1 /*- 2 * Copyright (c) 1982, 1986 The Regents of the University of California. 3 * Copyright (c) 1989, 1990 William Jolitz 4 * Copyright (c) 1994 John Dyson 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department, and William Jolitz. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 40 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_isa.h" 47 #include "opt_npx.h" 48 #include "opt_reset.h" 49 #include "opt_cpu.h" 50 #include "opt_xbox.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kernel.h> 57 #include <sys/ktr.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mbuf.h> 61 #include <sys/mutex.h> 62 #include <sys/pioctl.h> 63 #include <sys/proc.h> 64 #include <sys/sysent.h> 65 #include <sys/sf_buf.h> 66 #include <sys/smp.h> 67 #include <sys/sched.h> 68 #include <sys/sysctl.h> 69 #include <sys/unistd.h> 70 #include <sys/vnode.h> 71 #include <sys/vmmeter.h> 72 73 #include <machine/cpu.h> 74 #include <machine/cputypes.h> 75 #include <machine/md_var.h> 76 #include <machine/pcb.h> 77 #include <machine/pcb_ext.h> 78 #include <machine/smp.h> 79 #include <machine/vm86.h> 80 81 #ifdef CPU_ELAN 82 #include <machine/elan_mmcr.h> 83 #endif 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_kern.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_param.h> 91 92 #ifdef XEN 93 #include <xen/hypervisor.h> 94 #endif 95 #ifdef PC98 96 #include <pc98/cbus/cbus.h> 97 #else 98 #include <x86/isa/isa.h> 99 #endif 100 101 #ifdef XBOX 102 #include <machine/xbox.h> 103 #endif 104 105 #ifndef NSFBUFS 106 #define NSFBUFS (512 + maxusers * 16) 107 #endif 108 109 static void cpu_reset_real(void); 110 #ifdef SMP 111 static void cpu_reset_proxy(void); 112 static u_int cpu_reset_proxyid; 113 static volatile u_int cpu_reset_proxy_active; 114 #endif 115 static void sf_buf_init(void *arg); 116 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL); 117 118 LIST_HEAD(sf_head, sf_buf); 119 120 /* 121 * A hash table of active sendfile(2) buffers 122 */ 123 static struct sf_head *sf_buf_active; 124 static u_long sf_buf_hashmask; 125 126 #define SF_BUF_HASH(m) (((m) - vm_page_array) & sf_buf_hashmask) 127 128 static TAILQ_HEAD(, sf_buf) sf_buf_freelist; 129 static u_int sf_buf_alloc_want; 130 131 /* 132 * A lock used to synchronize access to the hash table and free list 133 */ 134 static struct mtx sf_buf_lock; 135 136 extern int _ucodesel, _udatasel; 137 138 /* 139 * Finish a fork operation, with process p2 nearly set up. 140 * Copy and update the pcb, set up the stack so that the child 141 * ready to run and return to user mode. 142 */ 143 void 144 cpu_fork(td1, p2, td2, flags) 145 register struct thread *td1; 146 register struct proc *p2; 147 struct thread *td2; 148 int flags; 149 { 150 register struct proc *p1; 151 struct pcb *pcb2; 152 struct mdproc *mdp2; 153 154 p1 = td1->td_proc; 155 if ((flags & RFPROC) == 0) { 156 if ((flags & RFMEM) == 0) { 157 /* unshare user LDT */ 158 struct mdproc *mdp1 = &p1->p_md; 159 struct proc_ldt *pldt, *pldt1; 160 161 mtx_lock_spin(&dt_lock); 162 if ((pldt1 = mdp1->md_ldt) != NULL && 163 pldt1->ldt_refcnt > 1) { 164 pldt = user_ldt_alloc(mdp1, pldt1->ldt_len); 165 if (pldt == NULL) 166 panic("could not copy LDT"); 167 mdp1->md_ldt = pldt; 168 set_user_ldt(mdp1); 169 user_ldt_deref(pldt1); 170 } else 171 mtx_unlock_spin(&dt_lock); 172 } 173 return; 174 } 175 176 /* Ensure that td1's pcb is up to date. */ 177 if (td1 == curthread) 178 td1->td_pcb->pcb_gs = rgs(); 179 #ifdef DEV_NPX 180 critical_enter(); 181 if (PCPU_GET(fpcurthread) == td1) 182 npxsave(td1->td_pcb->pcb_save); 183 critical_exit(); 184 #endif 185 186 /* Point the pcb to the top of the stack */ 187 pcb2 = (struct pcb *)(td2->td_kstack + 188 td2->td_kstack_pages * PAGE_SIZE) - 1; 189 td2->td_pcb = pcb2; 190 191 /* Copy td1's pcb */ 192 bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); 193 194 /* Properly initialize pcb_save */ 195 pcb2->pcb_save = &pcb2->pcb_user_save; 196 197 /* Point mdproc and then copy over td1's contents */ 198 mdp2 = &p2->p_md; 199 bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); 200 201 /* 202 * Create a new fresh stack for the new process. 