xref: /freebsd/sys/i386/i386/vm_machdep.c (revision 8847579c57d6aff2b3371c707dce7a2cee8389aa)
1 /*-
2  * Copyright (c) 1982, 1986 The Regents of the University of California.
3  * Copyright (c) 1989, 1990 William Jolitz
4  * Copyright (c) 1994 John Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_isa.h"
47 #include "opt_npx.h"
48 #include "opt_reset.h"
49 #include "opt_cpu.h"
50 #include "opt_xbox.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kse.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/mutex.h>
63 #include <sys/pioctl.h>
64 #include <sys/proc.h>
65 #include <sys/sf_buf.h>
66 #include <sys/smp.h>
67 #include <sys/sched.h>
68 #include <sys/sysctl.h>
69 #include <sys/unistd.h>
70 #include <sys/vnode.h>
71 #include <sys/vmmeter.h>
72 
73 #include <machine/cpu.h>
74 #include <machine/cputypes.h>
75 #include <machine/md_var.h>
76 #include <machine/pcb.h>
77 #include <machine/pcb_ext.h>
78 #include <machine/smp.h>
79 #include <machine/vm86.h>
80 
81 #ifdef CPU_ELAN
82 #include <machine/elan_mmcr.h>
83 #endif
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_param.h>
91 
92 #ifdef PC98
93 #include <pc98/cbus/cbus.h>
94 #else
95 #include <i386/isa/isa.h>
96 #endif
97 
98 #ifdef XBOX
99 #include <machine/xbox.h>
100 #endif
101 
102 #ifndef NSFBUFS
103 #define	NSFBUFS		(512 + maxusers * 16)
104 #endif
105 
106 static void	cpu_reset_real(void);
107 #ifdef SMP
108 static void	cpu_reset_proxy(void);
109 static u_int	cpu_reset_proxyid;
110 static volatile u_int	cpu_reset_proxy_active;
111 #endif
112 static void	sf_buf_init(void *arg);
113 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
114 
115 LIST_HEAD(sf_head, sf_buf);
116 
117 /*
118  * A hash table of active sendfile(2) buffers
119  */
120 static struct sf_head *sf_buf_active;
121 static u_long sf_buf_hashmask;
122 
123 #define	SF_BUF_HASH(m)	(((m) - vm_page_array) & sf_buf_hashmask)
124 
125 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
126 static u_int	sf_buf_alloc_want;
127 
128 /*
129  * A lock used to synchronize access to the hash table and free list
130  */
131 static struct mtx sf_buf_lock;
132 
133 extern int	_ucodesel, _udatasel;
134 
135 /*
136  * Finish a fork operation, with process p2 nearly set up.
137  * Copy and update the pcb, set up the stack so that the child
138  * ready to run and return to user mode.
139  */
140 void
141 cpu_fork(td1, p2, td2, flags)
142 	register struct thread *td1;
143 	register struct proc *p2;
144 	struct thread *td2;
145 	int flags;
146 {
147 	register struct proc *p1;
148 	struct pcb *pcb2;
149 	struct mdproc *mdp2;
150 #ifdef DEV_NPX
151 	register_t savecrit;
152 #endif
153 
154 	p1 = td1->td_proc;
155 	if ((flags & RFPROC) == 0) {
156 		if ((flags & RFMEM) == 0) {
157 			/* unshare user LDT */
158 			struct mdproc *mdp1 = &p1->p_md;
159 			struct proc_ldt *pldt;
160 
161 			pldt = mdp1->md_ldt;
162 			if (pldt && pldt->ldt_refcnt > 1) {
163 				pldt = user_ldt_alloc(mdp1, pldt->ldt_len);
164 				if (pldt == NULL)
165 					panic("could not copy LDT");
166 				mdp1->md_ldt = pldt;
167 				set_user_ldt(mdp1);
168 				user_ldt_free(td1);
169 			}
170 		}
171 		return;
172 	}
173 
174 	/* Ensure that p1's pcb is up to date. */
175 	if (td1 == curthread)
176 		td1->td_pcb->pcb_gs = rgs();
177 #ifdef DEV_NPX
178 	savecrit = intr_disable();
179 	if (PCPU_GET(fpcurthread) == td1)
180 		npxsave(&td1->td_pcb->pcb_save);
181 	intr_restore(savecrit);
182 #endif
183 
184 	/* Point the pcb to the top of the stack */
185 	pcb2 = (struct pcb *)(td2->td_kstack +
186 	    td2->td_kstack_pages * PAGE_SIZE) - 1;
187 	td2->td_pcb = pcb2;
188 
189 	/* Copy p1's pcb */
190 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
191 
192 	/* Point mdproc and then copy over td1's contents */
193 	mdp2 = &p2->p_md;
194 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
195 
196 	/*
197 	 * Create a new fresh stack for the new process.
