xref: /freebsd/sys/i386/i386/vm_machdep.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*-
2  * Copyright (c) 1982, 1986 The Regents of the University of California.
3  * Copyright (c) 1989, 1990 William Jolitz
4  * Copyright (c) 1994 John Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_isa.h"
47 #include "opt_npx.h"
48 #include "opt_reset.h"
49 #include "opt_cpu.h"
50 #include "opt_xbox.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mutex.h>
62 #include <sys/pioctl.h>
63 #include <sys/proc.h>
64 #include <sys/sysent.h>
65 #include <sys/sf_buf.h>
66 #include <sys/smp.h>
67 #include <sys/sched.h>
68 #include <sys/sysctl.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/vmmeter.h>
72 
73 #include <machine/cpu.h>
74 #include <machine/cputypes.h>
75 #include <machine/md_var.h>
76 #include <machine/pcb.h>
77 #include <machine/pcb_ext.h>
78 #include <machine/smp.h>
79 #include <machine/vm86.h>
80 
81 #ifdef CPU_ELAN
82 #include <machine/elan_mmcr.h>
83 #endif
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_param.h>
91 
92 #ifdef XEN
93 #include <xen/hypervisor.h>
94 #endif
95 #ifdef PC98
96 #include <pc98/cbus/cbus.h>
97 #else
98 #include <x86/isa/isa.h>
99 #endif
100 
101 #ifdef XBOX
102 #include <machine/xbox.h>
103 #endif
104 
105 #ifndef NSFBUFS
106 #define	NSFBUFS		(512 + maxusers * 16)
107 #endif
108 
109 CTASSERT((struct thread **)OFFSETOF_CURTHREAD ==
110     &((struct pcpu *)NULL)->pc_curthread);
111 CTASSERT((struct pcb **)OFFSETOF_CURPCB == &((struct pcpu *)NULL)->pc_curpcb);
112 
113 static void	cpu_reset_real(void);
114 #ifdef SMP
115 static void	cpu_reset_proxy(void);
116 static u_int	cpu_reset_proxyid;
117 static volatile u_int	cpu_reset_proxy_active;
118 #endif
119 static void	sf_buf_init(void *arg);
120 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
121 
122 LIST_HEAD(sf_head, sf_buf);
123 
124 /*
125  * A hash table of active sendfile(2) buffers
126  */
127 static struct sf_head *sf_buf_active;
128 static u_long sf_buf_hashmask;
129 
130 #define	SF_BUF_HASH(m)	(((m) - vm_page_array) & sf_buf_hashmask)
131 
132 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
133 static u_int	sf_buf_alloc_want;
134 
135 /*
136  * A lock used to synchronize access to the hash table and free list
137  */
138 static struct mtx sf_buf_lock;
139 
140 extern int	_ucodesel, _udatasel;
141 
142 /*
143  * Finish a fork operation, with process p2 nearly set up.
144  * Copy and update the pcb, set up the stack so that the child
145  * ready to run and return to user mode.
146  */
147 void
148 cpu_fork(td1, p2, td2, flags)
149 	register struct thread *td1;
150 	register struct proc *p2;
151 	struct thread *td2;
152 	int flags;
153 {
154 	register struct proc *p1;
155 	struct pcb *pcb2;
156 	struct mdproc *mdp2;
157 
158 	p1 = td1->td_proc;
159 	if ((flags & RFPROC) == 0) {
160 		if ((flags & RFMEM) == 0) {
161 			/* unshare user LDT */
162 			struct mdproc *mdp1 = &p1->p_md;
163 			struct proc_ldt *pldt, *pldt1;
164 
165 			mtx_lock_spin(&dt_lock);
166 			if ((pldt1 = mdp1->md_ldt) != NULL &&
167 			    pldt1->ldt_refcnt > 1) {
168 				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
169 				if (pldt == NULL)
170 					panic("could not copy LDT");
171 				mdp1->md_ldt = pldt;
172 				set_user_ldt(mdp1);
173 				user_ldt_deref(pldt1);
174 			} else
175 				mtx_unlock_spin(&dt_lock);
176 		}
177 		return;
178 	}
179 
180 	/* Ensure that td1's pcb is up to date. */
181 	if (td1 == curthread)
182 		td1->td_pcb->pcb_gs = rgs();
183 #ifdef DEV_NPX
184 	critical_enter();
185 	if (PCPU_GET(fpcurthread) == td1)
186 		npxsave(td1->td_pcb->pcb_save);
187 	critical_exit();
188 #endif
189 
190 	/* Point the pcb to the top of the stack */
191 	pcb2 = (struct pcb *)(td2->td_kstack +
192 	    td2->td_kstack_pages * PAGE_SIZE) - 1;
193 	td2->td_pcb = pcb2;
194 
195 	/* Copy td1's pcb */
196 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
197 
198 	/* Properly initialize pcb_save */
199 	pcb2->pcb_save = &pcb2->pcb_user_save;
200 
201 	/* Point mdproc and then copy over td1's contents */
202 	mdp2 = &p2->p_md;
203 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
204 
205 	/*
206 	 * Create a new fresh stack for the new process.
