1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1982, 1986 The Regents of the University of California. 5 * Copyright (c) 1989, 1990 William Jolitz 6 * Copyright (c) 1994 John Dyson 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * the Systems Programming Group of the University of Utah Computer 11 * Science Department, and William Jolitz. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 42 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_isa.h" 49 #include "opt_npx.h" 50 #include "opt_reset.h" 51 #include "opt_cpu.h" 52 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/bio.h> 56 #include <sys/buf.h> 57 #include <sys/kernel.h> 58 #include <sys/ktr.h> 59 #include <sys/lock.h> 60 #include <sys/malloc.h> 61 #include <sys/mbuf.h> 62 #include <sys/mutex.h> 63 #include <sys/pioctl.h> 64 #include <sys/proc.h> 65 #include <sys/sysent.h> 66 #include <sys/sf_buf.h> 67 #include <sys/smp.h> 68 #include <sys/sched.h> 69 #include <sys/sysctl.h> 70 #include <sys/unistd.h> 71 #include <sys/vnode.h> 72 #include <sys/vmmeter.h> 73 74 #include <machine/cpu.h> 75 #include <machine/cputypes.h> 76 #include <machine/md_var.h> 77 #include <machine/pcb.h> 78 #include <machine/pcb_ext.h> 79 #include <machine/smp.h> 80 #include <machine/vm86.h> 81 82 #ifdef CPU_ELAN 83 #include <machine/elan_mmcr.h> 84 #endif 85 86 #include <vm/vm.h> 87 #include <vm/vm_extern.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_param.h> 92 93 #include <isa/isareg.h> 94 95 #ifndef NSFBUFS 96 #define NSFBUFS (512 + maxusers * 16) 97 #endif 98 99 _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread), 100 "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread."); 101 _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb), 102 "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb."); 103 _Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf), 104 "__OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf."); 105 106 static void cpu_reset_real(void); 107 #ifdef SMP 108 static void cpu_reset_proxy(void); 109 static u_int cpu_reset_proxyid; 110 static volatile u_int cpu_reset_proxy_active; 111 #endif 112 113 union savefpu * 114 get_pcb_user_save_td(struct thread *td) 115 { 116 vm_offset_t p; 117 118 p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - 119 roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN); 120 KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area")); 121 return ((union savefpu *)p); 122 } 123 124 union savefpu * 125 get_pcb_user_save_pcb(struct pcb *pcb) 126 { 127 vm_offset_t p; 128 129 p = (vm_offset_t)(pcb + 1); 130 return ((union savefpu *)p); 131 } 132 133 struct pcb * 134 get_pcb_td(struct thread *td) 135 { 136 vm_offset_t p; 137 138 p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - 139 roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) - 140 sizeof(struct pcb); 141 return ((struct pcb *)p); 142 } 143 144 void * 145 alloc_fpusave(int flags) 146 { 147 void *res; 148 struct savefpu_ymm *sf; 149 150 res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags); 151 if (use_xsave) { 152 sf = (struct savefpu_ymm *)res; 153 bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd)); 154 sf->sv_xstate.sx_hd.xstate_bv = xsave_mask; 155 } 156 return (res); 157 } 158 /* 159 * Finish a fork operation, with process p2 nearly set up. 160 * Copy and update the pcb, set up the stack so that the child 161 * ready to run and return to user mode. 162 */ 163 void 164 cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) 165 { 166 struct proc *p1; 167 struct pcb *pcb2; 168 struct mdproc *mdp2; 169 170 p1 = td1->td_proc; 171 if ((flags & RFPROC) == 0) { 172 if ((flags & RFMEM) == 0) { 173 /* unshare user LDT */ 174 struct mdproc *mdp1 = &p1->p_md; 175 struct proc_ldt *pldt, *pldt1; 176 177 mtx_lock_spin(&dt_lock); 178 if ((pldt1 = mdp1->md_ldt) != NULL && 179 pldt1->ldt_refcnt > 1) { 180 pldt = user_ldt_alloc(mdp1, pldt1->ldt_len); 181 if (pldt == NULL) 182 panic("could not copy LDT"); 183 mdp1->md_ldt = pldt; 184 set_user_ldt(mdp1); 185 user_ldt_deref(pldt1); 186 } else 187 mtx_unlock_spin(&dt_lock); 188 } 189 return; 190 } 191 192 /* Ensure that td1's pcb is up to date. */ 193 if (td1 == curthread) 194 td1->td_pcb->pcb_gs = rgs(); 195 critical_enter(); 196 if (PCPU_GET(fpcurthread) == td1) 197 npxsave(td1->td_pcb->pcb_save); 198 critical_exit(); 199 200 /* Point the pcb to the top of the stack */ 201 pcb2 = get_pcb_td(td2); 202 td2->td_pcb = pcb2; 203 204 /* Copy td1's pcb */ 205 bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); 206 207 /* Properly initialize pcb_save */ 208 pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); 209 bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2), 210 cpu_max_ext_state_size); 211 212 /* Point mdproc and then copy over td1's contents */ 213 mdp2 = &p2->p_md; 214 bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); 215 216 /* 217 * Create a new fresh stack for the new process. 218 * Copy the trap frame for the return to user mode as if from a 219 * syscall. This copies most of the user mode register values. 220 * The -16 is so we can expand the trapframe if we go to vm86. 221 */ 222 td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1; 223 bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); 224 225 td2->td_frame->tf_eax = 0; /* Child returns zero */ 226 td2->td_frame->tf_eflags &= ~PSL_C; /* success */ 227 td2->td_frame->tf_edx = 1; 228 229 /* 230 * If the parent process has the trap bit set (i.e. a debugger had 231 * single stepped the process to the system call), we need to clear 232 * the trap flag from the new frame unless the debugger had set PF_FORK 233 * on the parent. Otherwise, the child will receive a (likely 234 * unexpected) SIGTRAP when it executes the first instruction after 235 * returning to userland. 236 */ 237 if ((p1->p_pfsflags & PF_FORK) == 0) 238 td2->td_frame->tf_eflags &= ~PSL_T; 239 240 /* 241 * Set registers for trampoline to user mode. Leave space for the 242 * return address on stack. These are the kernel mode register values. 243 */ 244 #if defined(PAE) || defined(PAE_TABLES) 245 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt); 246 #else 247 pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir); 248 #endif 249 pcb2->pcb_edi = 0; 250 pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */ 251 pcb2->pcb_ebp = 0; 252 pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *); 253 pcb2->pcb_ebx = (int)td2; /* fork_trampoline argument */ 254 pcb2->pcb_eip = (int)fork_trampoline; 255 /*- 256 * pcb2->pcb_dr*: cloned above. 257 * pcb2->pcb_savefpu: cloned above. 258 * pcb2->pcb_flags: cloned above. 259 * pcb2->pcb_onfault: cloned above (always NULL here?). 260 * pcb2->pcb_gs: cloned above. 261 * pcb2->pcb_ext: cleared below. 262 */ 263 264 /* 265 * XXX don't copy the i/o pages. this should probably be fixed. 266 */ 267 pcb2->pcb_ext = 0; 268 269 /* Copy the LDT, if necessary. */ 270 mtx_lock_spin(&dt_lock); 271 if (mdp2->md_ldt != NULL) { 272 if (flags & RFMEM) { 273 mdp2->md_ldt->ldt_refcnt++; 274 } else { 275 mdp2->md_ldt = user_ldt_alloc(mdp2, 276 mdp2->md_ldt->ldt_len); 277 if (mdp2->md_ldt == NULL) 278 panic("could not copy LDT"); 279 } 280 } 281 mtx_unlock_spin(&dt_lock); 282 283 /* Setup to release spin count in fork_exit(). */ 284 td2->td_md.md_spinlock_count = 1; 285 td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; 286 287 /* 288 * Now, cpu_switch() can schedule the new process. 