xref: /freebsd/sys/i386/i386/vm_machdep.c (revision 1de7b4b805ddbf2429da511c053686ac4591ed89)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1982, 1986 The Regents of the University of California.
5  * Copyright (c) 1989, 1990 William Jolitz
6  * Copyright (c) 1994 John Dyson
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * the Systems Programming Group of the University of Utah Computer
11  * Science Department, and William Jolitz.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
42  *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_isa.h"
49 #include "opt_npx.h"
50 #include "opt_reset.h"
51 #include "opt_cpu.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/bio.h>
56 #include <sys/buf.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/mutex.h>
63 #include <sys/pioctl.h>
64 #include <sys/proc.h>
65 #include <sys/sysent.h>
66 #include <sys/sf_buf.h>
67 #include <sys/smp.h>
68 #include <sys/sched.h>
69 #include <sys/sysctl.h>
70 #include <sys/unistd.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 
74 #include <machine/cpu.h>
75 #include <machine/cputypes.h>
76 #include <machine/md_var.h>
77 #include <machine/pcb.h>
78 #include <machine/pcb_ext.h>
79 #include <machine/smp.h>
80 #include <machine/vm86.h>
81 
82 #ifdef CPU_ELAN
83 #include <machine/elan_mmcr.h>
84 #endif
85 
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_param.h>
92 
93 #include <isa/isareg.h>
94 
95 #ifndef NSFBUFS
96 #define	NSFBUFS		(512 + maxusers * 16)
97 #endif
98 
99 _Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
100     "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
101 _Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
102     "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
103 _Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
104     "__OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf.");
105 
106 static void	cpu_reset_real(void);
107 #ifdef SMP
108 static void	cpu_reset_proxy(void);
109 static u_int	cpu_reset_proxyid;
110 static volatile u_int	cpu_reset_proxy_active;
111 #endif
112 
113 union savefpu *
114 get_pcb_user_save_td(struct thread *td)
115 {
116 	vm_offset_t p;
117 
118 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
119 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
120 	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
121 	return ((union savefpu *)p);
122 }
123 
124 union savefpu *
125 get_pcb_user_save_pcb(struct pcb *pcb)
126 {
127 	vm_offset_t p;
128 
129 	p = (vm_offset_t)(pcb + 1);
130 	return ((union savefpu *)p);
131 }
132 
133 struct pcb *
134 get_pcb_td(struct thread *td)
135 {
136 	vm_offset_t p;
137 
138 	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
139 	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
140 	    sizeof(struct pcb);
141 	return ((struct pcb *)p);
142 }
143 
144 void *
145 alloc_fpusave(int flags)
146 {
147 	void *res;
148 	struct savefpu_ymm *sf;
149 
150 	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
151 	if (use_xsave) {
152 		sf = (struct savefpu_ymm *)res;
153 		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
154 		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
155 	}
156 	return (res);
157 }
158 /*
159  * Finish a fork operation, with process p2 nearly set up.
160  * Copy and update the pcb, set up the stack so that the child
161  * ready to run and return to user mode.
