1 /*- 2 * Copyright (c) 1982, 1986 The Regents of the University of California. 3 * Copyright (c) 1989, 1990 William Jolitz 4 * Copyright (c) 1994 John Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department, and William Jolitz. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 40 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_isa.h" 47 #include "opt_npx.h" 48 #include "opt_reset.h" 49 #include "opt_cpu.h" 50 #include "opt_xbox.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kernel.h> 57 #include <sys/ktr.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mbuf.h> 61 #include <sys/mutex.h> 62 #include <sys/pioctl.h> 63 #include <sys/proc.h> 64 #include <sys/sysent.h> 65 #include <sys/sf_buf.h> 66 #include <sys/smp.h> 67 #include <sys/sched.h> 68 #include <sys/sysctl.h> 69 #include <sys/unistd.h> 70 #include <sys/vnode.h> 71 #include <sys/vmmeter.h> 72 73 #include <machine/cpu.h> 74 #include <machine/cputypes.h> 75 #include <machine/md_var.h> 76 #include <machine/pcb.h> 77 #include <machine/pcb_ext.h> 78 #include <machine/smp.h> 79 #include <machine/vm86.h> 80 81 #ifdef CPU_ELAN 82 #include <machine/elan_mmcr.h> 83 #endif 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_kern.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_param.h> 91 92 #ifdef XEN 93 #include <xen/hypervisor.h> 94 #endif 95 #ifdef PC98 96 #include <pc98/cbus/cbus.h> 97 #else 98 #include <x86/isa/isa.h> 99 #endif 100 101 #ifdef XBOX 102 #include <machine/xbox.h> 103 #endif 104 105 #ifndef NSFBUFS 106 #define NSFBUFS (512 + maxusers * 16) 107 #endif 108 109 _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread), 110 "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread."); 111 _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb), 112 "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb."); 113 114 static void cpu_reset_real(void); 115 #ifdef SMP 116 static void cpu_reset_proxy(void); 117 static u_int cpu_reset_proxyid; 118 static volatile u_int cpu_reset_proxy_active; 119 #endif 120 121 static int nsfbufs; 122 static int nsfbufspeak; 123 static int nsfbufsused; 124 125 SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufs, CTLFLAG_RDTUN, &nsfbufs, 0, 126 "Maximum number of sendfile(2) sf_bufs available"); 127 SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufspeak, CTLFLAG_RD, &nsfbufspeak, 0, 128 "Number of sendfile(2) sf_bufs at peak usage"); 129 SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufsused, CTLFLAG_RD, &nsfbufsused, 0, 130 "Number of sendfile(2) sf_bufs in use"); 131 132 static void sf_buf_init(void *arg); 133 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL); 134 135 LIST_HEAD(sf_head, sf_buf); 136 137 /* 138 * A hash table of active sendfile(2) buffers 139 */ 140 static struct sf_head *sf_buf_active; 141 static u_long sf_buf_hashmask; 142 143 #define SF_BUF_HASH(m) (((m) - vm_page_array) & sf_buf_hashmask) 144 145 static TAILQ_HEAD(, sf_buf) sf_buf_freelist; 146 static u_int sf_buf_alloc_want; 147 148 /* 149 * A lock used to synchronize access to the hash table and free list 150 */ 151 static struct mtx sf_buf_lock; 152 153 extern int _ucodesel, _udatasel; 154 155 /* 156 * Finish a fork operation, with process p2 nearly set up. 157 * Copy and