289 * pcb_esp is loaded pointing to the cpu_switch() stack frame 290 * containing the return address when exiting cpu_switch. 291 * This will normally be to fork_trampoline(), which will have 292 * %ebx loaded with the new proc's pointer. fork_trampoline() 293 * will set up a stack to call fork_return(p, frame); to complete 294 * the return to user-mode. 295 */ 296 } 297 298 /* 299 * Intercept the return address from a freshly forked process that has NOT 300 * been scheduled yet. 301 * 302 * This is needed to make kernel threads stay in kernel mode. 303 */ 304 void 305 cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg) 306 { 307 /* 308 * Note that the trap frame follows the args, so the function 309 * is really called like this: func(arg, frame); 310 */ 311 td->td_pcb->pcb_esi = (int) func; /* function */ 312 td->td_pcb->pcb_ebx = (int) arg; /* first arg */ 313 } 314 315 void 316 cpu_exit(struct thread *td) 317 { 318 319 /* 320 * If this process has a custom LDT, release it. Reset pc->pcb_gs 321 * and %gs before we free it in case they refer to an LDT entry. 322 */ 323 mtx_lock_spin(&dt_lock); 324 if (td->td_proc->p_md.md_ldt) { 325 td->td_pcb->pcb_gs = _udatasel; 326 load_gs(_udatasel); 327 user_ldt_free(td); 328 } else 329 mtx_unlock_spin(&dt_lock); 330 } 331 332 void 333 cpu_thread_exit(struct thread *td) 334 { 335 336 critical_enter(); 337 if (td == PCPU_GET(fpcurthread)) 338 npxdrop(); 339 critical_exit(); 340 341 /* Disable any hardware breakpoints. */ 342 if (td->td_pcb->pcb_flags & PCB_DBREGS) { 343 reset_dbregs(); 344 td->td_pcb->pcb_flags &= ~PCB_DBREGS; 345 } 346 } 347 348 void 349 cpu_thread_clean(struct thread *td) 350 { 351 struct pcb *pcb; 352 353 pcb = td->td_pcb; 354 if (pcb->pcb_ext != NULL) { 355 /* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */ 356 /* 357 * XXX do we need to move the TSS off the allocated pages 358 * before freeing them? (not done here) 359 */ 360 kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext, 361 ctob(IOPAGES + 1)); 362 pcb->pcb_ext = NULL; 363 } 364 } 365 366 void 367 cpu_thread_swapin(struct thread *td) 368 { 369 } 370 371 void 372 cpu_thread_swapout(struct thread *td) 373 { 374 } 375 376 void 377 cpu_thread_alloc(struct thread *td) 378 { 379 struct pcb *pcb; 380 struct xstate_hdr *xhdr; 381 382 td->td_pcb = pcb = get_pcb_td(td); 383 td->td_frame = (struct trapframe *)((caddr_t)pcb - 16) - 1; 384 pcb->pcb_ext = NULL; 385 pcb->pcb_save = get_pcb_user_save_pcb(pcb); 386 if (use_xsave) { 387 xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1); 388 bzero(xhdr, sizeof(*xhdr)); 389 xhdr->xstate_bv = xsave_mask; 390 } 391 } 392 393 void 394 cpu_thread_free(struct thread *td) 395 { 396 397 cpu_thread_clean(td); 398 } 399 400 void 401 cpu_set_syscall_retval(struct thread *td, int error) 402 { 403 404 switch (error) { 405 case 0: 406 td->td_frame->tf_eax = td->td_retval[0]; 407 td->td_frame->tf_edx = td->td_retval[1]; 408 td->td_frame->tf_eflags &= ~PSL_C; 409 break; 410 411 case ERESTART: 412 /* 413 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int 414 * 0x80 is 2 bytes. We saved this in tf_err. 415 */ 416 td->td_frame->tf_eip -= td->td_frame->tf_err; 417 break; 418 419 case EJUSTRETURN: 420 break; 421 422 default: 423 td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error); 424 td->td_frame->tf_eflags |= PSL_C; 425 break; 426 } 427 } 428 429 /* 430 * Initialize machine state, mostly pcb and trap frame for a new 431 * thread, about to return to userspace. Put enough state in the new 432 * thread's PCB to get it to go back to the fork_return(), which 433 * finalizes the thread state and handles peculiarities of the first 434 * return to userspace for the new thread. 