207 	 * Copy the trap frame for the return to user mode as if from a
208 	 * syscall.  This copies most of the user mode register values.
209 	 * The -16 is so we can expand the trapframe if we go to vm86.
210 	 */
211 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
212 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
213 
214 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
215 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
216 	td2->td_frame->tf_edx = 1;
217 
218 	/*
219 	 * If the parent process has the trap bit set (i.e. a debugger had
220 	 * single stepped the process to the system call), we need to clear
221 	 * the trap flag from the new frame unless the debugger had set PF_FORK
222 	 * on the parent.  Otherwise, the child will receive a (likely
223 	 * unexpected) SIGTRAP when it executes the first instruction after
224 	 * returning  to userland.
225 	 */
226 	if ((p1->p_pfsflags & PF_FORK) == 0)
227 		td2->td_frame->tf_eflags &= ~PSL_T;
228 
229 	/*
230 	 * Set registers for trampoline to user mode.  Leave space for the
231 	 * return address on stack.  These are the kernel mode register values.
232 	 */
233 #ifdef PAE
234 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
235 #else
236 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
237 #endif
238 	pcb2->pcb_edi = 0;
239 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
240 	pcb2->pcb_ebp = 0;
241 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
242 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
243 	pcb2->pcb_eip = (int)fork_trampoline;
244 	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
245 	/*-
246 	 * pcb2->pcb_dr*:	cloned above.
247 	 * pcb2->pcb_savefpu:	cloned above.
248 	 * pcb2->pcb_flags:	cloned above.
249 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
250 	 * pcb2->pcb_gs:	cloned above.
251 	 * pcb2->pcb_ext:	cleared below.
252 	 */
253 
254 	/*
255 	 * XXX don't copy the i/o pages.  this should probably be fixed.
256 	 */
257 	pcb2->pcb_ext = 0;
258 
259 	/* Copy the LDT, if necessary. */
260 	mtx_lock_spin(&dt_lock);
261 	if (mdp2->md_ldt != NULL) {
262 		if (flags & RFMEM) {
263 			mdp2->md_ldt->ldt_refcnt++;
264 		} else {
265 			mdp2->md_ldt = user_ldt_alloc(mdp2,
266 			    mdp2->md_ldt->ldt_len);
267 			if (mdp2->md_ldt == NULL)
268 				panic("could not copy LDT");
269 		}
270 	}
271 	mtx_unlock_spin(&dt_lock);
272 
273 	/* Setup to release spin count in fork_exit(). */
274 	td2->td_md.md_spinlock_count = 1;
275 	/*
276 	 * XXX XEN need to check on PSL_USER is handled
277 	 */
278 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
279 	/*
280 	 * Now, cpu_switch() can schedule the new process.
281 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
282 	 * containing the return address when exiting cpu_switch.
283 	 * This will normally be to fork_trampoline(), which will have
284 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
285 	 * will set up a stack to call fork_return(p, frame); to complete
286 	 * the return to user-mode.
287 	 */
288 }
289 
290 /*
291  * Intercept the return address from a freshly forked process that has NOT
292  * been scheduled yet.
293  *
294  * This is needed to make kernel threads stay in kernel mode.
