xref: /freebsd/sys/i386/i386/vm_machdep.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 1982, 1986 The Regents of the University of California.
3  * Copyright (c) 1989, 1990 William Jolitz
4  * Copyright (c) 1994 John Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_isa.h"
47 #include "opt_npx.h"
48 #include "opt_reset.h"
49 #include "opt_cpu.h"
50 #include "opt_xbox.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mutex.h>
62 #include <sys/pioctl.h>
63 #include <sys/proc.h>
64 #include <sys/sf_buf.h>
65 #include <sys/smp.h>
66 #include <sys/sched.h>
67 #include <sys/sysctl.h>
68 #include <sys/unistd.h>
69 #include <sys/vnode.h>
70 #include <sys/vmmeter.h>
71 
72 #include <machine/cpu.h>
73 #include <machine/cputypes.h>
74 #include <machine/md_var.h>
75 #include <machine/pcb.h>
76 #include <machine/pcb_ext.h>
77 #include <machine/smp.h>
78 #include <machine/vm86.h>
79 
80 #ifdef CPU_ELAN
81 #include <machine/elan_mmcr.h>
82 #endif
83 
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/vm_kern.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_param.h>
90 
91 #ifdef PC98
92 #include <pc98/cbus/cbus.h>
93 #else
94 #include <i386/isa/isa.h>
95 #endif
96 
97 #ifdef XBOX
98 #include <machine/xbox.h>
99 #endif
100 
101 #ifndef NSFBUFS
102 #define	NSFBUFS		(512 + maxusers * 16)
103 #endif
104 
105 static void	cpu_reset_real(void);
106 #ifdef SMP
107 static void	cpu_reset_proxy(void);
108 static u_int	cpu_reset_proxyid;
109 static volatile u_int	cpu_reset_proxy_active;
110 #endif
111 static void	sf_buf_init(void *arg);
112 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
113 
114 LIST_HEAD(sf_head, sf_buf);
115 
116 /*
117  * A hash table of active sendfile(2) buffers
118  */
119 static struct sf_head *sf_buf_active;
120 static u_long sf_buf_hashmask;
121 
122 #define	SF_BUF_HASH(m)	(((m) - vm_page_array) & sf_buf_hashmask)
123 
124 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
125 static u_int	sf_buf_alloc_want;
126 
127 /*
128  * A lock used to synchronize access to the hash table and free list
129  */
130 static struct mtx sf_buf_lock;
131 
132 extern int	_ucodesel, _udatasel;
133 
134 /*
135  * Finish a fork operation, with process p2 nearly set up.
136  * Copy and update the pcb, set up the stack so that the child
137  * ready to run and return to user mode.
138  */
139 void
140 cpu_fork(td1, p2, td2, flags)
141 	register struct thread *td1;
142 	register struct proc *p2;
143 	struct thread *td2;
144 	int flags;
145 {
146 	register struct proc *p1;
147 	struct pcb *pcb2;
148 	struct mdproc *mdp2;
149 #ifdef DEV_NPX
150 	register_t savecrit;
151 #endif
152 
153 	p1 = td1->td_proc;
154 	if ((flags & RFPROC) == 0) {
155 		if ((flags & RFMEM) == 0) {
156 			/* unshare user LDT */
157 			struct mdproc *mdp1 = &p1->p_md;
158 			struct proc_ldt *pldt;
159 
160 			mtx_lock_spin(&dt_lock);
161 			if ((pldt = mdp1->md_ldt) != NULL &&
162 			    pldt->ldt_refcnt > 1) {
163 				pldt = user_ldt_alloc(mdp1, pldt->ldt_len);
164 				if (pldt == NULL)
165 					panic("could not copy LDT");
166 				mdp1->md_ldt = pldt;
167 				set_user_ldt(mdp1);
168 				user_ldt_free(td1);
169 			} else
170 				mtx_unlock_spin(&dt_lock);
171 		}
172 		return;
173 	}
174 
175 	/* Ensure that p1's pcb is up to date. */
176 	if (td1 == curthread)
177 		td1->td_pcb->pcb_gs = rgs();
178 #ifdef DEV_NPX
179 	savecrit = intr_disable();
180 	if (PCPU_GET(fpcurthread) == td1)
181 		npxsave(&td1->td_pcb->pcb_save);
182 	intr_restore(savecrit);
183 #endif
184 
185 	/* Point the pcb to the top of the stack */
186 	pcb2 = (struct pcb *)(td2->td_kstack +
187 	    td2->td_kstack_pages * PAGE_SIZE) - 1;
188 	td2->td_pcb = pcb2;
189 
190 	/* Copy p1's pcb */
191 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
192 
193 	/* Point mdproc and then copy over td1's contents */
194 	mdp2 = &p2->p_md;
195 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
196 
197 	/*
198 	 * Create a new fresh stack for the new process.
