1 /*- 2 * Copyright (c) 1982, 1986 The Regents of the University of California. 3 * Copyright (c) 1989, 1990 William Jolitz 4 * Copyright (c) 1994 John Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department, and William Jolitz. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 40 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ 41 * $Id: vm_machdep.c,v 1.76 1997/03/22 04:28:16 dyson Exp $ 42 */ 43 44 #include "npx.h" 45 #include "opt_bounce.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/malloc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/vmmeter.h> 54 55 #include <machine/clock.h> 56 #include <machine/md_var.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_param.h> 60 #include <vm/vm_prot.h> 61 #include <sys/lock.h> 62 #include <vm/vm_kern.h> 63 #include <vm/vm_page.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_extern.h> 66 67 #include <sys/user.h> 68 69 #ifdef PC98 70 #include <pc98/pc98/pc98.h> 71 #else 72 #include <i386/isa/isa.h> 73 #endif 74 75 #ifdef BOUNCE_BUFFERS 76 static vm_offset_t 77 vm_bounce_kva __P((int size, int waitok)); 78 static void vm_bounce_kva_free __P((vm_offset_t addr, vm_offset_t size, 79 int now)); 80 static vm_offset_t 81 vm_bounce_page_find __P((int count)); 82 static void vm_bounce_page_free __P((vm_offset_t pa, int count)); 83 84 static volatile int kvasfreecnt; 85 86 caddr_t bouncememory; 87 int bouncepages; 88 static int bpwait; 89 static vm_offset_t *bouncepa; 90 static int bmwait, bmfreeing; 91 92 #define BITS_IN_UNSIGNED (8*sizeof(unsigned)) 93 static int bounceallocarraysize; 94 static unsigned *bounceallocarray; 95 static int bouncefree; 96 97 #if defined(PC98) && defined (EPSON_BOUNCEDMA) 98 #define SIXTEENMEG (3840*4096) /* 15MB boundary */ 99 #else 100 #define SIXTEENMEG (4096*4096) 101 #endif 102 #define MAXBKVA 1024 103 int maxbkva = MAXBKVA*PAGE_SIZE; 104 105 /* special list that can be used at interrupt time for eventual kva free */ 106 static struct kvasfree { 107 vm_offset_t addr; 108 vm_offset_t size; 109 } kvaf[MAXBKVA]; 110 111 /* 112 * get bounce buffer pages (count physically contiguous) 113 * (only 1 inplemented now) 114 */ 115 static vm_offset_t 116 vm_bounce_page_find(count) 117 int count; 118 { 119 int bit; 120 int s,i; 121 122 if (count != 1) 123 panic("vm_bounce_page_find -- no support for > 1 page yet!!!"); 124 125 s = splbio(); 126 retry: 127 for (i = 0; i < bounceallocarraysize; i++) { 128 if (bounceallocarray[i] != 0xffffffff) { 129 bit = ffs(~bounceallocarray[i]); 130 if (bit) { 131 bounceallocarray[i] |= 1 << (bit - 1) ; 132 bouncefree -= count; 133 splx(s); 134 return bouncepa[(i * BITS_IN_UNSIGNED + (bit - 1))]; 135 } 136 } 137 } 138 bpwait = 1; 139 tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0); 140 goto retry; 141 } 142 143 static void 144 vm_bounce_kva_free(addr, size, now) 145 vm_offset_t addr; 146 vm_offset_t size; 147 int now; 148 { 149 int s = splbio(); 150 kvaf[kvasfreecnt].addr = addr; 151 kvaf[kvasfreecnt].size = size; 152 ++kvasfreecnt; 153 if( now) { 154 /* 155 * this will do wakeups 156 */ 157 vm_bounce_kva(0,0); 158 } else { 159 if (bmwait) { 160 /* 161 * if anyone is waiting on the bounce-map, then wakeup 162 */ 163 wakeup((caddr_t) io_map); 164 bmwait = 0; 165 } 166 } 167 splx(s); 168 } 169 170 /* 171 * free count bounce buffer pages 172 */ 173 static void 174 vm_bounce_page_free(pa, count) 175 vm_offset_t pa; 176 int count; 177 { 178 int allocindex; 179 int index; 180 int bit; 181 182 if (count != 1) 183 panic("vm_bounce_page_free -- no support for > 1 page yet!!!"); 184 185 for(index=0;index<bouncepages;index++) { 186 if( pa == bouncepa[index]) 187 break; 188 } 189 190 if( index == bouncepages) 191 panic("vm_bounce_page_free: invalid bounce buffer"); 192 193 allocindex = index / BITS_IN_UNSIGNED; 194 bit = index % BITS_IN_UNSIGNED; 195 196 bounceallocarray[allocindex] &= ~(1 << bit); 197 198 bouncefree += count; 199 if (bpwait) { 200 bpwait = 0; 201 wakeup((caddr_t) &bounceallocarray); 202 } 203 } 204 205 /* 206 * allocate count bounce buffer kva pages 207 */ 208 static vm_offset_t 209 vm_bounce_kva(size, waitok) 210 int size; 211 int waitok; 212 { 213 int i; 214 vm_offset_t kva = 0; 215 vm_offset_t off; 216 int s = splbio(); 217 more: 218 if (!bmfreeing && kvasfreecnt) { 219 bmfreeing = 1; 220 for (i = 0; i < kvasfreecnt; i++) { 221 for(off=0;off<kvaf[i].size;off+=PAGE_SIZE) { 222 pmap_kremove( kvaf[i].addr + off); 223 } 224 kmem_free_wakeup(io_map, kvaf[i].addr, 225 kvaf[i].size); 226 } 227 kvasfreecnt = 0; 228 bmfreeing = 0; 229 if( bmwait) { 230 bmwait = 0; 231 wakeup( (caddr_t) io_map); 232 } 233 } 234 235 if( size == 0) { 236 splx(s); 237 return 0; 238 } 239 240 if ((kva = kmem_alloc_pageable(io_map, size)) == 0) { 241 if( !waitok) { 242 splx(s); 243 return 0; 244 } 245 bmwait = 1; 246 tsleep((caddr_t) io_map, PRIBIO, "bmwait", 0); 247 goto more; 248 } 249 splx(s); 250 return kva; 251 } 252 253 /* 254 * same as vm_bounce_kva -- but really allocate (but takes pages as arg) 255 */ 256 vm_offset_t 257 vm_bounce_kva_alloc(count) 258 int count; 259 { 260 int i; 261 vm_offset_t kva; 262 vm_offset_t pa; 263 if( bouncepages == 0) { 264 kva = (vm_offset_t) malloc(count*PAGE_SIZE, M_TEMP, M_WAITOK); 265 return kva; 266 } 267 kva = vm_bounce_kva(count*PAGE_SIZE, 1); 268 for(i=0;i<count;i++) { 269 pa = vm_bounce_page_find(1); 270 pmap_kenter(kva + i * PAGE_SIZE, pa); 271 } 272 return kva; 273 } 274 275 /* 276 * same as vm_bounce_kva_free -- but really free 277 */ 278 void 279 vm_bounce_kva_alloc_free(kva, count) 280 vm_offset_t kva; 281 int count; 282 { 283 int i; 284 vm_offset_t pa; 285 if( bouncepages == 0) { 286 free((caddr_t) kva, M_TEMP); 287 return; 288 } 289 for(i = 0; i < count; i++) { 290 pa = pmap_kextract(kva + i * PAGE_SIZE); 291 vm_bounce_page_free(pa, 1); 292 } 293 vm_bounce_kva_free(kva, count*PAGE_SIZE, 0); 294 } 295 296 /* 297 * do the things necessary to the struct buf to implement 298 * bounce buffers... inserted before the disk sort 299 */ 300 void 301 vm_bounce_alloc(bp) 302 struct buf *bp; 303 { 304 int countvmpg; 305 vm_offset_t vastart, vaend; 306 vm_offset_t vapstart, vapend; 307 vm_offset_t va, kva; 308 vm_offset_t pa; 309 int dobounceflag = 0; 310 int i; 311 312 if (bouncepages == 0) 313 return; 314 315 if (bp->b_flags & B_BOUNCE) { 316 printf("vm_bounce_alloc: called recursively???