295  */
296 void
297 cpu_set_fork_handler(td, func, arg)
298 	struct thread *td;
299 	void (*func)(void *);
300 	void *arg;
301 {
302 	/*
303 	 * Note that the trap frame follows the args, so the function
304 	 * is really called like this:  func(arg, frame);
305 	 */
306 	td->td_pcb->pcb_esi = (int) func;	/* function */
307 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
308 }
309 
310 void
311 cpu_exit(struct thread *td)
312 {
313 
314 	/*
315 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
316 	 * and %gs before we free it in case they refer to an LDT entry.
317 	 */
318 	mtx_lock_spin(&dt_lock);
319 	if (td->td_proc->p_md.md_ldt) {
320 		td->td_pcb->pcb_gs = _udatasel;
321 		load_gs(_udatasel);
322 		user_ldt_free(td);
323 	} else
324 		mtx_unlock_spin(&dt_lock);
325 }
326 
327 void
328 cpu_thread_exit(struct thread *td)
329 {
330 
331 #ifdef DEV_NPX
332 	critical_enter();
333 	if (td == PCPU_GET(fpcurthread))
334 		npxdrop();
335 	critical_exit();
336 #endif
337 
338 	/* Disable any hardware breakpoints. */
339 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
340 		reset_dbregs();
341 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
342 	}
343 }
344 
345 void
346 cpu_thread_clean(struct thread *td)
347 {
348 	struct pcb *pcb;
349 
350 	pcb = td->td_pcb;
351 	if (pcb->pcb_ext != NULL) {
352 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
353 		/*
354 		 * XXX do we need to move the TSS off the allocated pages
355 		 * before freeing them?  (not done here)
356 		 */
357 		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
358 		    ctob(IOPAGES + 1));
359 		pcb->pcb_ext = NULL;
360 	}
361 }
362 
363 void
364 cpu_thread_swapin(struct thread *td)
365 {
366 }
367 
368 void
369 cpu_thread_swapout(struct thread *td)
370 {
371 }
372 
373 void
374 cpu_thread_alloc(struct thread *td)
375 {
376 
377 	td->td_pcb = (struct pcb *)(td->td_kstack +
378 	    td->td_kstack_pages * PAGE_SIZE) - 1;
379 	td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
380 	td->td_pcb->pcb_ext = NULL;
381 	td->td_pcb->pcb_save = &td->td_pcb->pcb_user_save;
382 }
383 
384 void
385 cpu_thread_free(struct thread *td)
386 {
387 
388 	cpu_thread_clean(td);
389 }
390 
391 void
392 cpu_set_syscall_retval(struct thread *td, int error)
393 {
394 
395 	switch (error) {
396 	case 0:
397 		td->td_frame->tf_eax = td->td_retval[0];
398 		td->td_frame->tf_edx = td->td_retval[1];
399 		td->td_frame->tf_eflags &= ~PSL_C;
400 		break;
401 
402 	case ERESTART:
403 		/*
404 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
405 		 * 0x80 is 2 bytes. We saved this in tf_err.
406 		 */
407 		td->td_frame->tf_eip -= td->td_frame->tf_err;
408 		break;
409 
410 	case EJUSTRETURN:
411 		break;
412 
413 	default:
414 		if (td->td_proc->p_sysent->sv_errsize) {
415 			if (error >= td->td_proc->p_sysent->sv_errsize)
416 				error = -1;	/* XXX */
417 			else
418 				error = td->td_proc->p_sysent->sv_errtbl[error];
419 		}
420 		td->td_frame->tf_eax = error;
421 		td->td_frame->tf_eflags |= PSL_C;
422 		break;
423 	}
424 }
425 
426 /*
427  * Initialize machine state (pcb and trap frame) for a new thread about to
428  * upcall. Put enough state in the new thread's PCB to get it to go back
429  * userret(), where we can intercept it again to set the return (upcall)
430  * Address and stack, along with those from upcals that are from other sources
431  * such as those generated in thread_userret() itself.
432  */
433 void
434 cpu_set_upcall(struct thread *td, struct thread *td0)
435 {
436 	struct pcb *pcb2;
437 
438 	/* Point the pcb to the top of the stack. */
439 	pcb2 = td->td_pcb;
440 
441 	/*
442 	 * Copy the upcall pcb.  This loads kernel regs.
443 	 * Those not loaded individually below get their default
444 	 * values here.