199 	 * Copy the trap frame for the return to user mode as if from a
200 	 * syscall.  This copies most of the user mode register values.
201 	 * The -16 is so we can expand the trapframe if we go to vm86.
202 	 */
203 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
204 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
205 
206 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
207 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
208 	td2->td_frame->tf_edx = 1;
209 
210 	/*
211 	 * If the parent process has the trap bit set (i.e. a debugger had
212 	 * single stepped the process to the system call), we need to clear
213 	 * the trap flag from the new frame unless the debugger had set PF_FORK
214 	 * on the parent.  Otherwise, the child will receive a (likely
215 	 * unexpected) SIGTRAP when it executes the first instruction after
216 	 * returning  to userland.
217 	 */
218 	if ((p1->p_pfsflags & PF_FORK) == 0)
219 		td2->td_frame->tf_eflags &= ~PSL_T;
220 
221 	/*
222 	 * Set registers for trampoline to user mode.  Leave space for the
223 	 * return address on stack.  These are the kernel mode register values.
224 	 */
225 #ifdef PAE
226 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
227 #else
228 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
229 #endif
230 	pcb2->pcb_edi = 0;
231 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
232 	pcb2->pcb_ebp = 0;
233 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
234 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
235 	pcb2->pcb_eip = (int)fork_trampoline;
236 	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
237 	/*-
238 	 * pcb2->pcb_dr*:	cloned above.
239 	 * pcb2->pcb_savefpu:	cloned above.
240 	 * pcb2->pcb_flags:	cloned above.
241 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
242 	 * pcb2->pcb_gs:	cloned above.
243 	 * pcb2->pcb_ext:	cleared below.
244 	 */
245 
246 	/*
247 	 * XXX don't copy the i/o pages.  this should probably be fixed.
248 	 */
249 	pcb2->pcb_ext = 0;
250 
251 	/* Copy the LDT, if necessary. */
252 	mtx_lock_spin(&dt_lock);
253 	if (mdp2->md_ldt != NULL) {
254 		if (flags & RFMEM) {
255 			mdp2->md_ldt->ldt_refcnt++;
256 		} else {
257 			mdp2->md_ldt = user_ldt_alloc(mdp2,
258 			    mdp2->md_ldt->ldt_len);
259 			if (mdp2->md_ldt == NULL)
260 				panic("could not copy LDT");
261 		}
262 	}
263 	mtx_unlock_spin(&dt_lock);
264 
265 	/* Setup to release spin count in fork_exit(). */
266 	td2->td_md.md_spinlock_count = 1;
267 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
268 
269 	/*
270 	 * Now, cpu_switch() can schedule the new process.
271 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
272 	 * containing the return address when exiting cpu_switch.
273 	 * This will normally be to fork_trampoline(), which will have
274 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
275 	 * will set up a stack to call fork_return(p, frame); to complete
276 	 * the return to user-mode.
277 	 */
278 }
279 
280 /*
281  * Intercept the return address from a freshly forked process that has NOT
282  * been scheduled yet.
283  *
284  * This is needed to make kernel threads stay in kernel mode.
285  */
286 void
287 cpu_set_fork_handler(td, func, arg)
288 	struct thread *td;
289 	void (*func)(void *);
290 	void *arg;
291 {
292 	/*
293 	 * Note that the trap frame follows the args, so the function
294 	 * is really called like this:  func(arg, frame);
295 	 */
296 	td->td_pcb->pcb_esi = (int) func;	/* function */
297 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
298 }
299 
300 void
301 cpu_exit(struct thread *td)
302 {
303 
304 	/*
305 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
306 	 * and %gs before we free it in case they refer to an LDT entry.
