xref: /freebsd/sys/i386/i386/vm_machdep.c (revision a0409676120c1e558d0ade943019934e0f15118d)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1982, 1986 The Regents of the University of California.
5  * Copyright (c) 1989, 1990 William Jolitz
6  * Copyright (c) 1994 John Dyson
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * the Systems Programming Group of the University of Utah Computer
11  * Science Department, and William Jolitz.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
42  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_isa.h"
49 #include "opt_npx.h"
50 #include "opt_reset.h"
51 #include "opt_cpu.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/bio.h>
56 #include <sys/buf.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/mutex.h>
63 #include <sys/proc.h>
64 #include <sys/sysent.h>
65 #include <sys/sf_buf.h>
66 #include <sys/smp.h>
67 #include <sys/sched.h>
68 #include <sys/sysctl.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/vmmeter.h>
72 
73 #include <machine/cpu.h>
74 #include <machine/cputypes.h>
75 #include <machine/md_var.h>
76 #include <machine/pcb.h>
77 #include <machine/pcb_ext.h>
78 #include <machine/smp.h>
79 #include <machine/vm86.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_param.h>
87 
88 _Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
89     "__OFFSETOF_MONITORBUF does not correspond with offset of pc_monitorbuf.");
90 
91 union savefpu *
92 get_pcb_user_save_td(struct thread *td)
93 {
94 	vm_offset_t p;
95 
96 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
97 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
98 	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
99 	return ((union savefpu *)p);
100 }
101 
102 union savefpu *
103 get_pcb_user_save_pcb(struct pcb *pcb)
104 {
105 	vm_offset_t p;
106 
107 	p = (vm_offset_t)(pcb + 1);
108 	return ((union savefpu *)p);
109 }
110 
111 struct pcb *
112 get_pcb_td(struct thread *td)
113 {
114 	vm_offset_t p;
115 
116 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
117 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
118 	    sizeof(struct pcb);
119 	return ((struct pcb *)p);
120 }
121 
122 void *
123 alloc_fpusave(int flags)
124 {
125 	void *res;
126 	struct savefpu_ymm *sf;
127 
128 	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
129 	if (use_xsave) {
130 		sf = (struct savefpu_ymm *)res;
131 		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
132 		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
133 	}
134 	return (res);
135 }
136 
137 /*
138  * Common code shared between cpu_fork() and cpu_copy_thread() for
139  * initializing a thread.
140  */
141 static void
142 copy_thread(struct thread *td1, struct thread *td2)
143 {
144 	struct pcb *pcb2;
145 
146 	pcb2 = td2->td_pcb;
147 
148 	/* Ensure that td1's pcb is up to date for user threads. */
149 	if ((td2->td_pflags & TDP_KTHREAD) == 0) {
150 		MPASS(td1 == curthread);
151 		td1->td_pcb->pcb_gs = rgs();
152 		critical_enter();
153 		if (PCPU_GET(fpcurthread) == td1)
154 			npxsave(td1->td_pcb->pcb_save);
155 		critical_exit();
156 	}
157 
158 	/* Copy td1's pcb */
159 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
160 
161 	/* Properly initialize pcb_save */
162 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
163 
164 	/* Kernel threads start with clean NPX and segment bases. */
165 	if ((td2->td_pflags & TDP_KTHREAD) != 0) {
166 		pcb2->pcb_gs = _udatasel;
167 		set_fsbase(td2, 0);
168 		set_gsbase(td2, 0);
169 		pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
170 		    PCB_KERNNPX | PCB_KERNNPX_THR);
171 	} else {
172 		MPASS((pcb2->pcb_flags & (PCB_KERNNPX | PCB_KERNNPX_THR)) == 0);
173 		bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
174 		    cpu_max_ext_state_size);
175 	}
176 
177 	/*
178 	 * Set registers for trampoline to user mode.  Leave space for the
179 	 * return address on stack.  These are the kernel mode register values.