203 * Copy the trap frame for the return to user mode as if from a 204 * syscall. This copies most of the user mode register values. 205 * The -16 is so we can expand the trapframe if we go to vm86. 206 */ 207 td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1; 208 bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); 209 210 td2->td_frame->tf_eax = 0; /* Child returns zero */ 211 td2->td_frame->tf_eflags &= ~PSL_C; /* success */ 212 td2->td_frame->tf_edx = 1; 213 214 /* 215 * If the parent process has the trap bit set (i.e. a debugger had 216 * single stepped the process to the system call), we need to clear 217 * the trap flag from the new frame unless the debugger had set PF_FORK 218 * on the parent. Otherwise, the child will receive a (likely 219 * unexpected) SIGTRAP when it executes the first instruction after 220 * returning to userland. 221 */ 222 if ((p1->p_pfsflags & PF_FORK) == 0) 223 td2->td_frame->tf_eflags &= ~PSL_T; 224 225 /* 226 * Set registers for trampoline to user mode. Leave space for the 227 * return address on stack. These are the kernel mode register values. 228 */ 229 #ifdef PAE 230 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt); 231 #else 232 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir); 233 #endif 234 pcb2->pcb_edi = 0; 235 pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */ 236 pcb2->pcb_ebp = 0; 237 pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *); 238 pcb2->pcb_ebx = (int)td2; /* fork_trampoline argument */ 239 pcb2->pcb_eip = (int)fork_trampoline; 240 pcb2->pcb_psl = PSL_KERNEL; /* ints disabled */ 241 /*- 242 * pcb2->pcb_dr*: cloned above. 243 * pcb2->pcb_savefpu: cloned above. 244 * pcb2->pcb_flags: cloned above. 245 * pcb2->pcb_onfault: cloned above (always NULL here?). 246 * pcb2->pcb_gs: cloned above. 247 * pcb2->pcb_ext: cleared below. 248 */ 249 250 /* 251 * XXX don't copy the i/o pages. this should probably be fixed. 252 */ 253 pcb2->pcb_ext = 0; 254 255 /* Copy the LDT, if necessary. */ 256 mtx_lock_spin(&dt_lock); 257 if (mdp2->md_ldt != NULL) { 258 if (flags & RFMEM) { 259 mdp2->md_ldt->ldt_refcnt++; 260 } else { 261 mdp2->md_ldt = user_ldt_alloc(mdp2, 262 mdp2->md_ldt->ldt_len); 263 if (mdp2->md_ldt == NULL) 264 panic("could not copy LDT"); 265 } 266 } 267 mtx_unlock_spin(&dt_lock); 268 269 /* Setup to release spin count in fork_exit(). */ 270 td2->td_md.md_spinlock_count = 1; 271 /* 272 * XXX XEN need to check on PSL_USER is handled 273 */ 274 td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; 275 /* 276 * Now, cpu_switch() can schedule the new process. 277 * pcb_esp is loaded pointing to the cpu_switch() stack frame 278 * containing the return address when exiting cpu_switch. 