xref: /freebsd/sys/i386/i386/vm_machdep.c (revision ca987d4641cdcd7f27e153db17c5bf064934faf5)
1 /*-
2  * Copyright (c) 1982, 1986 The Regents of the University of California.
3  * Copyright (c) 1989, 1990 William Jolitz
4  * Copyright (c) 1994 John Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_isa.h"
47 #include "opt_npx.h"
48 #include "opt_reset.h"
49 #include "opt_cpu.h"
50 #include "opt_xbox.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mutex.h>
62 #include <sys/pioctl.h>
63 #include <sys/proc.h>
64 #include <sys/sysent.h>
65 #include <sys/sf_buf.h>
66 #include <sys/smp.h>
67 #include <sys/sched.h>
68 #include <sys/sysctl.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/vmmeter.h>
72 
73 #include <machine/cpu.h>
74 #include <machine/cputypes.h>
75 #include <machine/md_var.h>
76 #include <machine/pcb.h>
77 #include <machine/pcb_ext.h>
78 #include <machine/smp.h>
79 #include <machine/vm86.h>
80 
81 #ifdef CPU_ELAN
82 #include <machine/elan_mmcr.h>
83 #endif
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_param.h>
91 
92 #include <isa/isareg.h>
93 
94 #ifdef XBOX
95 #include <machine/xbox.h>
96 #endif
97 
98 #ifndef NSFBUFS
99 #define	NSFBUFS		(512 + maxusers * 16)
100 #endif
101 
102 _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
103     "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
104 _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
105     "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
106 _Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
107     "__OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf.");
108 
109 static void	cpu_reset_real(void);
110 #ifdef SMP
111 static void	cpu_reset_proxy(void);
112 static u_int	cpu_reset_proxyid;
113 static volatile u_int	cpu_reset_proxy_active;
114 #endif
115 
116 union savefpu *
117 get_pcb_user_save_td(struct thread *td)
118 {
119 	vm_offset_t p;
120 
121 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
122 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
123 	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
124 	return ((union savefpu *)p);
125 }
126 
127 union savefpu *
128 get_pcb_user_save_pcb(struct pcb *pcb)
129 {
130 	vm_offset_t p;
131 
132 	p = (vm_offset_t)(pcb + 1);
133 	return ((union savefpu *)p);
134 }
135 
136 struct pcb *
137 get_pcb_td(struct thread *td)
138 {
139 	vm_offset_t p;
140 
141 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
142 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
143 	    sizeof(struct pcb);
144 	return ((struct pcb *)p);
145 }
146 
147 void *
148 alloc_fpusave(int flags)
149 {
150 	void *res;
151 	struct savefpu_ymm *sf;
152 
153 	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
154 	if (use_xsave) {
155 		sf = (struct savefpu_ymm *)res;
156 		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
157 		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
158 	}
159 	return (res);
160 }
161 /*
162  * Finish a fork operation, with process p2 nearly set up.
163  * Copy and update the pcb, set up the stack so that the child
164  * ready to run and return to user mode.
165  */
166 void
167 cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
168 {
169 	struct proc *p1;
170 	struct pcb *pcb2;
171 	struct mdproc *mdp2;
172 
173 	p1 = td1->td_proc;
174 	if ((flags & RFPROC) == 0) {
175 		if ((flags & RFMEM) == 0) {
176 			/* unshare user LDT */
177 			struct mdproc *mdp1 = &p1->p_md;
178 			struct proc_ldt *pldt, *pldt1;
179 
180 			mtx_lock_spin(&dt_lock);
181 			if ((pldt1 = mdp1->md_ldt) != NULL &&
182 			    pldt1->ldt_refcnt > 1) {
183 				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
184 				if (pldt == NULL)
185 					panic("could not copy LDT");
186 				mdp1->md_ldt = pldt;
187 				set_user_ldt(mdp1);
188 				user_ldt_deref(pldt1);
189 			} else
190 				mtx_unlock_spin(&dt_lock);
191 		}
192 		return;
193 	}
194 
195 	/* Ensure that td1's pcb is up to date. */
196 	if (td1 == curthread)
197 		td1->td_pcb->pcb_gs = rgs();
198 	critical_enter();
199 	if (PCPU_GET(fpcurthread) == td1)
200 		npxsave(td1->td_pcb->pcb_save);
201 	critical_exit();
202 
203 	/* Point the pcb to the top of the stack */
204 	pcb2 = get_pcb_td(td2);
205 	td2->td_pcb = pcb2;
206 
207 	/* Copy td1's pcb */
208 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
209 
210 	/* Properly initialize pcb_save */
211 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
212 	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
213 	    cpu_max_ext_state_size);
214 
215 	/* Point mdproc and then copy over td1's contents */
216 	mdp2 = &p2->p_md;
217 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
218 
219 	/*
220 	 * Create a new fresh stack for the new process.