180 	 */
181 	pcb2->pcb_edi = 0;
182 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
183 	pcb2->pcb_ebp = 0;
184 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *); /* trampoline arg */
185 	pcb2->pcb_ebx = (int)td2;			    /* trampoline arg */
186 	pcb2->pcb_eip = (int)fork_trampoline + setidt_disp;
187 	/*
188 	 * If we didn't copy the pcb, we'd need to do the following registers:
189 	 * pcb2->pcb_cr3:	cloned above.
190 	 * pcb2->pcb_dr*:	cloned above.
191 	 * pcb2->pcb_savefpu:	cloned above.
192 	 * pcb2->pcb_flags:	cloned above.
193 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
194 	 * pcb2->pcb_gs:	cloned above.
195 	 * pcb2->pcb_ext:	cleared below.
196 	 */
197 	pcb2->pcb_ext = NULL;
198 
199 	/* Setup to release spin count in fork_exit(). */
200 	td2->td_md.md_spinlock_count = 1;
201 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
202 }
203 
204 /*
205  * Finish a fork operation, with process p2 nearly set up.
206  * Copy and update the pcb, set up the stack so that the child
207  * ready to run and return to user mode.
208  */
209 void
210 cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
211 {
212 	struct proc *p1;
213 	struct pcb *pcb2;
214 	struct mdproc *mdp2;
215 
216 	p1 = td1->td_proc;
217 	if ((flags & RFPROC) == 0) {
218 		if ((flags & RFMEM) == 0) {
219 			/* unshare user LDT */
220 			struct mdproc *mdp1 = &p1->p_md;
221 			struct proc_ldt *pldt, *pldt1;
222 
223 			mtx_lock_spin(&dt_lock);
224 			if ((pldt1 = mdp1->md_ldt) != NULL &&
225 			    pldt1->ldt_refcnt > 1) {
226 				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
227 				if (pldt == NULL)
228 					panic("could not copy LDT");
229 				mdp1->md_ldt = pldt;
230 				set_user_ldt(mdp1);
231 				user_ldt_deref(pldt1);
232 			} else
233 				mtx_unlock_spin(&dt_lock);
234 		}
235 		return;
236 	}
237 
238 	/* Point the pcb to the top of the stack */
239 	pcb2 = get_pcb_td(td2);
240 	td2->td_pcb = pcb2;
241 
242 	copy_thread(td1, td2);
243 
244 	/* Point mdproc and then copy over td1's contents */
245 	mdp2 = &p2->p_md;
246 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
247 
248 	/*
249 	 * Copy the trap frame for the return to user mode as if from a
250 	 * syscall.  This copies most of the user mode register values.
251 	 * The -VM86_STACK_SPACE (-16) is so we can expand the trapframe
252 	 * if we go to vm86.
253 	 */
254 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb -
255 	    VM86_STACK_SPACE) - 1;
256 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
257 
258 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
259 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
260 	td2->td_frame->tf_edx = 1;
261 
262 	/*
263 	 * If the parent process has the trap bit set (i.e. a debugger
264 	 * had single stepped the process to the system call), we need
265 	 * to clear the trap flag from the new frame.
266 	 */
267 	td2->td_frame->tf_eflags &= ~PSL_T;
268 
269 	/* Set cr3 for the new process. */
270 	pcb2->pcb_cr3 = pmap_get_cr3(vmspace_pmap(p2->p_vmspace));
271 
272 	/*
273 	 * XXX don't copy the i/o pages.  this should probably be fixed.