435 */ 436 void 437 cpu_copy_thread(struct thread *td, struct thread *td0) 438 { 439 struct pcb *pcb2; 440 441 /* Point the pcb to the top of the stack. */ 442 pcb2 = td->td_pcb; 443 444 /* 445 * Copy the upcall pcb. This loads kernel regs. 446 * Those not loaded individually below get their default 447 * values here. 448 */ 449 bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); 450 pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE | 451 PCB_KERNNPX); 452 pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); 453 bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save, 454 cpu_max_ext_state_size); 455 456 /* 457 * Create a new fresh stack for the new thread. 458 */ 459 bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); 460 461 /* If the current thread has the trap bit set (i.e. a debugger had 462 * single stepped the process to the system call), we need to clear 463 * the trap flag from the new frame. Otherwise, the new thread will 464 * receive a (likely unexpected) SIGTRAP when it executes the first 465 * instruction after returning to userland. 466 */ 467 td->td_frame->tf_eflags &= ~PSL_T; 468 469 /* 470 * Set registers for trampoline to user mode. Leave space for the 471 * return address on stack. These are the kernel mode register values. 472 */ 473 pcb2->pcb_edi = 0; 474 pcb2->pcb_esi = (int)fork_return; /* trampoline arg */ 475 pcb2->pcb_ebp = 0; 476 pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */ 477 pcb2->pcb_ebx = (int)td; /* trampoline arg */ 478 pcb2->pcb_eip = (int)fork_trampoline; 479 pcb2->pcb_gs = rgs(); 480 /* 481 * If we didn't copy the pcb, we'd need to do the following registers: 482 * pcb2->pcb_cr3: cloned above. 483 * pcb2->pcb_dr*: cloned above. 484 * pcb2->pcb_savefpu: cloned above. 485 * pcb2->pcb_flags: cloned above. 486 * pcb2->pcb_onfault: cloned above (always NULL here?). 487 * pcb2->pcb_gs: cloned above. 488 * pcb2->pcb_ext: cleared below. 489 */ 490 pcb2->pcb_ext = NULL; 491 492 /* Setup to release spin count in fork_exit(). */ 493 td->td_md.md_spinlock_count = 1; 494 td->td_md.md_saved_flags = PSL_KERNEL | PSL_I; 495 } 496 497 /* 498 * Set that machine state for performing an upcall that starts 499 * the entry function with the given argument. 500 */ 501 void 502 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg, 503 stack_t *stack) 504 { 505 506 /* 507 * Do any extra cleaning that needs to be done. 508 * The thread may have optional components 509 * that are not present in a fresh thread. 510 * This may be a recycled thread so make it look 511 * as though it's newly allocated. 512 */ 513 cpu_thread_clean(td); 514 515 /* 516 * Set the trap frame to point at the beginning of the entry 517 * function. 518 */ 519 td->td_frame->tf_ebp = 0; 520 td->td_frame->tf_esp = 521 (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; 522 td->td_frame->tf_eip = (int)entry; 523 524 /* Return address sentinel value to stop stack unwinding. */ 525 suword((void *)td->td_frame->tf_esp, 0); 526 527 /* Pass the argument to the entry point. */ 528 suword((void *)(td->td_frame->tf_esp + sizeof(void *)), 529 (int)arg); 530 } 531 532 int 533 cpu_set_user_tls(struct thread *td, void *tls_base) 534 { 535 struct segment_descriptor sd; 536 uint32_t base; 537 538 /* 539 * Construct a descriptor and store it in the pcb for 540 * the next context switch. Also store it in the gdt 541 * so that the load of tf_fs into %fs will activate it 542 * at return to userland. 