xref: /freebsd/sys/i386/i386/vm_machdep.c (revision ef0cb5db0af0d5d5b75b74f8e534fe601b7176d7)
1 /*-
2  * Copyright (c) 1982, 1986 The Regents of the University of California.
3  * Copyright (c) 1989, 1990 William Jolitz
4  * Copyright (c) 1994 John Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_isa.h"
47 #include "opt_npx.h"
48 #include "opt_reset.h"
49 #include "opt_cpu.h"
50 #include "opt_xbox.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mutex.h>
62 #include <sys/pioctl.h>
63 #include <sys/proc.h>
64 #include <sys/sysent.h>
65 #include <sys/sf_buf.h>
66 #include <sys/smp.h>
67 #include <sys/sched.h>
68 #include <sys/sysctl.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/vmmeter.h>
72 
73 #include <machine/cpu.h>
74 #include <machine/cputypes.h>
75 #include <machine/md_var.h>
76 #include <machine/pcb.h>
77 #include <machine/pcb_ext.h>
78 #include <machine/smp.h>
79 #include <machine/vm86.h>
80 
81 #ifdef CPU_ELAN
82 #include <machine/elan_mmcr.h>
83 #endif
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_param.h>
91 
92 #ifdef PC98
93 #include <pc98/cbus/cbus.h>
94 #else
95 #include <isa/isareg.h>
96 #endif
97 
98 #ifdef XBOX
99 #include <machine/xbox.h>
100 #endif
101 
102 #ifndef NSFBUFS
103 #define	NSFBUFS		(512 + maxusers * 16)
104 #endif
105 
106 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
107 #define CPU_ENABLE_SSE
108 #endif
109 
110 _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
111     "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
112 _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
113     "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
114 
115 static void	cpu_reset_real(void);
116 #ifdef SMP
117 static void	cpu_reset_proxy(void);
118 static u_int	cpu_reset_proxyid;
119 static volatile u_int	cpu_reset_proxy_active;
120 #endif
121 
122 union savefpu *
123 get_pcb_user_save_td(struct thread *td)
124 {
125 	vm_offset_t p;
126 
127 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
128 	    cpu_max_ext_state_size;
129 	KASSERT((p % 64) == 0, ("Unaligned pcb_user_save area"));
130 	return ((union savefpu *)p);
131 }
132 
133 union savefpu *
134 get_pcb_user_save_pcb(struct pcb *pcb)
135 {
136 	vm_offset_t p;
137 
138 	p = (vm_offset_t)(pcb + 1);
139 	return ((union savefpu *)p);
140 }
141 
142 struct pcb *
143 get_pcb_td(struct thread *td)
144 {
145 	vm_offset_t p;
146 
147 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
148 	    cpu_max_ext_state_size - sizeof(struct pcb);
149 	return ((struct pcb *)p);
150 }
151 
152 void *
153 alloc_fpusave(int flags)
154 {
155 	void *res;
156 #ifdef CPU_ENABLE_SSE
157 	struct savefpu_ymm *sf;
158 #endif
159 
160 	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
161 #ifdef CPU_ENABLE_SSE
162 	if (use_xsave) {
163 		sf = (struct savefpu_ymm *)res;
164 		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
165 		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
166 	}
167 #endif
168 	return (res);
169 }
170 /*
171  * Finish a fork operation, with process p2 nearly set up.
172  * Copy and update the pcb, set up the stack so that the child
173  * ready to run and return to user mode.