279 * This will normally be to fork_trampoline(), which will have 280 * %ebx loaded with the new proc's pointer. fork_trampoline() 281 * will set up a stack to call fork_return(p, frame); to complete 282 * the return to user-mode. 283 */ 284 } 285 286 /* 287 * Intercept the return address from a freshly forked process that has NOT 288 * been scheduled yet. 289 * 290 * This is needed to make kernel threads stay in kernel mode. 291 */ 292 void 293 cpu_set_fork_handler(td, func, arg) 294 struct thread *td; 295 void (*func)(void *); 296 void *arg; 297 { 298 /* 299 * Note that the trap frame follows the args, so the function 300 * is really called like this: func(arg, frame); 301 */ 302 td->td_pcb->pcb_esi = (int) func; /* function */ 303 td->td_pcb->pcb_ebx = (int) arg; /* first arg */ 304 } 305 306 void 307 cpu_exit(struct thread *td) 308 { 309 310 /* 311 * If this process has a custom LDT, release it. Reset pc->pcb_gs 312 * and %gs before we free it in case they refer to an LDT entry. 313 */ 314 mtx_lock_spin(&dt_lock); 315 if (td->td_proc->p_md.md_ldt) { 316 td->td_pcb->pcb_gs = _udatasel; 317 load_gs(_udatasel); 318 user_ldt_free(td); 319 } else 320 mtx_unlock_spin(&dt_lock); 321 } 322 323 void 324 cpu_thread_exit(struct thread *td) 325 { 326 327 #ifdef DEV_NPX 328 critical_enter(); 329 if (td == PCPU_GET(fpcurthread)) 330 npxdrop(); 331 critical_exit(); 332 #endif 333 334 /* Disable any hardware breakpoints. */ 335 if (td->td_pcb->pcb_flags & PCB_DBREGS) { 336 reset_dbregs(); 337 td->td_pcb->pcb_flags &= ~PCB_DBREGS; 338 } 339 } 340 341 void 342 cpu_thread_clean(struct thread *td) 343 { 344 struct pcb *pcb; 345 346 pcb = td->td_pcb; 347 if (pcb->pcb_ext != NULL) { 348 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */ 349 /* 350 * XXX do we need to move the TSS off the allocated pages 351 * before freeing them? (not done here) 352 */ 353 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext, 354 ctob(IOPAGES + 1)); 355 pcb->pcb_ext = NULL; 356 } 357 } 358 359 void 360 cpu_thread_swapin(struct thread *td) 361 { 362 } 363 364 void 365 cpu_thread_swapout(struct thread *td) 366 { 367 } 368 369 void 370 cpu_thread_alloc(struct thread *td) 371 { 372 373 td->td_pcb = (struct pcb *)(td->td_kstack + 374 td->td_kstack_pages * PAGE_SIZE) - 1; 375 td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1; 376 td->td_pcb->pcb_ext = NULL; 377 td->td_pcb->pcb_save = &td->td_pcb->pcb_user_save; 378 } 379 380 void 381 cpu_thread_free(struct thread *td) 382 { 383 384 cpu_thread_clean(td); 385 } 386 387 void 388 cpu_set_syscall_retval(struct thread *td, int error) 389 { 390 391 switch (error) { 392 case 0: 393 td->td_frame->tf_eax = td->td_retval[0]; 394 td->td_frame->tf_edx = td->td_retval[1]; 395 td->td_frame->tf_eflags &= ~PSL_C; 396 break; 397 398 case ERESTART: 399 /* 400 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int 401 * 0x80 is 2 bytes. We saved this in tf_err. 402 */ 403 td->td_frame->tf_eip -= td->td_frame->tf_err; 404 break; 405 406 case EJUSTRETURN: 407 break; 408 409 default: 410 if (td->td_proc->p_sysent->sv_errsize) { 411 if (error >= td->td_proc->p_sysent->sv_errsize) 412 error = -1; /* XXX */ 413 else 414 error = td->td_proc->p_sysent->sv_errtbl[error]; 415 } 416 td->td_frame->tf_eax = error; 417 td->td_frame->tf_eflags |= PSL_C; 418 break; 419 } 420 } 421 422 /* 423 * Initialize machine state (pcb and trap frame) for a new thread about to 424 * upcall. Put enough state in the new thread's PCB to get it to go back 425 * userret(), where we can intercept it again to set the return (upcall) 426 * Address and stack, along with those from upcals that are from other sources 427 * such as those generated in thread_userret() itself. 