xref: /freebsd/sys/i386/include/cpufunc.h (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*-
2  * Copyright (c) 1993 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Functions to provide access to special i386 instructions.
38  */
39 
40 #ifndef _MACHINE_CPUFUNC_H_
41 #define	_MACHINE_CPUFUNC_H_
42 
43 #define readb(va)	(*(volatile u_int8_t *) (va))
44 #define readw(va)	(*(volatile u_int16_t *) (va))
45 #define readl(va)	(*(volatile u_int32_t *) (va))
46 
47 #define writeb(va, d)	(*(volatile u_int8_t *) (va) = (d))
48 #define writew(va, d)	(*(volatile u_int16_t *) (va) = (d))
49 #define writel(va, d)	(*(volatile u_int32_t *) (va) = (d))
50 
51 #ifdef	__GNUC__
52 
53 #ifdef SMP
54 #include <machine/lock.h>		/* XXX */
55 #endif
56 
57 #ifdef SWTCH_OPTIM_STATS
58 extern	int	tlb_flush_count;	/* XXX */
59 #endif
60 
61 static __inline void
62 breakpoint(void)
63 {
64 	__asm __volatile("int $3");
65 }
66 
67 static __inline u_int
68 bsfl(u_int mask)
69 {
70 	u_int	result;
71 
72 	__asm __volatile("bsfl %0,%0" : "=r" (result) : "0" (mask));
73 	return (result);
74 }
75 
76 static __inline u_int
77 bsrl(u_int mask)
78 {
79 	u_int	result;
80 
81 	__asm __volatile("bsrl %0,%0" : "=r" (result) : "0" (mask));
82 	return (result);
83 }
84 
85 static __inline void
86 disable_intr(void)
87 {
88 	__asm __volatile("cli" : : : "memory");
89 #ifdef SMP
90 	MPINTR_LOCK();
91 #endif
92 }
93 
94 static __inline void
95 enable_intr(void)
96 {
97 #ifdef SMP
98 	MPINTR_UNLOCK();
99 #endif
100 	__asm __volatile("sti");
101 }
102 
103 #define	HAVE_INLINE_FFS
104 
105 static __inline int
106 ffs(int mask)
107 {
108 	/*
109 	 * Note that gcc-2's builtin ffs would be used if we didn't declare
110 	 * this inline or turn off the builtin.  The builtin is faster but
111 	 * broken in gcc-2.4.5 and slower but working in gcc-2.5 and later
112 	 * versions.
113 	 */
114 	 return (mask == 0 ? mask : bsfl((u_int)mask) + 1);
115 }
116 
117 #define	HAVE_INLINE_FLS
118 
119 static __inline int
120 fls(int mask)
121 {
122 	return (mask == 0 ? mask : bsrl((u_int)mask) + 1);
123 }
124 
125 #if __GNUC__ < 2
126 
127 #define	inb(port)		inbv(port)
128 #define	outb(port, data)	outbv(port, data)
129 
130 #else /* __GNUC >= 2 */
131 
132 /*
133  * The following complications are to get around gcc not having a
134  * constraint letter for the range 0..255.  We still put "d" in the
135  * constraint because "i" isn't a valid constraint when the port
136  * isn't constant.  This only matters for -O0 because otherwise
137  * the non-working version gets optimized away.
138  *
139  * Use an expression-statement instead of a conditional expression
140  * because gcc-2.6.0 would promote the operands of the conditional
141  * and produce poor code for "if ((inb(var) & const1) == const2)".
142  *
143  * The unnecessary test `(port) < 0x10000' is to generate a warning if
144  * the `port' has type u_short or smaller.  Such types are pessimal.
145  * This actually only works for signed types.  The range check is
146  * careful to avoid generating warnings.
147  */
148 #define	inb(port) __extension__ ({					\
149 	u_char	_data;							\
150 	if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100	\
151 	    && (port) < 0x10000)					\
152 		_data = inbc(port);					\
153 	else								\
154 		_data = inbv(port);					\
155 	_data; })
156 
157 #define	outb(port, data) (						\
158 	__builtin_constant_p(port) && ((port) & 0xffff) < 0x100		\
159 	&& (port) < 0x10000						\
160 	? outbc(port, data) : outbv(port, data))
161 
162 static __inline u_char
163 inbc(u_int port)
164 {
165 	u_char	data;
166 
167 	__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
168 	return (data);
169 }
170 
171 static __inline void
172 outbc(u_int port, u_char data)
173 {
174 	__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
175 }
176 
177 #endif /* __GNUC <= 2 */
178 
179 static __inline u_char
180 inbv(u_int port)
181 {
182 	u_char	data;
183 	/*
184 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
185 	 * %edx, while gcc generates inferior code (movw instead of movl)
186 	 * if we tell it to load (u_short) port.