174  */
175 void
176 cpu_fork(td1, p2, td2, flags)
177 	register struct thread *td1;
178 	register struct proc *p2;
179 	struct thread *td2;
180 	int flags;
181 {
182 	register struct proc *p1;
183 	struct pcb *pcb2;
184 	struct mdproc *mdp2;
185 
186 	p1 = td1->td_proc;
187 	if ((flags & RFPROC) == 0) {
188 		if ((flags & RFMEM) == 0) {
189 			/* unshare user LDT */
190 			struct mdproc *mdp1 = &p1->p_md;
191 			struct proc_ldt *pldt, *pldt1;
192 
193 			mtx_lock_spin(&dt_lock);
194 			if ((pldt1 = mdp1->md_ldt) != NULL &&
195 			    pldt1->ldt_refcnt > 1) {
196 				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
197 				if (pldt == NULL)
198 					panic("could not copy LDT");
199 				mdp1->md_ldt = pldt;
200 				set_user_ldt(mdp1);
201 				user_ldt_deref(pldt1);
202 			} else
203 				mtx_unlock_spin(&dt_lock);
204 		}
205 		return;
206 	}
207 
208 	/* Ensure that td1's pcb is up to date. */
209 	if (td1 == curthread)
210 		td1->td_pcb->pcb_gs = rgs();
211 #ifdef DEV_NPX
212 	critical_enter();
213 	if (PCPU_GET(fpcurthread) == td1)
214 		npxsave(td1->td_pcb->pcb_save);
215 	critical_exit();
216 #endif
217 
218 	/* Point the pcb to the top of the stack */
219 	pcb2 = get_pcb_td(td2);
220 	td2->td_pcb = pcb2;
221 
222 	/* Copy td1's pcb */
223 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
224 
225 	/* Properly initialize pcb_save */
226 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
227 	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
228 	    cpu_max_ext_state_size);
229 
230 	/* Point mdproc and then copy over td1's contents */
231 	mdp2 = &p2->p_md;
232 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
233 
234 	/*
235 	 * Create a new fresh stack for the new process.
236 	 * Copy the trap frame for the return to user mode as if from a
237 	 * syscall.  This copies most of the user mode register values.
238 	 * The -16 is so we can expand the trapframe if we go to vm86.
239 	 */
240 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
241 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
242 
243 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
244 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
245 	td2->td_frame->tf_edx = 1;
246 
247 	/*
248 	 * If the parent process has the trap bit set (i.e. a debugger had
249 	 * single stepped the process to the system call), we need to clear
250 	 * the trap flag from the new frame unless the debugger had set PF_FORK
251 	 * on the parent.  Otherwise, the child will receive a (likely
252 	 * unexpected) SIGTRAP when it executes the first instruction after
253 	 * returning  to userland.
254 	 */
255 	if ((p1->p_pfsflags & PF_FORK) == 0)
256 		td2->td_frame->tf_eflags &= ~PSL_T;
257 
258 	/*
259 	 * Set registers for trampoline to user mode.  Leave space for the
260 	 * return address on stack.  These are the kernel mode register values.
261 	 */
262 #if defined(PAE) || defined(PAE_TABLES)
263 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
264 #else
265 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
266 #endif
267 	pcb2->pcb_edi = 0;
268 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
269 	pcb2->pcb_ebp = 0;
270 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
271 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
272 	pcb2->pcb_eip = (int)fork_trampoline;
273 	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
274 	/*-
275 	 * pcb2->pcb_dr*:	cloned above.
276 	 * pcb2->pcb_savefpu:	cloned above.
277 	 * pcb2->pcb_flags:	cloned above.
278 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
279 	 * pcb2->pcb_gs:	cloned above.
280 	 * pcb2->pcb_ext:	cleared below.
281 	 */
282 
283 	/*
284 	 * XXX don't copy the i/o pages.  this should probably be fixed.
285 	 */
286 	pcb2->pcb_ext = 0;
287 
288 	/* Copy the LDT, if necessary. */
289 	mtx_lock_spin(&dt_lock);
290 	if (mdp2->md_ldt != NULL) {
291 		if (flags & RFMEM) {
292 			mdp2->md_ldt->ldt_refcnt++;
293 		} else {
294 			mdp2->md_ldt = user_ldt_alloc(mdp2,
295 			    mdp2->md_ldt->ldt_len);
296 			if (mdp2->md_ldt == NULL)
297 				panic("could not copy LDT");
298 		}
299 	}
300 	mtx_unlock_spin(&dt_lock);
301 
302 	/* Setup to release spin count in fork_exit(). */
303 	td2->td_md.md_spinlock_count = 1;
304 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
305 
306 	/*
307 	 * Now, cpu_switch() can schedule the new process.