428 */ 429 void 430 cpu_set_upcall(struct thread *td, struct thread *td0) 431 { 432 struct pcb *pcb2; 433 434 /* Point the pcb to the top of the stack. */ 435 pcb2 = td->td_pcb; 436 437 /* 438 * Copy the upcall pcb. This loads kernel regs. 439 * Those not loaded individually below get their default 440 * values here. 441 */ 442 bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); 443 pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE); 444 pcb2->pcb_save = &pcb2->pcb_user_save; 445 446 /* 447 * Create a new fresh stack for the new thread. 448 */ 449 bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); 450 451 /* If the current thread has the trap bit set (i.e. a debugger had 452 * single stepped the process to the system call), we need to clear 453 * the trap flag from the new frame. Otherwise, the new thread will 454 * receive a (likely unexpected) SIGTRAP when it executes the first 455 * instruction after returning to userland. 456 */ 457 td->td_frame->tf_eflags &= ~PSL_T; 458 459 /* 460 * Set registers for trampoline to user mode. Leave space for the 461 * return address on stack. These are the kernel mode register values. 462 */ 463 pcb2->pcb_edi = 0; 464 pcb2->pcb_esi = (int)fork_return; /* trampoline arg */ 465 pcb2->pcb_ebp = 0; 466 pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */ 467 pcb2->pcb_ebx = (int)td; /* trampoline arg */ 468 pcb2->pcb_eip = (int)fork_trampoline; 469 pcb2->pcb_psl &= ~(PSL_I); /* interrupts must be disabled */ 470 pcb2->pcb_gs = rgs(); 471 /* 472 * If we didn't copy the pcb, we'd need to do the following registers: 473 * pcb2->pcb_cr3: cloned above. 474 * pcb2->pcb_dr*: cloned above. 475 * pcb2->pcb_savefpu: cloned above. 476 * pcb2->pcb_flags: cloned above. 477 * pcb2->pcb_onfault: cloned above (always NULL here?). 478 * pcb2->pcb_gs: cloned above. 479 * pcb2->pcb_ext: cleared below. 480 */ 481 pcb2->pcb_ext = NULL; 482 483 /* Setup to release spin count in fork_exit(). */ 484 td->td_md.md_spinlock_count = 1; 485 td->td_md.md_saved_flags = PSL_KERNEL | PSL_I; 486 } 487 488 /* 489 * Set that machine state for performing an upcall that has to 490 * be done in thread_userret() so that those upcalls generated 491 * in thread_userret() itself can be done as well. 492 */ 493 void 494 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg, 495 stack_t *stack) 496 { 497 498 /* 499 * Do any extra cleaning that needs to be done. 500 * The thread may have optional components 501 * that are not present in a fresh thread. 502 * This may be a recycled thread so make it look 503 * as though it's newly allocated. 504 */ 505 cpu_thread_clean(td); 506 507 /* 508 * Set the trap frame to point at the beginning of the uts 509 * function. 510 */ 511 td->td_frame->tf_ebp = 0; 512 td->td_frame->tf_esp = 513 (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; 514 td->td_frame->tf_eip = (int)entry; 515 516 /* 517 * Pass the address of the mailbox for this kse to the uts 518 * function as a parameter on the stack. 519 */ 520 suword((void *)(td->td_frame->tf_esp + sizeof(void *)), 521 (int)arg); 522 } 523 524 int 525 cpu_set_user_tls(struct thread *td, void *tls_base) 526 { 527 struct segment_descriptor sd; 528 uint32_t base; 529 530 /* 531 * Construct a descriptor and store it in the pcb for 532 * the next context switch. Also store it in the gdt 533 * so that the load of tf_fs into %fs will activate it 534 * at return to userland. 