update the pcb, set up the stack so that the child 158 * ready to run and return to user mode. 159 */ 160 void 161 cpu_fork(td1, p2, td2, flags) 162 register struct thread *td1; 163 register struct proc *p2; 164 struct thread *td2; 165 int flags; 166 { 167 register struct proc *p1; 168 struct pcb *pcb2; 169 struct mdproc *mdp2; 170 171 p1 = td1->td_proc; 172 if ((flags & RFPROC) == 0) { 173 if ((flags & RFMEM) == 0) { 174 /* unshare user LDT */ 175 struct mdproc *mdp1 = &p1->p_md; 176 struct proc_ldt *pldt, *pldt1; 177 178 mtx_lock_spin(&dt_lock); 179 if ((pldt1 = mdp1->md_ldt) != NULL && 180 pldt1->ldt_refcnt > 1) { 181 pldt = user_ldt_alloc(mdp1, pldt1->ldt_len); 182 if (pldt == NULL) 183 panic("could not copy LDT"); 184 mdp1->md_ldt = pldt; 185 set_user_ldt(mdp1); 186 user_ldt_deref(pldt1); 187 } else 188 mtx_unlock_spin(&dt_lock); 189 } 190 return; 191 } 192 193 /* Ensure that td1's pcb is up to date. */ 194 if (td1 == curthread) 195 td1->td_pcb->pcb_gs = rgs(); 196 #ifdef DEV_NPX 197 critical_enter(); 198 if (PCPU_GET(fpcurthread) == td1) 199 npxsave(td1->td_pcb->pcb_save); 200 critical_exit(); 201 #endif 202 203 /* Point the pcb to the top of the stack */ 204 pcb2 = (struct pcb *)(td2->td_kstack + 205 td2->td_kstack_pages * PAGE_SIZE) - 1; 206 td2->td_pcb = pcb2; 207 208 /* Copy td1's pcb */ 209 bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); 210 211 /* Properly initialize pcb_save */ 212 pcb2->pcb_save = &pcb2->pcb_user_save; 213 214 /* Point mdproc and then copy over td1's contents */ 215 mdp2 = &p2->p_md; 216 bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); 217 218 /* 219 * Create a new fresh stack for the new process. 220 * Copy the trap frame for the return to user mode as if from a 221 * syscall. This copies most of the user mode register values. 222 * The -16 is so we can expand the trapframe if we go to vm86. 223 */ 224 td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1; 225 bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); 226 227 td2->td_frame->tf_eax = 0; /* Child returns zero */ 228 td2->td_frame->tf_eflags &= ~PSL_C; /* success */ 229 td2->td_frame->tf_edx = 1; 230 231 /* 232 * If the parent process has the trap bit set (i.e. a debugger had 233 * single stepped the process to the system call), we need to clear 234 * the trap flag from the new frame unless the debugger had set PF_FORK 235 * on the parent. Otherwise, the child will receive a (likely 236 * unexpected) SIGTRAP when it executes the first instruction after 237 * returning to userland. 238 */ 239 if ((p1->p_pfsflags & PF_FORK) == 0) 240 td2->td_frame->tf_eflags &= ~PSL_T; 241 242 /* 243 * Set registers for trampoline to user mode. Leave space for the 244 * return address on stack. These are the kernel mode register values. 245 */ 246 #ifdef PAE 247 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt); 248 #else 249 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir); 250 #endif 251 pcb2->pcb_edi = 0; 252 pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */ 253 pcb2->pcb_ebp = 0; 254 pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *); 255 pcb2->pcb_ebx = (int)td2; /* fork_trampoline argument */ 256 pcb2->pcb_eip = (int)fork_trampoline; 257 pcb2->pcb_psl = PSL_KERNEL; /* ints disabled */ 258 /*- 259 * pcb2->pcb_dr*: cloned above. 