198 	 * Copy the trap frame for the return to user mode as if from a
199 	 * syscall.  This copies most of the user mode register values.
200 	 * The -16 is so we can expand the trapframe if we go to vm86.
201 	 */
202 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
203 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
204 
205 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
206 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
207 	td2->td_frame->tf_edx = 1;
208 
209 	/*
210 	 * If the parent process has the trap bit set (i.e. a debugger had
211 	 * single stepped the process to the system call), we need to clear
212 	 * the trap flag from the new frame unless the debugger had set PF_FORK
213 	 * on the parent.  Otherwise, the child will receive a (likely
214 	 * unexpected) SIGTRAP when it executes the first instruction after
215 	 * returning  to userland.
216 	 */
217 	if ((p1->p_pfsflags & PF_FORK) == 0)
218 		td2->td_frame->tf_eflags &= ~PSL_T;
219 
220 	/*
221 	 * Set registers for trampoline to user mode.  Leave space for the
222 	 * return address on stack.  These are the kernel mode register values.
223 	 */
224 #ifdef PAE
225 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
226 #else
227 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
228 #endif
229 	pcb2->pcb_edi = 0;
230 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
231 	pcb2->pcb_ebp = 0;
232 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
233 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
234 	pcb2->pcb_eip = (int)fork_trampoline;
235 	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
236 	/*-
237 	 * pcb2->pcb_dr*:	cloned above.
238 	 * pcb2->pcb_savefpu:	cloned above.
239 	 * pcb2->pcb_flags:	cloned above.
240 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
241 	 * pcb2->pcb_gs:	cloned above.
242 	 * pcb2->pcb_ext:	cleared below.
243 	 */
244 
245 	/*
246 	 * XXX don't copy the i/o pages.  this should probably be fixed.
247 	 */
248 	pcb2->pcb_ext = 0;
249 
250 	/* Copy the LDT, if necessary. */
251 	mtx_lock_spin(&sched_lock);
252 	if (mdp2->md_ldt != NULL) {
253 		if (flags & RFMEM) {
254 			mdp2->md_ldt->ldt_refcnt++;
255 		} else {
256 			mdp2->md_ldt = user_ldt_alloc(mdp2,
257 			    mdp2->md_ldt->ldt_len);
258 			if (mdp2->md_ldt == NULL)
259 				panic("could not copy LDT");
260 		}
261 	}
262 	mtx_unlock_spin(&sched_lock);
263 
264 	/* Setup to release sched_lock in fork_exit(). */
265 	td2->td_md.md_spinlock_count = 1;
266 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
267 
268 	/*
269 	 * Now, cpu_switch() can schedule the new process.
270 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
271 	 * containing the return address when exiting cpu_switch.
272 	 * This will normally be to fork_trampoline(), which will have
273 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
274 	 * will set up a stack to call fork_return(p, frame); to complete
275 	 * the return to user-mode.
276 	 */
277 }
278 
279 /*
280  * Intercept the return address from a freshly forked process that has NOT
281  * been scheduled yet.
282  *
283  * This is needed to make kernel threads stay in kernel mode.
284  */
285 void
286 cpu_set_fork_handler(td, func, arg)
287 	struct thread *td;
288 	void (*func)(void *);
289 	void *arg;
290 {
291 	/*
292 	 * Note that the trap frame follows the args, so the function
293 	 * is really called like this:  func(arg, frame);
294 	 */
295 	td->td_pcb->pcb_esi = (int) func;	/* function */
296 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
297 }
298 
299 void
300 cpu_exit(struct thread *td)
301 {
302 
303 	/*
304 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
305 	 * and %gs before we free it in case they refer to an LDT entry.