445 	 */
446 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
447 	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE);
448 	pcb2->pcb_save = &pcb2->pcb_user_save;
449 
450 	/*
451 	 * Create a new fresh stack for the new thread.
452 	 */
453 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
454 
455 	/* If the current thread has the trap bit set (i.e. a debugger had
456 	 * single stepped the process to the system call), we need to clear
457 	 * the trap flag from the new frame. Otherwise, the new thread will
458 	 * receive a (likely unexpected) SIGTRAP when it executes the first
459 	 * instruction after returning to userland.
460 	 */
461 	td->td_frame->tf_eflags &= ~PSL_T;
462 
463 	/*
464 	 * Set registers for trampoline to user mode.  Leave space for the
465 	 * return address on stack.  These are the kernel mode register values.
466 	 */
467 	pcb2->pcb_edi = 0;
468 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
469 	pcb2->pcb_ebp = 0;
470 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
471 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
472 	pcb2->pcb_eip = (int)fork_trampoline;
473 	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
474 	pcb2->pcb_gs = rgs();
475 	/*
476 	 * If we didn't copy the pcb, we'd need to do the following registers:
477 	 * pcb2->pcb_cr3:	cloned above.
478 	 * pcb2->pcb_dr*:	cloned above.
479 	 * pcb2->pcb_savefpu:	cloned above.
480 	 * pcb2->pcb_flags:	cloned above.
481 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
482 	 * pcb2->pcb_gs:	cloned above.
483 	 * pcb2->pcb_ext:	cleared below.
484 	 */
485 	pcb2->pcb_ext = NULL;
486 
487 	/* Setup to release spin count in fork_exit(). */
488 	td->td_md.md_spinlock_count = 1;
489 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
490 }
491 
492 /*
493  * Set that machine state for performing an upcall that has to
494  * be done in thread_userret() so that those upcalls generated
495  * in thread_userret() itself can be done as well.
496  */
497 void
498 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
499 	stack_t *stack)
500 {
501 
502 	/*
503 	 * Do any extra cleaning that needs to be done.
504 	 * The thread may have optional components
505 	 * that are not present in a fresh thread.
506 	 * This may be a recycled thread so make it look
507 	 * as though it's newly allocated.
508 	 */
509 	cpu_thread_clean(td);
510 
511 	/*
512 	 * Set the trap frame to point at the beginning of the uts
513 	 * function.
514 	 */
515 	td->td_frame->tf_ebp = 0;
516 	td->td_frame->tf_esp =
517 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
518 	td->td_frame->tf_eip = (int)entry;
519 
520 	/*
521 	 * Pass the address of the mailbox for this kse to the uts
522 	 * function as a parameter on the stack.
523 	 */
524 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
525 	    (int)arg);
526 }
527 
528 int
529 cpu_set_user_tls(struct thread *td, void *tls_base)
530 {
531 	struct segment_descriptor sd;
532 	uint32_t base;
533 
534 	/*
535 	 * Construct a descriptor and store it in the pcb for
536 	 * the next context switch.  Also store it in the gdt
537 	 * so that the load of tf_fs into %fs will activate it
538 	 * at return to userland.