187 	 */
188 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
189 	return (data);
190 }
191 
192 static __inline u_int
193 inl(u_int port)
194 {
195 	u_int	data;
196 
197 	__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
198 	return (data);
199 }
200 
201 static __inline void
202 insb(u_int port, void *addr, size_t cnt)
203 {
204 	__asm __volatile("cld; rep; insb"
205 			 : "=D" (addr), "=c" (cnt)
206 			 :  "0" (addr),  "1" (cnt), "d" (port)
207 			 : "memory");
208 }
209 
210 static __inline void
211 insw(u_int port, void *addr, size_t cnt)
212 {
213 	__asm __volatile("cld; rep; insw"
214 			 : "=D" (addr), "=c" (cnt)
215 			 :  "0" (addr),  "1" (cnt), "d" (port)
216 			 : "memory");
217 }
218 
219 static __inline void
220 insl(u_int port, void *addr, size_t cnt)
221 {
222 	__asm __volatile("cld; rep; insl"
223 			 : "=D" (addr), "=c" (cnt)
224 			 :  "0" (addr),  "1" (cnt), "d" (port)
225 			 : "memory");
226 }
227 
228 static __inline void
229 invd(void)
230 {
231 	__asm __volatile("invd");
232 }
233 
234 #if defined(SMP) && defined(_KERNEL)
235 
236 /*
237  * When using APIC IPI's, invlpg() is not simply the invlpg instruction
238  * (this is a bug) and the inlining cost is prohibitive since the call
239  * executes into the IPI transmission system.
240  */
241 void	invlpg		__P((u_int addr));
242 void	invltlb		__P((void));
243 
244 static __inline void
245 cpu_invlpg(void *addr)
246 {
247 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
248 }
249 
250 static __inline void
251 cpu_invltlb(void)
252 {
253 	u_int	temp;
254 	/*
255 	 * This should be implemented as load_cr3(rcr3()) when load_cr3()
256 	 * is inlined.
257 	 */
258 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
259 			 : : "memory");
260 #if defined(SWTCH_OPTIM_STATS)
261 	++tlb_flush_count;
262 #endif
263 }
264 
265 #else /* !(SMP && _KERNEL) */
266 
267 static __inline void
268 invlpg(u_int addr)
269 {
270 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
271 }
272 
273 static __inline void
274 invltlb(void)
275 {
276 	u_int	temp;
277 	/*
278 	 * This should be implemented as load_cr3(rcr3()) when load_cr3()
279 	 * is inlined.
280 	 */
281 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
282 			 : : "memory");
283 #ifdef SWTCH_OPTIM_STATS
284 	++tlb_flush_count;
285 #endif
286 }
287 
288 #endif /* SMP && _KERNEL */
289 
290 static __inline u_short
291 inw(u_int port)
292 {
293 	u_short	data;
294 
295 	__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
296 	return (data);
297 }
298 
299 static __inline u_int
300 loadandclear(volatile u_int *addr)
301 {
302 	u_int	result;
303 
304 	__asm __volatile("xorl %0,%0; xchgl %1,%0"
305 			 : "=&r" (result) : "m" (*addr));
306 	return (result);
307 }
308 
309 static __inline void
310 outbv(u_int port, u_char data)
311 {
312 	u_char	al;
313 	/*
314 	 * Use an unnecessary assignment to help gcc's register allocator.
315 	 * This make a large difference for gcc-1.40 and a tiny difference
316 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
317 	 * best results.  gcc-2.6.0 can't handle this.
318 	 */
319 	al = data;
320 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
321 }
322 
323 static __inline void
324 outl(u_int port, u_int data)
325 {
326 	/*
327 	 * outl() and outw() aren't used much so we haven't looked at
328 	 * possible micro-optimizations such as the unnecessary
329 	 * assignment for them.
330 	 */
331 	__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
332 }
333 
334 static __inline void
335 outsb(u_int port, const void *addr, size_t cnt)
336 {
337 	__asm __volatile("cld; rep; outsb"
338 			 : "=S" (addr), "=c" (cnt)
339 			 :  "0" (addr),  "1" (cnt), "d" (port));
340 }
341 
342 static __inline void
343 outsw(u_int port, const void *addr, size_t cnt)
344 {
345 	__asm __volatile("cld; rep; outsw"
346 			 : "=S" (addr), "=c" (cnt)
347 			 :  "0" (addr),  "1" (cnt), "d" (port));
348 }
349 
350 static __inline void
351 outsl(u_int port, const void *addr, size_t cnt)
352 {
353 	__asm __volatile("cld; rep; outsl"
354 			 : "=S" (addr), "=c" (cnt)
355 			 :  "0" (addr),  "1" (cnt), "d" (port));
356 }
357 
358 static __inline void
359 outw(u_int port, u_short data)
360 {
361 	__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
362 }
363 
364 static __inline u_int
365 rcr2(void)
366 {