543 */ 544 base = (uint32_t)tls_base; 545 sd.sd_lobase = base & 0xffffff; 546 sd.sd_hibase = (base >> 24) & 0xff; 547 sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */ 548 sd.sd_hilimit = 0xf; 549 sd.sd_type = SDT_MEMRWA; 550 sd.sd_dpl = SEL_UPL; 551 sd.sd_p = 1; 552 sd.sd_xx = 0; 553 sd.sd_def32 = 1; 554 sd.sd_gran = 1; 555 critical_enter(); 556 /* set %gs */ 557 td->td_pcb->pcb_gsd = sd; 558 if (td == curthread) { 559 PCPU_GET(fsgs_gdt)[1] = sd; 560 load_gs(GSEL(GUGS_SEL, SEL_UPL)); 561 } 562 critical_exit(); 563 return (0); 564 } 565 566 /* 567 * Convert kernel VA to physical address 568 */ 569 vm_paddr_t 570 kvtop(void *addr) 571 { 572 vm_paddr_t pa; 573 574 pa = pmap_kextract((vm_offset_t)addr); 575 if (pa == 0) 576 panic("kvtop: zero page frame"); 577 return (pa); 578 } 579 580 #ifdef SMP 581 static void 582 cpu_reset_proxy() 583 { 584 cpuset_t tcrp; 585 586 cpu_reset_proxy_active = 1; 587 while (cpu_reset_proxy_active == 1) 588 ; /* Wait for other cpu to see that we've started */ 589 CPU_SETOF(cpu_reset_proxyid, &tcrp); 590 stop_cpus(tcrp); 591 printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); 592 DELAY(1000000); 593 cpu_reset_real(); 594 } 595 #endif 596 597 void 598 cpu_reset() 599 { 600 #ifdef SMP 601 cpuset_t map; 602 u_int cnt; 603 604 if (smp_started) { 605 map = all_cpus; 606 CPU_CLR(PCPU_GET(cpuid), &map); 607 CPU_NAND(&map, &stopped_cpus); 608 if (!CPU_EMPTY(&map)) { 609 printf("cpu_reset: Stopping other CPUs\n"); 610 stop_cpus(map); 611 } 612 613 if (PCPU_GET(cpuid) != 0) { 614 cpu_reset_proxyid = PCPU_GET(cpuid); 615 cpustop_restartfunc = cpu_reset_proxy; 616 cpu_reset_proxy_active = 0; 617 printf("cpu_reset: Restarting BSP\n"); 618 619 /* Restart CPU #0. */ 620 /* XXX: restart_cpus(1 << 0); */ 621 CPU_SETOF(0, &started_cpus); 622 wmb(); 623 624 cnt = 0; 625 while (cpu_reset_proxy_active == 0 && cnt < 10000000) 626 cnt++; /* Wait for BSP to announce restart */ 627 if (cpu_reset_proxy_active == 0) 628 printf("cpu_reset: Failed to restart BSP\n"); 629 enable_intr(); 630 cpu_reset_proxy_active = 2; 631 632 while (1); 633 /* NOTREACHED */ 634 } 635 636 DELAY(1000000); 637 } 638 #endif 639 cpu_reset_real(); 640 /* NOTREACHED */ 641 } 642 643 static void 644 cpu_reset_real() 645 { 646 struct region_descriptor null_idt; 647 int b; 648 649 disable_intr(); 650 #ifdef CPU_ELAN 651 if (elan_mmcr != NULL) 652 elan_mmcr->RESCFG = 1; 653 #endif 654 655 if (cpu == CPU_GEODE1100) { 656 /* Attempt Geode's own reset */ 657 outl(0xcf8, 0x80009044ul); 658 outl(0xcfc, 0xf); 659 } 660 661 #if !defined(BROKEN_KEYBOARD_RESET) 662 /* 663 * Attempt to do a CPU reset via the keyboard controller, 664 * do not turn off GateA20, as any machine that fails 665 * to do the reset here would then end up in no man's land. 666 */ 667 outb(IO_KBD + 4, 0xFE); 668 DELAY(500000); /* wait 0.5 sec to see if that did it */ 669 #endif 670 671 /* 672 * Attempt to force a reset via the Reset Control register at 673 * I/O port 0xcf9. Bit 2 forces a system reset when it 674 * transitions from 0 to 1. Bit 1 selects the type of reset 675 * to attempt: 0 selects a "soft" reset, and 1 selects a 676 * "hard" reset. We try a "hard" reset. The first write sets 677 * bit 1 to select a "hard" reset and clears bit 2. The 678 * second write forces a 0 -> 1 transition in bit 2 to trigger 679 * a reset. 680 */ 681 outb(0xcf9, 0x2); 682 outb(0xcf9, 0x6); 683 DELAY(500000); /* wait 0.5 sec to see if that did it */ 684 685 /* 686 * Attempt to force a reset via the Fast A20 and Init register 687 * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. 688 * Bit 0 asserts INIT# when set to 1. We are careful to only 689 * preserve bit 1 while setting bit 0. We also must clear bit 690 * 0 before setting it if it isn't already clear. 