221 	 * Copy the trap frame for the return to user mode as if from a
222 	 * syscall.  This copies most of the user mode register values.
223 	 * The -16 is so we can expand the trapframe if we go to vm86.
224 	 */
225 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
226 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
227 
228 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
229 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
230 	td2->td_frame->tf_edx = 1;
231 
232 	/*
233 	 * If the parent process has the trap bit set (i.e. a debugger had
234 	 * single stepped the process to the system call), we need to clear
235 	 * the trap flag from the new frame unless the debugger had set PF_FORK
236 	 * on the parent.  Otherwise, the child will receive a (likely
237 	 * unexpected) SIGTRAP when it executes the first instruction after
238 	 * returning  to userland.
239 	 */
240 	if ((p1->p_pfsflags & PF_FORK) == 0)
241 		td2->td_frame->tf_eflags &= ~PSL_T;
242 
243 	/*
244 	 * Set registers for trampoline to user mode.  Leave space for the
245 	 * return address on stack.  These are the kernel mode register values.
246 	 */
247 #if defined(PAE) || defined(PAE_TABLES)
248 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
249 #else
250 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
251 #endif
252 	pcb2->pcb_edi = 0;
253 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
254 	pcb2->pcb_ebp = 0;
255 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
256 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
257 	pcb2->pcb_eip = (int)fork_trampoline;
258 	/*-
259 	 * pcb2->pcb_dr*:	cloned above.
260 	 * pcb2->pcb_savefpu:	cloned above.
261 	 * pcb2->pcb_flags:	cloned above.
262 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
263 	 * pcb2->pcb_gs:	cloned above.
264 	 * pcb2->pcb_ext:	cleared below.
265 	 */
266 
267 	/*
268 	 * XXX don't copy the i/o pages.  this should probably be fixed.
269 	 */
270 	pcb2->pcb_ext = 0;
271 
272 	/* Copy the LDT, if necessary. */
273 	mtx_lock_spin(&dt_lock);
274 	if (mdp2->md_ldt != NULL) {
275 		if (flags & RFMEM) {
276 			mdp2->md_ldt->ldt_refcnt++;
277 		} else {
278 			mdp2->md_ldt = user_ldt_alloc(mdp2,
279 			    mdp2->md_ldt->ldt_len);
280 			if (mdp2->md_ldt == NULL)
281 				panic("could not copy LDT");
282 		}
283 	}
284 	mtx_unlock_spin(&dt_lock);
285 
286 	/* Setup to release spin count in fork_exit(). */
287 	td2->td_md.md_spinlock_count = 1;
288 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
289 
290 	/*
291 	 * Now, cpu_switch() can schedule the new process.
292 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
293 	 * containing the return address when exiting cpu_switch.
294 	 * This will normally be to fork_trampoline(), which will have
295 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
296 	 * will set up a stack to call fork_return(p, frame); to complete
297 	 * the return to user-mode.
298 	 */
299 }
300 
301 /*
302  * Intercept the return address from a freshly forked process that has NOT
303  * been scheduled yet.
304  *
305  * This is needed to make kernel threads stay in kernel mode.
306  */
307 void
308 cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
309 {
310 	/*
311 	 * Note that the trap frame follows the args, so the function
312 	 * is really called like this:  func(arg, frame);
313 	 */
314 	td->td_pcb->pcb_esi = (int) func;	/* function */
315 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
316 }
317 
318 void
319 cpu_exit(struct thread *td)
320 {
321 
322 	/*
323 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
324 	 * and %gs before we free it in case they refer to an LDT entry.
