1 /*- 2 * Copyright (c) 1982, 1986 The Regents of the University of California. 3 * Copyright (c) 1989, 1990 William Jolitz 4 * Copyright (c) 1994 John Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department, and William Jolitz. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 40 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ 41 * $Id: vm_machdep.c,v 1.108 1998/05/19 00:00:10 tegge Exp $ 42 */ 43 44 #include "npx.h" 45 #include "opt_bounce.h" 46 #include "opt_user_ldt.h" 47 #include "opt_vm86.h" 48 #ifdef PC98 49 #include "opt_pc98.h" 50 #endif 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/proc.h> 55 #include <sys/malloc.h> 56 #include <sys/buf.h> 57 #include <sys/vnode.h> 58 #include <sys/vmmeter.h> 59 #include <sys/kernel.h> 60 #include <sys/sysctl.h> 61 62 #include <machine/clock.h> 63 #include <machine/cpu.h> 64 #include <machine/md_var.h> 65 #ifdef SMP 66 #include <machine/smp.h> 67 #endif 68 #ifdef VM86 69 #include <machine/pcb_ext.h> 70 #include <machine/vm86.h> 71 #endif 72 73 #include <vm/vm.h> 74 #include <vm/vm_param.h> 75 #include <vm/vm_prot.h> 76 #include <sys/lock.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_page.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_extern.h> 81 82 #include <sys/user.h> 83 84 #ifdef PC98 85 #include <pc98/pc98/pc98.h> 86 #else 87 #include <i386/isa/isa.h> 88 #endif 89 90 static void cpu_reset_real __P((void)); 91 #ifdef SMP 92 static void cpu_reset_proxy __P((void)); 93 static u_int cpu_reset_proxyid; 94 static volatile u_int cpu_reset_proxy_active; 95 #endif 96 97 #ifdef BOUNCE_BUFFERS 98 static vm_offset_t 99 vm_bounce_kva __P((int size, int waitok)); 100 static void vm_bounce_kva_free __P((vm_offset_t addr, vm_offset_t size, 101 int now)); 102 static vm_offset_t 103 vm_bounce_page_find __P((int count)); 104 static void vm_bounce_page_free __P((vm_offset_t pa, int count)); 105 106 static volatile int kvasfreecnt; 107 108 caddr_t bouncememory; 109 static int bpwait; 110 static vm_offset_t *bouncepa; 111 static int bmwait, bmfreeing; 112 113 #define BITS_IN_UNSIGNED (8*sizeof(unsigned)) 114 static int bounceallocarraysize; 115 static unsigned *bounceallocarray; 116 static int bouncefree; 117 118 #if defined(PC98) && defined (EPSON_BOUNCEDMA) 119 #define SIXTEENMEG (3840*4096) /* 15MB boundary */ 120 #else 121 #define SIXTEENMEG (4096*4096) 122 #endif 123 #define MAXBKVA 1024 124 int maxbkva = MAXBKVA*PAGE_SIZE; 125 126 /* special list that can be used at interrupt time for eventual kva free */ 127 static struct kvasfree { 128 vm_offset_t addr; 129 vm_offset_t size; 130 } kvaf[MAXBKVA]; 131 132 /* 133 * get bounce buffer pages (count physically contiguous) 134 * (only 1 inplemented now) 135 */ 136 static vm_offset_t 137 vm_bounce_page_find(count) 138 int count; 139 { 140 int bit; 141 int s,i; 142 143 if (count != 1) 144 panic("vm_bounce_page_find -- no support for > 1 page yet!!!"); 145 146 s = splbio(); 147 retry: 148 for (i = 0; i < bounceallocarraysize; i++) { 149 if (bounceallocarray[i] != 0xffffffff) { 150 bit = ffs(~bounceallocarray[i]); 151 if (bit) { 152 bounceallocarray[i] |= 1 << (bit - 1) ; 153 bouncefree -= count; 154 splx(s); 155 return bouncepa[(i * BITS_IN_UNSIGNED + (bit - 1))]; 156 } 157 } 158 } 159 bpwait = 1; 160 tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0); 161 goto retry; 162 } 163 164 static void 165 vm_bounce_kva_free(addr, size, now) 166 vm_offset_t addr; 167 vm_offset_t size; 168 int now; 169 { 170 int s = splbio(); 171 