1 /*- 2 * Copyright (c) 1982, 1986 The Regents of the University of California. 3 * Copyright (c) 1989, 1990 William Jolitz 4 * Copyright (c) 1994 John Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department, and William Jolitz. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 40 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_isa.h" 47 #include "opt_npx.h" 48 #ifdef PC98 49 #include "opt_pc98.h" 50 #endif 51 #include "opt_reset.h" 52 #include "opt_cpu.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/bio.h> 57 #include <sys/buf.h> 58 #include <sys/kse.h> 59 #include <sys/kernel.h> 60 #include <sys/ktr.h> 61 #include <sys/lock.h> 62 #include <sys/malloc.h> 63 #include <sys/mbuf.h> 64 #include <sys/mutex.h> 65 #include <sys/pioctl.h> 66 #include <sys/proc.h> 67 #include <sys/sf_buf.h> 68 #include <sys/smp.h> 69 #include <sys/sysctl.h> 70 #include <sys/unistd.h> 71 #include <sys/vnode.h> 72 #include <sys/vmmeter.h> 73 74 #include <machine/cpu.h> 75 #include <machine/cputypes.h> 76 #include <machine/md_var.h> 77 #include <machine/pcb.h> 78 #include <machine/pcb_ext.h> 79 #include <machine/smp.h> 80 #include <machine/vm86.h> 81 82 #ifdef CPU_ELAN 83 #include <machine/elan_mmcr.h> 84 #endif 85 86 #include <vm/vm.h> 87 #include <vm/vm_extern.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_param.h> 92 93 #ifdef PC98 94 #include <pc98/pc98/pc98.h> 95 #else 96 #include <i386/isa/isa.h> 97 #endif 98 99 #ifndef NSFBUFS 100 #define NSFBUFS (512 + maxusers * 16) 101 #endif 102 103 static void cpu_reset_real(void); 104 #ifdef SMP 105 static void cpu_reset_proxy(void); 106 static u_int cpu_reset_proxyid; 107 static volatile u_int cpu_reset_proxy_active; 108 #endif 109 static void sf_buf_init(void *arg); 110 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL) 111 112 LIST_HEAD(sf_head, sf_buf); 113 114 /* 115 * A hash table of active sendfile(2) buffers 116 */ 117 static struct sf_head *sf_buf_active; 118 static u_long sf_buf_hashmask; 119 120 #define SF_BUF_HASH(m) (((m) - vm_page_array) & sf_buf_hashmask) 121 122 static TAILQ_HEAD(, sf_buf) sf_buf_freelist; 123 static u_int sf_buf_alloc_want; 124 125 /* 126 * A lock used to synchronize access to the hash table and free list 127 */ 128 static struct mtx sf_buf_lock; 129 130 extern int _ucodesel, _udatasel; 131 132 /* 133 * Finish a fork operation, with process p2 nearly set up. 134 * Copy and update the pcb, set up the stack so that the child 135 * ready to run and return to user mode. 136 */ 137 void 138 cpu_fork(td1, p2, td2, flags) 139 register struct thread *td1; 140 register struct proc *p2; 141 struct thread *td2; 142 int flags; 143 { 144 register struct proc *p1; 145 struct pcb *pcb2; 146 struct mdproc *mdp2; 147 #ifdef DEV_NPX 148 register_t savecrit; 149 #endif 150 151 p1 = td1->td_proc; 152 if ((flags & RFPROC) == 0) { 153 if ((flags & RFMEM) == 0) { 154 /* unshare user LDT */ 155 struct mdproc *mdp1 = &p1->p_md; 156 struct proc_ldt *pldt = mdp1->md_ldt; 157 if (pldt && pldt->ldt_refcnt > 1) { 158 pldt = user_ldt_alloc(mdp1, pldt->ldt_len); 159 if (pldt == NULL) 160 panic("could not copy LDT"); 161 mdp1->md_ldt = pldt; 162 set_user_ldt(mdp1); 163 user_ldt_free(td1); 164 } 165 } 166 return; 167 } 168 169 /* Ensure that p1's pcb is up to date. */ 170 #ifdef DEV_NPX 171 if (td1 == curthread) 172 td1->td_pcb->pcb_gs = rgs(); 173 savecrit = intr_disable(); 174 if (PCPU_GET(fpcurthread) == td1) 175 npxsave(&td1->td_pcb->pcb_save); 176 intr_restore(savecrit); 177 #endif 178 179 /* Point the pcb to the top of the stack */ 180 pcb2 = (struct pcb *)(td2->td_kstack + 181 td2->td_kstack_pages * PAGE_SIZE) - 1; 182 td2->td_pcb = pcb2; 183 184 /* Copy p1's pcb */ 185 bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); 186 187 /* Point mdproc and then copy over td1's contents */ 188 mdp2 = &p2->p_md; 189 bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); 190 191 /* 192 * Create a new fresh stack for the new process. 193 * Copy the trap frame for the return to user mode as if from a 194 * syscall. This copies most of the user mode register values. 195 * The -16 is so we can expand the trapframe if we go to vm86. 196 */ 197 td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1; 198 bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); 199 200 td2->td_frame->tf_eax = 0; /* Child returns zero */ 201 td2->td_frame->tf_eflags &= ~PSL_C; /* success */ 202 td2->td_frame->tf_edx = 1; 203 204 /* 205 * If the parent process has the trap bit set (i.e. a debugger had 206 * single stepped the process to the system call), we need to clear 207 * the trap flag from the new frame unless the debugger had set PF_FORK 208 * on the parent. Otherwise, the child will receive a (likely 209 * unexpected) SIGTRAP when it executes the first instruction after 210 * returning to userland. 211 */ 212 if ((p1->p_pfsflags & PF_FORK) == 0) 213 td2->td_frame->tf_eflags &= ~PSL_T; 214 215 /* 216 * Set registers for trampoline to user mode. Leave space for the 217 * return address on stack. These are the kernel mode register values. 218 */ 219 #ifdef PAE 220 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt); 221 #else 222 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir); 223 #endif 224 pcb2->pcb_edi = 0; 225 pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */ 226 pcb2->pcb_ebp = 0; 227 pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *); 228 pcb2->pcb_ebx = (int)td2; /* fork_trampoline argument */ 229 pcb2->pcb_eip = (int)fork_trampoline; 230 pcb2->pcb_psl = PSL_KERNEL; /* ints disabled */ 231 pcb2->pcb_gs = rgs(); 232 /*- 233 * pcb2->pcb_dr*: cloned above. 234 * pcb2->pcb_savefpu: cloned above. 235 * pcb2->pcb_flags: cloned above. 236 * pcb2->pcb_onfault: cloned above (always NULL here?). 237 * pcb2->pcb_gs: cloned above. 238 * pcb2->pcb_ext: cleared below. 239 */ 240 241 /* 242 * XXX don't copy the i/o pages. this should probably be fixed. 243 */ 244 pcb2->pcb_ext = 0; 245 246 /* Copy the LDT, if necessary. */ 247 mtx_lock_spin(&sched_lock); 248 if (mdp2->md_ldt != NULL) { 249 if (flags & RFMEM) { 250 mdp2->md_ldt->ldt_refcnt++; 251 } else { 252 mdp2->md_ldt = user_ldt_alloc(mdp2, 253 mdp2->md_ldt->ldt_len); 254 if (mdp2->md_ldt == NULL) 255 panic("could not copy LDT"); 256 } 257 } 258 mtx_unlock_spin(&sched_lock); 259 260 /* 261 * Now, cpu_switch() can schedule the new process. 262 * pcb_esp is loaded pointing to the cpu_switch() stack frame 263 * containing the return address when exiting cpu_switch. 