308 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
309 	 * containing the return address when exiting cpu_switch.
310 	 * This will normally be to fork_trampoline(), which will have
311 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
312 	 * will set up a stack to call fork_return(p, frame); to complete
313 	 * the return to user-mode.
314 	 */
315 }
316 
317 /*
318  * Intercept the return address from a freshly forked process that has NOT
319  * been scheduled yet.
320  *
321  * This is needed to make kernel threads stay in kernel mode.
322  */
323 void
324 cpu_set_fork_handler(td, func, arg)
325 	struct thread *td;
326 	void (*func)(void *);
327 	void *arg;
328 {
329 	/*
330 	 * Note that the trap frame follows the args, so the function
331 	 * is really called like this:  func(arg, frame);
332 	 */
333 	td->td_pcb->pcb_esi = (int) func;	/* function */
334 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
335 }
336 
337 void
338 cpu_exit(struct thread *td)
339 {
340 
341 	/*
342 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
343 	 * and %gs before we free it in case they refer to an LDT entry.
344 	 */
345 	mtx_lock_spin(&dt_lock);
346 	if (td->td_proc->p_md.md_ldt) {
347 		td->td_pcb->pcb_gs = _udatasel;
348 		load_gs(_udatasel);
349 		user_ldt_free(td);
350 	} else
351 		mtx_unlock_spin(&dt_lock);
352 }
353 
354 void
355 cpu_thread_exit(struct thread *td)
356 {
357 
358 #ifdef DEV_NPX
359 	critical_enter();
360 	if (td == PCPU_GET(fpcurthread))
361 		npxdrop();
362 	critical_exit();
363 #endif
364 
365 	/* Disable any hardware breakpoints. */
366 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
367 		reset_dbregs();
368 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
369 	}
370 }
371 
372 void
373 cpu_thread_clean(struct thread *td)
374 {
375 	struct pcb *pcb;
376 
377 	pcb = td->td_pcb;
378 	if (pcb->pcb_ext != NULL) {
379 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
380 		/*
381 		 * XXX do we need to move the TSS off the allocated pages
382 		 * before freeing them?  (not done here)
383 		 */
384 		kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext,
385 		    ctob(IOPAGES + 1));
386 		pcb->pcb_ext = NULL;
387 	}
388 }
389 
390 void
391 cpu_thread_swapin(struct thread *td)
392 {
393 }
394 
395 void
396 cpu_thread_swapout(struct thread *td)
397 {
398 }
399 
400 void
401 cpu_thread_alloc(struct thread *td)
402 {
403 	struct pcb *pcb;
404 #ifdef CPU_ENABLE_SSE
405 	struct xstate_hdr *xhdr;
406 #endif
407 
408 	td->td_pcb = pcb = get_pcb_td(td);
409 	td->td_frame = (struct trapframe *)((caddr_t)pcb - 16) - 1;
410 	pcb->pcb_ext = NULL;
411 	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
412 #ifdef CPU_ENABLE_SSE
413 	if (use_xsave) {
414 		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
415 		bzero(xhdr, sizeof(*xhdr));
416 		xhdr->xstate_bv = xsave_mask;
417 	}
418 #endif
419 }
420 
421 void
422 cpu_thread_free(struct thread *td)
423 {
424 
425 	cpu_thread_clean(td);
426 }
427 
428 void
429 cpu_set_syscall_retval(struct thread *td, int error)
430 {
431 
432 	switch (error) {
433 	case 0:
434 		td->td_frame->tf_eax = td->td_retval[0];
435 		td->td_frame->tf_edx = td->td_retval[1];
436 		td->td_frame->tf_eflags &= ~PSL_C;
437 		break;
438 
439 	case ERESTART:
440 		/*
441 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
442 		 * 0x80 is 2 bytes. We saved this in tf_err.