kvaf[kvasfreecnt].addr = addr; 172 kvaf[kvasfreecnt].size = size; 173 ++kvasfreecnt; 174 if( now) { 175 /* 176 * this will do wakeups 177 */ 178 vm_bounce_kva(0,0); 179 } else { 180 if (bmwait) { 181 /* 182 * if anyone is waiting on the bounce-map, then wakeup 183 */ 184 wakeup((caddr_t) io_map); 185 bmwait = 0; 186 } 187 } 188 splx(s); 189 } 190 191 /* 192 * free count bounce buffer pages 193 */ 194 static void 195 vm_bounce_page_free(pa, count) 196 vm_offset_t pa; 197 int count; 198 { 199 int allocindex; 200 int index; 201 int bit; 202 203 if (count != 1) 204 panic("vm_bounce_page_free -- no support for > 1 page yet!!!"); 205 206 for(index=0;index<bouncepages;index++) { 207 if( pa == bouncepa[index]) 208 break; 209 } 210 211 if( index == bouncepages) 212 panic("vm_bounce_page_free: invalid bounce buffer"); 213 214 allocindex = index / BITS_IN_UNSIGNED; 215 bit = index % BITS_IN_UNSIGNED; 216 217 bounceallocarray[allocindex] &= ~(1 << bit); 218 219 bouncefree += count; 220 if (bpwait) { 221 bpwait = 0; 222 wakeup((caddr_t) &bounceallocarray); 223 } 224 } 225 226 /* 227 * allocate count bounce buffer kva pages 228 */ 229 static vm_offset_t 230 vm_bounce_kva(size, waitok) 231 int size; 232 int waitok; 233 { 234 int i; 235 vm_offset_t kva = 0; 236 vm_offset_t off; 237 int s = splbio(); 238 more: 239 if (!bmfreeing && kvasfreecnt) { 240 bmfreeing = 1; 241 for (i = 0; i < kvasfreecnt; i++) { 242 for(off=0;off<kvaf[i].size;off+=PAGE_SIZE) { 243 pmap_kremove( kvaf[i].addr + off); 244 } 245 kmem_free_wakeup(io_map, kvaf[i].addr, 246 kvaf[i].size); 247 } 248 kvasfreecnt = 0; 249 bmfreeing = 0; 250 if( bmwait) { 251 bmwait = 0; 252 wakeup( (caddr_t) io_map); 253 } 254 } 255 256 if( size == 0) { 257 splx(s); 258 return 0; 259 } 260 261 if ((kva = kmem_alloc_pageable(io_map, size)) == 0) { 262 if( !waitok) { 263 splx(s); 264 return 0; 265 } 266 bmwait = 1; 267 tsleep((caddr_t) io_map, PRIBIO, "bmwait", 0); 268 goto more; 269 } 270 splx(s); 271 return kva; 272 } 273 274 /* 275 * same as vm_bounce_kva -- but really allocate (but takes pages as arg) 276 */ 277 vm_offset_t 278 vm_bounce_kva_alloc(count) 279 int count; 280 { 281 int i; 282 vm_offset_t kva; 283 vm_offset_t pa; 284 if( bouncepages == 0) { 285 kva = (vm_offset_t) malloc(count*PAGE_SIZE, M_TEMP, M_WAITOK); 286 return kva; 287 } 288 kva = vm_bounce_kva(count*PAGE_SIZE, 1); 289 for(i=0;i<count;i++) { 290 pa = vm_bounce_page_find(1); 291 pmap_kenter(kva + i * PAGE_SIZE, pa); 292 } 293 return kva; 294 } 295 296 /* 297 * same as vm_bounce_kva_free -- but really free 298 */ 299 void 300 vm_bounce_kva_alloc_free(kva, count) 301 vm_offset_t kva; 302 int count; 303 { 304 int i; 305 vm_offset_t pa; 306 if( bouncepages == 0) { 307 free((caddr_t) kva, M_TEMP); 308 return; 309 } 310 for(i = 0; i < count; i++) { 311 pa = pmap_kextract(kva + i * PAGE_SIZE); 312 vm_bounce_page_free(pa, 1); 313 } 314 vm_bounce_kva_free(kva, count*PAGE_SIZE, 0); 315 } 316 317 /* 318 * do the things necessary to the struct buf to implement 319 * bounce buffers... inserted before the disk sort 320 */ 321 void 322 vm_bounce_alloc(bp) 323 struct buf *bp; 324 { 325 int countvmpg; 326 vm_offset_t vastart, vaend; 327 vm_offset_t vapstart, vapend; 328 vm_offset_t va, kva; 329 vm_offset_t pa; 330 int dobounceflag = 0; 331 int i; 332 333 if (bouncepages == 0) 334 return; 335 336 if (bp->b_flags & B_BOUNCE) { 337 printf("vm_bounce_alloc: called recursively???\n"); 338 return; 339 } 340 341 if (bp->b_bufsize < bp->b_bcount) { 342 printf( 343 "vm_bounce_alloc: b_bufsize(0x%lx) < b_bcount(0x%lx) !!