264 * This will normally be to fork_trampoline(), which will have 265 * %ebx loaded with the new proc's pointer. fork_trampoline() 266 * will set up a stack to call fork_return(p, frame); to complete 267 * the return to user-mode. 268 */ 269 } 270 271 /* 272 * Intercept the return address from a freshly forked process that has NOT 273 * been scheduled yet. 274 * 275 * This is needed to make kernel threads stay in kernel mode. 276 */ 277 void 278 cpu_set_fork_handler(td, func, arg) 279 struct thread *td; 280 void (*func)(void *); 281 void *arg; 282 { 283 /* 284 * Note that the trap frame follows the args, so the function 285 * is really called like this: func(arg, frame); 286 */ 287 td->td_pcb->pcb_esi = (int) func; /* function */ 288 td->td_pcb->pcb_ebx = (int) arg; /* first arg */ 289 } 290 291 void 292 cpu_exit(struct thread *td) 293 { 294 struct mdproc *mdp; 295 296 /* Reset pc->pcb_gs and %gs before possibly invalidating it. */ 297 mdp = &td->td_proc->p_md; 298 if (mdp->md_ldt) { 299 td->td_pcb->pcb_gs = _udatasel; 300 load_gs(_udatasel); 301 user_ldt_free(td); 302 } 303 } 304 305 void 306 cpu_thread_exit(struct thread *td) 307 { 308 struct pcb *pcb = td->td_pcb; 309 310 #ifdef DEV_NPX 311 if (td == PCPU_GET(fpcurthread)) 312 npxdrop(); 313 #endif 314 if (pcb->pcb_flags & PCB_DBREGS) { 315 /* disable all hardware breakpoints */ 316 reset_dbregs(); 317 pcb->pcb_flags &= ~PCB_DBREGS; 318 } 319 } 320 321 void 322 cpu_thread_clean(struct thread *td) 323 { 324 struct pcb *pcb; 325 326 pcb = td->td_pcb; 327 if (pcb->pcb_ext != 0) { 328 /* XXXKSE XXXSMP not SMP SAFE.. what locks do we have? */ 329 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */ 330 /* 331 * XXX do we need to move the TSS off the allocated pages 332 * before freeing them? (not done here) 333 */ 334 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext, 335 ctob(IOPAGES + 1)); 336 pcb->pcb_ext = 0; 337 } 338 } 339 340 void 341 cpu_thread_swapin(struct thread *td) 342 { 343 } 344 345 void 346 cpu_thread_swapout(struct thread *td) 347 { 348 } 349 350 void 351 cpu_thread_setup(struct thread *td) 352 { 353 354 td->td_pcb = (struct pcb *)(td->td_kstack + 355 td->td_kstack_pages * PAGE_SIZE) - 1; 356 td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1; 357 td->td_pcb->pcb_ext = NULL; 358 } 359 360 /* 361 * Initialize machine state (pcb and trap frame) for a new thread about to 362 * upcall. Put enough state in the new thread's PCB to get it to go back 363 * userret(), where we can intercept it again to set the return (upcall) 364 * Address and stack, along with those from upcals that are from other sources 365 * such as those generated in thread_userret() itself. 366 */ 367 void 368 cpu_set_upcall(struct thread *td, struct thread *td0) 369 { 370 struct pcb *pcb2; 371 372 /* Point the pcb to the top of the stack. */ 373 pcb2 = td->td_pcb; 374 375 /* 376 * Copy the upcall pcb. This loads kernel regs. 377 * Those not loaded individually below get their default 378 * values here. 379 * 380 * XXXKSE It might be a good idea to simply skip this as 381 * the values of the other registers may be unimportant. 382 * This would remove any requirement for knowing the KSE 383 * at this time (see the matching comment below for 384 * more analysis) (need a good safe default). 385 */ 386 bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); 387 pcb2->pcb_flags &= ~(PCB_NPXTRAP|PCB_NPXINITDONE); 388 389 /* 390 * Create a new fresh stack for the new thread. 391 * The -16 is so we can expand the trapframe if we go to vm86. 