260 * pcb2->pcb_savefpu: cloned above. 261 * pcb2->pcb_flags: cloned above. 262 * pcb2->pcb_onfault: cloned above (always NULL here?). 263 * pcb2->pcb_gs: cloned above. 264 * pcb2->pcb_ext: cleared below. 265 */ 266 267 /* 268 * XXX don't copy the i/o pages. this should probably be fixed. 269 */ 270 pcb2->pcb_ext = 0; 271 272 /* Copy the LDT, if necessary. */ 273 mtx_lock_spin(&dt_lock); 274 if (mdp2->md_ldt != NULL) { 275 if (flags & RFMEM) { 276 mdp2->md_ldt->ldt_refcnt++; 277 } else { 278 mdp2->md_ldt = user_ldt_alloc(mdp2, 279 mdp2->md_ldt->ldt_len); 280 if (mdp2->md_ldt == NULL) 281 panic("could not copy LDT"); 282 } 283 } 284 mtx_unlock_spin(&dt_lock); 285 286 /* Setup to release spin count in fork_exit(). */ 287 td2->td_md.md_spinlock_count = 1; 288 /* 289 * XXX XEN need to check on PSL_USER is handled 290 */ 291 td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; 292 /* 293 * Now, cpu_switch() can schedule the new process. 294 * pcb_esp is loaded pointing to the cpu_switch() stack frame 295 * containing the return address when exiting cpu_switch. 296 * This will normally be to fork_trampoline(), which will have 297 * %ebx loaded with the new proc's pointer. fork_trampoline() 298 * will set up a stack to call fork_return(p, frame); to complete 299 * the return to user-mode. 300 */ 301 } 302 303 /* 304 * Intercept the return address from a freshly forked process that has NOT 305 * been scheduled yet. 306 * 307 * This is needed to make kernel threads stay in kernel mode. 308 */ 309 void 310 cpu_set_fork_handler(td, func, arg) 311 struct thread *td; 312 void (*func)(void *); 313 void *arg; 314 { 315 /* 316 * Note that the trap frame follows the args, so the function 317 * is really called like this: func(arg, frame); 318 */ 319 td->td_pcb->pcb_esi = (int) func; /* function */ 320 td->td_pcb->pcb_ebx = (int) arg; /* first arg */ 321 } 322 323 void 324 cpu_exit(struct thread *td) 325 { 326 327 /* 328 * If this process has a custom LDT, release it. Reset pc->pcb_gs 329 * and %gs before we free it in case they refer to an LDT entry. 330 */ 331 mtx_lock_spin(&dt_lock); 332 if (td->td_proc->p_md.md_ldt) { 333 td->td_pcb->pcb_gs = _udatasel; 334 load_gs(_udatasel); 335 user_ldt_free(td); 336 } else 337 mtx_unlock_spin(&dt_lock); 338 } 339 340 void 341 cpu_thread_exit(struct thread *td) 342 { 343 344 #ifdef DEV_NPX 345 critical_enter(); 346 if (td == PCPU_GET(fpcurthread)) 347 npxdrop(); 348 critical_exit(); 349 #endif 350 351 /* Disable any hardware breakpoints. */ 352 if (td->td_pcb->pcb_flags & PCB_DBREGS) { 353 reset_dbregs(); 354 td->td_pcb->pcb_flags &= ~PCB_DBREGS; 355 } 356 } 357 358 void 359 cpu_thread_clean(struct thread *td) 360 { 361 struct pcb *pcb; 362 363 pcb = td->td_pcb; 364 if (pcb->pcb_ext != NULL) { 365 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */ 366 /* 367 * XXX do we need to move the TSS off the allocated pages 368 * before freeing them? (not done here) 369 */ 370 kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext, 371 ctob(IOPAGES + 1)); 372 pcb->pcb_ext = NULL; 373 } 374 } 375 376 void 377 cpu_thread_swapin(struct thread *td) 378 { 379 } 380 381 void 382 cpu_thread_swapout(struct thread *td) 383 { 384 } 385 386 void 387 cpu_thread_alloc(struct thread *td) 388 { 389 390 td->td_pcb = (struct pcb *)(td->td_kstack + 391 td->td_kstack_pages * PAGE_SIZE) - 1; 392 td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1; 393 td->td_pcb->pcb_ext = NULL; 394 td->td_pcb->pcb_save = &td->td_pcb->pcb_user_save; 395 } 396 397 void 398 cpu_thread_free(struct thread *td) 399 { 400 401 cpu_thread_clean(td); 402 } 403 404 void 405 cpu_set_syscall_retval(struct thread *td, int error) 406 { 407 408 switch (error) { 409 case 0: 410 td->td_frame->tf_eax = td->td_retval[0]; 411 td->td_frame->tf_edx = td->td_retval[1]; 412 td->td_frame->tf_eflags &= ~PSL_C; 413 break; 414 415 case ERESTART: 416 /* 417 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int 418 * 0x80 is 2 bytes. We saved this in tf_err. 419 */ 420 td->td_frame->tf_eip -= td->td_frame->tf_err; 421 break; 422 423 case EJUSTRETURN: 424 break; 425 426 default: 427 if (td->td_proc->p_sysent->sv_errsize) { 428 if (error >= td->td_proc->p_sysent->sv_errsize) 429 error = -1; /* XXX */ 430 else 431 error = td->td_proc->p_sysent->sv_errtbl[error]; 432 } 433 td->td_frame->tf_eax = error; 434 td->td_frame->tf_eflags |= PSL_C; 435 break; 436 } 437 } 438 439 /* 440 * Initialize machine state (pcb and trap frame) for a new thread about to 441 * upcall. Put enough state in the new thread's PCB to get it to go back 442 * userret(), where we can intercept it again to set the return (upcall) 443 * Address and stack, along with those from upcals that are from other sources 444 * such as those generated in thread_userret() itself. 445 */ 446 void 447 cpu_set_upcall(struct thread *td, struct thread *td0) 448 { 449 struct pcb *pcb2; 450 451 /* Point the pcb to the top of the stack. */ 452 pcb2 = td->td_pcb; 453 454 /* 455 * Copy the upcall pcb. This loads kernel regs. 456 * Those not loaded individually below get their default 457 * values here. 458 */ 459 bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); 460 pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE); 461 pcb2->pcb_save = &pcb2->pcb_user_save; 462 463 /* 464 * Create a new fresh stack for the new thread. 465 */ 466 bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); 467 468 /* If the current thread has the trap bit set (i.e. a debugger had 469 * single stepped the process to the system call), we need to clear 470 * the trap flag from the new frame. Otherwise, the new thread will 471 * receive a (likely unexpected) SIGTRAP when it executes the first 472 * instruction after returning to userland. 473 */ 474 td->td_frame->tf_eflags &= ~PSL_T; 475 476 /* 477 * Set registers for trampoline to user mode. Leave space for the 478 * return address on stack. These are the kernel mode register values. 479 */ 480 pcb2->pcb_edi = 0; 481 pcb2->pcb_esi = (int)fork_return; /* trampoline arg */ 482 pcb2->pcb_ebp = 0; 483 pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */ 484 pcb2->pcb_ebx = (int)td; /* trampoline arg */ 485 pcb2->pcb_eip = (int)fork_trampoline; 486 pcb2->pcb_psl &= ~(PSL_I); /* interrupts must be disabled */ 487 pcb2->pcb_gs = rgs(); 488 /* 489 * If we didn't copy the pcb, we'd need to do the following registers: 490 * pcb2->pcb_cr3: cloned above. 491 * pcb2->pcb_dr*: cloned above. 