539 	 */
540 	base = (uint32_t)tls_base;
541 	sd.sd_lobase = base & 0xffffff;
542 	sd.sd_hibase = (base >> 24) & 0xff;
543 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
544 	sd.sd_hilimit = 0xf;
545 	sd.sd_type  = SDT_MEMRWA;
546 	sd.sd_dpl   = SEL_UPL;
547 	sd.sd_p     = 1;
548 	sd.sd_xx    = 0;
549 	sd.sd_def32 = 1;
550 	sd.sd_gran  = 1;
551 	critical_enter();
552 	/* set %gs */
553 	td->td_pcb->pcb_gsd = sd;
554 	if (td == curthread) {
555 		PCPU_GET(fsgs_gdt)[1] = sd;
556 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
557 	}
558 	critical_exit();
559 	return (0);
560 }
561 
562 /*
563  * Convert kernel VA to physical address
564  */
565 vm_paddr_t
566 kvtop(void *addr)
567 {
568 	vm_paddr_t pa;
569 
570 	pa = pmap_kextract((vm_offset_t)addr);
571 	if (pa == 0)
572 		panic("kvtop: zero page frame");
573 	return (pa);
574 }
575 
576 #ifdef SMP
577 static void
578 cpu_reset_proxy()
579 {
580 	cpuset_t tcrp;
581 
582 	cpu_reset_proxy_active = 1;
583 	while (cpu_reset_proxy_active == 1)
584 		;	/* Wait for other cpu to see that we've started */
585 	CPU_SETOF(cpu_reset_proxyid, &tcrp);
586 	stop_cpus(tcrp);
587 	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
588 	DELAY(1000000);
589 	cpu_reset_real();
590 }
591 #endif
592 
593 void
594 cpu_reset()
595 {
596 #ifdef XBOX
597 	if (arch_i386_is_xbox) {
598 		/* Kick the PIC16L, it can reboot the box */
599 		pic16l_reboot();
600 		for (;;);
601 	}
602 #endif
603 
604 #ifdef SMP
605 	cpuset_t map;
606 	u_int cnt;
607 
608 	if (smp_active) {
609 		map = all_cpus;
610 		CPU_CLR(PCPU_GET(cpuid), &map);
611 		CPU_NAND(&map, &stopped_cpus);
612 		if (!CPU_EMPTY(&map)) {
613 			printf("cpu_reset: Stopping other CPUs\n");
614 			stop_cpus(map);
615 		}
616 
617 		if (PCPU_GET(cpuid) != 0) {
618 			cpu_reset_proxyid = PCPU_GET(cpuid);
619 			cpustop_restartfunc = cpu_reset_proxy;
620 			cpu_reset_proxy_active = 0;
621 			printf("cpu_reset: Restarting BSP\n");
622 
623 			/* Restart CPU #0. */
624 			/* XXX: restart_cpus(1 << 0); */
625 			CPU_SETOF(0, &started_cpus);
626 			wmb();
627 
628 			cnt = 0;
629 			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
630 				cnt++;	/* Wait for BSP to announce restart */
631 			if (cpu_reset_proxy_active == 0)
632 				printf("cpu_reset: Failed to restart BSP\n");
633 			enable_intr();
634 			cpu_reset_proxy_active = 2;
635 
636 			while (1);
637 			/* NOTREACHED */
638 		}
639 
640 		DELAY(1000000);
641 	}
642 #endif
643 	cpu_reset_real();
644 	/* NOTREACHED */
645 }
646 
647 static void
648 cpu_reset_real()
649 {
650 	struct region_descriptor null_idt;
651 #ifndef PC98
652 	int b;
653 #endif
654 
655 	disable_intr();
656 #ifdef XEN
657 	if (smp_processor_id() == 0)
658 		HYPERVISOR_shutdown(SHUTDOWN_reboot);
659 	else
660 		HYPERVISOR_shutdown(SHUTDOWN_poweroff);
661 #endif
662 #ifdef CPU_ELAN
663 	if (elan_mmcr != NULL)
664 		elan_mmcr->RESCFG = 1;
665 #endif
666 
667 	if (cpu == CPU_GEODE1100) {
668 		/* Attempt Geode's own reset */
669 		outl(0xcf8, 0x80009044ul);
670 		outl(0xcfc, 0xf);
671 	}
672 
673 #ifdef PC98
674 	/*
675 	 * Attempt to do a CPU reset via CPU reset port.
676 	 */
677 	if ((inb(0x35) & 0xa0) != 0xa0) {
678 		outb(0x37, 0x0f);		/* SHUT0 = 0. */
679 		outb(0x37, 0x0b);		/* SHUT1 = 0. */
680 	}
681 	outb(0xf0, 0x00);		/* Reset. */
682 #else
683 #if !defined(BROKEN_KEYBOARD_RESET)
684 	/*
685 	 * Attempt to do a CPU reset via the keyboard controller,
686 	 * do not turn off GateA20, as any machine that fails
687 	 * to do the reset here would then end up in no man's land.
688 	 */
689 	outb(IO_KBD + 4, 0xFE);
690 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
691 #endif
692 
693 	/*
694 	 * Attempt to force a reset via the Reset Control register at
695 	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
696 	 * transitions from 0 to 1.  Bit 1 selects the type of reset
697 	 * to attempt: 0 selects a "soft" reset, and 1 selects a
698 	 * "hard" reset.  We try a "hard" reset.  The first write sets
699 	 * bit 1 to select a "hard" reset and clears bit 2.  The
700 	 * second write forces a 0 -> 1 transition in bit 2 to trigger
701 	 * a reset.