162  */
163 void
164 cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
165 {
166 	struct proc *p1;
167 	struct pcb *pcb2;
168 	struct mdproc *mdp2;
169 
170 	p1 = td1->td_proc;
171 	if ((flags & RFPROC) == 0) {
172 		if ((flags & RFMEM) == 0) {
173 			/* unshare user LDT */
174 			struct mdproc *mdp1 = &p1->p_md;
175 			struct proc_ldt *pldt, *pldt1;
176 
177 			mtx_lock_spin(&dt_lock);
178 			if ((pldt1 = mdp1->md_ldt) != NULL &&
179 			    pldt1->ldt_refcnt > 1) {
180 				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
181 				if (pldt == NULL)
182 					panic("could not copy LDT");
183 				mdp1->md_ldt = pldt;
184 				set_user_ldt(mdp1);
185 				user_ldt_deref(pldt1);
186 			} else
187 				mtx_unlock_spin(&dt_lock);
188 		}
189 		return;
190 	}
191 
192 	/* Ensure that td1's pcb is up to date. */
193 	if (td1 == curthread)
194 		td1->td_pcb->pcb_gs = rgs();
195 	critical_enter();
196 	if (PCPU_GET(fpcurthread) == td1)
197 		npxsave(td1->td_pcb->pcb_save);
198 	critical_exit();
199 
200 	/* Point the pcb to the top of the stack */
201 	pcb2 = get_pcb_td(td2);
202 	td2->td_pcb = pcb2;
203 
204 	/* Copy td1's pcb */
205 	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
206 
207 	/* Properly initialize pcb_save */
208 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
209 	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
210 	    cpu_max_ext_state_size);
211 
212 	/* Point mdproc and then copy over td1's contents */
213 	mdp2 = &p2->p_md;
214 	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
215 
216 	/*
217 	 * Create a new fresh stack for the new process.
218 	 * Copy the trap frame for the return to user mode as if from a
219 	 * syscall.  This copies most of the user mode register values.
220 	 * The -16 is so we can expand the trapframe if we go to vm86.
221 	 */
222 	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
223 	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
224 
225 	td2->td_frame->tf_eax = 0;		/* Child returns zero */
226 	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
227 	td2->td_frame->tf_edx = 1;
228 
229 	/*
230 	 * If the parent process has the trap bit set (i.e. a debugger had
231 	 * single stepped the process to the system call), we need to clear
232 	 * the trap flag from the new frame unless the debugger had set PF_FORK
233 	 * on the parent.  Otherwise, the child will receive a (likely
234 	 * unexpected) SIGTRAP when it executes the first instruction after
235 	 * returning  to userland.
236 	 */
237 	if ((p1->p_pfsflags & PF_FORK) == 0)
238 		td2->td_frame->tf_eflags &= ~PSL_T;
239 
240 	/*
241 	 * Set registers for trampoline to user mode.  Leave space for the
242 	 * return address on stack.  These are the kernel mode register values.
243 	 */
244 #if defined(PAE) || defined(PAE_TABLES)
245 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
246 #else
247 	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
248 #endif
249 	pcb2->pcb_edi = 0;
250 	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
251 	pcb2->pcb_ebp = 0;
252 	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
253 	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
254 	pcb2->pcb_eip = (int)fork_trampoline;
255 	/*-
256 	 * pcb2->pcb_dr*:	cloned above.
257 	 * pcb2->pcb_savefpu:	cloned above.
258 	 * pcb2->pcb_flags:	cloned above.
259 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
260 	 * pcb2->pcb_gs:	cloned above.
261 	 * pcb2->pcb_ext:	cleared below.
262 	 */
263 
264 	/*
265 	 * XXX don't copy the i/o pages.  this should probably be fixed.
266 	 */
267 	pcb2->pcb_ext = 0;
268 
269 	/* Copy the LDT, if necessary. */
270 	mtx_lock_spin(&dt_lock);
271 	if (mdp2->md_ldt != NULL) {
272 		if (flags & RFMEM) {
273 			mdp2->md_ldt->ldt_refcnt++;
274 		} else {
275 			mdp2->md_ldt = user_ldt_alloc(mdp2,
276 			    mdp2->md_ldt->ldt_len);
277 			if (mdp2->md_ldt == NULL)
278 				panic("could not copy LDT");
279 		}
280 	}
281 	mtx_unlock_spin(&dt_lock);
282 
283 	/* Setup to release spin count in fork_exit(). */
284 	td2->td_md.md_spinlock_count = 1;
285 	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
286 
287 	/*
288 	 * Now, cpu_switch() can schedule the new process.
289 	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
290 	 * containing the return address when exiting cpu_switch.
291 	 * This will normally be to fork_trampoline(), which will have
292 	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
293 	 * will set up a stack to call fork_return(p, frame); to complete
294 	 * the return to user-mode.