325 	 */
326 	mtx_lock_spin(&dt_lock);
327 	if (td->td_proc->p_md.md_ldt) {
328 		td->td_pcb->pcb_gs = _udatasel;
329 		load_gs(_udatasel);
330 		user_ldt_free(td);
331 	} else
332 		mtx_unlock_spin(&dt_lock);
333 }
334 
335 void
336 cpu_thread_exit(struct thread *td)
337 {
338 
339 	critical_enter();
340 	if (td == PCPU_GET(fpcurthread))
341 		npxdrop();
342 	critical_exit();
343 
344 	/* Disable any hardware breakpoints. */
345 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
346 		reset_dbregs();
347 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
348 	}
349 }
350 
351 void
352 cpu_thread_clean(struct thread *td)
353 {
354 	struct pcb *pcb;
355 
356 	pcb = td->td_pcb;
357 	if (pcb->pcb_ext != NULL) {
358 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
359 		/*
360 		 * XXX do we need to move the TSS off the allocated pages
361 		 * before freeing them?  (not done here)
362 		 */
363 		kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext,
364 		    ctob(IOPAGES + 1));
365 		pcb->pcb_ext = NULL;
366 	}
367 }
368 
369 void
370 cpu_thread_swapin(struct thread *td)
371 {
372 }
373 
374 void
375 cpu_thread_swapout(struct thread *td)
376 {
377 }
378 
379 void
380 cpu_thread_alloc(struct thread *td)
381 {
382 	struct pcb *pcb;
383 	struct xstate_hdr *xhdr;
384 
385 	td->td_pcb = pcb = get_pcb_td(td);
386 	td->td_frame = (struct trapframe *)((caddr_t)pcb - 16) - 1;
387 	pcb->pcb_ext = NULL;
388 	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
389 	if (use_xsave) {
390 		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
391 		bzero(xhdr, sizeof(*xhdr));
392 		xhdr->xstate_bv = xsave_mask;
393 	}
394 }
395 
396 void
397 cpu_thread_free(struct thread *td)
398 {
399 
400 	cpu_thread_clean(td);
401 }
402 
403 void
404 cpu_set_syscall_retval(struct thread *td, int error)
405 {
406 
407 	switch (error) {
408 	case 0:
409 		td->td_frame->tf_eax = td->td_retval[0];
410 		td->td_frame->tf_edx = td->td_retval[1];
411 		td->td_frame->tf_eflags &= ~PSL_C;
412 		break;
413 
414 	case ERESTART:
415 		/*
416 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
417 		 * 0x80 is 2 bytes. We saved this in tf_err.
418 		 */
419 		td->td_frame->tf_eip -= td->td_frame->tf_err;
420 		break;
421 
422 	case EJUSTRETURN:
423 		break;
424 
425 	default:
426 		td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error);
427 		td->td_frame->tf_eflags |= PSL_C;
428 		break;
429 	}
430 }
431 
432 /*
433  * Initialize machine state, mostly pcb and trap frame for a new
434  * thread, about to return to userspace.  Put enough state in the new
435  * thread's PCB to get it to go back to the fork_return(), which
436  * finalizes the thread state and handles peculiarities of the first
437  * return to userspace for the new thread.
438  */
439 void
440 cpu_copy_thread(struct thread *td, struct thread *td0)
441 {
442 	struct pcb *pcb2;
443 
444 	/* Point the pcb to the top of the stack. */
445 	pcb2 = td->td_pcb;
446 
447 	/*
448 	 * Copy the upcall pcb.  This loads kernel regs.
449 	 * Those not loaded individually below get their default
450 	 * values here.
451 	 */
452 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
453 	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
454 	    PCB_KERNNPX);
455 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
456 	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
457 	    cpu_max_ext_state_size);
458 
459 	/*
460 	 * Create a new fresh stack for the new thread.
461 	 */
462 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
463 
464 	/* If the current thread has the trap bit set (i.e. a debugger had
465 	 * single stepped the process to the system call), we need to clear
466 	 * the trap flag from the new frame. Otherwise, the new thread will
467 	 * receive a (likely unexpected) SIGTRAP when it executes the first
468 	 * instruction after returning to userland.