306 	 */
307 	if (td->td_proc->p_md.md_ldt) {
308 		td->td_pcb->pcb_gs = _udatasel;
309 		load_gs(_udatasel);
310 		user_ldt_free(td);
311 	}
312 }
313 
314 void
315 cpu_thread_exit(struct thread *td)
316 {
317 
318 #ifdef DEV_NPX
319 	if (td == PCPU_GET(fpcurthread))
320 		npxdrop();
321 #endif
322 
323 	/* Disable any hardware breakpoints. */
324 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
325 		reset_dbregs();
326 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
327 	}
328 }
329 
330 void
331 cpu_thread_clean(struct thread *td)
332 {
333 	struct pcb *pcb;
334 
335 	pcb = td->td_pcb;
336 	if (pcb->pcb_ext != NULL) {
337 		/* XXXKSE  XXXSMP  not SMP SAFE.. what locks do we have? */
338 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
339 		/*
340 		 * XXX do we need to move the TSS off the allocated pages
341 		 * before freeing them?  (not done here)
342 		 */
343 		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
344 		    ctob(IOPAGES + 1));
345 		pcb->pcb_ext = NULL;
346 	}
347 }
348 
349 void
350 cpu_thread_swapin(struct thread *td)
351 {
352 }
353 
354 void
355 cpu_thread_swapout(struct thread *td)
356 {
357 }
358 
359 void
360 cpu_thread_setup(struct thread *td)
361 {
362 
363 	td->td_pcb = (struct pcb *)(td->td_kstack +
364 	    td->td_kstack_pages * PAGE_SIZE) - 1;
365 	td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
366 	td->td_pcb->pcb_ext = NULL;
367 }
368 
369 /*
370  * Initialize machine state (pcb and trap frame) for a new thread about to
371  * upcall. Put enough state in the new thread's PCB to get it to go back
372  * userret(), where we can intercept it again to set the return (upcall)
373  * Address and stack, along with those from upcals that are from other sources
374  * such as those generated in thread_userret() itself.
375  */
376 void
377 cpu_set_upcall(struct thread *td, struct thread *td0)
378 {
379 	struct pcb *pcb2;
380 
381 	/* Point the pcb to the top of the stack. */
382 	pcb2 = td->td_pcb;
383 
384 	/*
385 	 * Copy the upcall pcb.  This loads kernel regs.
386 	 * Those not loaded individually below get their default
387 	 * values here.
388 	 *
389 	 * XXXKSE It might be a good idea to simply skip this as
390 	 * the values of the other registers may be unimportant.
391 	 * This would remove any requirement for knowing the KSE
392 	 * at this time (see the matching comment below for
393 	 * more analysis) (need a good safe default).
394 	 */
395 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
396 	pcb2->pcb_flags &= ~(PCB_NPXTRAP|PCB_NPXINITDONE);
397 
398 	/*
399 	 * Create a new fresh stack for the new thread.
400 	 * The -16 is so we can expand the trapframe if we go to vm86.
401 	 * Don't forget to set this stack value into whatever supplies
402 	 * the address for the fault handlers.
403 	 * The contexts are filled in at the time we actually DO the
404 	 * upcall as only then do we know which KSE we got.
405 	 */
406 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
407 
408 	/*
409 	 * Set registers for trampoline to user mode.  Leave space for the
410 	 * return address on stack.  These are the kernel mode register values.
411 	 */
412 #ifdef PAE
413 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdpt);
414 #else
415 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdir);
416 #endif
417 	pcb2->pcb_edi = 0;
418 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
419 	pcb2->pcb_ebp = 0;
420 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
421 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
422 	pcb2->pcb_eip = (int)fork_trampoline;
423 	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
424 	pcb2->pcb_gs = rgs();
425 	/*
426 	 * If we didn't copy the pcb, we'd need to do the following registers:
427 	 * pcb2->pcb_dr*:	cloned above.
428 	 * pcb2->pcb_savefpu:	cloned above.
429 	 * pcb2->pcb_flags:	cloned above.
430 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
431 	 * pcb2->pcb_gs:	cloned above.  XXXKSE ???
432 	 * pcb2->pcb_ext:	cleared below.
