xref: /freebsd/sys/i386/i386/vm_machdep.c (revision f18976136625a7d016e97bfd9eabddf640b3e06d)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1982, 1986 The Regents of the University of California.
5  * Copyright (c) 1989, 1990 William Jolitz
6  * Copyright (c) 1994 John Dyson
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * the Systems Programming Group of the University of Utah Computer
11  * Science Department, and William Jolitz.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
42  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_isa.h"
49 #include "opt_npx.h"
50 #include "opt_reset.h"
51 #include "opt_cpu.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/bio.h>
56 #include <sys/buf.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/mutex.h>
63 #include <sys/pioctl.h>
64 #include <sys/proc.h>
65 #include <sys/sysent.h>
66 #include <sys/sf_buf.h>
67 #include <sys/smp.h>
68 #include <sys/sched.h>
69 #include <sys/sysctl.h>
70 #include <sys/unistd.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 
74 #include <machine/cpu.h>
75 #include <machine/cputypes.h>
76 #include <machine/md_var.h>
77 #include <machine/pcb.h>
78 #include <machine/pcb_ext.h>
79 #include <machine/smp.h>
80 #include <machine/vm86.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_param.h>
88 
89 _Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
90     "__OFFSETOF_MONITORBUF does not correspond with offset of pc_monitorbuf.");
91 
92 union savefpu *
93 get_pcb_user_save_td(struct thread *td)
94 {
95 	vm_offset_t p;
96 
97 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
98 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
99 	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
100 	return ((union savefpu *)p);
101 }
102 
103 union savefpu *
104 get_pcb_user_save_pcb(struct pcb *pcb)
105 {
106 	vm_offset_t p;
107 
108 	p = (vm_offset_t)(pcb + 1);
109 	return ((union savefpu *)p);
110 }
111 
112 struct pcb *
113 get_pcb_td(struct thread *td)
114 {
115 	vm_offset_t p;
116 
117 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
118 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
119 	    sizeof(struct pcb);
120 	return ((struct pcb *)p);
121 }
122 
123 void *
124 alloc_fpusave(int flags)
125 {
126 	void *res;
127 	struct savefpu_ymm *sf;
128 
129 	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
130 	if (use_xsave) {
131 		sf = (struct savefpu_ymm *)res;
132 		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
133 		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
134 	}
135 	return (res);
136 }
137 /*
138  * Finish a fork operation, with process p2 nearly set up.
139  * Copy and update the pcb, set up the stack so that the child
140  * ready to run and return to user mode.
141  */
142 void
143 cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
144 {
145 	struct proc *p1;
146 	struct pcb *pcb2;
147 	struct mdproc *mdp2;
148 
149 	p1 = td1->td_proc;
150 	if ((flags & RFPROC) == 0) {
151 		if ((flags & RFMEM) == 0) {
152 			/* unshare user LDT */
153 			struct mdproc *mdp1 = &p1->p_md;
154 			struct proc_ldt *pldt, *pldt1;
155 
156 			mtx_lock_spin(&dt_lock);
157 			if ((pldt1 = mdp1->md_ldt) != NULL &&
158 			    pldt1->ldt_refcnt > 1) {
159 				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
160 				if (pldt == NULL)
161 					panic("could not copy LDT");
162 				mdp1->md_ldt = pldt;
163 				set_user_ldt(mdp1);
164 				user_ldt_deref(pldt1);
165 			} else
166 				mtx_unlock_spin(&dt_lock);
167 		}
168 		return;
169 	}
170 
171 	/* Ensure that td1's pcb is up to date. */
172 	if (td1 == curthread)
173 		td1->td_pcb->pcb_gs = rgs();
174 	critical_enter();
175 	if (PCPU_GET(fpcurthread) == td1)
176 		npxsave(td1->td_pcb->pcb_save);
177 	critical_exit();
178 
179 	/* Point the pcb to the top of the stack */
180 	pcb2 = get_pcb_td(td2);
181 	td2->td_pcb = pcb2;
182 
183 	/* Copy td1's pcb */
184 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
185 
186 	/* Properly initialize pcb_save */
187 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
188 	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
189 	    cpu_max_ext_state_size);
190 
191 	/* Point mdproc and then copy over td1's contents */
192 	mdp2 = &p2->p_md;
193 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
194 
195 	/*
196 	 * Create a new fresh stack for the new process.