469 	 */
470 	td->td_frame->tf_eflags &= ~PSL_T;
471 
472 	/*
473 	 * Set registers for trampoline to user mode.  Leave space for the
474 	 * return address on stack.  These are the kernel mode register values.
475 	 */
476 	pcb2->pcb_edi = 0;
477 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
478 	pcb2->pcb_ebp = 0;
479 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
480 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
481 	pcb2->pcb_eip = (int)fork_trampoline;
482 	pcb2->pcb_gs = rgs();
483 	/*
484 	 * If we didn't copy the pcb, we'd need to do the following registers:
485 	 * pcb2->pcb_cr3:	cloned above.
486 	 * pcb2->pcb_dr*:	cloned above.
487 	 * pcb2->pcb_savefpu:	cloned above.
488 	 * pcb2->pcb_flags:	cloned above.
489 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
490 	 * pcb2->pcb_gs:	cloned above.
491 	 * pcb2->pcb_ext:	cleared below.
492 	 */
493 	pcb2->pcb_ext = NULL;
494 
495 	/* Setup to release spin count in fork_exit(). */
496 	td->td_md.md_spinlock_count = 1;
497 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
498 }
499 
500 /*
501  * Set that machine state for performing an upcall that starts
502  * the entry function with the given argument.
503  */
504 void
505 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
506     stack_t *stack)
507 {
508 
509 	/*
510 	 * Do any extra cleaning that needs to be done.
511 	 * The thread may have optional components
512 	 * that are not present in a fresh thread.
513 	 * This may be a recycled thread so make it look
514 	 * as though it's newly allocated.
515 	 */
516 	cpu_thread_clean(td);
517 
518 	/*
519 	 * Set the trap frame to point at the beginning of the entry
520 	 * function.
521 	 */
522 	td->td_frame->tf_ebp = 0;
523 	td->td_frame->tf_esp =
524 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
525 	td->td_frame->tf_eip = (int)entry;
526 
527 	/* Return address sentinel value to stop stack unwinding. */
528 	suword((void *)td->td_frame->tf_esp, 0);
529 
530 	/* Pass the argument to the entry point. */
531 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
532 	    (int)arg);
533 }
534 
535 int
536 cpu_set_user_tls(struct thread *td, void *tls_base)
537 {
538 	struct segment_descriptor sd;
539 	uint32_t base;
540 
541 	/*
542 	 * Construct a descriptor and store it in the pcb for
543 	 * the next context switch.  Also store it in the gdt
544 	 * so that the load of tf_fs into %fs will activate it
545 	 * at return to userland.
546 	 */
547 	base = (uint32_t)tls_base;
548 	sd.sd_lobase = base & 0xffffff;
549 	sd.sd_hibase = (base >> 24) & 0xff;
550 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
551 	sd.sd_hilimit = 0xf;
552 	sd.sd_type  = SDT_MEMRWA;
553 	sd.sd_dpl   = SEL_UPL;
554 	sd.sd_p     = 1;
555 	sd.sd_xx    = 0;
556 	sd.sd_def32 = 1;
557 	sd.sd_gran  = 1;
558 	critical_enter();
559 	/* set %gs */
560 	td->td_pcb->pcb_gsd = sd;
561 	if (td == curthread) {
562 		PCPU_GET(fsgs_gdt)[1] = sd;
563 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
564 	}
565 	critical_exit();
566 	return (0);
567 }
568 
569 /*
570  * Convert kernel VA to physical address
571  */
572 vm_paddr_t
573 kvtop(void *addr)
574 {
575 	vm_paddr_t pa;
576 
577 	pa = pmap_kextract((vm_offset_t)addr);
578 	if (pa == 0)
579 		panic("kvtop: zero page frame");
580 	return (pa);
581 }
582 
583 #ifdef SMP
584 static void
585 cpu_reset_proxy()
586 {
587 	cpuset_t tcrp;
588 
589 	cpu_reset_proxy_active = 1;
590 	while (cpu_reset_proxy_active == 1)
591 		;	/* Wait for other cpu to see that we've started */
592 	CPU_SETOF(cpu_reset_proxyid, &tcrp);
593 	stop_cpus(tcrp);