392 * Don't forget to set this stack value into whatever supplies 393 * the address for the fault handlers. 394 * The contexts are filled in at the time we actually DO the 395 * upcall as only then do we know which KSE we got. 396 */ 397 bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); 398 399 /* 400 * Set registers for trampoline to user mode. Leave space for the 401 * return address on stack. These are the kernel mode register values. 402 */ 403 #ifdef PAE 404 pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdpt); 405 #else 406 pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdir); 407 #endif 408 pcb2->pcb_edi = 0; 409 pcb2->pcb_esi = (int)fork_return; /* trampoline arg */ 410 pcb2->pcb_ebp = 0; 411 pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */ 412 pcb2->pcb_ebx = (int)td; /* trampoline arg */ 413 pcb2->pcb_eip = (int)fork_trampoline; 414 pcb2->pcb_psl &= ~(PSL_I); /* interrupts must be disabled */ 415 pcb2->pcb_gs = rgs(); 416 /* 417 * If we didn't copy the pcb, we'd need to do the following registers: 418 * pcb2->pcb_dr*: cloned above. 419 * pcb2->pcb_savefpu: cloned above. 420 * pcb2->pcb_flags: cloned above. 421 * pcb2->pcb_onfault: cloned above (always NULL here?). 422 * pcb2->pcb_gs: cloned above. XXXKSE ??? 423 * pcb2->pcb_ext: cleared below. 424 */ 425 pcb2->pcb_ext = NULL; 426 } 427 428 /* 429 * Set that machine state for performing an upcall that has to 430 * be done in thread_userret() so that those upcalls generated 431 * in thread_userret() itself can be done as well. 432 */ 433 void 434 cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku) 435 { 436 437 /* 438 * Do any extra cleaning that needs to be done. 439 * The thread may have optional components 440 * that are not present in a fresh thread. 441 * This may be a recycled thread so make it look 442 * as though it's newly allocated. 443 */ 444 cpu_thread_clean(td); 445 446 /* 447 * Set the trap frame to point at the beginning of the uts 448 * function. 449 */ 450 td->td_frame->tf_ebp = 0; 451 td->td_frame->tf_esp = 452 (int)ku->ku_stack.ss_sp + ku->ku_stack.ss_size - 16; 453 td->td_frame->tf_eip = (int)ku->ku_func; 454 455 /* 456 * Pass the address of the mailbox for this kse to the uts 457 * function as a parameter on the stack. 458 */ 459 suword((void *)(td->td_frame->tf_esp + sizeof(void *)), 460 (int)ku->ku_mailbox); 461 } 462 463 /* 464 * Convert kernel VA to physical address 465 */ 466 vm_paddr_t 467 kvtop(void *addr) 468 { 469 vm_paddr_t pa; 470 471 pa = pmap_kextract((vm_offset_t)addr); 472 if (pa == 0) 473 panic("kvtop: zero page frame"); 474 return (pa); 475 } 476 477 #ifdef SMP 478 static void 479 cpu_reset_proxy() 480 { 481 482 cpu_reset_proxy_active = 1; 483 while (cpu_reset_proxy_active == 1) 484 ; /* Wait for other cpu to see that we've started */ 485 stop_cpus((1<<cpu_reset_proxyid)); 486 printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); 487 DELAY(1000000); 488 cpu_reset_real(); 489 } 490 #endif 491 492 void 493 cpu_reset() 494 { 495 #ifdef SMP 496 u_int cnt, map; 497 498 if (smp_active) { 499 map = PCPU_GET(other_cpus) & ~stopped_cpus; 500 if (map != 0) { 501 printf("cpu_reset: Stopping other CPUs\n"); 502 stop_cpus(map); 503 } 504 505 if (PCPU_GET(cpuid) != 0) { 506 cpu_reset_proxyid = PCPU_GET(cpuid); 507 cpustop_restartfunc = cpu_reset_proxy; 508 cpu_reset_proxy_active = 0; 