197 	 * Copy the trap frame for the return to user mode as if from a
198 	 * syscall.  This copies most of the user mode register values.
199 	 * The -VM86_STACK_SPACE (-16) is so we can expand the trapframe
200 	 * if we go to vm86.
201 	 */
202 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb -
203 	    VM86_STACK_SPACE) - 1;
204 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
205 
206 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
207 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
208 	td2->td_frame->tf_edx = 1;
209 
210 	/*
211 	 * If the parent process has the trap bit set (i.e. a debugger had
212 	 * single stepped the process to the system call), we need to clear
213 	 * the trap flag from the new frame unless the debugger had set PF_FORK
214 	 * on the parent.  Otherwise, the child will receive a (likely
215 	 * unexpected) SIGTRAP when it executes the first instruction after
216 	 * returning  to userland.
217 	 */
218 	if ((p1->p_pfsflags & PF_FORK) == 0)
219 		td2->td_frame->tf_eflags &= ~PSL_T;
220 
221 	/*
222 	 * Set registers for trampoline to user mode.  Leave space for the
223 	 * return address on stack.  These are the kernel mode register values.
224 	 */
225 	pcb2->pcb_cr3 = pmap_get_cr3(vmspace_pmap(p2->p_vmspace));
226 	pcb2->pcb_edi = 0;
227 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
228 	pcb2->pcb_ebp = 0;
229 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
230 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
231 	pcb2->pcb_eip = (int)fork_trampoline + setidt_disp;
232 	/*-
233 	 * pcb2->pcb_dr*:	cloned above.
234 	 * pcb2->pcb_savefpu:	cloned above.
235 	 * pcb2->pcb_flags:	cloned above.
236 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
237 	 * pcb2->pcb_gs:	cloned above.
238 	 * pcb2->pcb_ext:	cleared below.
239 	 */
240 
241 	/*
242 	 * XXX don't copy the i/o pages.  this should probably be fixed.
243 	 */
244 	pcb2->pcb_ext = 0;
245 
246 	/* Copy the LDT, if necessary. */
247 	mtx_lock_spin(&dt_lock);
248 	if (mdp2->md_ldt != NULL) {
249 		if (flags & RFMEM) {
250 			mdp2->md_ldt->ldt_refcnt++;
251 		} else {
252 			mdp2->md_ldt = user_ldt_alloc(mdp2,
253 			    mdp2->md_ldt->ldt_len);
254 			if (mdp2->md_ldt == NULL)
255 				panic("could not copy LDT");
256 		}
257 	}
258 	mtx_unlock_spin(&dt_lock);
259 
260 	/* Setup to release spin count in fork_exit(). */
261 	td2->td_md.md_spinlock_count = 1;
262 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
263 
264 	/*
265 	 * Now, cpu_switch() can schedule the new process.
266 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
267 	 * containing the return address when exiting cpu_switch.
268 	 * This will normally be to fork_trampoline(), which will have
269 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
270 	 * will set up a stack to call fork_return(p, frame); to complete
271 	 * the return to user-mode.
272 	 */
273 }
274 
275 /*
276  * Intercept the return address from a freshly forked process that has NOT
277  * been scheduled yet.
278  *
279  * This is needed to make kernel threads stay in kernel mode.
280  */
281 void
282 cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
283 {
284 	/*
285 	 * Note that the trap frame follows the args, so the function
286 	 * is really called like this:  func(arg, frame);
287 	 */
288 	td->td_pcb->pcb_esi = (int) func;	/* function */
289 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
290 }
291 
292 void
293 cpu_exit(struct thread *td)
294 {
295 
296 	/*
297 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
298 	 * and %gs before we free it in case they refer to an LDT entry.