433 	 */
434 	pcb2->pcb_ext = NULL;
435 
436 	/* Setup to release sched_lock in fork_exit(). */
437 	td->td_md.md_spinlock_count = 1;
438 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
439 }
440 
441 /*
442  * Set that machine state for performing an upcall that has to
443  * be done in thread_userret() so that those upcalls generated
444  * in thread_userret() itself can be done as well.
445  */
446 void
447 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
448 	stack_t *stack)
449 {
450 
451 	/*
452 	 * Do any extra cleaning that needs to be done.
453 	 * The thread may have optional components
454 	 * that are not present in a fresh thread.
455 	 * This may be a recycled thread so make it look
456 	 * as though it's newly allocated.
457 	 */
458 	cpu_thread_clean(td);
459 
460 	/*
461 	 * Set the trap frame to point at the beginning of the uts
462 	 * function.
463 	 */
464 	td->td_frame->tf_ebp = 0;
465 	td->td_frame->tf_esp =
466 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
467 	td->td_frame->tf_eip = (int)entry;
468 
469 	/*
470 	 * Pass the address of the mailbox for this kse to the uts
471 	 * function as a parameter on the stack.
472 	 */
473 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
474 	    (int)arg);
475 }
476 
477 int
478 cpu_set_user_tls(struct thread *td, void *tls_base)
479 {
480 	struct segment_descriptor sd;
481 	uint32_t base;
482 
483 	/*
484 	 * Construct a descriptor and store it in the pcb for
485 	 * the next context switch.  Also store it in the gdt
486 	 * so that the load of tf_fs into %fs will activate it
487 	 * at return to userland.
488 	 */
489 	base = (uint32_t)tls_base;
490 	sd.sd_lobase = base & 0xffffff;
491 	sd.sd_hibase = (base >> 24) & 0xff;
492 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
493 	sd.sd_hilimit = 0xf;
494 	sd.sd_type  = SDT_MEMRWA;
495 	sd.sd_dpl   = SEL_UPL;
496 	sd.sd_p     = 1;
497 	sd.sd_xx    = 0;
498 	sd.sd_def32 = 1;
499 	sd.sd_gran  = 1;
500 	critical_enter();
501 	/* set %gs */
502 	td->td_pcb->pcb_gsd = sd;
503 	if (td == curthread) {
504 		PCPU_GET(fsgs_gdt)[1] = sd;
505 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
506 	}
507 	critical_exit();
508 	return (0);
509 }
510 
511 /*
512  * Convert kernel VA to physical address
513  */
514 vm_paddr_t
515 kvtop(void *addr)
516 {
517 	vm_paddr_t pa;
518 
519 	pa = pmap_kextract((vm_offset_t)addr);
520 	if (pa == 0)
521 		panic("kvtop: zero page frame");
522 	return (pa);
523 }
524 
525 #ifdef SMP
526 static void
527 cpu_reset_proxy()
528 {
529 
530 	cpu_reset_proxy_active = 1;
531 	while (cpu_reset_proxy_active == 1)
532 		;	/* Wait for other cpu to see that we've started */
533 	stop_cpus((1<<cpu_reset_proxyid));
534 	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
535 	DELAY(1000000);
536 	cpu_reset_real();
537 }
538 #endif
539 
540 void
541 cpu_reset()
542 {
543 #ifdef XBOX
544 	if (arch_i386_is_xbox) {
545 		/* Kick the PIC16L, it can reboot the box */
546 		pic16l_reboot();
547 		for (;;);
548 	}
549 #endif
550 
551 #ifdef SMP
552 	u_int cnt, map;
553 
554 	if (smp_active) {
555 		map = PCPU_GET(other_cpus) & ~stopped_cpus;
556 		if (map != 0) {
557 			printf("cpu_reset: Stopping other CPUs\n");
558 			stop_cpus(map);
559 		}
560 
561 		if (PCPU_GET(cpuid) != 0) {
562 			cpu_reset_proxyid = PCPU_GET(cpuid);
563 			cpustop_restartfunc = cpu_reset_proxy;
564 			cpu_reset_proxy_active = 0;
565 			printf("cpu_reset: Restarting BSP\n");
566 
567 			/* Restart CPU #0. */
568 			/* XXX: restart_cpus(1 << 0); */
569 			atomic_store_rel_int(&started_cpus, (1 << 0));
570 
571 			cnt = 0;
572 			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
573 				cnt++;	/* Wait for BSP to announce restart */
574 			if (cpu_reset_proxy_active == 0)
575 				printf("cpu_reset: Failed to restart BSP\n");
576 			enable_intr();
577 			cpu_reset_proxy_active = 2;
578 
579 			while (1);
580 			/* NOTREACHED */
581 		}
582 
583 		DELAY(1000000);
584 	}
585 #endif
586 	cpu_reset_real();
587 	/* NOTREACHED */
588 }
589 
590 static void
591 cpu_reset_real()
592 {
593 #ifndef PC98
594 	int b;
595 #endif
596 
597 	disable_intr();
598 #ifdef CPU_ELAN
599 	if (elan_mmcr != NULL)
600 		elan_mmcr->RESCFG = 1;
601 #endif
602 
603 	if (cpu == CPU_GEODE1100) {
604 		/* Attempt Geode's own reset */
605 		outl(0xcf8, 0x80009044ul);
606 		outl(0xcfc, 0xf);
607 	}
608 
609 #ifdef PC98
610 	/*
611 	 * Attempt to do a CPU reset via CPU reset port.