307 	 */
308 	mtx_lock_spin(&dt_lock);
309 	if (td->td_proc->p_md.md_ldt) {
310 		td->td_pcb->pcb_gs = _udatasel;
311 		load_gs(_udatasel);
312 		user_ldt_free(td);
313 	} else
314 		mtx_unlock_spin(&dt_lock);
315 }
316 
317 void
318 cpu_thread_exit(struct thread *td)
319 {
320 
321 #ifdef DEV_NPX
322 	if (td == PCPU_GET(fpcurthread))
323 		npxdrop();
324 #endif
325 
326 	/* Disable any hardware breakpoints. */
327 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
328 		reset_dbregs();
329 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
330 	}
331 }
332 
333 void
334 cpu_thread_clean(struct thread *td)
335 {
336 	struct pcb *pcb;
337 
338 	pcb = td->td_pcb;
339 	if (pcb->pcb_ext != NULL) {
340 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
341 		/*
342 		 * XXX do we need to move the TSS off the allocated pages
343 		 * before freeing them?  (not done here)
344 		 */
345 		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
346 		    ctob(IOPAGES + 1));
347 		pcb->pcb_ext = NULL;
348 	}
349 }
350 
351 void
352 cpu_thread_swapin(struct thread *td)
353 {
354 }
355 
356 void
357 cpu_thread_swapout(struct thread *td)
358 {
359 }
360 
361 void
362 cpu_thread_alloc(struct thread *td)
363 {
364 
365 	td->td_pcb = (struct pcb *)(td->td_kstack +
366 	    td->td_kstack_pages * PAGE_SIZE) - 1;
367 	td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
368 	td->td_pcb->pcb_ext = NULL;
369 }
370 
371 void
372 cpu_thread_free(struct thread *td)
373 {
374 
375 	cpu_thread_clean(td);
376 }
377 
378 /*
379  * Initialize machine state (pcb and trap frame) for a new thread about to
380  * upcall. Put enough state in the new thread's PCB to get it to go back
381  * userret(), where we can intercept it again to set the return (upcall)
382  * Address and stack, along with those from upcals that are from other sources
383  * such as those generated in thread_userret() itself.
384  */
385 void
386 cpu_set_upcall(struct thread *td, struct thread *td0)
387 {
388 	struct pcb *pcb2;
389 
390 	/* Point the pcb to the top of the stack. */
391 	pcb2 = td->td_pcb;
392 
393 	/*
394 	 * Copy the upcall pcb.  This loads kernel regs.
395 	 * Those not loaded individually below get their default
396 	 * values here.
397 	 */
398 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
399 	pcb2->pcb_flags &= ~(PCB_NPXTRAP|PCB_NPXINITDONE);
400 
401 	/*
402 	 * Create a new fresh stack for the new thread.
403 	 */
404 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
405 
406 	/*
407 	 * Set registers for trampoline to user mode.  Leave space for the
408 	 * return address on stack.  These are the kernel mode register values.
409 	 */
410 #ifdef PAE
411 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdpt);
412 #else
413 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pdir);
414 #endif
415 	pcb2->pcb_edi = 0;
416 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
417 	pcb2->pcb_ebp = 0;
418 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
419 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
420 	pcb2->pcb_eip = (int)fork_trampoline;
421 	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
422 	pcb2->pcb_gs = rgs();
423 	/*
424 	 * If we didn't copy the pcb, we'd need to do the following registers:
425 	 * pcb2->pcb_dr*:	cloned above.
426 	 * pcb2->pcb_savefpu:	cloned above.
427 	 * pcb2->pcb_flags:	cloned above.
428 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
429 	 * pcb2->pcb_gs:	cloned above.
430 	 * pcb2->pcb_ext:	cleared below.
431 	 */
432 	pcb2->pcb_ext = NULL;
433 
434 	/* Setup to release spin count in fork_exit(). */
435 	td->td_md.md_spinlock_count = 1;
436 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
437 }
438 
439 /*
440  * Set that machine state for performing an upcall that has to
441  * be done in thread_userret() so that those upcalls generated
442  * in thread_userret() itself can be done as well.
443  */
444 void
445 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
446 	stack_t *stack)
447 {
448 
449 	/*
450 	 * Do any extra cleaning that needs to be done.