535 */ 536 base = (uint32_t)tls_base; 537 sd.sd_lobase = base & 0xffffff; 538 sd.sd_hibase = (base >> 24) & 0xff; 539 sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */ 540 sd.sd_hilimit = 0xf; 541 sd.sd_type = SDT_MEMRWA; 542 sd.sd_dpl = SEL_UPL; 543 sd.sd_p = 1; 544 sd.sd_xx = 0; 545 sd.sd_def32 = 1; 546 sd.sd_gran = 1; 547 critical_enter(); 548 /* set %gs */ 549 td->td_pcb->pcb_gsd = sd; 550 if (td == curthread) { 551 PCPU_GET(fsgs_gdt)[1] = sd; 552 load_gs(GSEL(GUGS_SEL, SEL_UPL)); 553 } 554 critical_exit(); 555 return (0); 556 } 557 558 /* 559 * Convert kernel VA to physical address 560 */ 561 vm_paddr_t 562 kvtop(void *addr) 563 { 564 vm_paddr_t pa; 565 566 pa = pmap_kextract((vm_offset_t)addr); 567 if (pa == 0) 568 panic("kvtop: zero page frame"); 569 return (pa); 570 } 571 572 #ifdef SMP 573 static void 574 cpu_reset_proxy() 575 { 576 cpuset_t tcrp; 577 578 cpu_reset_proxy_active = 1; 579 while (cpu_reset_proxy_active == 1) 580 ; /* Wait for other cpu to see that we've started */ 581 CPU_SETOF(cpu_reset_proxyid, &tcrp); 582 stop_cpus(tcrp); 583 printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); 584 DELAY(1000000); 585 cpu_reset_real(); 586 } 587 #endif 588 589 void 590 cpu_reset() 591 { 592 #ifdef XBOX 593 if (arch_i386_is_xbox) { 594 /* Kick the PIC16L, it can reboot the box */ 595 pic16l_reboot(); 596 for (;;); 597 } 598 #endif 599 600 #ifdef SMP 601 cpuset_t map; 602 u_int cnt; 603 604 if (smp_active) { 605 map = all_cpus; 606 CPU_CLR(PCPU_GET(cpuid), &map); 607 CPU_NAND(&map, &stopped_cpus); 608 if (!CPU_EMPTY(&map)) { 609 printf("cpu_reset: Stopping other CPUs\n"); 610 stop_cpus(map); 611 } 612 613 if (PCPU_GET(cpuid) != 0) { 614 cpu_reset_proxyid = PCPU_GET(cpuid); 615 cpustop_restartfunc = cpu_reset_proxy; 616 cpu_reset_proxy_active = 0; 617 printf("cpu_reset: Restarting BSP\n"); 618 619 /* Restart CPU #0. */ 620 /* XXX: restart_cpus(1 << 0); */ 621 CPU_SETOF(0, &started_cpus); 622 wmb(); 623 624 cnt = 0; 625 while (cpu_reset_proxy_active == 0 && cnt < 10000000) 626 cnt++; /* Wait for BSP to announce restart */ 627 if (cpu_reset_proxy_active == 0) 628 printf("cpu_reset: Failed to restart BSP\n"); 629 enable_intr(); 630 cpu_reset_proxy_active = 2; 631 632 while (1); 633 /* NOTREACHED */ 634 } 635 636 DELAY(1000000); 637 } 638 #endif 639 cpu_reset_real(); 640 /* NOTREACHED */ 641 } 642 643 static void 644 cpu_reset_real() 645 { 646 struct region_descriptor null_idt; 647 #ifndef PC98 648 int b; 649 #endif 650 651 disable_intr(); 652 #ifdef XEN 653 if (smp_processor_id() == 0) 654 HYPERVISOR_shutdown(SHUTDOWN_reboot); 655 else 656 HYPERVISOR_shutdown(SHUTDOWN_poweroff); 657 #endif 658 #ifdef CPU_ELAN 659 if (elan_mmcr != NULL) 660 elan_mmcr->RESCFG = 1; 661 #endif 662 663 if (cpu == CPU_GEODE1100) { 664 /* Attempt Geode's own reset */ 665 outl(0xcf8, 0x80009044ul); 666 outl(0xcfc, 0xf); 667 } 668 669 #ifdef PC98 670 /* 671 * Attempt to do a CPU reset via CPU reset port. 672 */ 673 if ((inb(0x35) & 0xa0) != 0xa0) { 674 outb(0x37, 0x0f); /* SHUT0 = 0. */ 675 outb(0x37, 0x0b); /* SHUT1 = 0. */ 676 } 677 outb(0xf0, 0x00); /* Reset. */ 678 #else 679 #if !defined(BROKEN_KEYBOARD_RESET) 680 /* 681 * Attempt to do a CPU reset via the keyboard controller, 682 * do not turn off GateA20, as any machine that fails 683 * to do the reset here would then end up in no man's land. 684 */ 685 outb(IO_KBD + 4, 0xFE); 686 DELAY(500000); /* wait 0.5 sec to see if that did it */ 687 #endif 688 689 /* 690 * Attempt to force a reset via the Reset Control register at 691 * I/O port 0xcf9. Bit 2 forces a system reset when it 692 * transitions from 0 to 1. Bit 1 selects the type of reset 693 * to attempt: 0 selects a "soft" reset, and 1 selects a 694 * "hard" reset. We try a "hard" reset. The first write sets 695 * bit 1 to select a "hard" reset and clears bit 2. The 696 * second write forces a 0 -> 1 transition in bit 2 to trigger 697 * a reset. 698 */ 699 outb(0xcf9, 0x2); 700 outb(0xcf9, 0x6); 701 DELAY(500000); /* wait 0.5 sec to see if that did it */ 702 703 /* 704 * Attempt to force a reset via the Fast A20 and Init register 705 * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. 