367 	u_int	data;
368 
369 	__asm __volatile("movl %%cr2,%0" : "=r" (data));
370 	return (data);
371 }
372 
373 static __inline u_int
374 read_eflags(void)
375 {
376 	u_int	ef;
377 
378 	__asm __volatile("pushfl; popl %0" : "=r" (ef));
379 	return (ef);
380 }
381 
382 static __inline u_int64_t
383 rdmsr(u_int msr)
384 {
385 	u_int64_t rv;
386 
387 	__asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr));
388 	return (rv);
389 }
390 
391 static __inline u_int64_t
392 rdpmc(u_int pmc)
393 {
394 	u_int64_t rv;
395 
396 	__asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc));
397 	return (rv);
398 }
399 
400 static __inline u_int64_t
401 rdtsc(void)
402 {
403 	u_int64_t rv;
404 
405 	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
406 	return (rv);
407 }
408 
409 static __inline void
410 wbinvd(void)
411 {
412 	__asm __volatile("wbinvd");
413 }
414 
415 static __inline void
416 write_eflags(u_int ef)
417 {
418 	__asm __volatile("pushl %0; popfl" : : "r" (ef));
419 }
420 
421 static __inline void
422 wrmsr(u_int msr, u_int64_t newval)
423 {
424 	__asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr));
425 }
426 
427 static __inline u_int
428 rfs(void)
429 {
430 	u_int sel;
431 	__asm __volatile("movl %%fs,%0" : "=rm" (sel));
432 	return (sel);
433 }
434 
435 static __inline u_int
436 rgs(void)
437 {
438 	u_int sel;
439 	__asm __volatile("movl %%gs,%0" : "=rm" (sel));
440 	return (sel);
441 }
442 
443 static __inline void
444 load_fs(u_int sel)
445 {
446 	__asm __volatile("movl %0,%%fs" : : "rm" (sel));
447 }
448 
449 static __inline void
450 load_gs(u_int sel)
451 {
452 	__asm __volatile("movl %0,%%gs" : : "rm" (sel));
453 }
454 
455 static __inline u_int
456 rdr0(void)
457 {
458 	u_int	data;
459 	__asm __volatile("movl %%dr0,%0" : "=r" (data));
460 	return (data);
461 }
462 
463 static __inline u_int
464 rdr1(void)
465 {
466 	u_int	data;
467 	__asm __volatile("movl %%dr1,%0" : "=r" (data));
468 	return (data);
469 }
470 
471 static __inline u_int
472 rdr2(void)
473 {
474 	u_int	data;
475 	__asm __volatile("movl %%dr2,%0" : "=r" (data));
476 	return (data);
477 }
478 
479 static __inline u_int
480 rdr3(void)
481 {
482 	u_int	data;
483 	__asm __volatile("movl %%dr3,%0" : "=r" (data));
484 	return (data);
485 }
486 
487 static __inline u_int
488 rdr6(void)
489 {
490 	u_int	data;
491 	__asm __volatile("movl %%dr6,%0" : "=r" (data));
492 	return (data);
493 }
494 
495 static __inline u_int
496 rdr7(void)
497 {
498 	u_int	data;
499 	__asm __volatile("movl %%dr7,%0" : "=r" (data));
500 	return (data);
501 }
502 
503 #else /* !__GNUC__ */
504 
505 int	breakpoint	__P((void));
506 u_int	bsfl		__P((u_int mask));
507 u_int	bsrl		__P((u_int mask));
508 void	disable_intr	__P((void));
509 void	enable_intr	__P((void));
510 u_char	inb		__P((u_int port));
511 u_int	inl		__P((u_int port));
512 void	insb		__P((u_int port, void *addr, size_t cnt));
513 void	insl		__P((u_int port, void *addr, size_t cnt));
514 void	insw		__P((u_int port, void *addr, size_t cnt));
515 void	invd		__P((void));
516 void	invlpg		__P((u_int addr));
517 void	invltlb		__P((void));
518 u_short	inw		__P((u_int port));
519 u_int	loadandclear	__P((u_int *addr));
520 void	outb		__P((u_int port, u_char data));
521 void	outl		__P((u_int port, u_int data));
522 void	outsb		__P((u_int port, void *addr, size_t cnt));
523 void	outsl		__P((u_int port, void *addr, size_t cnt));
524 void	outsw		__P((u_int port, void *addr, size_t cnt));
525 void	outw		__P((u_int port, u_short data));
526 u_int	rcr2		__P((void));
527 u_int64_t rdmsr		__P((u_int msr));
528 u_int64_t rdpmc		__P((u_int pmc));
529 u_int64_t rdtsc		__P((void));
530 u_int	read_eflags	__P((void));
531 void	wbinvd		__P((void));
532 void	write_eflags	__P((u_int ef));
533 void	wrmsr		__P((u_int msr, u_int64_t newval));
534 u_int	rfs		__P((void));
535 u_int	rgs		__P((void));
536 void	load_fs		__P((u_int sel));
537 void	load_gs		__P((u_int sel));
538 
539 #endif	/* __GNUC__ */
540 
541 void	load_cr0	__P((u_int cr0));
542 void	load_cr3	__P((u_int cr3));
543 void	load_cr4	__P((u_int cr4));
544 void	ltr		__P((u_short sel));
545 u_int	rcr0		__P((void));
546 u_int	rcr3		__P((void));
547 u_int	rcr4		__P((void));
548 void    load_dr6        __P((u_int dr6));
549 void    reset_dbregs    __P((void));
550 
551 #endif /* !_MACHINE_CPUFUNC_H_ */
552