492 * pcb2->pcb_savefpu: cloned above. 493 * pcb2->pcb_flags: cloned above. 494 * pcb2->pcb_onfault: cloned above (always NULL here?). 495 * pcb2->pcb_gs: cloned above. 496 * pcb2->pcb_ext: cleared below. 497 */ 498 pcb2->pcb_ext = NULL; 499 500 /* Setup to release spin count in fork_exit(). */ 501 td->td_md.md_spinlock_count = 1; 502 td->td_md.md_saved_flags = PSL_KERNEL | PSL_I; 503 } 504 505 /* 506 * Set that machine state for performing an upcall that has to 507 * be done in thread_userret() so that those upcalls generated 508 * in thread_userret() itself can be done as well. 509 */ 510 void 511 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg, 512 stack_t *stack) 513 { 514 515 /* 516 * Do any extra cleaning that needs to be done. 517 * The thread may have optional components 518 * that are not present in a fresh thread. 519 * This may be a recycled thread so make it look 520 * as though it's newly allocated. 521 */ 522 cpu_thread_clean(td); 523 524 /* 525 * Set the trap frame to point at the beginning of the uts 526 * function. 527 */ 528 td->td_frame->tf_ebp = 0; 529 td->td_frame->tf_esp = 530 (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; 531 td->td_frame->tf_eip = (int)entry; 532 533 /* 534 * Pass the address of the mailbox for this kse to the uts 535 * function as a parameter on the stack. 536 */ 537 suword((void *)(td->td_frame->tf_esp + sizeof(void *)), 538 (int)arg); 539 } 540 541 int 542 cpu_set_user_tls(struct thread *td, void *tls_base) 543 { 544 struct segment_descriptor sd; 545 uint32_t base; 546 547 /* 548 * Construct a descriptor and store it in the pcb for 549 * the next context switch. Also store it in the gdt 550 * so that the load of tf_fs into %fs will activate it 551 * at return to userland. 552 */ 553 base = (uint32_t)tls_base; 554 sd.sd_lobase = base & 0xffffff; 555 sd.sd_hibase = (base >> 24) & 0xff; 556 sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */ 557 sd.sd_hilimit = 0xf; 558 sd.sd_type = SDT_MEMRWA; 559 sd.sd_dpl = SEL_UPL; 560 sd.sd_p = 1; 561 sd.sd_xx = 0; 562 sd.sd_def32 = 1; 563 sd.sd_gran = 1; 564 critical_enter(); 565 /* set %gs */ 566 td->td_pcb->pcb_gsd = sd; 567 if (td == curthread) { 568 PCPU_GET(fsgs_gdt)[1] = sd; 569 load_gs(GSEL(GUGS_SEL, SEL_UPL)); 570 } 571 critical_exit(); 572 return (0); 573 } 574 575 /* 576 * Convert kernel VA to physical address 577 */ 578 vm_paddr_t 579 kvtop(void *addr) 580 { 581 vm_paddr_t pa; 582 583 pa = pmap_kextract((vm_offset_t)addr); 584 if (pa == 0) 585 panic("kvtop: zero page frame"); 586 return (pa); 587 } 588 589 #ifdef SMP 590 static void 591 cpu_reset_proxy() 592 { 593 cpuset_t tcrp; 594 595 cpu_reset_proxy_active = 1; 596 while (cpu_reset_proxy_active == 1) 597 ; /* Wait for other cpu to see that we've started */ 598 CPU_SETOF(cpu_reset_proxyid, &tcrp); 599 stop_cpus(tcrp); 600 printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); 601 DELAY(1000000); 602 cpu_reset_real(); 603 } 604 #endif 605 606 void 607 cpu_reset() 608 { 609 #ifdef XBOX 610 if (arch_i386_is_xbox) { 611 /* Kick the PIC16L, it can reboot the box */ 612 pic16l_reboot(); 613 for (;;); 614 } 615 #endif 616 617 #ifdef SMP 618 cpuset_t map; 619 u_int cnt; 620 621 if (smp_active) { 622 map = all_cpus; 623 