274 	 */
275 	pcb2->pcb_ext = NULL;
276 
277 	/* Copy the LDT, if necessary. */
278 	mtx_lock_spin(&dt_lock);
279 	if (mdp2->md_ldt != NULL) {
280 		if (flags & RFMEM) {
281 			mdp2->md_ldt->ldt_refcnt++;
282 		} else {
283 			mdp2->md_ldt = user_ldt_alloc(mdp2,
284 			    mdp2->md_ldt->ldt_len);
285 			if (mdp2->md_ldt == NULL)
286 				panic("could not copy LDT");
287 		}
288 	}
289 	mtx_unlock_spin(&dt_lock);
290 
291 	/*
292 	 * Now, cpu_switch() can schedule the new process.
293 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
294 	 * containing the return address when exiting cpu_switch.
295 	 * This will normally be to fork_trampoline(), which will have
296 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
297 	 * will set up a stack to call fork_return(p, frame); to complete
298 	 * the return to user-mode.
299 	 */
300 }
301 
302 /*
303  * Intercept the return address from a freshly forked process that has NOT
304  * been scheduled yet.
305  *
306  * This is needed to make kernel threads stay in kernel mode.
307  */
308 void
309 cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
310 {
311 	/*
312 	 * Note that the trap frame follows the args, so the function
313 	 * is really called like this:  func(arg, frame);
314 	 */
315 	td->td_pcb->pcb_esi = (int) func;	/* function */
316 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
317 }
318 
319 void
320 cpu_exit(struct thread *td)
321 {
322 
323 	/*
324 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
325 	 * and %gs before we free it in case they refer to an LDT entry.
326 	 */
327 	mtx_lock_spin(&dt_lock);
328 	if (td->td_proc->p_md.md_ldt) {
329 		td->td_pcb->pcb_gs = _udatasel;
330 		load_gs(_udatasel);
331 		user_ldt_free(td);
332 	} else
333 		mtx_unlock_spin(&dt_lock);
334 }
335 
336 void
337 cpu_thread_exit(struct thread *td)
338 {
339 
340 	critical_enter();
341 	if (td == PCPU_GET(fpcurthread))
342 		npxdrop();
343 	critical_exit();
344 
345 	/* Disable any hardware breakpoints. */
346 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
347 		reset_dbregs();
348 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
349 	}
350 }
351 
352 void
353 cpu_thread_clean(struct thread *td)
354 {
355 	struct pcb *pcb;
356 
357 	pcb = td->td_pcb;
358 	if (pcb->pcb_ext != NULL) {
359 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
360 		/*
361 		 * XXX do we need to move the TSS off the allocated pages
362 		 * before freeing them?  (not done here)
363 		 */
364 		pmap_trm_free(pcb->pcb_ext, ctob(IOPAGES + 1));
365 		pcb->pcb_ext = NULL;
366 	}
367 }
368 
369 void
370 cpu_thread_swapin(struct thread *td)
371 {
372 }
373 
374 void
375 cpu_thread_swapout(struct thread *td)
376 {
377 }
378 
379 void
380 cpu_thread_alloc(struct thread *td)
381 {
382 	struct pcb *pcb;
383 	struct xstate_hdr *xhdr;
384 
385 	td->td_pcb = pcb = get_pcb_td(td);
386 	td->td_frame = (struct trapframe *)((caddr_t)pcb -
387 	    VM86_STACK_SPACE) - 1;
388 	pcb->pcb_ext = NULL;
389 	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
390 	if (use_xsave) {
391 		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
392 		bzero(xhdr, sizeof(*xhdr));
393 		xhdr->xstate_bv = xsave_mask;
394 	}
395 }
396 
397 void
398 cpu_thread_free(struct thread *td)
399 {
400 
401 	cpu_thread_clean(td);
402 }
403 
404 bool
405 cpu_exec_vmspace_reuse(struct proc *p __unused, vm_map_t map __unused)
406 {
407 
408 	return (true);
409 }
410 
411 int
412 cpu_procctl(struct thread *td __unused, int idtype __unused, id_t id __unused,
413     int com __unused, void *data __unused)
414 {
415 
416 	return (EINVAL);
417 }
418 
419 void
420 cpu_set_syscall_retval(struct thread *td, int error)
421 {
422 
423 	switch (error) {
424 	case 0:
425 		td->td_frame->tf_eax = td->td_retval[0];
426 		td->td_frame->tf_edx = td->td_retval[1];
427 		td->td_frame->tf_eflags &= ~PSL_C;
428 		break;
429 
430 	case ERESTART:
431 		/*
432 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
433 		 * 0x80 is 2 bytes. We saved this in tf_err.