594 	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
595 	DELAY(1000000);
596 	cpu_reset_real();
597 }
598 #endif
599 
600 void
601 cpu_reset()
602 {
603 #ifdef XBOX
604 	if (arch_i386_is_xbox) {
605 		/* Kick the PIC16L, it can reboot the box */
606 		pic16l_reboot();
607 		for (;;);
608 	}
609 #endif
610 
611 #ifdef SMP
612 	cpuset_t map;
613 	u_int cnt;
614 
615 	if (smp_started) {
616 		map = all_cpus;
617 		CPU_CLR(PCPU_GET(cpuid), &map);
618 		CPU_NAND(&map, &stopped_cpus);
619 		if (!CPU_EMPTY(&map)) {
620 			printf("cpu_reset: Stopping other CPUs\n");
621 			stop_cpus(map);
622 		}
623 
624 		if (PCPU_GET(cpuid) != 0) {
625 			cpu_reset_proxyid = PCPU_GET(cpuid);
626 			cpustop_restartfunc = cpu_reset_proxy;
627 			cpu_reset_proxy_active = 0;
628 			printf("cpu_reset: Restarting BSP\n");
629 
630 			/* Restart CPU #0. */
631 			/* XXX: restart_cpus(1 << 0); */
632 			CPU_SETOF(0, &started_cpus);
633 			wmb();
634 
635 			cnt = 0;
636 			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
637 				cnt++;	/* Wait for BSP to announce restart */
638 			if (cpu_reset_proxy_active == 0)
639 				printf("cpu_reset: Failed to restart BSP\n");
640 			enable_intr();
641 			cpu_reset_proxy_active = 2;
642 
643 			while (1);
644 			/* NOTREACHED */
645 		}
646 
647 		DELAY(1000000);
648 	}
649 #endif
650 	cpu_reset_real();
651 	/* NOTREACHED */
652 }
653 
654 static void
655 cpu_reset_real()
656 {
657 	struct region_descriptor null_idt;
658 	int b;
659 
660 	disable_intr();
661 #ifdef CPU_ELAN
662 	if (elan_mmcr != NULL)
663 		elan_mmcr->RESCFG = 1;
664 #endif
665 
666 	if (cpu == CPU_GEODE1100) {
667 		/* Attempt Geode's own reset */
668 		outl(0xcf8, 0x80009044ul);
669 		outl(0xcfc, 0xf);
670 	}
671 
672 #if !defined(BROKEN_KEYBOARD_RESET)
673 	/*
674 	 * Attempt to do a CPU reset via the keyboard controller,
675 	 * do not turn off GateA20, as any machine that fails
676 	 * to do the reset here would then end up in no man's land.
677 	 */
678 	outb(IO_KBD + 4, 0xFE);
679 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
680 #endif
681 
682 	/*
683 	 * Attempt to force a reset via the Reset Control register at
684 	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
685 	 * transitions from 0 to 1.  Bit 1 selects the type of reset
686 	 * to attempt: 0 selects a "soft" reset, and 1 selects a
687 	 * "hard" reset.  We try a "hard" reset.  The first write sets
688 	 * bit 1 to select a "hard" reset and clears bit 2.  The
689 	 * second write forces a 0 -> 1 transition in bit 2 to trigger
690 	 * a reset.
691 	 */
692 	outb(0xcf9, 0x2);
693 	outb(0xcf9, 0x6);
694 	DELAY(500000);  /* wait 0.5 sec to see if that did it */
695 
696 	/*
697 	 * Attempt to force a reset via the Fast A20 and Init register
698 	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
699 	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
700 	 * preserve bit 1 while setting bit 0.  We also must clear bit
701 	 * 0 before setting it if it isn't already clear.
702 	 */
703 	b = inb(0x92);
704 	if (b != 0xff) {
705 		if ((b & 0x1) != 0)
706 			outb(0x92, b & 0xfe);
707 		outb(0x92, b | 0x1);
708 		DELAY(500000);  /* wait 0.5 sec to see if that did it */
709 	}
710 
711 	printf("No known reset method worked, attempting CPU shutdown\n");
712 	DELAY(1000000); /* wait 1 sec for printf to complete */
713 
714 	/* Wipe the IDT. */
715 	null_idt.rd_limit = 0;
716 	null_idt.rd_base = 0;
717 	lidt(&null_idt);
718 
719 	/* "good night, sweet prince .... <THUNK!>" */
720 	breakpoint();
721 
722 	/* NOTREACHED */
723 	while(1);
724 }
725 
726 /*
727  * Get an sf_buf from the freelist.  May block if none are available.