CPU_CLR(PCPU_GET(cpuid), &map); 624 CPU_NAND(&map, &stopped_cpus); 625 if (!CPU_EMPTY(&map)) { 626 printf("cpu_reset: Stopping other CPUs\n"); 627 stop_cpus(map); 628 } 629 630 if (PCPU_GET(cpuid) != 0) { 631 cpu_reset_proxyid = PCPU_GET(cpuid); 632 cpustop_restartfunc = cpu_reset_proxy; 633 cpu_reset_proxy_active = 0; 634 printf("cpu_reset: Restarting BSP\n"); 635 636 /* Restart CPU #0. */ 637 /* XXX: restart_cpus(1 << 0); */ 638 CPU_SETOF(0, &started_cpus); 639 wmb(); 640 641 cnt = 0; 642 while (cpu_reset_proxy_active == 0 && cnt < 10000000) 643 cnt++; /* Wait for BSP to announce restart */ 644 if (cpu_reset_proxy_active == 0) 645 printf("cpu_reset: Failed to restart BSP\n"); 646 enable_intr(); 647 cpu_reset_proxy_active = 2; 648 649 while (1); 650 /* NOTREACHED */ 651 } 652 653 DELAY(1000000); 654 } 655 #endif 656 cpu_reset_real(); 657 /* NOTREACHED */ 658 } 659 660 static void 661 cpu_reset_real() 662 { 663 struct region_descriptor null_idt; 664 #ifndef PC98 665 int b; 666 #endif 667 668 disable_intr(); 669 #ifdef XEN 670 if (smp_processor_id() == 0) 671 HYPERVISOR_shutdown(SHUTDOWN_reboot); 672 else 673 HYPERVISOR_shutdown(SHUTDOWN_poweroff); 674 #endif 675 #ifdef CPU_ELAN 676 if (elan_mmcr != NULL) 677 elan_mmcr->RESCFG = 1; 678 #endif 679 680 if (cpu == CPU_GEODE1100) { 681 /* Attempt Geode's own reset */ 682 outl(0xcf8, 0x80009044ul); 683 outl(0xcfc, 0xf); 684 } 685 686 #ifdef PC98 687 /* 688 * Attempt to do a CPU reset via CPU reset port. 689 */ 690 if ((inb(0x35) & 0xa0) != 0xa0) { 691 outb(0x37, 0x0f); /* SHUT0 = 0. */ 692 outb(0x37, 0x0b); /* SHUT1 = 0. */ 693 } 694 outb(0xf0, 0x00); /* Reset. */ 695 #else 696 #if !defined(BROKEN_KEYBOARD_RESET) 697 /* 698 * Attempt to do a CPU reset via the keyboard controller, 699 * do not turn off GateA20, as any machine that fails 700 * to do the reset here would then end up in no man's land. 701 */ 702 outb(IO_KBD + 4, 0xFE); 703 DELAY(500000); /* wait 0.5 sec to see if that did it */ 704 #endif 705 706 /* 707 * Attempt to force a reset via the Reset Control register at 708 * I/O port 0xcf9. Bit 2 forces a system reset when it 709 * transitions from 0 to 1. Bit 1 selects the type of reset 710 * to attempt: 0 selects a "soft" reset, and 1 selects a 711 * "hard" reset. We try a "hard" reset. The first write sets 712 * bit 1 to select a "hard" reset and clears bit 2. The 713 * second write forces a 0 -> 1 transition in bit 2 to trigger 714 * a reset. 715 */ 716 outb(0xcf9, 0x2); 717 outb(0xcf9, 0x6); 718 DELAY(500000); /* wait 0.5 sec to see if that did it */ 719 720 /* 721 * Attempt to force a reset via the Fast A20 and Init register 722 * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. 723 * Bit 0 asserts INIT# when set to 1. We are careful to only 724 * preserve bit 1 while setting bit 0. We also must clear bit 725 * 0 before setting it if it isn't already clear. 726 */ 727 b = inb(0x92); 728 if (b != 0xff) { 729 if ((b & 0x1) != 0) 730 outb(0x92, b & 0xfe); 731 outb(0x92, b | 0x1); 732 DELAY(500000); /* wait 0.5 sec to see if that did it */ 733 } 734 #endif /* PC98 */ 735 736 printf("No known reset method worked, attempting CPU shutdown\n"); 737 DELAY(1000000); /* wait 1 sec for printf to complete */ 738 739 /* Wipe the IDT. */ 740 null_idt.rd_limit = 0; 741 null_idt.rd_base = 0; 742 lidt(&null_idt); 743 744 /* "good night, sweet prince .... <THUNK!