443 		 */
444 		td->td_frame->tf_eip -= td->td_frame->tf_err;
445 		break;
446 
447 	case EJUSTRETURN:
448 		break;
449 
450 	default:
451 		if (td->td_proc->p_sysent->sv_errsize) {
452 			if (error >= td->td_proc->p_sysent->sv_errsize)
453 				error = -1;	/* XXX */
454 			else
455 				error = td->td_proc->p_sysent->sv_errtbl[error];
456 		}
457 		td->td_frame->tf_eax = error;
458 		td->td_frame->tf_eflags |= PSL_C;
459 		break;
460 	}
461 }
462 
463 /*
464  * Initialize machine state (pcb and trap frame) for a new thread about to
465  * upcall. Put enough state in the new thread's PCB to get it to go back
466  * userret(), where we can intercept it again to set the return (upcall)
467  * Address and stack, along with those from upcals that are from other sources
468  * such as those generated in thread_userret() itself.
469  */
470 void
471 cpu_set_upcall(struct thread *td, struct thread *td0)
472 {
473 	struct pcb *pcb2;
474 
475 	/* Point the pcb to the top of the stack. */
476 	pcb2 = td->td_pcb;
477 
478 	/*
479 	 * Copy the upcall pcb.  This loads kernel regs.
480 	 * Those not loaded individually below get their default
481 	 * values here.
482 	 */
483 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
484 	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
485 	    PCB_KERNNPX);
486 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
487 	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
488 	    cpu_max_ext_state_size);
489 
490 	/*
491 	 * Create a new fresh stack for the new thread.
492 	 */
493 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
494 
495 	/* If the current thread has the trap bit set (i.e. a debugger had
496 	 * single stepped the process to the system call), we need to clear
497 	 * the trap flag from the new frame. Otherwise, the new thread will
498 	 * receive a (likely unexpected) SIGTRAP when it executes the first
499 	 * instruction after returning to userland.
500 	 */
501 	td->td_frame->tf_eflags &= ~PSL_T;
502 
503 	/*
504 	 * Set registers for trampoline to user mode.  Leave space for the
505 	 * return address on stack.  These are the kernel mode register values.
506 	 */
507 	pcb2->pcb_edi = 0;
508 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
509 	pcb2->pcb_ebp = 0;
510 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
511 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
512 	pcb2->pcb_eip = (int)fork_trampoline;
513 	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
514 	pcb2->pcb_gs = rgs();
515 	/*
516 	 * If we didn't copy the pcb, we'd need to do the following registers:
517 	 * pcb2->pcb_cr3:	cloned above.
518 	 * pcb2->pcb_dr*:	cloned above.
519 	 * pcb2->pcb_savefpu:	cloned above.
520 	 * pcb2->pcb_flags:	cloned above.
521 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
522 	 * pcb2->pcb_gs:	cloned above.
523 	 * pcb2->pcb_ext:	cleared below.
524 	 */
525 	pcb2->pcb_ext = NULL;
526 
527 	/* Setup to release spin count in fork_exit(). */
528 	td->td_md.md_spinlock_count = 1;
529 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
530 }
531 
532 /*
533  * Set that machine state for performing an upcall that has to
534  * be done in thread_userret() so that those upcalls generated
535  * in thread_userret() itself can be done as well.
536  */
537 void
538 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
539 	stack_t *stack)
540 {
541 
542 	/*
543 	 * Do any extra cleaning that needs to be done.
544 	 * The thread may have optional components
545 	 * that are not present in a fresh thread.
546 	 * This may be a recycled thread so make it look
547 	 * as though it's newly allocated.