706 * Bit 0 asserts INIT# when set to 1. We are careful to only 707 * preserve bit 1 while setting bit 0. We also must clear bit 708 * 0 before setting it if it isn't already clear. 709 */ 710 b = inb(0x92); 711 if (b != 0xff) { 712 if ((b & 0x1) != 0) 713 outb(0x92, b & 0xfe); 714 outb(0x92, b | 0x1); 715 DELAY(500000); /* wait 0.5 sec to see if that did it */ 716 } 717 #endif /* PC98 */ 718 719 printf("No known reset method worked, attempting CPU shutdown\n"); 720 DELAY(1000000); /* wait 1 sec for printf to complete */ 721 722 /* Wipe the IDT. */ 723 null_idt.rd_limit = 0; 724 null_idt.rd_base = 0; 725 lidt(&null_idt); 726 727 /* "good night, sweet prince .... <THUNK!>" */ 728 breakpoint(); 729 730 /* NOTREACHED */ 731 while(1); 732 } 733 734 /* 735 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-)) 736 */ 737 static void 738 sf_buf_init(void *arg) 739 { 740 struct sf_buf *sf_bufs; 741 vm_offset_t sf_base; 742 int i; 743 744 nsfbufs = NSFBUFS; 745 TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs); 746 747 sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask); 748 TAILQ_INIT(&sf_buf_freelist); 749 sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE); 750 sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP, 751 M_NOWAIT | M_ZERO); 752 for (i = 0; i < nsfbufs; i++) { 753 sf_bufs[i].kva = sf_base + i * PAGE_SIZE; 754 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry); 755 } 756 sf_buf_alloc_want = 0; 757 mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF); 758 } 759 760 /* 761 * Invalidate the cache lines that may belong to the page, if 762 * (possibly old) mapping of the page by sf buffer exists. Returns 763 * TRUE when mapping was found and cache invalidated. 764 */ 765 boolean_t 766 sf_buf_invalidate_cache(vm_page_t m) 767 { 768 struct sf_head *hash_list; 769 struct sf_buf *sf; 770 boolean_t ret; 771 772 hash_list = &sf_buf_active[SF_BUF_HASH(m)]; 773 ret = FALSE; 774 mtx_lock(&sf_buf_lock); 775 LIST_FOREACH(sf, hash_list, list_entry) { 776 if (sf->m == m) { 777 /* 778 * Use pmap_qenter to update the pte for 779 * existing mapping, in particular, the PAT 780 * settings are recalculated. 781 */ 782 pmap_qenter(sf->kva, &m, 1); 783 pmap_invalidate_cache_range(sf->kva, sf->kva + 784 PAGE_SIZE); 785 ret = TRUE; 786 break; 787 } 788 } 789 mtx_unlock(&sf_buf_lock); 790 return (ret); 791 } 792 793 /* 794 * Get an sf_buf from the freelist. May block if none are available. 795 */ 796 struct sf_buf * 797 sf_buf_alloc(struct vm_page *m, int flags) 798 { 799 pt_entry_t opte, *ptep; 800 struct sf_head *hash_list; 801 struct sf_buf *sf; 802 #ifdef SMP 803 cpuset_t other_cpus; 804 u_int cpuid; 805 #endif 806 int error; 807 808 KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0, 809 ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned")); 810 hash_list = &sf_buf_active[SF_BUF_HASH(m)]; 811 mtx_lock(&sf_buf_lock); 812 LIST_FOREACH(sf, hash_list, list_entry) { 813 if (sf->m == m) { 814 sf->ref_count++; 815 if (sf->ref_count == 1) { 816 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); 817 nsfbufsused++; 818 nsfbufspeak = imax(nsfbufspeak, nsfbufsused); 819 } 820 #ifdef SMP 821 goto shootdown; 822 #else 823 goto done; 824 #endif 825 } 826 } 827 while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) { 828 if (flags & SFB_NOWAIT) 829 goto done; 830 sf_buf_alloc_want++; 831 mbstat.sf_allocwait++; 832 error = msleep(&sf_buf_freelist, &sf_buf_lock, 833 (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0); 834 sf_buf_alloc_want--; 835 836 /* 837 * If we got a signal, don't risk going back to sleep. 