295 	 */
296 }
297 
298 /*
299  * Intercept the return address from a freshly forked process that has NOT
300  * been scheduled yet.
301  *
302  * This is needed to make kernel threads stay in kernel mode.
303  */
304 void
305 cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
306 {
307 	/*
308 	 * Note that the trap frame follows the args, so the function
309 	 * is really called like this:  func(arg, frame);
310 	 */
311 	td->td_pcb->pcb_esi = (int) func;	/* function */
312 	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
313 }
314 
315 void
316 cpu_exit(struct thread *td)
317 {
318 
319 	/*
320 	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
321 	 * and %gs before we free it in case they refer to an LDT entry.
322 	 */
323 	mtx_lock_spin(&dt_lock);
324 	if (td->td_proc->p_md.md_ldt) {
325 		td->td_pcb->pcb_gs = _udatasel;
326 		load_gs(_udatasel);
327 		user_ldt_free(td);
328 	} else
329 		mtx_unlock_spin(&dt_lock);
330 }
331 
332 void
333 cpu_thread_exit(struct thread *td)
334 {
335 
336 	critical_enter();
337 	if (td == PCPU_GET(fpcurthread))
338 		npxdrop();
339 	critical_exit();
340 
341 	/* Disable any hardware breakpoints. */
342 	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
343 		reset_dbregs();
344 		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
345 	}
346 }
347 
348 void
349 cpu_thread_clean(struct thread *td)
350 {
351 	struct pcb *pcb;
352 
353 	pcb = td->td_pcb;
354 	if (pcb->pcb_ext != NULL) {
355 		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
356 		/*
357 		 * XXX do we need to move the TSS off the allocated pages
358 		 * before freeing them?  (not done here)
359 		 */
360 		kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext,
361 		    ctob(IOPAGES + 1));
362 		pcb->pcb_ext = NULL;
363 	}
364 }
365 
366 void
367 cpu_thread_swapin(struct thread *td)
368 {
369 }
370 
371 void
372 cpu_thread_swapout(struct thread *td)
373 {
374 }
375 
376 void
377 cpu_thread_alloc(struct thread *td)
378 {
379 	struct pcb *pcb;
380 	struct xstate_hdr *xhdr;
381 
382 	td->td_pcb = pcb = get_pcb_td(td);
383 	td->td_frame = (struct trapframe *)((caddr_t)pcb - 16) - 1;
384 	pcb->pcb_ext = NULL;
385 	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
386 	if (use_xsave) {
387 		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
388 		bzero(xhdr, sizeof(*xhdr));
389 		xhdr->xstate_bv = xsave_mask;
390 	}
391 }
392 
393 void
394 cpu_thread_free(struct thread *td)
395 {
396 
397 	cpu_thread_clean(td);
398 }
399 
400 void
401 cpu_set_syscall_retval(struct thread *td, int error)
402 {
403 
404 	switch (error) {
405 	case 0:
406 		td->td_frame->tf_eax = td->td_retval[0];
407 		td->td_frame->tf_edx = td->td_retval[1];
408 		td->td_frame->tf_eflags &= ~PSL_C;
409 		break;
410 
411 	case ERESTART:
412 		/*
413 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
414 		 * 0x80 is 2 bytes. We saved this in tf_err.
415 		 */
416 		td->td_frame->tf_eip -= td->td_frame->tf_err;
417 		break;
418 
419 	case EJUSTRETURN:
420 		break;
421 
422 	default:
423 		td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error);
424 		td->td_frame->tf_eflags |= PSL_C;
425 		break;
426 	}
427 }
428 
429 /*
430  * Initialize machine state, mostly pcb and trap frame for a new
431  * thread, about to return to userspace.  Put enough state in the new
432  * thread's PCB to get it to go back to the fork_return(), which
433  * finalizes the thread state and handles peculiarities of the first
434  * return to userspace for the new thread.