\n", 344 bp->b_bufsize, bp->b_bcount); 345 panic("vm_bounce_alloc"); 346 } 347 348 /* 349 * This is not really necessary 350 * if( bp->b_bufsize != bp->b_bcount) { 351 * printf("size: %d, count: %d\n", bp->b_bufsize, bp->b_bcount); 352 * } 353 */ 354 355 356 vastart = (vm_offset_t) bp->b_data; 357 vaend = (vm_offset_t) bp->b_data + bp->b_bufsize; 358 359 vapstart = trunc_page(vastart); 360 vapend = round_page(vaend); 361 countvmpg = (vapend - vapstart) / PAGE_SIZE; 362 363 /* 364 * if any page is above 16MB, then go into bounce-buffer mode 365 */ 366 va = vapstart; 367 for (i = 0; i < countvmpg; i++) { 368 pa = pmap_kextract(va); 369 if (pa >= SIXTEENMEG) 370 ++dobounceflag; 371 if( pa == 0) 372 panic("vm_bounce_alloc: Unmapped page"); 373 va += PAGE_SIZE; 374 } 375 if (dobounceflag == 0) 376 return; 377 378 if (bouncepages < dobounceflag) 379 panic("Not enough bounce buffers!!!"); 380 381 /* 382 * allocate a replacement kva for b_addr 383 */ 384 kva = vm_bounce_kva(countvmpg*PAGE_SIZE, 1); 385 #if 0 386 printf("%s: vapstart: %x, vapend: %x, countvmpg: %d, kva: %x ", 387 (bp->b_flags & B_READ) ? "read":"write", 388 vapstart, vapend, countvmpg, kva); 389 #endif 390 va = vapstart; 391 for (i = 0; i < countvmpg; i++) { 392 pa = pmap_kextract(va); 393 if (pa >= SIXTEENMEG) { 394 /* 395 * allocate a replacement page 396 */ 397 vm_offset_t bpa = vm_bounce_page_find(1); 398 pmap_kenter(kva + (PAGE_SIZE * i), bpa); 399 #if 0 400 printf("r(%d): (%x,%x,%x) ", i, va, pa, bpa); 401 #endif 402 /* 403 * if we are writing, the copy the data into the page 404 */ 405 if ((bp->b_flags & B_READ) == 0) { 406 bcopy((caddr_t) va, (caddr_t) kva + (PAGE_SIZE * i), PAGE_SIZE); 407 } 408 } else { 409 /* 410 * use original page 411 */ 412 pmap_kenter(kva + (PAGE_SIZE * i), pa); 413 } 414 va += PAGE_SIZE; 415 } 416 417 /* 418 * flag the buffer as being bounced 419 */ 420 bp->b_flags |= B_BOUNCE; 421 /* 422 * save the original buffer kva 423 */ 424 bp->b_savekva = bp->b_data; 425 /* 426 * put our new kva into the buffer (offset by original offset) 427 */ 428 bp->b_data = (caddr_t) (((vm_offset_t) kva) | 429 ((vm_offset_t) bp->b_savekva & PAGE_MASK)); 430 #if 0 431 printf("b_savekva: %x, newva: %x\n", bp->b_savekva, bp->b_data); 432 #endif 433 return; 434 } 435 436 /* 437 * hook into biodone to free bounce buffer 438 */ 439 void 440 vm_bounce_free(bp) 441 struct buf *bp; 442 { 443 int i; 444 vm_offset_t origkva, bouncekva, bouncekvaend; 445 446 /* 447 * if this isn't a bounced buffer, then just return 448 */ 449 if ((bp->b_flags & B_BOUNCE) == 0) 450 return; 451 452 /* 453 * This check is not necessary 454 * if (bp->b_bufsize != bp->b_bcount) { 455 * printf("vm_bounce_free: b_bufsize=%d, b_bcount=%d\n", 456 * bp->b_bufsize, bp->b_bcount); 457 * } 458 */ 459 460 origkva = (vm_offset_t) bp->b_savekva; 461 bouncekva = (vm_offset_t) bp->b_data; 462 /* 463 printf("free: %d ", bp->b_bufsize); 464 */ 465 466 /* 467 * check every page in the kva space for b_addr 468 */ 469 for (i = 0; i < bp->b_bufsize; ) { 470 vm_offset_t mybouncepa; 471 vm_offset_t copycount; 472 473 copycount = round_page(bouncekva + 1) - bouncekva; 474 mybouncepa = pmap_kextract(trunc_page(bouncekva)); 475 476 /* 477 * if this is a bounced pa, then process as one 478 */ 479 if ( mybouncepa != pmap_kextract( trunc_page( origkva))) { 480 vm_offset_t tocopy = copycount; 481 if (i + tocopy > bp->b_bufsize) 482 tocopy = bp->b_bufsize - i; 483 /* 484 * if this is a read, then