299 	 */
300 	mtx_lock_spin(&dt_lock);
301 	if (td->td_proc->p_md.md_ldt) {
302 		td->td_pcb->pcb_gs = _udatasel;
303 		load_gs(_udatasel);
304 		user_ldt_free(td);
305 	} else
306 		mtx_unlock_spin(&dt_lock);
307 }
308 
309 void
310 cpu_thread_exit(struct thread *td)
311 {
312 
313 	critical_enter();
314 	if (td == PCPU_GET(fpcurthread))
315 		npxdrop();
316 	critical_exit();
317 
318 	/* Disable any hardware breakpoints. */
319 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
320 		reset_dbregs();
321 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
322 	}
323 }
324 
325 void
326 cpu_thread_clean(struct thread *td)
327 {
328 	struct pcb *pcb;
329 
330 	pcb = td->td_pcb;
331 	if (pcb->pcb_ext != NULL) {
332 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
333 		/*
334 		 * XXX do we need to move the TSS off the allocated pages
335 		 * before freeing them?  (not done here)
336 		 */
337 		pmap_trm_free(pcb->pcb_ext, ctob(IOPAGES + 1));
338 		pcb->pcb_ext = NULL;
339 	}
340 }
341 
342 void
343 cpu_thread_swapin(struct thread *td)
344 {
345 }
346 
347 void
348 cpu_thread_swapout(struct thread *td)
349 {
350 }
351 
352 void
353 cpu_thread_alloc(struct thread *td)
354 {
355 	struct pcb *pcb;
356 	struct xstate_hdr *xhdr;
357 
358 	td->td_pcb = pcb = get_pcb_td(td);
359 	td->td_frame = (struct trapframe *)((caddr_t)pcb -
360 	    VM86_STACK_SPACE) - 1;
361 	pcb->pcb_ext = NULL;
362 	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
363 	if (use_xsave) {
364 		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
365 		bzero(xhdr, sizeof(*xhdr));
366 		xhdr->xstate_bv = xsave_mask;
367 	}
368 }
369 
370 void
371 cpu_thread_free(struct thread *td)
372 {
373 
374 	cpu_thread_clean(td);
375 }
376 
377 bool
378 cpu_exec_vmspace_reuse(struct proc *p __unused, vm_map_t map __unused)
379 {
380 
381 	return (true);
382 }
383 
384 int
385 cpu_procctl(struct thread *td __unused, int idtype __unused, id_t id __unused,
386     int com __unused, void *data __unused)
387 {
388 
389 	return (EINVAL);
390 }
391 
392 void
393 cpu_set_syscall_retval(struct thread *td, int error)
394 {
395 
396 	switch (error) {
397 	case 0:
398 		td->td_frame->tf_eax = td->td_retval[0];
399 		td->td_frame->tf_edx = td->td_retval[1];
400 		td->td_frame->tf_eflags &= ~PSL_C;
401 		break;
402 
403 	case ERESTART:
404 		/*
405 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
406 		 * 0x80 is 2 bytes. We saved this in tf_err.
407 		 */
408 		td->td_frame->tf_eip -= td->td_frame->tf_err;
409 		break;
410 
411 	case EJUSTRETURN:
412 		break;
413 
414 	default:
415 		td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error);
416 		td->td_frame->tf_eflags |= PSL_C;
417 		break;
418 	}
419 }
420 
421 /*
422  * Initialize machine state, mostly pcb and trap frame for a new
423  * thread, about to return to userspace.  Put enough state in the new
424  * thread's PCB to get it to go back to the fork_return(), which
425  * finalizes the thread state and handles peculiarities of the first
426  * return to userspace for the new thread.