435  */
436 void
437 cpu_copy_thread(struct thread *td, struct thread *td0)
438 {
439 	struct pcb *pcb2;
440 
441 	/* Point the pcb to the top of the stack. */
442 	pcb2 = td->td_pcb;
443 
444 	/*
445 	 * Copy the upcall pcb.  This loads kernel regs.
446 	 * Those not loaded individually below get their default
447 	 * values here.
448 	 */
449 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
450 	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
451 	    PCB_KERNNPX);
452 	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
453 	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
454 	    cpu_max_ext_state_size);
455 
456 	/*
457 	 * Create a new fresh stack for the new thread.
458 	 */
459 	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
460 
461 	/* If the current thread has the trap bit set (i.e. a debugger had
462 	 * single stepped the process to the system call), we need to clear
463 	 * the trap flag from the new frame. Otherwise, the new thread will
464 	 * receive a (likely unexpected) SIGTRAP when it executes the first
465 	 * instruction after returning to userland.
466 	 */
467 	td->td_frame->tf_eflags &= ~PSL_T;
468 
469 	/*
470 	 * Set registers for trampoline to user mode.  Leave space for the
471 	 * return address on stack.  These are the kernel mode register values.
472 	 */
473 	pcb2->pcb_edi = 0;
474 	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
475 	pcb2->pcb_ebp = 0;
476 	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
477 	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
478 	pcb2->pcb_eip = (int)fork_trampoline;
479 	pcb2->pcb_gs = rgs();
480 	/*
481 	 * If we didn't copy the pcb, we'd need to do the following registers:
482 	 * pcb2->pcb_cr3:	cloned above.
483 	 * pcb2->pcb_dr*:	cloned above.
484 	 * pcb2->pcb_savefpu:	cloned above.
485 	 * pcb2->pcb_flags:	cloned above.
486 	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
487 	 * pcb2->pcb_gs:	cloned above.
488 	 * pcb2->pcb_ext:	cleared below.
489 	 */
490 	pcb2->pcb_ext = NULL;
491 
492 	/* Setup to release spin count in fork_exit(). */
493 	td->td_md.md_spinlock_count = 1;
494 	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
495 }
496 
497 /*
498  * Set that machine state for performing an upcall that starts
499  * the entry function with the given argument.
500  */
501 void
502 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
503     stack_t *stack)
504 {
505 
506 	/*
507 	 * Do any extra cleaning that needs to be done.
508 	 * The thread may have optional components
509 	 * that are not present in a fresh thread.
510 	 * This may be a recycled thread so make it look
511 	 * as though it's newly allocated.
512 	 */
513 	cpu_thread_clean(td);
514 
515 	/*
516 	 * Set the trap frame to point at the beginning of the entry
517 	 * function.
518 	 */
519 	td->td_frame->tf_ebp = 0;
520 	td->td_frame->tf_esp =
521 	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
522 	td->td_frame->tf_eip = (int)entry;
523 
524 	/* Return address sentinel value to stop stack unwinding. */
525 	suword((void *)td->td_frame->tf_esp, 0);
526 
527 	/* Pass the argument to the entry point. */
528 	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
529 	    (int)arg);
530 }
531 
532 int
533 cpu_set_user_tls(struct thread *td, void *tls_base)
534 {
535 	struct segment_descriptor sd;
536 	uint32_t base;
537 
538 	/*
539 	 * Construct a descriptor and store it in the pcb for
540 	 * the next context switch.  Also store it in the gdt
541 	 * so that the load of tf_fs into %fs will activate it
542 	 * at return to userland.