612 	 */
613 	if ((inb(0x35) & 0xa0) != 0xa0) {
614 		outb(0x37, 0x0f);		/* SHUT0 = 0. */
615 		outb(0x37, 0x0b);		/* SHUT1 = 0. */
616 	}
617 	outb(0xf0, 0x00);		/* Reset. */
618 #else
619 #if !defined(BROKEN_KEYBOARD_RESET)
620 	/*
621 	 * Attempt to do a CPU reset via the keyboard controller,
622 	 * do not turn off GateA20, as any machine that fails
623 	 * to do the reset here would then end up in no man's land.
624 	 */
625 	outb(IO_KBD + 4, 0xFE);
626 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
627 #endif
628 	/* Try the PCI reset */
629 	outb(0xcf9, 0x2);
630 	outb(0xcf9, 0x6);
631 	DELAY(500000);  /* wait 0.5 sec to see if that did it */
632 
633 	/* Try port 0x92 fast reset */
634 	b = inb(0x92);
635 	/* Check the the hardware actually has the port in question */
636 	if (b != 0xff) {
637 		if ((b & 0x1) != 0)
638 			outb(0x92, b & 0xfe);
639 		outb(0x92, b | 0x1);
640 		DELAY(500000);  /* wait 0.5 sec to see if that did it */
641 	}
642 #endif /* PC98 */
643 
644 	printf("No known reset method did work, attempting CPU shutdown\n");
645 	DELAY(1000000); /* wait 1 sec for printf to complete */
646 
647 	/* Force a shutdown by unmapping entire address space. */
648 	bzero((caddr_t)PTD, NBPTD);
649 
650 	/* "good night, sweet prince .... <THUNK!>" */
651 	invltlb();
652 	/* NOTREACHED */
653 	while(1);
654 }
655 
656 /*
657  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
658  */
659 static void
660 sf_buf_init(void *arg)
661 {
662 	struct sf_buf *sf_bufs;
663 	vm_offset_t sf_base;
664 	int i;
665 
666 	nsfbufs = NSFBUFS;
667 	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
668 
669 	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
670 	TAILQ_INIT(&sf_buf_freelist);
671 	sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
672 	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
673 	    M_NOWAIT | M_ZERO);
674 	for (i = 0; i < nsfbufs; i++) {
675 		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
676 		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
677 	}
678 	sf_buf_alloc_want = 0;
679 	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
680 }
681 
682 /*
683  * Get an sf_buf from the freelist. Will block if none are available.