\n"); 317 return; 318 } 319 320 if (bp->b_bufsize < bp->b_bcount) { 321 printf( 322 "vm_bounce_alloc: b_bufsize(0x%lx) < b_bcount(0x%lx) !!\n", 323 bp->b_bufsize, bp->b_bcount); 324 panic("vm_bounce_alloc"); 325 } 326 327 /* 328 * This is not really necessary 329 * if( bp->b_bufsize != bp->b_bcount) { 330 * printf("size: %d, count: %d\n", bp->b_bufsize, bp->b_bcount); 331 * } 332 */ 333 334 335 vastart = (vm_offset_t) bp->b_data; 336 vaend = (vm_offset_t) bp->b_data + bp->b_bufsize; 337 338 vapstart = trunc_page(vastart); 339 vapend = round_page(vaend); 340 countvmpg = (vapend - vapstart) / PAGE_SIZE; 341 342 /* 343 * if any page is above 16MB, then go into bounce-buffer mode 344 */ 345 va = vapstart; 346 for (i = 0; i < countvmpg; i++) { 347 pa = pmap_kextract(va); 348 if (pa >= SIXTEENMEG) 349 ++dobounceflag; 350 if( pa == 0) 351 panic("vm_bounce_alloc: Unmapped page"); 352 va += PAGE_SIZE; 353 } 354 if (dobounceflag == 0) 355 return; 356 357 if (bouncepages < dobounceflag) 358 panic("Not enough bounce buffers!!!"); 359 360 /* 361 * allocate a replacement kva for b_addr 362 */ 363 kva = vm_bounce_kva(countvmpg*PAGE_SIZE, 1); 364 #if 0 365 printf("%s: vapstart: %x, vapend: %x, countvmpg: %d, kva: %x ", 366 (bp->b_flags & B_READ) ? "read":"write", 367 vapstart, vapend, countvmpg, kva); 368 #endif 369 va = vapstart; 370 for (i = 0; i < countvmpg; i++) { 371 pa = pmap_kextract(va); 372 if (pa >= SIXTEENMEG) { 373 /* 374 * allocate a replacement page 375 */ 376 vm_offset_t bpa = vm_bounce_page_find(1); 377 pmap_kenter(kva + (PAGE_SIZE * i), bpa); 378 #if 0 379 printf("r(%d): (%x,%x,%x) ", i, va, pa, bpa); 380 #endif 381 /* 382 * if we are writing, the copy the data into the page 383 */ 384 if ((bp->b_flags & B_READ) == 0) { 385 bcopy((caddr_t) va, (caddr_t) kva + (PAGE_SIZE * i), PAGE_SIZE); 386 } 387 } else { 388 /* 389 * use original page 390 */ 391 pmap_kenter(kva + (PAGE_SIZE * i), pa); 392 } 393 va += PAGE_SIZE; 394 } 395 396 /* 397 * flag the buffer as being bounced 398 */ 399 bp->b_flags |= B_BOUNCE; 400 /* 401 * save the original buffer kva 402 */ 403 bp->b_savekva = bp->b_data; 404 /* 405 * put our new kva into the buffer (offset by original offset) 406 */ 407 bp->b_data = (caddr_t) (((vm_offset_t) kva) | 408 ((vm_offset_t) bp->b_savekva & PAGE_MASK)); 409 #if 0 410 printf("b_savekva: %x, newva: %x\n", bp->b_savekva, bp->b_data); 411 #endif 412 return; 413 } 414 415 /* 416 * hook into biodone to free bounce buffer 417 */ 418 void 419 vm_bounce_free(bp) 420 struct buf *bp; 421 { 422 int i; 423 vm_offset_t origkva, bouncekva, bouncekvaend; 424 425 /* 426 * if this isn't a bounced buffer, then just return 427 */ 428 if ((bp->b_flags & B_BOUNCE) == 0) 429 return; 430 431 /* 432 * This check is not necessary 433 * if (bp->b_bufsize != bp->b_bcount) { 434 * printf("vm_bounce_free: b_bufsize=%d, b_bcount=%d\n", 435 * bp->b_bufsize, bp->b_bcount); 436 * } 437 */ 438 439 origkva = (vm_offset_t) bp->b_savekva; 440 bouncekva = (vm_offset_t) bp->b_data; 441 /* 442 printf("free: %d ", bp->b_bufsize); 