>" */ 745 breakpoint(); 746 747 /* NOTREACHED */ 748 while(1); 749 } 750 751 /* 752 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-)) 753 */ 754 static void 755 sf_buf_init(void *arg) 756 { 757 struct sf_buf *sf_bufs; 758 vm_offset_t sf_base; 759 int i; 760 761 nsfbufs = NSFBUFS; 762 TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs); 763 764 sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask); 765 TAILQ_INIT(&sf_buf_freelist); 766 sf_base = kva_alloc(nsfbufs * PAGE_SIZE); 767 sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP, 768 M_NOWAIT | M_ZERO); 769 for (i = 0; i < nsfbufs; i++) { 770 sf_bufs[i].kva = sf_base + i * PAGE_SIZE; 771 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry); 772 } 773 sf_buf_alloc_want = 0; 774 mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF); 775 } 776 777 /* 778 * Invalidate the cache lines that may belong to the page, if 779 * (possibly old) mapping of the page by sf buffer exists. Returns 780 * TRUE when mapping was found and cache invalidated. 781 */ 782 boolean_t 783 sf_buf_invalidate_cache(vm_page_t m) 784 { 785 struct sf_head *hash_list; 786 struct sf_buf *sf; 787 boolean_t ret; 788 789 hash_list = &sf_buf_active[SF_BUF_HASH(m)]; 790 ret = FALSE; 791 mtx_lock(&sf_buf_lock); 792 LIST_FOREACH(sf, hash_list, list_entry) { 793 if (sf->m == m) { 794 /* 795 * Use pmap_qenter to update the pte for 796 * existing mapping, in particular, the PAT 797 * settings are recalculated. 798 */ 799 pmap_qenter(sf->kva, &m, 1); 800 pmap_invalidate_cache_range(sf->kva, sf->kva + 801 PAGE_SIZE); 802 ret = TRUE; 803 break; 804 } 805 } 806 mtx_unlock(&sf_buf_lock); 807 return (ret); 808 } 809 810 /* 811 * Get an sf_buf from the freelist. May block if none are available. 812 */ 813 struct sf_buf * 814 sf_buf_alloc(struct vm_page *m, int flags) 815 { 816 pt_entry_t opte, *ptep; 817 struct sf_head *hash_list; 818 struct sf_buf *sf; 819 #ifdef SMP 820 cpuset_t other_cpus; 821 u_int cpuid; 822 #endif 823 int error; 824 825 KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0, 826 ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned")); 827 hash_list = &sf_buf_active[SF_BUF_HASH(m)]; 828 mtx_lock(&sf_buf_lock); 829 LIST_FOREACH(sf, hash_list, list_entry) { 830 if (sf->m == m) { 831 sf->ref_count++; 832 if (sf->ref_count == 1) { 833 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); 834 nsfbufsused++; 835 nsfbufspeak = imax(nsfbufspeak, nsfbufsused); 836 } 837 #ifdef SMP 838 goto shootdown; 839 #else 840 goto done; 841 #endif 842 } 843 } 844 while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) { 845 if (flags & SFB_NOWAIT) 846 goto done; 847 sf_buf_alloc_want++; 848 SFSTAT_INC(sf_allocwait); 849 error = msleep(&sf_buf_freelist, &sf_buf_lock, 850 (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0); 851 sf_buf_alloc_want--; 852 853 /* 854 * If we got a signal, don't risk going back to sleep. 