copy from bounce buffer into original buffer 485 */ 486 if (bp->b_flags & B_READ) 487 bcopy((caddr_t) bouncekva, (caddr_t) origkva, tocopy); 488 /* 489 * free the bounce allocation 490 */ 491 492 /* 493 printf("(kva: %x, pa: %x)", bouncekva, mybouncepa); 494 */ 495 vm_bounce_page_free(mybouncepa, 1); 496 } 497 498 origkva += copycount; 499 bouncekva += copycount; 500 i += copycount; 501 } 502 503 /* 504 printf("\n"); 505 */ 506 /* 507 * add the old kva into the "to free" list 508 */ 509 510 bouncekva= trunc_page((vm_offset_t) bp->b_data); 511 bouncekvaend= round_page((vm_offset_t)bp->b_data + bp->b_bufsize); 512 513 /* 514 printf("freeva: %d\n", (bouncekvaend - bouncekva) / PAGE_SIZE); 515 */ 516 vm_bounce_kva_free( bouncekva, (bouncekvaend - bouncekva), 0); 517 bp->b_data = bp->b_savekva; 518 bp->b_savekva = 0; 519 bp->b_flags &= ~B_BOUNCE; 520 521 return; 522 } 523 524 525 /* 526 * init the bounce buffer system 527 */ 528 void 529 vm_bounce_init() 530 { 531 int i; 532 533 kvasfreecnt = 0; 534 535 if (bouncepages == 0) 536 return; 537 538 bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED; 539 bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT); 540 541 if (!bounceallocarray) 542 panic("Cannot allocate bounce resource array"); 543 544 bouncepa = malloc(bouncepages * sizeof(vm_offset_t), M_TEMP, M_NOWAIT); 545 if (!bouncepa) 546 panic("Cannot allocate physical memory array"); 547 548 for(i=0;i<bounceallocarraysize;i++) { 549 bounceallocarray[i] = 0xffffffff; 550 } 551 552 for(i=0;i<bouncepages;i++) { 553 vm_offset_t pa; 554 if( (pa = pmap_kextract((vm_offset_t) bouncememory + i * PAGE_SIZE)) >= SIXTEENMEG) { 555 printf("vm_bounce_init: bounce memory out of range -- bounce disabled\n"); 556 free(bounceallocarray, M_TEMP); 557 bounceallocarray = NULL; 558 free(bouncepa, M_TEMP); 559 bouncepa = NULL; 560 bouncepages = 0; 561 break; 562 } 563 if( pa == 0) 564 panic("bounce memory not resident"); 565 bouncepa[i] = pa; 566 bounceallocarray[i/(8*sizeof(int))] &= ~(1<<(i%(8*sizeof(int)))); 567 } 568 bouncefree = bouncepages; 569 570 } 571 #endif /* BOUNCE_BUFFERS */ 572 573 /* 574 * quick version of vm_fault 575 */ 576 void 577 vm_fault_quick(v, prot) 578 caddr_t v; 579 int prot; 580 { 581 if (prot & VM_PROT_WRITE) 582 subyte(v, fubyte(v)); 583 else 584 fubyte(v); 585 } 586 587 /* 588 * Finish a fork operation, with process p2 nearly set up. 589 * Copy and update the pcb, set up the stack so that the child 590 * ready to run and return to user mode. 591 */ 592 void 593 cpu_fork(p1, p2) 594 register struct proc *p1, *p2; 595 { 596 struct pcb *pcb2 = &p2->p_addr->u_pcb; 597 598 #if NNPX > 0 599 /* Ensure that p1's pcb is up to date. */ 600 if (npxproc == p1) 601 npxsave(&p1->p_addr->u_pcb.pcb_savefpu); 602 #endif 603 604 /* Copy p1's pcb. */ 605 p2->p_addr->u_pcb = p1->p_addr->u_pcb; 606 607 /* 608 * Create a new fresh stack for the new process. 609 * Copy the trap frame for the return to user mode as if from a 610 * syscall. This copies the user mode register values. 611 */ 612 p2->p_md.md_regs = (struct trapframe *) 613 #ifdef VM86 614 ((int)p2->p_addr + UPAGES * PAGE_SIZE - 16) - 1; 615 #else 616 ((int)p2->p_addr + UPAGES * PAGE_SIZE) - 1; 617 #endif /* VM86 */ 618 *p2->p_md.md_regs = *p1->p_md.md_regs; 619 620 /* 621 * Set registers for trampoline to user mode. Leave space for the 622 * return address on stack. These are the kernel mode register values. 