427  */
428 void
429 cpu_copy_thread(struct thread *td, struct thread *td0)
430 {
431 	struct pcb *pcb2;
432 
433 	/* Point the pcb to the top of the stack. */
434 	pcb2 = td->td_pcb;
435 
436 	/*
437 	 * Copy the upcall pcb.  This loads kernel regs.
438 	 * Those not loaded individually below get their default
439 	 * values here.
440 	 */
441 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
442 	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
443 	    PCB_KERNNPX);
444 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
445 	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
446 	    cpu_max_ext_state_size);
447 
448 	/*
449 	 * Create a new fresh stack for the new thread.
450 	 */
451 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
452 
453 	/* If the current thread has the trap bit set (i.e. a debugger had
454 	 * single stepped the process to the system call), we need to clear
455 	 * the trap flag from the new frame. Otherwise, the new thread will
456 	 * receive a (likely unexpected) SIGTRAP when it executes the first
457 	 * instruction after returning to userland.
458 	 */
459 	td->td_frame->tf_eflags &= ~PSL_T;
460 
461 	/*
462 	 * Set registers for trampoline to user mode.  Leave space for the
463 	 * return address on stack.  These are the kernel mode register values.
464 	 */
465 	pcb2->pcb_edi = 0;
466 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
467 	pcb2->pcb_ebp = 0;
468 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
469 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
470 	pcb2->pcb_eip = (int)fork_trampoline + setidt_disp;
471 	pcb2->pcb_gs = rgs();
472 	/*
473 	 * If we didn't copy the pcb, we'd need to do the following registers:
474 	 * pcb2->pcb_cr3:	cloned above.
475 	 * pcb2->pcb_dr*:	cloned above.
476 	 * pcb2->pcb_savefpu:	cloned above.
477 	 * pcb2->pcb_flags:	cloned above.
478 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
479 	 * pcb2->pcb_gs:	cloned above.
480 	 * pcb2->pcb_ext:	cleared below.
481 	 */
482 	pcb2->pcb_ext = NULL;
483 
484 	/* Setup to release spin count in fork_exit(). */
485 	td->td_md.md_spinlock_count = 1;
486 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
487 }
488 
489 /*
490  * Set that machine state for performing an upcall that starts
491  * the entry function with the given argument.
492  */
493 void
494 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
495     stack_t *stack)
496 {
497 
498 	/*
499 	 * Do any extra cleaning that needs to be done.
500 	 * The thread may have optional components
501 	 * that are not present in a fresh thread.
502 	 * This may be a recycled thread so make it look
503 	 * as though it's newly allocated.
504 	 */
505 	cpu_thread_clean(td);
506 
507 	/*
508 	 * Set the trap frame to point at the beginning of the entry
509 	 * function.
510 	 */
511 	td->td_frame->tf_ebp = 0;
512 	td->td_frame->tf_esp =
513 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
514 	td->td_frame->tf_eip = (int)entry;
515 
516 	/* Return address sentinel value to stop stack unwinding. */
517 	suword((void *)td->td_frame->tf_esp, 0);
518 
519 	/* Pass the argument to the entry point. */
520 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
521 	    (int)arg);
522 }
523 
524 int
525 cpu_set_user_tls(struct thread *td, void *tls_base)
526 {
527 	struct segment_descriptor sd;
528 	uint32_t base;
529 
530 	/*
531 	 * Construct a descriptor and store it in the pcb for
532 	 * the next context switch.  Also store it in the gdt
533 	 * so that the load of tf_fs into %fs will activate it
534 	 * at return to userland.