548 	 */
549 	cpu_thread_clean(td);
550 
551 	/*
552 	 * Set the trap frame to point at the beginning of the uts
553 	 * function.
554 	 */
555 	td->td_frame->tf_ebp = 0;
556 	td->td_frame->tf_esp =
557 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
558 	td->td_frame->tf_eip = (int)entry;
559 
560 	/*
561 	 * Pass the address of the mailbox for this kse to the uts
562 	 * function as a parameter on the stack.
563 	 */
564 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
565 	    (int)arg);
566 }
567 
568 int
569 cpu_set_user_tls(struct thread *td, void *tls_base)
570 {
571 	struct segment_descriptor sd;
572 	uint32_t base;
573 
574 	/*
575 	 * Construct a descriptor and store it in the pcb for
576 	 * the next context switch.  Also store it in the gdt
577 	 * so that the load of tf_fs into %fs will activate it
578 	 * at return to userland.
579 	 */
580 	base = (uint32_t)tls_base;
581 	sd.sd_lobase = base & 0xffffff;
582 	sd.sd_hibase = (base >> 24) & 0xff;
583 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
584 	sd.sd_hilimit = 0xf;
585 	sd.sd_type  = SDT_MEMRWA;
586 	sd.sd_dpl   = SEL_UPL;
587 	sd.sd_p     = 1;
588 	sd.sd_xx    = 0;
589 	sd.sd_def32 = 1;
590 	sd.sd_gran  = 1;
591 	critical_enter();
592 	/* set %gs */
593 	td->td_pcb->pcb_gsd = sd;
594 	if (td == curthread) {
595 		PCPU_GET(fsgs_gdt)[1] = sd;
596 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
597 	}
598 	critical_exit();
599 	return (0);
600 }
601 
602 /*
603  * Convert kernel VA to physical address
604  */
605 vm_paddr_t
606 kvtop(void *addr)
607 {
608 	vm_paddr_t pa;
609 
610 	pa = pmap_kextract((vm_offset_t)addr);
611 	if (pa == 0)
612 		panic("kvtop: zero page frame");
613 	return (pa);
614 }
615 
616 #ifdef SMP
617 static void
618 cpu_reset_proxy()
619 {
620 	cpuset_t tcrp;
621 
622 	cpu_reset_proxy_active = 1;
623 	while (cpu_reset_proxy_active == 1)
624 		;	/* Wait for other cpu to see that we've started */
625 	CPU_SETOF(cpu_reset_proxyid, &tcrp);
626 	stop_cpus(tcrp);
627 	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
628 	DELAY(1000000);
629 	cpu_reset_real();
630 }
631 #endif
632 
633 void
634 cpu_reset()
635 {
636 #ifdef XBOX
637 	if (arch_i386_is_xbox) {
638 		/* Kick the PIC16L, it can reboot the box */
639 		pic16l_reboot();
640 		for (;;);
641 	}
642 #endif
643 
644 #ifdef SMP
645 	cpuset_t map;
646 	u_int cnt;
647 
648 	if (smp_started) {
649 		map = all_cpus;
650 		CPU_CLR(PCPU_GET(cpuid), &map);
651 		CPU_NAND(&map, &stopped_cpus);
652 		if (!CPU_EMPTY(&map)) {
653 			printf("cpu_reset: Stopping other CPUs\n");
654 			stop_cpus(map);
655 		}
656 
657 		if (PCPU_GET(cpuid) != 0) {
658 			cpu_reset_proxyid = PCPU_GET(cpuid);
659 			cpustop_restartfunc = cpu_reset_proxy;
660 			cpu_reset_proxy_active = 0;
661 			printf("cpu_reset: Restarting BSP\n");
662 
663 			/* Restart CPU #0. */
664 			/* XXX: restart_cpus(1 << 0); */
665 			CPU_SETOF(0, &started_cpus);
666 			wmb();
667 
668 			cnt = 0;