838 */ 839 if (error) 840 goto done; 841 } 842 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); 843 if (sf->m != NULL) 844 LIST_REMOVE(sf, list_entry); 845 LIST_INSERT_HEAD(hash_list, sf, list_entry); 846 sf->ref_count = 1; 847 sf->m = m; 848 nsfbufsused++; 849 nsfbufspeak = imax(nsfbufspeak, nsfbufsused); 850 851 /* 852 * Update the sf_buf's virtual-to-physical mapping, flushing the 853 * virtual address from the TLB. Since the reference count for 854 * the sf_buf's old mapping was zero, that mapping is not 855 * currently in use. Consequently, there is no need to exchange 856 * the old and new PTEs atomically, even under PAE. 857 */ 858 ptep = vtopte(sf->kva); 859 opte = *ptep; 860 #ifdef XEN 861 PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag 862 | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0)); 863 #else 864 *ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V | 865 pmap_cache_bits(m->md.pat_mode, 0); 866 #endif 867 868 /* 869 * Avoid unnecessary TLB invalidations: If the sf_buf's old 870 * virtual-to-physical mapping was not used, then any processor 871 * that has invalidated the sf_buf's virtual address from its TLB 872 * since the last used mapping need not invalidate again. 873 */ 874 #ifdef SMP 875 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) 876 CPU_ZERO(&sf->cpumask); 877 shootdown: 878 sched_pin(); 879 cpuid = PCPU_GET(cpuid); 880 if (!CPU_ISSET(cpuid, &sf->cpumask)) { 881 CPU_SET(cpuid, &sf->cpumask); 882 invlpg(sf->kva); 883 } 884 if ((flags & SFB_CPUPRIVATE) == 0) { 885 other_cpus = all_cpus; 886 CPU_CLR(cpuid, &other_cpus); 887 CPU_NAND(&other_cpus, &sf->cpumask); 888 if (!CPU_EMPTY(&other_cpus)) { 889 CPU_OR(&sf->cpumask, &other_cpus); 890 smp_masked_invlpg(other_cpus, sf->kva); 891 } 892 } 893 sched_unpin(); 894 #else 895 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) 896 pmap_invalidate_page(kernel_pmap, sf->kva); 897 #endif 898 done: 899 mtx_unlock(&sf_buf_lock); 900 return (sf); 901 } 902 903 /* 904 * Remove a reference from the given sf_buf, adding it to the free 905 * list when its reference count reaches zero. A freed sf_buf still, 906 * however, retains its virtual-to-physical mapping until it is 907 * recycled or reactivated by sf_buf_alloc(9). 908 */ 909 void 910 sf_buf_free(struct sf_buf *sf) 911 { 912 913 mtx_lock(&sf_buf_lock); 914 sf->ref_count--; 915 if (sf->ref_count == 0) { 916 TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry); 917 nsfbufsused--; 918 #ifdef XEN 919 /* 920 * Xen doesn't like having dangling R/W mappings 921 */ 922 pmap_qremove(sf->kva, 1); 923 sf->m = NULL; 924 LIST_REMOVE(sf, list_entry); 925 #endif 926 if (sf_buf_alloc_want > 0) 927 wakeup(&sf_buf_freelist); 928 } 929 mtx_unlock(&sf_buf_lock); 930 } 931 932 /* 933 * Software interrupt handler for queued VM system processing. 934 */ 935 void 936 swi_vm(void *dummy) 937 { 938 if (busdma_swi_pending != 0) 939 busdma_swi(); 940 } 941 942 /* 943 * Tell whether this address is in some physical memory region. 944 * Currently used by the kernel coredump code in order to avoid 945 * dumping the ``ISA memory hole'' which could cause indefinite hangs, 946 * or other unpredictable behaviour. 947 */ 948 949 int 950 is_physical_memory(vm_paddr_t addr) 951 { 952 953 #ifdef DEV_ISA 954 /* The ISA ``memory hole''. */ 955 if (addr >= 0xa0000 && addr < 0x100000) 956 return 0; 957 #endif 958 959 /* 960 * stuff other tests for known memory-mapped devices (PCI?) 961 * here 962 */ 963 964 return 1; 965 } 966