535 	 */
536 	base = (uint32_t)tls_base;
537 	sd.sd_lobase = base & 0xffffff;
538 	sd.sd_hibase = (base >> 24) & 0xff;
539 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
540 	sd.sd_hilimit = 0xf;
541 	sd.sd_type  = SDT_MEMRWA;
542 	sd.sd_dpl   = SEL_UPL;
543 	sd.sd_p     = 1;
544 	sd.sd_xx    = 0;
545 	sd.sd_def32 = 1;
546 	sd.sd_gran  = 1;
547 	critical_enter();
548 	/* set %gs */
549 	td->td_pcb->pcb_gsd = sd;
550 	if (td == curthread) {
551 		PCPU_GET(fsgs_gdt)[1] = sd;
552 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
553 	}
554 	critical_exit();
555 	return (0);
556 }
557 
558 /*
559  * Convert kernel VA to physical address
560  */
561 vm_paddr_t
562 kvtop(void *addr)
563 {
564 	vm_paddr_t pa;
565 
566 	pa = pmap_kextract((vm_offset_t)addr);
567 	if (pa == 0)
568 		panic("kvtop: zero page frame");
569 	return (pa);
570 }
571 
572 /*
573  * Get an sf_buf from the freelist.  May block if none are available.
574  */
575 void
576 sf_buf_map(struct sf_buf *sf, int flags)
577 {
578 
579 	pmap_sf_buf_map(sf);
580 #ifdef SMP
581 	sf_buf_shootdown(sf, flags);
582 #endif
583 }
584 
585 #ifdef SMP
586 void
587 sf_buf_shootdown(struct sf_buf *sf, int flags)
588 {
589 	cpuset_t other_cpus;
590 	u_int cpuid;
591 
592 	sched_pin();
593 	cpuid = PCPU_GET(cpuid);
594 	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
595 		CPU_SET(cpuid, &sf->cpumask);
596 		invlpg(sf->kva);
597 	}
598 	if ((flags & SFB_CPUPRIVATE) == 0) {
599 		other_cpus = all_cpus;
600 		CPU_CLR(cpuid, &other_cpus);
601 		CPU_NAND(&other_cpus, &sf->cpumask);
602 		if (!CPU_EMPTY(&other_cpus)) {
603 			CPU_OR(&sf->cpumask, &other_cpus);
604 			smp_masked_invlpg(other_cpus, sf->kva, kernel_pmap);
605 		}
606 	}
607 	sched_unpin();
608 }
609 #endif
610 
611 /*
612  * MD part of sf_buf_free().
613  */
614 int
615 sf_buf_unmap(struct sf_buf *sf)
616 {
617 
618 	return (0);
619 }
620 
621 static void
622 sf_buf_invalidate(struct sf_buf *sf)
623 {
624 	vm_page_t m = sf->m;
625 
626 	/*
627 	 * Use pmap_qenter to update the pte for
628 	 * existing mapping, in particular, the PAT
629 	 * settings are recalculated.
630 	 */
631 	pmap_qenter(sf->kva, &m, 1);
632 	pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE);
633 }
634 
635 /*
636  * Invalidate the cache lines that may belong to the page, if
637  * (possibly old) mapping of the page by sf buffer exists.  Returns
638  * TRUE when mapping was found and cache invalidated.
639  */
640 boolean_t
641 sf_buf_invalidate_cache(vm_page_t m)
642 {
643 
644 	return (sf_buf_process_page(m, sf_buf_invalidate));
645 }
646 
647 /*
648  * Software interrupt handler for queued VM system processing.
649  */
650 void
651 swi_vm(void *dummy)
652 {
653 	if (busdma_swi_pending != 0)
654 		busdma_swi();
655 }
656 
657 /*
658  * Tell whether this address is in some physical memory region.
659  * Currently used by the kernel coredump code in order to avoid
660  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
661  * or other unpredictable behaviour.
662  */
663 
664 int
665 is_physical_memory(vm_paddr_t addr)
666 {
667 
668 #ifdef DEV_ISA
669 	/* The ISA ``memory hole''. */
670 	if (addr >= 0xa0000 && addr < 0x100000)
671 		return 0;
672 #endif
673 
674 	/*
675 	 * stuff other tests for known memory-mapped devices (PCI?)
676 	 * here
677 	 */
678 
679 	return 1;
680 }
681