669 			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
670 				cnt++;	/* Wait for BSP to announce restart */
671 			if (cpu_reset_proxy_active == 0)
672 				printf("cpu_reset: Failed to restart BSP\n");
673 			enable_intr();
674 			cpu_reset_proxy_active = 2;
675 
676 			while (1);
677 			/* NOTREACHED */
678 		}
679 
680 		DELAY(1000000);
681 	}
682 #endif
683 	cpu_reset_real();
684 	/* NOTREACHED */
685 }
686 
687 static void
688 cpu_reset_real()
689 {
690 	struct region_descriptor null_idt;
691 #ifndef PC98
692 	int b;
693 #endif
694 
695 	disable_intr();
696 #ifdef CPU_ELAN
697 	if (elan_mmcr != NULL)
698 		elan_mmcr->RESCFG = 1;
699 #endif
700 
701 	if (cpu == CPU_GEODE1100) {
702 		/* Attempt Geode's own reset */
703 		outl(0xcf8, 0x80009044ul);
704 		outl(0xcfc, 0xf);
705 	}
706 
707 #ifdef PC98
708 	/*
709 	 * Attempt to do a CPU reset via CPU reset port.
710 	 */
711 	if ((inb(0x35) & 0xa0) != 0xa0) {
712 		outb(0x37, 0x0f);		/* SHUT0 = 0. */
713 		outb(0x37, 0x0b);		/* SHUT1 = 0. */
714 	}
715 	outb(0xf0, 0x00);		/* Reset. */
716 #else
717 #if !defined(BROKEN_KEYBOARD_RESET)
718 	/*
719 	 * Attempt to do a CPU reset via the keyboard controller,
720 	 * do not turn off GateA20, as any machine that fails
721 	 * to do the reset here would then end up in no man's land.
722 	 */
723 	outb(IO_KBD + 4, 0xFE);
724 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
725 #endif
726 
727 	/*
728 	 * Attempt to force a reset via the Reset Control register at
729 	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
730 	 * transitions from 0 to 1.  Bit 1 selects the type of reset
731 	 * to attempt: 0 selects a "soft" reset, and 1 selects a
732 	 * "hard" reset.  We try a "hard" reset.  The first write sets
733 	 * bit 1 to select a "hard" reset and clears bit 2.  The
734 	 * second write forces a 0 -> 1 transition in bit 2 to trigger
735 	 * a reset.
736 	 */
737 	outb(0xcf9, 0x2);
738 	outb(0xcf9, 0x6);
739 	DELAY(500000);  /* wait 0.5 sec to see if that did it */
740 
741 	/*
742 	 * Attempt to force a reset via the Fast A20 and Init register
743 	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
744 	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
745 	 * preserve bit 1 while setting bit 0.  We also must clear bit
746 	 * 0 before setting it if it isn't already clear.
747 	 */
748 	b = inb(0x92);
749 	if (b != 0xff) {
750 		if ((b & 0x1) != 0)
751 			outb(0x92, b & 0xfe);
752 		outb(0x92, b | 0x1);
753 		DELAY(500000);  /* wait 0.5 sec to see if that did it */
754 	}
755 #endif /* PC98 */
756 
757 	printf("No known reset method worked, attempting CPU shutdown\n");
758 	DELAY(1000000); /* wait 1 sec for printf to complete */
759 
760 	/* Wipe the IDT. */
761 	null_idt.rd_limit = 0;
762 	null_idt.rd_base = 0;
763 	lidt(&null_idt);
764 
765 	/* "good night, sweet prince .... <THUNK!>" */
766 	breakpoint();
767 
768 	/* NOTREACHED */
769 	while(1);
770 }
771 
772 /*
773  * Get an sf_buf from the freelist.  May block if none are available.
