paddr_t dump_avail[]; 432 extern int pseflag; 433 extern int pgeflag; 434 extern char *ptvmmap; /* poor name! */ 435 extern vm_offset_t virtual_avail; 436 extern vm_offset_t virtual_end; 437 438 #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode) 439 #define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0) 440 #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) 441 442 /* 443 * Only the following functions or macros may be used before pmap_bootstrap() 444 * is called: pmap_kenter(), pmap_kextract(), pmap_kremove(), vtophys(), and 445 * vtopte(). 446 */ 447 void pmap_bootstrap(vm_paddr_t); 448 int pmap_cache_bits(int mode, boolean_t is_pde); 449 int pmap_change_attr(vm_offset_t, vm_size_t, int); 450 void pmap_init_pat(void); 451 void pmap_kenter(vm_offset_t va, vm_paddr_t pa); 452 void *pmap_kenter_temporary(vm_paddr_t pa, int i); 453 void pmap_kremove(vm_offset_t); 454 void *pmap_mapbios(vm_paddr_t, vm_size_t); 455 void *pmap_mapdev(vm_paddr_t, vm_size_t); 456 void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); 457 boolean_t pmap_page_is_mapped(vm_page_t m); 458 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); 459 void pmap_unmapdev(vm_offset_t, vm_size_t); 460 pt_entry_t *pmap_pte(pmap_t, vm_offset_t) __pure2; 461 void pmap_invalidate_page(pmap_t, vm_offset_t); 462 void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); 463 void pmap_invalidate_all(pmap_t); 464 void pmap_invalidate_cache(void); 465 void pmap_invalidate_cache_pages(vm_page_t *pages, int count); 466 void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, 467 boolean_t force); 468 469 #endif /* _KERNEL */ 470 471 #endif /* !LOCORE */ 472 473 #endif /* !_MACHINE_PMAP_H_ */ 474