451 	 * The thread may have optional components
452 	 * that are not present in a fresh thread.
453 	 * This may be a recycled thread so make it look
454 	 * as though it's newly allocated.
455 	 */
456 	cpu_thread_clean(td);
457 
458 	/*
459 	 * Set the trap frame to point at the beginning of the uts
460 	 * function.
461 	 */
462 	td->td_frame->tf_ebp = 0;
463 	td->td_frame->tf_esp =
464 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
465 	td->td_frame->tf_eip = (int)entry;
466 
467 	/*
468 	 * Pass the address of the mailbox for this kse to the uts
469 	 * function as a parameter on the stack.
470 	 */
471 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
472 	    (int)arg);
473 }
474 
475 int
476 cpu_set_user_tls(struct thread *td, void *tls_base)
477 {
478 	struct segment_descriptor sd;
479 	uint32_t base;
480 
481 	/*
482 	 * Construct a descriptor and store it in the pcb for
483 	 * the next context switch.  Also store it in the gdt
484 	 * so that the load of tf_fs into %fs will activate it
485 	 * at return to userland.
486 	 */
487 	base = (uint32_t)tls_base;
488 	sd.sd_lobase = base & 0xffffff;
489 	sd.sd_hibase = (base >> 24) & 0xff;
490 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
491 	sd.sd_hilimit = 0xf;
492 	sd.sd_type  = SDT_MEMRWA;
493 	sd.sd_dpl   = SEL_UPL;
494 	sd.sd_p     = 1;
495 	sd.sd_xx    = 0;
496 	sd.sd_def32 = 1;
497 	sd.sd_gran  = 1;
498 	critical_enter();
499 	/* set %gs */
500 	td->td_pcb->pcb_gsd = sd;
501 	if (td == curthread) {
502 		PCPU_GET(fsgs_gdt)[1] = sd;
503 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
504 	}
505 	critical_exit();
506 	return (0);
507 }
508 
509 /*
510  * Convert kernel VA to physical address
511  */
512 vm_paddr_t
513 kvtop(void *addr)
514 {
515 	vm_paddr_t pa;
516 
517 	pa = pmap_kextract((vm_offset_t)addr);
518 	if (pa == 0)
519 		panic("kvtop: zero page frame");
520 	return (pa);
521 }
522 
523 #ifdef SMP
524 static void
525 cpu_reset_proxy()
526 {
527 
528 	cpu_reset_proxy_active = 1;
529 	while (cpu_reset_proxy_active == 1)
530 		;	/* Wait for other cpu to see that we've started */
531 	stop_cpus((1<<cpu_reset_proxyid));
532 	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
533 	DELAY(1000000);
534 	cpu_reset_real();
535 }
536 #endif
537 
538 void
539 cpu_reset()
540 {
541 #ifdef XBOX
542 	if (arch_i386_is_xbox) {
543 		/* Kick the PIC16L, it can reboot the box */
544 		pic16l_reboot();
545 		for (;;);
546 	}
547 #endif
548 
549 #ifdef SMP
550 	u_int cnt, map;
551 
552 	if (smp_active) {
553 		map = PCPU_GET(other_cpus) & ~stopped_cpus;
554 		if (map != 0) {
555 			printf("cpu_reset: Stopping other CPUs\n");
556 			stop_cpus(map);
557 		}
558 
559 		if (PCPU_GET(cpuid) != 0) {
560 			cpu_reset_proxyid = PCPU_GET(cpuid);
561 			cpustop_restartfunc = cpu_reset_proxy;
562 			cpu_reset_proxy_active = 0;
563 			printf("cpu_reset: Restarting BSP\n");
564 
565 			/* Restart CPU #0. */
566 			/* XXX: restart_cpus(1 << 0); */
567 			atomic_store_rel_int(&started_cpus, (1 << 0));
568 
569 			cnt = 0;
570 			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
571 				cnt++;	/* Wait for BSP to announce restart */
572 			if (cpu_reset_proxy_active == 0)
573 				printf("cpu_reset: Failed to restart BSP\n");
574 			enable_intr();
575 			cpu_reset_proxy_active = 2;
576 
577 			while (1);
578 			/* NOTREACHED */
579 		}
580 
581 		DELAY(1000000);
582 	}
583 #endif
584 	cpu_reset_real();
585 	/* NOTREACHED */
586 }
587 
588 static void
589 cpu_reset_real()
590 {
591 	struct region_descriptor null_idt;
592 #ifndef PC98
593 	int b;
594 #endif
595 
596 	disable_intr();
597 #ifdef CPU_ELAN
598 	if (elan_mmcr != NULL)
599 		elan_mmcr->RESCFG = 1;
600 #endif
601 
602 	if (cpu == CPU_GEODE1100) {
603 		/* Attempt Geode's own reset */
604 		outl(0xcf8, 0x80009044ul);
605 		outl(0xcfc, 0xf);
606 	}
607 
608 #ifdef PC98
609 	/*
610 	 * Attempt to do a CPU reset via CPU reset port.