434 		 */
435 		td->td_frame->tf_eip -= td->td_frame->tf_err;
436 		break;
437 
438 	case EJUSTRETURN:
439 		break;
440 
441 	default:
442 		td->td_frame->tf_eax = error;
443 		td->td_frame->tf_eflags |= PSL_C;
444 		break;
445 	}
446 }
447 
448 /*
449  * Initialize machine state, mostly pcb and trap frame for a new
450  * thread, about to return to userspace.  Put enough state in the new
451  * thread's PCB to get it to go back to the fork_return(), which
452  * finalizes the thread state and handles peculiarities of the first
453  * return to userspace for the new thread.
454  */
455 void
456 cpu_copy_thread(struct thread *td, struct thread *td0)
457 {
458 	copy_thread(td0, td);
459 
460 	/*
461 	 * Copy user general-purpose registers.
462 	 *
463 	 * Some of these registers are rewritten by cpu_set_upcall()
464 	 * and linux_set_upcall().
465 	 */
466 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
467 
468 	/* If the current thread has the trap bit set (i.e. a debugger had
469 	 * single stepped the process to the system call), we need to clear
470 	 * the trap flag from the new frame. Otherwise, the new thread will
471 	 * receive a (likely unexpected) SIGTRAP when it executes the first
472 	 * instruction after returning to userland.
473 	 */
474 	td->td_frame->tf_eflags &= ~PSL_T;
475 }
476 
477 /*
478  * Set that machine state for performing an upcall that starts
479  * the entry function with the given argument.
480  */
481 void
482 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
483     stack_t *stack)
484 {
485 
486 	/*
487 	 * Do any extra cleaning that needs to be done.
488 	 * The thread may have optional components
489 	 * that are not present in a fresh thread.
490 	 * This may be a recycled thread so make it look
491 	 * as though it's newly allocated.
492 	 */
493 	cpu_thread_clean(td);
494 
495 	/*
496 	 * Set the trap frame to point at the beginning of the entry
497 	 * function.
498 	 */
499 	td->td_frame->tf_ebp = 0;
500 	td->td_frame->tf_esp =
501 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
502 	td->td_frame->tf_eip = (int)entry;
503 
504 	/* Return address sentinel value to stop stack unwinding. */
505 	suword((void *)td->td_frame->tf_esp, 0);
506 
507 	/* Pass the argument to the entry point. */
508 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
509 	    (int)arg);
510 }
511 
512 int
513 cpu_set_user_tls(struct thread *td, void *tls_base)
514 {
515 	struct segment_descriptor sd;
516 	uint32_t base;
517 
518 	/*
519 	 * Construct a descriptor and store it in the pcb for
520 	 * the next context switch.  Also store it in the gdt
521 	 * so that the load of tf_fs into %fs will activate it
522 	 * at return to userland.
523 	 */
524 	base = (uint32_t)tls_base;
525 	sd.sd_lobase = base & 0xffffff;
526 	sd.sd_hibase = (base >> 24) & 0xff;
527 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
528 	sd.sd_hilimit = 0xf;
529 	sd.sd_type  = SDT_MEMRWA;
530 	sd.sd_dpl   = SEL_UPL;
531 	sd.sd_p     = 1;
532 	sd.sd_xx    = 0;
533 	sd.sd_def32 = 1;
534 	sd.sd_gran  = 1;
535 	critical_enter();
536 	/* set %gs */
537 	td->td_pcb->pcb_gsd = sd;
538 	if (td == curthread) {
539 		PCPU_GET(fsgs_gdt)[1] = sd;
540 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
541 	}
542 	critical_exit();
543 	return (0);
544 }
545 
546 /*
547  * Convert kernel VA to physical address
548  */
549 vm_paddr_t
550 kvtop(void *addr)
551 {
552 	vm_paddr_t pa;
553 
554 	pa = pmap_kextract((vm_offset_t)addr);
555 	if (pa == 0)
556 		panic("kvtop: zero page frame");
557 	return (pa);
558 }
559 
560 /*
561  * Get an sf_buf from the freelist.  May block if none are available.