623 */ 624 pcb2->pcb_cr3 = vtophys(p2->p_vmspace->vm_pmap.pm_pdir); 625 pcb2->pcb_edi = p2->p_md.md_regs->tf_edi; 626 pcb2->pcb_esi = (int)fork_return; 627 pcb2->pcb_ebp = p2->p_md.md_regs->tf_ebp; 628 pcb2->pcb_esp = (int)p2->p_md.md_regs - sizeof(void *); 629 pcb2->pcb_ebx = (int)p2; 630 pcb2->pcb_eip = (int)fork_trampoline; 631 /* 632 * pcb2->pcb_ldt: duplicated below, if necessary. 633 * pcb2->pcb_ldt_len: cloned above. 634 * pcb2->pcb_savefpu: cloned above. 635 * pcb2->pcb_flags: cloned above (always 0 here?). 636 * pcb2->pcb_onfault: cloned above (always NULL here?). 637 */ 638 639 #ifdef VM86 640 /* 641 * XXX don't copy the i/o pages. this should probably be fixed. 642 */ 643 pcb2->pcb_ext = 0; 644 #endif 645 646 #ifdef USER_LDT 647 /* Copy the LDT, if necessary. */ 648 if (pcb2->pcb_ldt != 0) { 649 union descriptor *new_ldt; 650 size_t len = pcb2->pcb_ldt_len * sizeof(union descriptor); 651 652 new_ldt = (union descriptor *)kmem_alloc(kernel_map, len); 653 bcopy(pcb2->pcb_ldt, new_ldt, len); 654 pcb2->pcb_ldt = (caddr_t)new_ldt; 655 } 656 #endif 657 658 /* 659 * Now, cpu_switch() can schedule the new process. 660 * pcb_esp is loaded pointing to the cpu_switch() stack frame 661 * containing the return address when exiting cpu_switch. 662 * This will normally be to proc_trampoline(), which will have 663 * %ebx loaded with the new proc's pointer. proc_trampoline() 664 * will set up a stack to call fork_return(p, frame); to complete 665 * the return to user-mode. 666 */ 667 } 668 669 /* 670 * Intercept the return address from a freshly forked process that has NOT 671 * been scheduled yet. 672 * 673 * This is needed to make kernel threads stay in kernel mode. 674 */ 675 void 676 cpu_set_fork_handler(p, func, arg) 677 struct proc *p; 678 void (*func) __P((void *)); 679 void *arg; 680 { 681 /* 682 * Note that the trap frame follows the args, so the function 683 * is really called like this: func(arg, frame); 684 */ 685 p->p_addr->u_pcb.pcb_esi = (int) func; /* function */ 686 p->p_addr->u_pcb.pcb_ebx = (int) arg; /* first arg */ 687 } 688 689 void 690 cpu_exit(p) 691 register struct proc *p; 692 { 693 #if defined(USER_LDT) || defined(VM86) 694 struct pcb *pcb = &p->p_addr->u_pcb; 695 #endif 696 697 #if NNPX > 0 698 npxexit(p); 699 #endif /* NNPX */ 700 #ifdef VM86 701 if (pcb->pcb_ext != 0) { 702 /* 703 * XXX do we need to move the TSS off the allocated pages 704 * before freeing them? (not done here) 705 */ 706 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext, 707 ctob(IOPAGES + 1)); 708 pcb->pcb_ext = 0; 709 } 710 #endif 711 #ifdef USER_LDT 712 if (pcb->pcb_ldt != 0) { 713 if (pcb == curpcb) { 714 lldt(_default_ldt); 715 currentldt = _default_ldt; 716 } 717 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt, 718 pcb->pcb_ldt_len * sizeof(union descriptor)); 719 pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0; 720 } 721 #endif 722 cnt.v_swtch++; 723 cpu_switch(p); 724 panic("cpu_exit"); 725 } 726 727 void 728 cpu_wait(p) 729 struct proc *p; 730 { 731 /* drop per-process resources */ 732 pmap_dispose_proc(p); 733 734 /* and clean-out the vmspace */ 735 vmspace_free(p->p_vmspace); 736 } 737 738 /* 739 * Dump the machine specific header information at the start of a core dump. 740 */ 741 int 742 cpu_coredump(p, vp, cred) 743 struct proc *p; 744 struct vnode *vp; 745 struct ucred *cred; 746 { 747 int error; 748 caddr_t tempuser; 749 750 tempuser = malloc(ctob(UPAGES), M_TEMP, M_WAITOK); 751 if (!tempuser) 752 return EINVAL; 753 754 bzero(tempuser, ctob(UPAGES)); 755 bcopy(p->p_addr, tempuser, sizeof(struct user)); 