611 	 */
612 	if ((inb(0x35) & 0xa0) != 0xa0) {
613 		outb(0x37, 0x0f);		/* SHUT0 = 0. */
614 		outb(0x37, 0x0b);		/* SHUT1 = 0. */
615 	}
616 	outb(0xf0, 0x00);		/* Reset. */
617 #else
618 #if !defined(BROKEN_KEYBOARD_RESET)
619 	/*
620 	 * Attempt to do a CPU reset via the keyboard controller,
621 	 * do not turn off GateA20, as any machine that fails
622 	 * to do the reset here would then end up in no man's land.
623 	 */
624 	outb(IO_KBD + 4, 0xFE);
625 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
626 #endif
627 
628 	/*
629 	 * Attempt to force a reset via the Reset Control register at
630 	 * I/O port 0xcf9.  Bit 2 forces a system reset when it is
631 	 * written as 1.  Bit 1 selects the type of reset to attempt:
632 	 * 0 selects a "soft" reset, and 1 selects a "hard" reset.  We
633 	 * try to do a "soft" reset first, and then a "hard" reset.
634 	 */
635 	outb(0xcf9, 0x2);
636 	outb(0xcf9, 0x6);
637 	DELAY(500000);  /* wait 0.5 sec to see if that did it */
638 
639 	/*
640 	 * Attempt to force a reset via the Fast A20 and Init register
641 	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
642 	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
643 	 * preserve bit 1 while setting bit 0.  We also must clear bit
644 	 * 0 before setting it if it isn't already clear.
645 	 */
646 	b = inb(0x92);
647 	if (b != 0xff) {
648 		if ((b & 0x1) != 0)
649 			outb(0x92, b & 0xfe);
650 		outb(0x92, b | 0x1);
651 		DELAY(500000);  /* wait 0.5 sec to see if that did it */
652 	}
653 #endif /* PC98 */
654 
655 	printf("No known reset method worked, attempting CPU shutdown\n");
656 	DELAY(1000000); /* wait 1 sec for printf to complete */
657 
658 	/* Wipe the IDT. */
659 	null_idt.rd_limit = 0;
660 	null_idt.rd_base = 0;
661 	lidt(&null_idt);
662 
663 	/* "good night, sweet prince .... <THUNK!>" */
664 	breakpoint();
665 
666 	/* NOTREACHED */
667 	while(1);
668 }
669 
670 /*
671  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
672  */
673 static void
674 sf_buf_init(void *arg)
675 {
676 	struct sf_buf *sf_bufs;
677 	vm_offset_t sf_base;
678 	int i;
679 
680 	nsfbufs = NSFBUFS;
681 	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
682 
683 	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
684 	TAILQ_INIT(&sf_buf_freelist);
685 	sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
686 	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
687 	    M_NOWAIT | M_ZERO);
688 	for (i = 0; i < nsfbufs; i++) {
689 		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
690 		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
691 	}
692 	sf_buf_alloc_want = 0;
693 	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
694 }
695 
696 /*
697  * Get an sf_buf from the freelist.  May block if none are available.