562  */
563 void
564 sf_buf_map(struct sf_buf *sf, int flags)
565 {
566 
567 	pmap_sf_buf_map(sf);
568 #ifdef SMP
569 	sf_buf_shootdown(sf, flags);
570 #endif
571 }
572 
573 #ifdef SMP
574 static void
575 sf_buf_shootdown_curcpu_cb(pmap_t pmap __unused,
576     vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
577 {
578 }
579 
580 void
581 sf_buf_shootdown(struct sf_buf *sf, int flags)
582 {
583 	cpuset_t other_cpus;
584 	u_int cpuid;
585 
586 	sched_pin();
587 	cpuid = PCPU_GET(cpuid);
588 	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
589 		CPU_SET(cpuid, &sf->cpumask);
590 		invlpg(sf->kva);
591 	}
592 	if ((flags & SFB_CPUPRIVATE) == 0) {
593 		other_cpus = all_cpus;
594 		CPU_CLR(cpuid, &other_cpus);
595 		CPU_ANDNOT(&other_cpus, &sf->cpumask);
596 		if (!CPU_EMPTY(&other_cpus)) {
597 			CPU_OR(&sf->cpumask, &other_cpus);
598 			smp_masked_invlpg(other_cpus, sf->kva, kernel_pmap,
599 			    sf_buf_shootdown_curcpu_cb);
600 		}
601 	}
602 	sched_unpin();
603 }
604 #endif
605 
606 /*
607  * MD part of sf_buf_free().
608  */
609 int
610 sf_buf_unmap(struct sf_buf *sf)
611 {
612 
613 	return (0);
614 }
615 
616 static void
617 sf_buf_invalidate(struct sf_buf *sf)
618 {
619 	vm_page_t m = sf->m;
620 
621 	/*
622 	 * Use pmap_qenter to update the pte for
623 	 * existing mapping, in particular, the PAT
624 	 * settings are recalculated.
625 	 */
626 	pmap_qenter(sf->kva, &m, 1);
627 	pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE);
628 }
629 
630 /*
631  * Invalidate the cache lines that may belong to the page, if
632  * (possibly old) mapping of the page by sf buffer exists.  Returns
633  * TRUE when mapping was found and cache invalidated.
634  */
635 boolean_t
636 sf_buf_invalidate_cache(vm_page_t m)
637 {
638 
639 	return (sf_buf_process_page(m, sf_buf_invalidate));
640 }
641 
642 /*
643  * Software interrupt handler for queued VM system processing.
644  */
645 void
646 swi_vm(void *dummy)
647 {
648 	if (busdma_swi_pending != 0)
649 		busdma_swi();
650 }
651 
652 /*
653  * Tell whether this address is in some physical memory region.
654  * Currently used by the kernel coredump code in order to avoid
655  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
656  * or other unpredictable behaviour.
657  */
658 
659 int
660 is_physical_memory(vm_paddr_t addr)
661 {
662 
663 #ifdef DEV_ISA
664 	/* The ISA ``memory hole''. */
665 	if (addr >= 0xa0000 && addr < 0x100000)
666 		return 0;
667 #endif
668 
669 	/*
670 	 * stuff other tests for known memory-mapped devices (PCI?)
671 	 * here
672 	 */
673 
674 	return 1;
675 }
676