509 printf("cpu_reset: Restarting BSP\n"); 510 started_cpus = (1<<0); /* Restart CPU #0 */ 511 512 cnt = 0; 513 while (cpu_reset_proxy_active == 0 && cnt < 10000000) 514 cnt++; /* Wait for BSP to announce restart */ 515 if (cpu_reset_proxy_active == 0) 516 printf("cpu_reset: Failed to restart BSP\n"); 517 enable_intr(); 518 cpu_reset_proxy_active = 2; 519 520 while (1); 521 /* NOTREACHED */ 522 } 523 524 DELAY(1000000); 525 } 526 #endif 527 cpu_reset_real(); 528 /* NOTREACHED */ 529 } 530 531 static void 532 cpu_reset_real() 533 { 534 535 #ifdef CPU_ELAN 536 if (elan_mmcr != NULL) 537 elan_mmcr->RESCFG = 1; 538 #endif 539 540 if (cpu == CPU_GEODE1100) { 541 /* Attempt Geode's own reset */ 542 outl(0xcf8, 0x80009044ul); 543 outl(0xcfc, 0xf); 544 } 545 546 #ifdef PC98 547 /* 548 * Attempt to do a CPU reset via CPU reset port. 549 */ 550 disable_intr(); 551 if ((inb(0x35) & 0xa0) != 0xa0) { 552 outb(0x37, 0x0f); /* SHUT0 = 0. */ 553 outb(0x37, 0x0b); /* SHUT1 = 0. */ 554 } 555 outb(0xf0, 0x00); /* Reset. */ 556 #else 557 #if !defined(BROKEN_KEYBOARD_RESET) 558 /* 559 * Attempt to do a CPU reset via the keyboard controller, 560 * do not turn off GateA20, as any machine that fails 561 * to do the reset here would then end up in no man's land. 562 */ 563 outb(IO_KBD + 4, 0xFE); 564 DELAY(500000); /* wait 0.5 sec to see if that did it */ 565 printf("Keyboard reset did not work, attempting CPU shutdown\n"); 566 DELAY(1000000); /* wait 1 sec for printf to complete */ 567 #endif 568 #endif /* PC98 */ 569 570 /* Force a shutdown by unmapping entire address space. */ 571 bzero((caddr_t)PTD, NBPTD); 572 573 /* "good night, sweet prince .... <THUNK!>" */ 574 invltlb(); 575 /* NOTREACHED */ 576 while(1); 577 } 578 579 /* 580 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-)) 581 */ 582 static void 583 sf_buf_init(void *arg) 584 { 585 struct sf_buf *sf_bufs; 586 vm_offset_t sf_base; 587 int i; 588 589 nsfbufs = NSFBUFS; 590 TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs); 591 592 sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask); 593 TAILQ_INIT(&sf_buf_freelist); 594 sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE); 595 sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP, 596 M_NOWAIT | M_ZERO); 597 for (i = 0; i < nsfbufs; i++) { 598 sf_bufs[i].kva = sf_base + i * PAGE_SIZE; 599 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry); 600 } 601 sf_buf_alloc_want = 0; 602 mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF); 603 } 604 605 /* 606 * Get an sf_buf from the freelist. Will block if none are available. 607 */ 608 struct sf_buf * 609 sf_buf_alloc(struct vm_page *m, int flags) 610 { 611 pt_entry_t opte, *ptep; 612 struct sf_head *hash_list; 613 struct sf_buf *sf; 614 #ifdef SMP 615 cpumask_t cpumask, other_cpus; 616 #endif 617 int error; 618 619 KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0, 620 ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned")); 621 hash_list = &sf_buf_active[SF_BUF_HASH(m)]; 622 mtx_lock(&sf_buf_lock); 623 LIST_FOREACH(sf, hash_list, list_entry) { 624 if (sf->m == m) { 625 sf->ref_count++; 626 if (sf->ref_count == 1) { 627 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); 628 nsfbufsused++; 629 nsfbufspeak = imax(nsfbufspeak, nsfbufsused); 630 } 631 #ifdef SMP 632 cpumask = PCPU_GET(cpumask); 633 if ((sf->cpumask & cpumask) == 0) { 634 sf->cpumask |= cpumask; 635 invlpg(sf->kva); 636 } 637 if ((flags & SFB_CPUPRIVATE) == 0) { 638 other_cpus = PCPU_GET(other_cpus) & ~sf->cpumask; 639 if (other_cpus != 0) { 640 sf->cpumask |= other_cpus; 641 mtx_lock_spin(&smp_ipi_mtx); 642 smp_masked_invlpg(other_cpus, sf->kva); 643 mtx_unlock_spin(&smp_ipi_mtx); 644 } 645 } 646 #endif 647 goto done; 648 } 649 } 650 while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) { 651 if (flags & SFB_NOWAIT) 652 goto done; 653 sf_buf_alloc_want++; 654 mbstat.sf_allocwait++; 655 error = msleep(&sf_buf_freelist, &sf_buf_lock, 656 (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0); 657 sf_buf_alloc_want--; 658 659 /* 660 * If we got a signal, don't risk going back to sleep. 661 */ 662 if (error) 663 goto done; 664 } 665 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); 666 if (sf->m != NULL) 667 LIST_REMOVE(sf, list_entry); 668 LIST_INSERT_HEAD(hash_list, sf, list_entry); 669 sf->ref_count = 1; 670 sf->m = m; 671 nsfbufsused++; 672 nsfbufspeak = imax(nsfbufspeak, nsfbufsused); 673 674 /* 675 * Update the sf_buf's virtual-to-physical mapping, flushing the 676 * virtual address from the TLB only if the PTE implies that the old 677 * mapping has been used. Since the reference count for the sf_buf's 678 * old mapping was zero, that mapping is not currently in use. 679 * Consequently, there is no need to exchange the old and new PTEs 680 * atomically, even under PAE. 681 */ 682 ptep = vtopte(sf->kva); 683 opte = *ptep; 684 *ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V; 685 #ifdef SMP 686 if (flags & SFB_CPUPRIVATE) { 687 if ((opte & (PG_A | PG_V)) == (PG_A | PG_V)) { 688 sf->cpumask = PCPU_GET(cpumask); 689 invlpg(sf->kva); 690 } else 691 sf->cpumask = all_cpus; 692 goto done; 693 } else 694 sf->cpumask = all_cpus; 695 #endif 696 if ((opte & (PG_A | PG_V)) == (PG_A | PG_V)) 697 pmap_invalidate_page(kernel_pmap, sf->kva); 698 done: 699 mtx_unlock(&sf_buf_lock); 700 return (sf); 701 } 702 703 /* 704 * Remove a reference from the given sf_buf, adding it to the free 705 * list when its reference count reaches zero. A freed sf_buf still, 706 * however, retains its virtual-to-physical mapping until it is 707 * recycled or reactivated by sf_buf_alloc(9). 708 */ 709 void 710 sf_buf_free(struct sf_buf *sf) 711 { 712 713 mtx_lock(&sf_buf_lock); 714 sf->ref_count--; 715 if (sf->ref_count == 0) { 716 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry); 717 nsfbufsused--; 718 if (sf_buf_alloc_want > 0) 719 wakeup_one(&sf_buf_freelist); 720 } 721 mtx_unlock(&sf_buf_lock); 722 } 723 724 /* 725 * Software interrupt handler for queued VM system processing. 726 */ 727 void 728 swi_vm(void *dummy) 729 { 730 if (busdma_swi_pending != 0) 731 busdma_swi(); 732 } 733 734 /* 735 * Tell whether this address is in some physical memory region. 736 * Currently used by the kernel coredump code in order to avoid 737 * dumping the ``ISA memory hole'' which could cause indefinite hangs, 738 * or other unpredictable behaviour. 739 */ 740 741 int 742 is_physical_memory(vm_paddr_t addr) 743 { 744 745 #ifdef DEV_ISA 746 /* The ISA ``memory hole''. */ 747 if (addr >= 0xa0000 && addr < 0x100000) 748 return 0; 749 #endif 750 751 /* 752 * stuff other tests for known memory-mapped devices (PCI?) 753 * here 754 */ 755 756 return 1; 757 } 758