443 */ 444 445 /* 446 * check every page in the kva space for b_addr 447 */ 448 for (i = 0; i < bp->b_bufsize; ) { 449 vm_offset_t mybouncepa; 450 vm_offset_t copycount; 451 452 copycount = round_page(bouncekva + 1) - bouncekva; 453 mybouncepa = pmap_kextract(trunc_page(bouncekva)); 454 455 /* 456 * if this is a bounced pa, then process as one 457 */ 458 if ( mybouncepa != pmap_kextract( trunc_page( origkva))) { 459 vm_offset_t tocopy = copycount; 460 if (i + tocopy > bp->b_bufsize) 461 tocopy = bp->b_bufsize - i; 462 /* 463 * if this is a read, then copy from bounce buffer into original buffer 464 */ 465 if (bp->b_flags & B_READ) 466 bcopy((caddr_t) bouncekva, (caddr_t) origkva, tocopy); 467 /* 468 * free the bounce allocation 469 */ 470 471 /* 472 printf("(kva: %x, pa: %x)", bouncekva, mybouncepa); 473 */ 474 vm_bounce_page_free(mybouncepa, 1); 475 } 476 477 origkva += copycount; 478 bouncekva += copycount; 479 i += copycount; 480 } 481 482 /* 483 printf("\n"); 484 */ 485 /* 486 * add the old kva into the "to free" list 487 */ 488 489 bouncekva= trunc_page((vm_offset_t) bp->b_data); 490 bouncekvaend= round_page((vm_offset_t)bp->b_data + bp->b_bufsize); 491 492 /* 493 printf("freeva: %d\n", (bouncekvaend - bouncekva) / PAGE_SIZE); 494 */ 495 vm_bounce_kva_free( bouncekva, (bouncekvaend - bouncekva), 0); 496 bp->b_data = bp->b_savekva; 497 bp->b_savekva = 0; 498 bp->b_flags &= ~B_BOUNCE; 499 500 return; 501 } 502 503 504 /* 505 * init the bounce buffer system 506 */ 507 void 508 vm_bounce_init() 509 { 510 int i; 511 512 kvasfreecnt = 0; 513 514 if (bouncepages == 0) 515 return; 516 517 bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED; 518 bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT); 519 520 if (!bounceallocarray) 521 panic("Cannot allocate bounce resource array"); 522 523 bouncepa = malloc(bouncepages * sizeof(vm_offset_t), M_TEMP, M_NOWAIT); 524 if (!bouncepa) 525 panic("Cannot allocate physical memory array"); 526 527 for(i=0;i<bounceallocarraysize;i++) { 528 bounceallocarray[i] = 0xffffffff; 529 } 530 531 for(i=0;i<bouncepages;i++) { 532 vm_offset_t pa; 533 if( (pa = pmap_kextract((vm_offset_t) bouncememory + i * PAGE_SIZE)) >= SIXTEENMEG) 534 panic("bounce memory out of range"); 535 if( pa == 0) 536 panic("bounce memory not resident"); 537 bouncepa[i] = pa; 538 bounceallocarray[i/(8*sizeof(int))] &= ~(1<<(i%(8*sizeof(int)))); 539 } 540 bouncefree = bouncepages; 541 542 } 543 #endif /* BOUNCE_BUFFERS */ 544 545 /* 546 * quick version of vm_fault 547 */ 548 void 549 vm_fault_quick(v, prot) 550 caddr_t v; 551 int prot; 552 { 553 if (prot & VM_PROT_WRITE) 554 subyte(v, fubyte(v)); 555 else 556 fubyte(v); 557 } 558 559 /* 560 * Finish a fork operation, with process p2 nearly set up. 561 * Copy and update the kernel stack and pcb, making the child 562 * ready to run, and marking it so that it can return differently 563 * than the parent. Returns 1 in the child process, 0 in the parent. 564 * We currently double-map the user area so that the stack is at the same 565 * address in each process; in the future we will probably relocate 566 * the frame pointers on the stack after copying. 