702 	 */
703 	outb(0xcf9, 0x2);
704 	outb(0xcf9, 0x6);
705 	DELAY(500000);  /* wait 0.5 sec to see if that did it */
706 
707 	/*
708 	 * Attempt to force a reset via the Fast A20 and Init register
709 	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
710 	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
711 	 * preserve bit 1 while setting bit 0.  We also must clear bit
712 	 * 0 before setting it if it isn't already clear.
713 	 */
714 	b = inb(0x92);
715 	if (b != 0xff) {
716 		if ((b & 0x1) != 0)
717 			outb(0x92, b & 0xfe);
718 		outb(0x92, b | 0x1);
719 		DELAY(500000);  /* wait 0.5 sec to see if that did it */
720 	}
721 #endif /* PC98 */
722 
723 	printf("No known reset method worked, attempting CPU shutdown\n");
724 	DELAY(1000000); /* wait 1 sec for printf to complete */
725 
726 	/* Wipe the IDT. */
727 	null_idt.rd_limit = 0;
728 	null_idt.rd_base = 0;
729 	lidt(&null_idt);
730 
731 	/* "good night, sweet prince .... <THUNK!>" */
732 	breakpoint();
733 
734 	/* NOTREACHED */
735 	while(1);
736 }
737 
738 /*
739  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
740  */
741 static void
742 sf_buf_init(void *arg)
743 {
744 	struct sf_buf *sf_bufs;
745 	vm_offset_t sf_base;
746 	int i;
747 
748 	nsfbufs = NSFBUFS;
749 	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
750 
751 	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
752 	TAILQ_INIT(&sf_buf_freelist);
753 	sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
754 	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
755 	    M_NOWAIT | M_ZERO);
756 	for (i = 0; i < nsfbufs; i++) {
757 		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
758 		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
759 	}
760 	sf_buf_alloc_want = 0;
761 	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
762 }
763 
764 /*
765  * Invalidate the cache lines that may belong to the page, if
766  * (possibly old) mapping of the page by sf buffer exists.  Returns
767  * TRUE when mapping was found and cache invalidated.
768  */
769 boolean_t
770 sf_buf_invalidate_cache(vm_page_t m)
771 {
772 	struct sf_head *hash_list;
773 	struct sf_buf *sf;
774 	boolean_t ret;
775 
776 	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
777 	ret = FALSE;
778 	mtx_lock(&sf_buf_lock);
779 	LIST_FOREACH(sf, hash_list, list_entry) {
780 		if (sf->m == m) {
781 			/*
782 			 * Use pmap_qenter to update the pte for
783 			 * existing mapping, in particular, the PAT
784 			 * settings are recalculated.
785 			 */
786 			pmap_qenter(sf->kva, &m, 1);
787 			pmap_invalidate_cache_range(sf->kva, sf->kva +
788 			    PAGE_SIZE);
789 			ret = TRUE;
790 			break;
791 		}
792 	}
793 	mtx_unlock(&sf_buf_lock);
794 	return (ret);
795 }
796 
797 /*
798  * Get an sf_buf from the freelist.  May block if none are available.
799  */
800 struct sf_buf *
801 sf_buf_alloc(struct vm_page *m, int flags)
802 {
803 	pt_entry_t opte, *ptep;
804 	struct sf_head *hash_list;
805 	struct sf_buf *sf;
806 #ifdef SMP
807 	cpuset_t other_cpus;
808 	u_int cpuid;
809 #endif
810 	int error;
811 
812 	KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
813 	    ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
814 	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
815 	mtx_lock(&sf_buf_lock);
816 	LIST_FOREACH(sf, hash_list, list_entry) {
817 		if (sf->m == m) {
818 			sf->ref_count++;
819 			if (sf->ref_count == 1) {
820 				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
821 				nsfbufsused++;
822 				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
823 			}
824 #ifdef SMP
825 			goto shootdown;
826 #else
827 			goto done;
828 #endif
829 		}
830 	}
831 	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
832 		if (flags & SFB_NOWAIT)
833 			goto done;
834 		sf_buf_alloc_want++;
835 		mbstat.sf_allocwait++;
836 		error = msleep(&sf_buf_freelist, &sf_buf_lock,
837 		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
838 		sf_buf_alloc_want--;
839 
840 		/*
841 		 * If we got a signal, don't risk going back to sleep.