698  */
699 struct sf_buf *
700 sf_buf_alloc(struct vm_page *m, int flags)
701 {
702 	pt_entry_t opte, *ptep;
703 	struct sf_head *hash_list;
704 	struct sf_buf *sf;
705 #ifdef SMP
706 	cpumask_t cpumask, other_cpus;
707 #endif
708 	int error;
709 
710 	KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
711 	    ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
712 	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
713 	mtx_lock(&sf_buf_lock);
714 	LIST_FOREACH(sf, hash_list, list_entry) {
715 		if (sf->m == m) {
716 			sf->ref_count++;
717 			if (sf->ref_count == 1) {
718 				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
719 				nsfbufsused++;
720 				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
721 			}
722 #ifdef SMP
723 			goto shootdown;
724 #else
725 			goto done;
726 #endif
727 		}
728 	}
729 	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
730 		if (flags & SFB_NOWAIT)
731 			goto done;
732 		sf_buf_alloc_want++;
733 		mbstat.sf_allocwait++;
734 		error = msleep(&sf_buf_freelist, &sf_buf_lock,
735 		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
736 		sf_buf_alloc_want--;
737 
738 		/*
739 		 * If we got a signal, don't risk going back to sleep.
740 		 */
741 		if (error)
742 			goto done;
743 	}
744 	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
745 	if (sf->m != NULL)
746 		LIST_REMOVE(sf, list_entry);
747 	LIST_INSERT_HEAD(hash_list, sf, list_entry);
748 	sf->ref_count = 1;
749 	sf->m = m;
750 	nsfbufsused++;
751 	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
752 
753 	/*
754 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
755 	 * virtual address from the TLB.  Since the reference count for
756 	 * the sf_buf's old mapping was zero, that mapping is not
757 	 * currently in use.  Consequently, there is no need to exchange
758 	 * the old and new PTEs atomically, even under PAE.
759 	 */
760 	ptep = vtopte(sf->kva);
761 	opte = *ptep;
762 	*ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V;
763 
764 	/*
765 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
766 	 * virtual-to-physical mapping was not used, then any processor
767 	 * that has invalidated the sf_buf's virtual address from its TLB
768 	 * since the last used mapping need not invalidate again.
769 	 */
770 #ifdef SMP
771 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
772 		sf->cpumask = 0;
773 shootdown:
774 	sched_pin();
775 	cpumask = PCPU_GET(cpumask);
776 	if ((sf->cpumask & cpumask) == 0) {
777 		sf->cpumask |= cpumask;
778 		invlpg(sf->kva);
779 	}
780 	if ((flags & SFB_CPUPRIVATE) == 0) {
781 		other_cpus = PCPU_GET(other_cpus) & ~sf->cpumask;
782 		if (other_cpus != 0) {
783 			sf->cpumask |= other_cpus;
784 			smp_masked_invlpg(other_cpus, sf->kva);
785 		}
786 	}
787 	sched_unpin();
788 #else
789 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
790 		pmap_invalidate_page(kernel_pmap, sf->kva);
791 #endif
792 done:
793 	mtx_unlock(&sf_buf_lock);
794 	return (sf);
795 }
796 
797 /*
798  * Remove a reference from the given sf_buf, adding it to the free
799  * list when its reference count reaches zero.  A freed sf_buf still,
800  * however, retains its virtual-to-physical mapping until it is
801  * recycled or reactivated by sf_buf_alloc(9).
802  */
803 void
804 sf_buf_free(struct sf_buf *sf)
805 {
806 
807 	mtx_lock(&sf_buf_lock);
808 	sf->ref_count--;
809 	if (sf->ref_count == 0) {
810 		TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
811 		nsfbufsused--;
812 		if (sf_buf_alloc_want > 0)
813 			wakeup_one(&sf_buf_freelist);
814 	}
815 	mtx_unlock(&sf_buf_lock);
816 }
817 
818 /*
819  * Software interrupt handler for queued VM system processing.
820  */
821 void
822 swi_vm(void *dummy)
823 {
824 	if (busdma_swi_pending != 0)
825 		busdma_swi();
826 }
827 
828 /*
829  * Tell whether this address is in some physical memory region.
830  * Currently used by the kernel coredump code in order to avoid
831  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
832  * or other unpredictable behaviour.
833  */
834 
835 int
836 is_physical_memory(vm_paddr_t addr)
837 {
838 
839 #ifdef DEV_ISA
840 	/* The ISA ``memory hole''. */
841 	if (addr >= 0xa0000 && addr < 0x100000)
842 		return 0;
843 #endif
844 
845 	/*
846 	 * stuff other tests for known memory-mapped devices (PCI?)
847 	 * here
848 	 */
849 
850 	return 1;
851 }
852