728  */
729 void
730 sf_buf_map(struct sf_buf *sf, int flags)
731 {
732 	pt_entry_t opte, *ptep;
733 
734 	/*
735 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
736 	 * virtual address from the TLB.  Since the reference count for
737 	 * the sf_buf's old mapping was zero, that mapping is not
738 	 * currently in use.  Consequently, there is no need to exchange
739 	 * the old and new PTEs atomically, even under PAE.
740 	 */
741 	ptep = vtopte(sf->kva);
742 	opte = *ptep;
743 	*ptep = VM_PAGE_TO_PHYS(sf->m) | pgeflag | PG_RW | PG_V |
744 	    pmap_cache_bits(sf->m->md.pat_mode, 0);
745 
746 	/*
747 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
748 	 * virtual-to-physical mapping was not used, then any processor
749 	 * that has invalidated the sf_buf's virtual address from its TLB
750 	 * since the last used mapping need not invalidate again.
751 	 */
752 #ifdef SMP
753 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
754 		CPU_ZERO(&sf->cpumask);
755 
756 	sf_buf_shootdown(sf, flags);
757 #else
758 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
759 		pmap_invalidate_page(kernel_pmap, sf->kva);
760 #endif
761 }
762 
763 #ifdef SMP
764 void
765 sf_buf_shootdown(struct sf_buf *sf, int flags)
766 {
767 	cpuset_t other_cpus;
768 	u_int cpuid;
769 
770 	sched_pin();
771 	cpuid = PCPU_GET(cpuid);
772 	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
773 		CPU_SET(cpuid, &sf->cpumask);
774 		invlpg(sf->kva);
775 	}
776 	if ((flags & SFB_CPUPRIVATE) == 0) {
777 		other_cpus = all_cpus;
778 		CPU_CLR(cpuid, &other_cpus);
779 		CPU_NAND(&other_cpus, &sf->cpumask);
780 		if (!CPU_EMPTY(&other_cpus)) {
781 			CPU_OR(&sf->cpumask, &other_cpus);
782 			smp_masked_invlpg(other_cpus, sf->kva);
783 		}
784 	}
785 	sched_unpin();
786 }
787 #endif
788 
789 /*
790  * MD part of sf_buf_free().
791  */
792 int
793 sf_buf_unmap(struct sf_buf *sf)
794 {
795 
796 	return (0);
797 }
798 
799 static void
800 sf_buf_invalidate(struct sf_buf *sf)
801 {
802 	vm_page_t m = sf->m;
803 
804 	/*
805 	 * Use pmap_qenter to update the pte for
806 	 * existing mapping, in particular, the PAT
807 	 * settings are recalculated.
808 	 */
809 	pmap_qenter(sf->kva, &m, 1);
810 	pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE, FALSE);
811 }
812 
813 /*
814  * Invalidate the cache lines that may belong to the page, if
815  * (possibly old) mapping of the page by sf buffer exists.  Returns
816  * TRUE when mapping was found and cache invalidated.
817  */
818 boolean_t
819 sf_buf_invalidate_cache(vm_page_t m)
820 {
821 
822 	return (sf_buf_process_page(m, sf_buf_invalidate));
823 }
824 
825 /*
826  * Software interrupt handler for queued VM system processing.
827  */
828 void
829 swi_vm(void *dummy)
830 {
831 	if (busdma_swi_pending != 0)
832 		busdma_swi();
833 }
834 
835 /*
836  * Tell whether this address is in some physical memory region.
837  * Currently used by the kernel coredump code in order to avoid
838  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
839  * or other unpredictable behaviour.
840  */
841 
842 int
843 is_physical_memory(vm_paddr_t addr)
844 {
845 
846 #ifdef DEV_ISA
847 	/* The ISA ``memory hole''. */
848 	if (addr >= 0xa0000 && addr < 0x100000)
849 		return 0;
850 #endif
851 
852 	/*
853 	 * stuff other tests for known memory-mapped devices (PCI?)
854 	 * here
855 	 */
856 
857 	return 1;
858 }
859