567 */ 568 int 569 cpu_fork(p1, p2) 570 register struct proc *p1, *p2; 571 { 572 struct pcb *pcb2 = &p2->p_addr->u_pcb; 573 int sp, offset; 574 volatile int retval; 575 #ifdef USER_LDT 576 struct pcb *pcb = &p2->p_addr->u_pcb; 577 #endif 578 579 /* 580 * Copy pcb and stack from proc p1 to p2. 581 * We do this as cheaply as possible, copying only the active 582 * part of the stack. The stack and pcb need to agree; 583 * this is tricky, as the final pcb is constructed by savectx, 584 * but its frame isn't yet on the stack when the stack is copied. 585 * This should be done differently, with a single call 586 * that copies and updates the pcb+stack, 587 * replacing the bcopy and savectx. 588 */ 589 590 __asm __volatile("movl %%esp,%0" : "=r" (sp)); 591 offset = sp - (int)kstack; 592 593 retval = 1; /* return 1 in child */ 594 bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset, 595 (unsigned) ctob(UPAGES) - offset); 596 p2->p_md.md_regs = p1->p_md.md_regs; 597 598 *pcb2 = p1->p_addr->u_pcb; 599 pcb2->pcb_cr3 = vtophys(p2->p_vmspace->vm_pmap.pm_pdir); 600 601 #ifdef USER_LDT 602 /* Copy the LDT, if necessary. */ 603 if (pcb->pcb_ldt != 0) { 604 union descriptor *new_ldt; 605 size_t len = pcb->pcb_ldt_len * sizeof(union descriptor); 606 607 new_ldt = (union descriptor *)kmem_alloc(kernel_map, len); 608 bcopy(pcb->pcb_ldt, new_ldt, len); 609 pcb->pcb_ldt = (caddr_t)new_ldt; 610 } 611 #endif 612 613 retval = 0; /* return 0 in parent */ 614 savectx(pcb2); 615 return (retval); 616 } 617 618 void 619 cpu_exit(p) 620 register struct proc *p; 621 { 622 #ifdef USER_LDT 623 struct pcb *pcb; 624 #endif 625 626 #if NNPX > 0 627 npxexit(p); 628 #endif /* NNPX */ 629 #ifdef USER_LDT 630 pcb = &p->p_addr->u_pcb; 631 if (pcb->pcb_ldt != 0) { 632 if (pcb == curpcb) 633 lldt(GSEL(GUSERLDT_SEL, SEL_KPL)); 634 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt, 635 pcb->pcb_ldt_len * sizeof(union descriptor)); 636 pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0; 637 } 638 #endif 639 cnt.v_swtch++; 640 cpu_switch(p); 641 panic("cpu_exit"); 642 } 643 644 void 645 cpu_wait(p) 646 struct proc *p; 647 { 648 /* drop per-process resources */ 649 pmap_dispose_proc(p); 650 vmspace_free(p->p_vmspace); 651 } 652 653 /* 654 * Dump the machine specific header information at the start of a core dump. 655 */ 656 int 657 cpu_coredump(p, vp, cred) 658 struct proc *p; 659 struct vnode *vp; 660 struct ucred *cred; 661 { 662 663 return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES), 664 (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, 665 p)); 666 } 667 668 #ifdef notyet 669 static void 670 setredzone(pte, vaddr) 671 u_short *pte; 672 caddr_t vaddr; 673 { 674 /* eventually do this by setting up an expand-down stack segment 675 for ss0: selector, allowing stack access down to top of u. 676 this means though that protection violations need to be handled 677 thru a double fault exception that must do an integral task 678 switch to a known good context, within which a dump can be 679 taken. a sensible scheme might be to save the initial context 680 used by sched (that has physical memory mapped 1:1 at bottom) 681 and take the dump while still in mapped mode */ 682 } 683 #endif 684 685 /* 686 * Convert kernel VA to physical address 687 */ 688 u_long 689 kvtop(void *addr) 690 { 691 vm_offset_t va; 692 693 va = pmap_kextract((vm_offset_t)addr); 694 if (va == 0) 695 panic("kvtop: zero page frame"); 696 return((int)va); 697 } 698 699 /* 700 * Map an IO request into kernel virtual address space. 