756 bcopy(p->p_md.md_regs, 757 tempuser + ((caddr_t) p->p_md.md_regs - (caddr_t) p->p_addr), 758 sizeof(struct trapframe)); 759 760 error = vn_rdwr(UIO_WRITE, vp, (caddr_t) tempuser, 761 ctob(UPAGES), 762 (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, 763 cred, (int *)NULL, p); 764 765 free(tempuser, M_TEMP); 766 767 return error; 768 } 769 770 #ifdef notyet 771 static void 772 setredzone(pte, vaddr) 773 u_short *pte; 774 caddr_t vaddr; 775 { 776 /* eventually do this by setting up an expand-down stack segment 777 for ss0: selector, allowing stack access down to top of u. 778 this means though that protection violations need to be handled 779 thru a double fault exception that must do an integral task 780 switch to a known good context, within which a dump can be 781 taken. a sensible scheme might be to save the initial context 782 used by sched (that has physical memory mapped 1:1 at bottom) 783 and take the dump while still in mapped mode */ 784 } 785 #endif 786 787 /* 788 * Convert kernel VA to physical address 789 */ 790 u_long 791 kvtop(void *addr) 792 { 793 vm_offset_t va; 794 795 va = pmap_kextract((vm_offset_t)addr); 796 if (va == 0) 797 panic("kvtop: zero page frame"); 798 return((int)va); 799 } 800 801 /* 802 * Map an IO request into kernel virtual address space. 803 * 804 * All requests are (re)mapped into kernel VA space. 805 * Notice that we use b_bufsize for the size of the buffer 806 * to be mapped. b_bcount might be modified by the driver. 807 */ 808 void 809 vmapbuf(bp) 810 register struct buf *bp; 811 { 812 register caddr_t addr, v, kva; 813 vm_offset_t pa; 814 815 if ((bp->b_flags & B_PHYS) == 0) 816 panic("vmapbuf"); 817 818 for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page(bp->b_data); 819 addr < bp->b_data + bp->b_bufsize; 820 addr += PAGE_SIZE, v += PAGE_SIZE) { 821 /* 822 * Do the vm_fault if needed; do the copy-on-write thing 823 * when reading stuff off device into memory. 824 */ 825 vm_fault_quick(addr, 826 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); 827 pa = trunc_page(pmap_kextract((vm_offset_t) addr)); 828 if (pa == 0) 829 panic("vmapbuf: page not present"); 830 vm_page_hold(PHYS_TO_VM_PAGE(pa)); 831 pmap_kenter((vm_offset_t) v, pa); 832 } 833 834 kva = bp->b_saveaddr; 835 bp->b_saveaddr = bp->b_data; 836 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 837 } 838 839 /* 840 * Free the io map PTEs associated with this IO operation. 841 * We also invalidate the TLB entries and restore the original b_addr. 842 */ 843 void 844 vunmapbuf(bp) 845 register struct buf *bp; 846 { 847 register caddr_t addr; 848 vm_offset_t pa; 849 850 if ((bp->b_flags & B_PHYS) == 0) 851 panic("vunmapbuf"); 852 853 for (addr = (caddr_t)trunc_page(bp->b_data); 854 addr < bp->b_data + bp->b_bufsize; 855 addr += PAGE_SIZE) { 856 pa = trunc_page(pmap_kextract((vm_offset_t) addr)); 857 pmap_kremove((vm_offset_t) addr); 858 vm_page_unhold(PHYS_TO_VM_PAGE(pa)); 859 } 860 861 bp->b_data = bp->b_saveaddr; 862 } 863 864 /* 865 * Force reset the processor by invalidating the entire address space! 