684  */
685 struct sf_buf *
686 sf_buf_alloc(struct vm_page *m, int flags)
687 {
688 	pt_entry_t opte, *ptep;
689 	struct sf_head *hash_list;
690 	struct sf_buf *sf;
691 #ifdef SMP
692 	cpumask_t cpumask, other_cpus;
693 #endif
694 	int error;
695 
696 	KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
697 	    ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
698 	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
699 	mtx_lock(&sf_buf_lock);
700 	LIST_FOREACH(sf, hash_list, list_entry) {
701 		if (sf->m == m) {
702 			sf->ref_count++;
703 			if (sf->ref_count == 1) {
704 				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
705 				nsfbufsused++;
706 				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
707 			}
708 #ifdef SMP
709 			goto shootdown;
710 #else
711 			goto done;
712 #endif
713 		}
714 	}
715 	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
716 		if (flags & SFB_NOWAIT)
717 			goto done;
718 		sf_buf_alloc_want++;
719 		mbstat.sf_allocwait++;
720 		error = msleep(&sf_buf_freelist, &sf_buf_lock,
721 		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
722 		sf_buf_alloc_want--;
723 
724 		/*
725 		 * If we got a signal, don't risk going back to sleep.
726 		 */
727 		if (error)
728 			goto done;
729 	}
730 	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
731 	if (sf->m != NULL)
732 		LIST_REMOVE(sf, list_entry);
733 	LIST_INSERT_HEAD(hash_list, sf, list_entry);
734 	sf->ref_count = 1;
735 	sf->m = m;
736 	nsfbufsused++;
737 	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
738 
739 	/*
740 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
741 	 * virtual address from the TLB.  Since the reference count for
742 	 * the sf_buf's old mapping was zero, that mapping is not
743 	 * currently in use.  Consequently, there is no need to exchange
744 	 * the old and new PTEs atomically, even under PAE.
745 	 */
746 	ptep = vtopte(sf->kva);
747 	opte = *ptep;
748 	*ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V;
749 
750 	/*
751 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
752 	 * virtual-to-physical mapping was not used, then any processor
753 	 * that has invalidated the sf_buf's virtual address from its TLB
754 	 * since the last used mapping need not invalidate again.
755 	 */
756 #ifdef SMP
757 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
758 		sf->cpumask = 0;
759 shootdown:
760 	sched_pin();
761 	cpumask = PCPU_GET(cpumask);
762 	if ((sf->cpumask & cpumask) == 0) {
763 		sf->cpumask |= cpumask;
764 		invlpg(sf->kva);
765 	}
766 	if ((flags & SFB_CPUPRIVATE) == 0) {
767 		other_cpus = PCPU_GET(other_cpus) & ~sf->cpumask;
768 		if (other_cpus != 0) {
769 			sf->cpumask |= other_cpus;
770 			mtx_lock_spin(&smp_ipi_mtx);
771 			smp_masked_invlpg(other_cpus, sf->kva);
772 			mtx_unlock_spin(&smp_ipi_mtx);
773 		}
774 	}
775 	sched_unpin();
776 #else
777 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
778 		pmap_invalidate_page(kernel_pmap, sf->kva);
779 #endif
780 done:
781 	mtx_unlock(&sf_buf_lock);
782 	return (sf);
783 }
784 
785 /*
786  * Remove a reference from the given sf_buf, adding it to the free
787  * list when its reference count reaches zero.  A freed sf_buf still,
788  * however, retains its virtual-to-physical mapping until it is
789  * recycled or reactivated by sf_buf_alloc(9).
790  */
791 void
792 sf_buf_free(struct sf_buf *sf)
793 {
794 
795 	mtx_lock(&sf_buf_lock);
796 	sf->ref_count--;
797 	if (sf->ref_count == 0) {
798 		TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
799 		nsfbufsused--;
800 		if (sf_buf_alloc_want > 0)
801 			wakeup_one(&sf_buf_freelist);
802 	}
803 	mtx_unlock(&sf_buf_lock);
804 }
805 
806 /*
807  * Software interrupt handler for queued VM system processing.
808  */
809 void
810 swi_vm(void *dummy)
811 {
812 	if (busdma_swi_pending != 0)
813 		busdma_swi();
814 }
815 
816 /*
817  * Tell whether this address is in some physical memory region.
818  * Currently used by the kernel coredump code in order to avoid
819  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
820  * or other unpredictable behaviour.
821  */
822 
823 int
824 is_physical_memory(vm_paddr_t addr)
825 {
826 
827 #ifdef DEV_ISA
828 	/* The ISA ``memory hole''. */
829 	if (addr >= 0xa0000 && addr < 0x100000)
830 		return 0;
831 #endif
832 
833 	/*
834 	 * stuff other tests for known memory-mapped devices (PCI?)
835 	 * here
836 	 */
837 
838 	return 1;
839 }
840