701 * 702 * All requests are (re)mapped into kernel VA space. 703 * Notice that we use b_bufsize for the size of the buffer 704 * to be mapped. b_bcount might be modified by the driver. 705 */ 706 void 707 vmapbuf(bp) 708 register struct buf *bp; 709 { 710 register caddr_t addr, v, kva; 711 vm_offset_t pa; 712 713 if ((bp->b_flags & B_PHYS) == 0) 714 panic("vmapbuf"); 715 716 for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page(bp->b_data); 717 addr < bp->b_data + bp->b_bufsize; 718 addr += PAGE_SIZE, v += PAGE_SIZE) { 719 /* 720 * Do the vm_fault if needed; do the copy-on-write thing 721 * when reading stuff off device into memory. 722 */ 723 vm_fault_quick(addr, 724 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); 725 pa = trunc_page(pmap_kextract((vm_offset_t) addr)); 726 if (pa == 0) 727 panic("vmapbuf: page not present"); 728 vm_page_hold(PHYS_TO_VM_PAGE(pa)); 729 pmap_kenter((vm_offset_t) v, pa); 730 } 731 732 kva = bp->b_saveaddr; 733 bp->b_saveaddr = bp->b_data; 734 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 735 } 736 737 /* 738 * Free the io map PTEs associated with this IO operation. 739 * We also invalidate the TLB entries and restore the original b_addr. 740 */ 741 void 742 vunmapbuf(bp) 743 register struct buf *bp; 744 { 745 register caddr_t addr; 746 vm_offset_t pa; 747 748 if ((bp->b_flags & B_PHYS) == 0) 749 panic("vunmapbuf"); 750 751 for (addr = (caddr_t)trunc_page(bp->b_data); 752 addr < bp->b_data + bp->b_bufsize; 753 addr += PAGE_SIZE) { 754 pa = trunc_page(pmap_kextract((vm_offset_t) addr)); 755 pmap_kremove((vm_offset_t) addr); 756 vm_page_unhold(PHYS_TO_VM_PAGE(pa)); 757 } 758 759 bp->b_data = bp->b_saveaddr; 760 } 761 762 /* 763 * Force reset the processor by invalidating the entire address space! 764 */ 765 void 766 cpu_reset() { 767 768 /* 769 * Attempt to do a CPU reset via the keyboard controller, 770 * do not turn of the GateA20, as any machine that fails 771 * to do the reset here would then end up in no man's land. 772 */ 773 774 #if !defined(BROKEN_KEYBOARD_RESET) && !defined(PC98) 775 outb(IO_KBD + 4, 0xFE); 776 DELAY(500000); /* wait 0.5 sec to see if that did it */ 777 printf("Keyboard reset did not work, attempting CPU shutdown\n"); 778 DELAY(1000000); /* wait 1 sec for printf to complete */ 779 #endif 780 781 /* force a shutdown by unmapping entire address space ! */ 782 bzero((caddr_t) PTD, PAGE_SIZE); 783 784 /* "good night, sweet prince .... <THUNK!>" */ 785 invltlb(); 786 /* NOTREACHED */ 787 #ifdef PC98 788 asm(" cli "); 789 outb(0x37, 0x0f); /* SHUT 0 = 0 */ 790 outb(0x37, 0x0b); /* SHUT 1 = 0 */ 791 outb(0xf0, 0x00); /* reset port */ 792 #endif 793 while(1); 794 } 795 796 /* 797 * Grow the user stack to allow for 'sp'. This version grows the stack in 798 * chunks of SGROWSIZ. 