774  */
775 void
776 sf_buf_map(struct sf_buf *sf, int flags)
777 {
778 	pt_entry_t opte, *ptep;
779 
780 	/*
781 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
782 	 * virtual address from the TLB.  Since the reference count for
783 	 * the sf_buf's old mapping was zero, that mapping is not
784 	 * currently in use.  Consequently, there is no need to exchange
785 	 * the old and new PTEs atomically, even under PAE.
786 	 */
787 	ptep = vtopte(sf->kva);
788 	opte = *ptep;
789 	*ptep = VM_PAGE_TO_PHYS(sf->m) | pgeflag | PG_RW | PG_V |
790 	    pmap_cache_bits(sf->m->md.pat_mode, 0);
791 
792 	/*
793 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
794 	 * virtual-to-physical mapping was not used, then any processor
795 	 * that has invalidated the sf_buf's virtual address from its TLB
796 	 * since the last used mapping need not invalidate again.
797 	 */
798 #ifdef SMP
799 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
800 		CPU_ZERO(&sf->cpumask);
801 
802 	sf_buf_shootdown(sf, flags);
803 #else
804 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
805 		pmap_invalidate_page(kernel_pmap, sf->kva);
806 #endif
807 }
808 
809 #ifdef SMP
810 void
811 sf_buf_shootdown(struct sf_buf *sf, int flags)
812 {
813 	cpuset_t other_cpus;
814 	u_int cpuid;
815 
816 	sched_pin();
817 	cpuid = PCPU_GET(cpuid);
818 	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
819 		CPU_SET(cpuid, &sf->cpumask);
820 		invlpg(sf->kva);
821 	}
822 	if ((flags & SFB_CPUPRIVATE) == 0) {
823 		other_cpus = all_cpus;
824 		CPU_CLR(cpuid, &other_cpus);
825 		CPU_NAND(&other_cpus, &sf->cpumask);
826 		if (!CPU_EMPTY(&other_cpus)) {
827 			CPU_OR(&sf->cpumask, &other_cpus);
828 			smp_masked_invlpg(other_cpus, sf->kva);
829 		}
830 	}
831 	sched_unpin();
832 }
833 #endif
834 
835 /*
836  * MD part of sf_buf_free().
837  */
838 int
839 sf_buf_unmap(struct sf_buf *sf)
840 {
841 
842 	return (0);
843 }
844 
845 static void
846 sf_buf_invalidate(struct sf_buf *sf)
847 {
848 	vm_page_t m = sf->m;
849 
850 	/*
851 	 * Use pmap_qenter to update the pte for
852 	 * existing mapping, in particular, the PAT
853 	 * settings are recalculated.
854 	 */
855 	pmap_qenter(sf->kva, &m, 1);
856 	pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE, FALSE);
857 }
858 
859 /*
860  * Invalidate the cache lines that may belong to the page, if
861  * (possibly old) mapping of the page by sf buffer exists.  Returns
862  * TRUE when mapping was found and cache invalidated.
863  */
864 boolean_t
865 sf_buf_invalidate_cache(vm_page_t m)
866 {
867 
868 	return (sf_buf_process_page(m, sf_buf_invalidate));
869 }
870 
871 /*
872  * Software interrupt handler for queued VM system processing.
873  */
874 void
875 swi_vm(void *dummy)
876 {
877 	if (busdma_swi_pending != 0)
878 		busdma_swi();
879 }
880 
881 /*
882  * Tell whether this address is in some physical memory region.
883  * Currently used by the kernel coredump code in order to avoid
884  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
885  * or other unpredictable behaviour.
886  */
887 
888 int
889 is_physical_memory(vm_paddr_t addr)
890 {
891 
892 #ifdef DEV_ISA
893 	/* The ISA ``memory hole''. */
894 	if (addr >= 0xa0000 && addr < 0x100000)
895 		return 0;
896 #endif
897 
898 	/*
899 	 * stuff other tests for known memory-mapped devices (PCI?)
900 	 * here
901 	 */
902 
903 	return 1;
904 }
905