866 */ 867 868 #ifdef SMP 869 static void 870 cpu_reset_proxy() 871 { 872 u_int saved_mp_lock; 873 874 cpu_reset_proxy_active = 1; 875 while (cpu_reset_proxy_active == 1) 876 ; /* Wait for other cpu to disable interupts */ 877 saved_mp_lock = mp_lock; 878 mp_lock = 1; 879 printf("cpu_reset_proxy: Grabbed mp lock for BSP\n"); 880 cpu_reset_proxy_active = 3; 881 while (cpu_reset_proxy_active == 3) 882 ; /* Wait for other cpu to enable interrupts */ 883 stop_cpus((1<<cpu_reset_proxyid)); 884 printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); 885 DELAY(1000000); 886 cpu_reset_real(); 887 } 888 #endif 889 890 void 891 cpu_reset() 892 { 893 #ifdef SMP 894 if (smp_active == 0) { 895 cpu_reset_real(); 896 /* NOTREACHED */ 897 } else { 898 899 u_int map; 900 int cnt; 901 printf("cpu_reset called on cpu#%d\n",cpuid); 902 903 map = other_cpus & ~ stopped_cpus; 904 905 if (map != 0) { 906 printf("cpu_reset: Stopping other CPUs\n"); 907 stop_cpus(map); /* Stop all other CPUs */ 908 } 909 910 if (cpuid == 0) { 911 DELAY(1000000); 912 cpu_reset_real(); 913 /* NOTREACHED */ 914 } else { 915 /* We are not BSP (CPU #0) */ 916 917 cpu_reset_proxyid = cpuid; 918 cpustop_restartfunc = cpu_reset_proxy; 919 printf("cpu_reset: Restarting BSP\n"); 920 started_cpus = (1<<0); /* Restart CPU #0 */ 921 922 cnt = 0; 923 while (cpu_reset_proxy_active == 0 && cnt < 10000000) 924 cnt++; /* Wait for BSP to announce restart */ 925 if (cpu_reset_proxy_active == 0) 926 printf("cpu_reset: Failed to restart BSP\n"); 927 __asm __volatile("cli" : : : "memory"); 928 cpu_reset_proxy_active = 2; 929 cnt = 0; 930 while (cpu_reset_proxy_active == 2 && cnt < 10000000) 931 cnt++; /* Do nothing */ 932 if (cpu_reset_proxy_active == 2) { 933 printf("cpu_reset: BSP did not grab mp lock\n"); 934 cpu_reset_real(); /* XXX: Bogus ? */ 935 } 936 cpu_reset_proxy_active = 4; 937 __asm __volatile("sti" : : : "memory"); 938 while (1); 939 /* NOTREACHED */ 940 } 941 } 942 #else 943 cpu_reset_real(); 944 #endif 945 } 946 947 static void 948 cpu_reset_real() 949 { 950 951 #ifdef PC98 952 /* 953 * Attempt to do a CPU reset via CPU reset port. 954 */ 955 disable_intr(); 956 if ((inb(0x35) & 0xa0) != 0xa0) { 957 outb(0x37, 0x0f); /* SHUT0 = 0. */ 958 outb(0x37, 0x0b); /* SHUT1 = 0. */ 959 } 960 outb(0xf0, 0x00); /* Reset. */ 961 #else 962 /* 963 * Attempt to do a CPU reset via the keyboard controller, 964 * do not turn of the GateA20, as any machine that fails 965 * to do the reset here would then end up in no man's land. 966 */ 967 968 #if !defined(BROKEN_KEYBOARD_RESET) 969 outb(IO_KBD + 4, 0xFE); 970 DELAY(500000); /* wait 0.5 sec to see if that did it */ 971 printf("Keyboard reset did not work, attempting CPU shutdown\n"); 972 DELAY(1000000); /* wait 1 sec for printf to complete */ 973 #endif 974 #endif /* PC98 */ 975 /* force a shutdown by unmapping entire address space ! */ 976 bzero((caddr_t) PTD, PAGE_SIZE); 977 978 /* "good night, sweet prince .... <THUNK!>" */ 979 invltlb(); 980 /* NOTREACHED */ 981 while(1); 982 } 983 984 /* 985 * Grow the user stack to allow for 'sp'. This version grows the stack in 986 * chunks of SGROWSIZ. 987 */ 988 int 989 grow(p, sp) 990 struct proc *p; 991 u_int sp; 992 { 993 unsigned int nss; 994 caddr_t v; 995 struct vmspace *vm = p->p_vmspace; 996 997 if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK) 998 return (1); 999 1000 nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE); 1001 1002 if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur) 1003 return (0); 1004 1005 if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT, 1006 SGROWSIZ) < nss) { 1007 int grow_amount; 1008 /* 1009 * If necessary, grow the VM that the stack occupies 1010 * to allow for the rlimit. This allows us to not have 1011 * to allocate all of the VM up-front in execve (which 1012 * is expensive). 1013 * Grow the VM by the amount requested rounded up to 1014 * the nearest SGROWSIZ to provide for some hysteresis. 