842 		 */
843 		if (error)
844 			goto done;
845 	}
846 	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
847 	if (sf->m != NULL)
848 		LIST_REMOVE(sf, list_entry);
849 	LIST_INSERT_HEAD(hash_list, sf, list_entry);
850 	sf->ref_count = 1;
851 	sf->m = m;
852 	nsfbufsused++;
853 	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
854 
855 	/*
856 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
857 	 * virtual address from the TLB.  Since the reference count for
858 	 * the sf_buf's old mapping was zero, that mapping is not
859 	 * currently in use.  Consequently, there is no need to exchange
860 	 * the old and new PTEs atomically, even under PAE.
861 	 */
862 	ptep = vtopte(sf->kva);
863 	opte = *ptep;
864 #ifdef XEN
865        PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag
866 	   | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0));
867 #else
868 	*ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V |
869 	    pmap_cache_bits(m->md.pat_mode, 0);
870 #endif
871 
872 	/*
873 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
874 	 * virtual-to-physical mapping was not used, then any processor
875 	 * that has invalidated the sf_buf's virtual address from its TLB
876 	 * since the last used mapping need not invalidate again.
877 	 */
878 #ifdef SMP
879 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
880 		CPU_ZERO(&sf->cpumask);
881 shootdown:
882 	sched_pin();
883 	cpuid = PCPU_GET(cpuid);
884 	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
885 		CPU_SET(cpuid, &sf->cpumask);
886 		invlpg(sf->kva);
887 	}
888 	if ((flags & SFB_CPUPRIVATE) == 0) {
889 		other_cpus = all_cpus;
890 		CPU_CLR(cpuid, &other_cpus);
891 		CPU_NAND(&other_cpus, &sf->cpumask);
892 		if (!CPU_EMPTY(&other_cpus)) {
893 			CPU_OR(&sf->cpumask, &other_cpus);
894 			smp_masked_invlpg(other_cpus, sf->kva);
895 		}
896 	}
897 	sched_unpin();
898 #else
899 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
900 		pmap_invalidate_page(kernel_pmap, sf->kva);
901 #endif
902 done:
903 	mtx_unlock(&sf_buf_lock);
904 	return (sf);
905 }
906 
907 /*
908  * Remove a reference from the given sf_buf, adding it to the free
909  * list when its reference count reaches zero.  A freed sf_buf still,
910  * however, retains its virtual-to-physical mapping until it is
911  * recycled or reactivated by sf_buf_alloc(9).
912  */
913 void
914 sf_buf_free(struct sf_buf *sf)
915 {
916 
917 	mtx_lock(&sf_buf_lock);
918 	sf->ref_count--;
919 	if (sf->ref_count == 0) {
920 		TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
921 		nsfbufsused--;
922 #ifdef XEN
923 /*
924  * Xen doesn't like having dangling R/W mappings
925  */
926 		pmap_qremove(sf->kva, 1);
927 		sf->m = NULL;
928 		LIST_REMOVE(sf, list_entry);
929 #endif
930 		if (sf_buf_alloc_want > 0)
931 			wakeup(&sf_buf_freelist);
932 	}
933 	mtx_unlock(&sf_buf_lock);
934 }
935 
936 /*
937  * Software interrupt handler for queued VM system processing.
938  */
939 void
940 swi_vm(void *dummy)
941 {
942 	if (busdma_swi_pending != 0)
943 		busdma_swi();
944 }
945 
946 /*
947  * Tell whether this address is in some physical memory region.
948  * Currently used by the kernel coredump code in order to avoid
949  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
950  * or other unpredictable behaviour.
951  */
952 
953 int
954 is_physical_memory(vm_paddr_t addr)
955 {
956 
957 #ifdef DEV_ISA
958 	/* The ISA ``memory hole''. */
959 	if (addr >= 0xa0000 && addr < 0x100000)
960 		return 0;
961 #endif
962 
963 	/*
964 	 * stuff other tests for known memory-mapped devices (PCI?)
965 	 * here
966 	 */
967 
968 	return 1;
969 }
970