691 */ 692 b = inb(0x92); 693 if (b != 0xff) { 694 if ((b & 0x1) != 0) 695 outb(0x92, b & 0xfe); 696 outb(0x92, b | 0x1); 697 DELAY(500000); /* wait 0.5 sec to see if that did it */ 698 } 699 700 printf("No known reset method worked, attempting CPU shutdown\n"); 701 DELAY(1000000); /* wait 1 sec for printf to complete */ 702 703 /* Wipe the IDT. */ 704 null_idt.rd_limit = 0; 705 null_idt.rd_base = 0; 706 lidt(&null_idt); 707 708 /* "good night, sweet prince .... <THUNK!>" */ 709 breakpoint(); 710 711 /* NOTREACHED */ 712 while(1); 713 } 714 715 /* 716 * Get an sf_buf from the freelist. May block if none are available. 717 */ 718 void 719 sf_buf_map(struct sf_buf *sf, int flags) 720 { 721 pt_entry_t opte, *ptep; 722 723 /* 724 * Update the sf_buf's virtual-to-physical mapping, flushing the 725 * virtual address from the TLB. Since the reference count for 726 * the sf_buf's old mapping was zero, that mapping is not 727 * currently in use. Consequently, there is no need to exchange 728 * the old and new PTEs atomically, even under PAE. 729 */ 730 ptep = vtopte(sf->kva); 731 opte = *ptep; 732 *ptep = VM_PAGE_TO_PHYS(sf->m) | pgeflag | PG_RW | PG_V | 733 pmap_cache_bits(sf->m->md.pat_mode, 0); 734 735 /* 736 * Avoid unnecessary TLB invalidations: If the sf_buf's old 737 * virtual-to-physical mapping was not used, then any processor 738 * that has invalidated the sf_buf's virtual address from its TLB 739 * since the last used mapping need not invalidate again. 740 */ 741 #ifdef SMP 742 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) 743 CPU_ZERO(&sf->cpumask); 744 745 sf_buf_shootdown(sf, flags); 746 #else 747 if ((opte & (PG_V | PG_A)) == (PG_V | PG_A)) 748 pmap_invalidate_page(kernel_pmap, sf->kva); 749 #endif 750 } 751 752 #ifdef SMP 753 void 754 sf_buf_shootdown(struct sf_buf *sf, int flags) 755 { 756 cpuset_t other_cpus; 757 u_int cpuid; 758 759 sched_pin(); 760 cpuid = PCPU_GET(cpuid); 761 if (!CPU_ISSET(cpuid, &sf->cpumask)) { 762 CPU_SET(cpuid, &sf->cpumask); 763 invlpg(sf->kva); 764 } 765 if ((flags & SFB_CPUPRIVATE) == 0) { 766 other_cpus = all_cpus; 767 CPU_CLR(cpuid, &other_cpus); 768 CPU_NAND(&other_cpus, &sf->cpumask); 769 if (!CPU_EMPTY(&other_cpus)) { 770 CPU_OR(&sf->cpumask, &other_cpus); 771 smp_masked_invlpg(other_cpus, sf->kva, kernel_pmap); 772 } 773 } 774 sched_unpin(); 775 } 776 #endif 777 778 /* 779 * MD part of sf_buf_free(). 780 */ 781 int 782 sf_buf_unmap(struct sf_buf *sf) 783 { 784 785 return (0); 786 } 787 788 static void 789 sf_buf_invalidate(struct sf_buf *sf) 790 { 791 vm_page_t m = sf->m; 792 793 /* 794 * Use pmap_qenter to update the pte for 795 * existing mapping, in particular, the PAT 796 * settings are recalculated. 797 */ 798 pmap_qenter(sf->kva, &m, 1); 799 pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE, FALSE); 800 } 801 802 /* 803 * Invalidate the cache lines that may belong to the page, if 804 * (possibly old) mapping of the page by sf buffer exists. Returns 805 * TRUE when mapping was found and cache invalidated. 806 */ 807 boolean_t 808 sf_buf_invalidate_cache(vm_page_t m) 809 { 810 811 return (sf_buf_process_page(m, sf_buf_invalidate)); 812 } 813 814 /* 815 * Software interrupt handler for queued VM system processing. 816 */ 817 void 818 swi_vm(void *dummy) 819 { 820 if (busdma_swi_pending != 0) 821 busdma_swi(); 822 } 823 824 /* 825 * Tell whether this address is in some physical memory region. 826 * Currently used by the kernel coredump code in order to avoid 827 * dumping the ``ISA memory hole'' which could cause indefinite hangs, 828 * or other unpredictable behaviour. 829 */ 830 831 int 832 is_physical_memory(vm_paddr_t addr) 833 { 834 835 #ifdef DEV_ISA 836 /* The ISA ``memory hole''. */ 837 if (addr >= 0xa0000 && addr < 0x100000) 838 return 0; 839 #endif 840 841 /* 842 * stuff other tests for known memory-mapped devices (PCI?) 843 * here 844 */ 845 846 return 1; 847 } 848