1015 */ 1016 grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ); 1017 v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT, 1018 SGROWSIZ) - grow_amount; 1019 /* 1020 * If there isn't enough room to extend by SGROWSIZ, then 1021 * just extend to the maximum size 1022 */ 1023 if (v < vm->vm_maxsaddr) { 1024 v = vm->vm_maxsaddr; 1025 grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT); 1026 } 1027 if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v, 1028 grow_amount, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != KERN_SUCCESS)) { 1029 return (0); 1030 } 1031 vm->vm_ssize += grow_amount >> PAGE_SHIFT; 1032 } 1033 1034 return (1); 1035 } 1036 1037 static int cnt_prezero; 1038 1039 SYSCTL_INT(_machdep, OID_AUTO, cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, ""); 1040 1041 /* 1042 * Implement the pre-zeroed page mechanism. 1043 * This routine is called from the idle loop. 1044 */ 1045 int 1046 vm_page_zero_idle() 1047 { 1048 static int free_rover; 1049 vm_page_t m; 1050 int s; 1051 1052 /* 1053 * XXX 1054 * We stop zeroing pages when there are sufficent prezeroed pages. 1055 * This threshold isn't really needed, except we want to 1056 * bypass unneeded calls to vm_page_list_find, and the 1057 * associated cache flush and latency. The pre-zero will 1058 * still be called when there are significantly more 1059 * non-prezeroed pages than zeroed pages. The threshold 1060 * of half the number of reserved pages is arbitrary, but 1061 * approximately the right amount. Eventually, we should 1062 * perhaps interrupt the zero operation when a process 1063 * is found to be ready to run. 1064 */ 1065 if (cnt.v_free_count - vm_page_zero_count <= cnt.v_free_reserved / 2) 1066 return (0); 1067 #ifdef SMP 1068 if (try_mplock()) { 1069 #endif 1070 s = splvm(); 1071 __asm __volatile("sti" : : : "memory"); 1072 m = vm_page_list_find(PQ_FREE, free_rover); 1073 if (m != NULL) { 1074 --(*vm_page_queues[m->queue].lcnt); 1075 TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq); 1076 m->queue = PQ_NONE; 1077 splx(s); 1078 #if 0 1079 rel_mplock(); 1080 #endif 1081 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1082 #if 0 1083 get_mplock(); 1084 #endif 1085 (void)splvm(); 1086 m->queue = PQ_ZERO + m->pc; 1087 ++(*vm_page_queues[m->queue].lcnt); 1088 TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, 1089 pageq); 1090 free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK; 1091 ++vm_page_zero_count; 1092 ++cnt_prezero; 1093 } 1094 splx(s); 1095 __asm __volatile("cli" : : : "memory"); 1096 #ifdef SMP 1097 rel_mplock(); 1098 #endif 1099 return (1); 1100 #ifdef SMP 1101 } 1102 #endif 1103 return (0); 1104 } 1105 1106 /* 1107 * Software interrupt handler for queued VM system processing. 1108 */ 1109 void 1110 swi_vm() 1111 { 1112 if (busdma_swi_pending != 0) 1113 busdma_swi(); 1114 } 1115 1116 /* 1117 * Tell whether this address is in some physical memory region. 1118 * Currently used by the kernel coredump code in order to avoid 1119 * dumping the ``ISA memory hole'' which could cause indefinite hangs, 1120 * or other unpredictable behaviour. 1121 */ 1122 1123 #include "isa.h" 1124 1125 int 1126 is_physical_memory(addr) 1127 vm_offset_t addr; 1128 { 1129 1130 #if NISA > 0 1131 /* The ISA ``memory hole''. */ 1132 if (addr >= 0xa0000 && addr < 0x100000) 1133 return 0; 1134 #endif 1135 1136 /* 1137 * stuff other tests for known memory-mapped devices (PCI?) 1138 * here 1139 */ 1140 1141 return 1; 1142 } 1143