855 */ 856 if (error) 857 goto done; 858 } 859 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); 860 if (sf->m != NULL) 861 LIST_REMOVE(sf, list_entry); 862 LIST_INSERT_HEAD(hash_list, sf, list_entry); 863 sf->ref_count = 1; 864 sf->m = m; 865 nsfbufsused++; 866 nsfbufspeak = imax(nsfbufspeak, nsfbufsused); 867 868 /* 869 * Update the sf_buf's virtual-to-physical mapping, flushing the 870 * virtual address from the TLB. Since the reference count for 871 * the sf_buf's old mapping was zero, that mapping is not 872 * currently in use. Consequently, there is no need to exchange 873 * the old and new PTEs atomically, even under PAE. 874 */ 875 ptep = vtopte(sf->kva); 876 opte = *ptep; 877 #ifdef XEN 878 PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag 879 | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0)); 880 #else 881 *ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V | 882 pmap_cache_bits(m->md.pat_mode, 0); 883 #endif 884 885 /* 886 * Avoid unnecessary TLB invalidations: If the sf_buf's old 887 * virtual-to-physical mapping was not used, then any processor 888 * that has invalidated the sf_buf's virtual address from its TLB 889 * since the last used mapping need not invalidate again. 890 */ 891 #ifdef SMP 892 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) 893 CPU_ZERO(&sf->cpumask); 894 shootdown: 895 sched_pin(); 896 cpuid = PCPU_GET(cpuid); 897 if (!CPU_ISSET(cpuid, &sf->cpumask)) { 898 CPU_SET(cpuid, &sf->cpumask); 899 invlpg(sf->kva); 900 } 901 if ((flags & SFB_CPUPRIVATE) == 0) { 902 other_cpus = all_cpus; 903 CPU_CLR(cpuid, &other_cpus); 904 CPU_NAND(&other_cpus, &sf->cpumask); 905 if (!CPU_EMPTY(&other_cpus)) { 906 CPU_OR(&sf->cpumask, &other_cpus); 907 smp_masked_invlpg(other_cpus, sf->kva); 908 } 909 } 910 sched_unpin(); 911 #else 912 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) 913 pmap_invalidate_page(kernel_pmap, sf->kva); 914 #endif 915 done: 916 mtx_unlock(&sf_buf_lock); 917 return (sf); 918 } 919 920 /* 921 * Remove a reference from the given sf_buf, adding it to the free 922 * list when its reference count reaches zero. A freed sf_buf still, 923 * however, retains its virtual-to-physical mapping until it is 924 * recycled or reactivated by sf_buf_alloc(9). 925 */ 926 void 927 sf_buf_free(struct sf_buf *sf) 928 { 929 930 mtx_lock(&sf_buf_lock); 931 sf->ref_count--; 932 if (sf->ref_count == 0) { 933 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry); 934 nsfbufsused--; 935 #ifdef XEN 936 /* 937 * Xen doesn't like having dangling R/W mappings 938 */ 939 pmap_qremove(sf->kva, 1); 940 sf->m = NULL; 941 LIST_REMOVE(sf, list_entry); 942 #endif 943 if (sf_buf_alloc_want > 0) 944 wakeup(&sf_buf_freelist); 945 } 946 mtx_unlock(&sf_buf_lock); 947 } 948 949 /* 950 * Software interrupt handler for queued VM system processing. 951 */ 952 void 953 swi_vm(void *dummy) 954 { 955 if (busdma_swi_pending != 0) 956 busdma_swi(); 957 } 958 959 /* 960 * Tell whether this address is in some physical memory region. 961 * Currently used by the kernel coredump code in order to avoid 962 * dumping the ``ISA memory hole'' which could cause indefinite hangs, 963 * or other unpredictable behaviour. 964 */ 965 966 int 967 is_physical_memory(vm_paddr_t addr) 968 { 969 970 #ifdef DEV_ISA 971 /* The ISA ``memory hole''. */ 972 if (addr >= 0xa0000 && addr < 0x100000) 973 return 0; 974 #endif 975 976 /* 977 * stuff other tests for known memory-mapped devices (PCI?) 978 * here 979 */ 980 981 return 1; 982 } 983