799 */ 800 int 801 grow(p, sp) 802 struct proc *p; 803 u_int sp; 804 { 805 unsigned int nss; 806 caddr_t v; 807 struct vmspace *vm = p->p_vmspace; 808 809 if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK) 810 return (1); 811 812 nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE); 813 814 if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur) 815 return (0); 816 817 if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT, 818 SGROWSIZ) < nss) { 819 int grow_amount; 820 /* 821 * If necessary, grow the VM that the stack occupies 822 * to allow for the rlimit. This allows us to not have 823 * to allocate all of the VM up-front in execve (which 824 * is expensive). 825 * Grow the VM by the amount requested rounded up to 826 * the nearest SGROWSIZ to provide for some hysteresis. 827 */ 828 grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ); 829 v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT, 830 SGROWSIZ) - grow_amount; 831 /* 832 * If there isn't enough room to extend by SGROWSIZ, then 833 * just extend to the maximum size 834 */ 835 if (v < vm->vm_maxsaddr) { 836 v = vm->vm_maxsaddr; 837 grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT); 838 } 839 if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v, 840 grow_amount, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != KERN_SUCCESS)) { 841 return (0); 842 } 843 vm->vm_ssize += grow_amount >> PAGE_SHIFT; 844 } 845 846 return (1); 847 } 848 849 /* 850 * Implement the pre-zeroed page mechanism. 851 * This routine is called from the idle loop. 852 */ 853 int 854 vm_page_zero_idle() 855 { 856 static int free_rover; 857 vm_page_t m; 858 int s; 859 860 #ifdef WRONG 861 if (cnt.v_free_count <= cnt.v_interrupt_free_min) 862 return (0); 863 #endif 864 /* 865 * XXX 866 * We stop zeroing pages when there are sufficent prezeroed pages. 867 * This threshold isn't really needed, except we want to 868 * bypass unneeded calls to vm_page_list_find, and the 869 * associated cache flush and latency. The pre-zero will 870 * still be called when there are significantly more 871 * non-prezeroed pages than zeroed pages. The threshold 872 * of half the number of reserved pages is arbitrary, but 873 * approximately the right amount. Eventually, we should 874 * perhaps interrupt the zero operation when a process 875 * is found to be ready to run. 876 */ 877 if (cnt.v_free_count - vm_page_zero_count <= cnt.v_free_reserved / 2) 878 return (0); 879 s = splvm(); 880 enable_intr(); 881 m = vm_page_list_find(PQ_FREE, free_rover); 882 if (m != NULL) { 883 --(*vm_page_queues[m->queue].lcnt); 884 TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq); 885 splx(s); 886 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 887 (void)splvm(); 888 m->queue = PQ_ZERO + m->pc; 889 ++(*vm_page_queues[m->queue].lcnt); 890 TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m, pageq); 891 free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK; 892 ++vm_page_zero_count; 893 } 894 splx(s); 895 disable_intr(); 896 return (1); 897 } 898