543 	 */
544 	base = (uint32_t)tls_base;
545 	sd.sd_lobase = base & 0xffffff;
546 	sd.sd_hibase = (base >> 24) & 0xff;
547 	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
548 	sd.sd_hilimit = 0xf;
549 	sd.sd_type  = SDT_MEMRWA;
550 	sd.sd_dpl   = SEL_UPL;
551 	sd.sd_p     = 1;
552 	sd.sd_xx    = 0;
553 	sd.sd_def32 = 1;
554 	sd.sd_gran  = 1;
555 	critical_enter();
556 	/* set %gs */
557 	td->td_pcb->pcb_gsd = sd;
558 	if (td == curthread) {
559 		PCPU_GET(fsgs_gdt)[1] = sd;
560 		load_gs(GSEL(GUGS_SEL, SEL_UPL));
561 	}
562 	critical_exit();
563 	return (0);
564 }
565 
566 /*
567  * Convert kernel VA to physical address
568  */
569 vm_paddr_t
570 kvtop(void *addr)
571 {
572 	vm_paddr_t pa;
573 
574 	pa = pmap_kextract((vm_offset_t)addr);
575 	if (pa == 0)
576 		panic("kvtop: zero page frame");
577 	return (pa);
578 }
579 
580 #ifdef SMP
581 static void
582 cpu_reset_proxy()
583 {
584 	cpuset_t tcrp;
585 
586 	cpu_reset_proxy_active = 1;
587 	while (cpu_reset_proxy_active == 1)
588 		;	/* Wait for other cpu to see that we've started */
589 	CPU_SETOF(cpu_reset_proxyid, &tcrp);
590 	stop_cpus(tcrp);
591 	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
592 	DELAY(1000000);
593 	cpu_reset_real();
594 }
595 #endif
596 
597 void
598 cpu_reset()
599 {
600 #ifdef SMP
601 	cpuset_t map;
602 	u_int cnt;
603 
604 	if (smp_started) {
605 		map = all_cpus;
606 		CPU_CLR(PCPU_GET(cpuid), &map);
607 		CPU_NAND(&map, &stopped_cpus);
608 		if (!CPU_EMPTY(&map)) {
609 			printf("cpu_reset: Stopping other CPUs\n");
610 			stop_cpus(map);
611 		}
612 
613 		if (PCPU_GET(cpuid) != 0) {
614 			cpu_reset_proxyid = PCPU_GET(cpuid);
615 			cpustop_restartfunc = cpu_reset_proxy;
616 			cpu_reset_proxy_active = 0;
617 			printf("cpu_reset: Restarting BSP\n");
618 
619 			/* Restart CPU #0. */
620 			/* XXX: restart_cpus(1 << 0); */
621 			CPU_SETOF(0, &started_cpus);
622 			wmb();
623 
624 			cnt = 0;
625 			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
626 				cnt++;	/* Wait for BSP to announce restart */
627 			if (cpu_reset_proxy_active == 0)
628 				printf("cpu_reset: Failed to restart BSP\n");
629 			enable_intr();
630 			cpu_reset_proxy_active = 2;
631 
632 			while (1);
633 			/* NOTREACHED */
634 		}
635 
636 		DELAY(1000000);
637 	}
638 #endif
639 	cpu_reset_real();
640 	/* NOTREACHED */
641 }
642 
643 static void
644 cpu_reset_real()
645 {
646 	struct region_descriptor null_idt;
647 	int b;
648 
649 	disable_intr();
650 #ifdef CPU_ELAN
651 	if (elan_mmcr != NULL)
652 		elan_mmcr->RESCFG = 1;
653 #endif
654 
655 	if (cpu == CPU_GEODE1100) {
656 		/* Attempt Geode's own reset */
657 		outl(0xcf8, 0x80009044ul);
658 		outl(0xcfc, 0xf);
659 	}
660 
661 #if !defined(BROKEN_KEYBOARD_RESET)
662 	/*
663 	 * Attempt to do a CPU reset via the keyboard controller,
664 	 * do not turn off GateA20, as any machine that fails
665 	 * to do the reset here would then end up in no man's land.
666 	 */
667 	outb(IO_KBD + 4, 0xFE);
668 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
669 #endif
670 
671 	/*
672 	 * Attempt to force a reset via the Reset Control register at
673 	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
674 	 * transitions from 0 to 1.  Bit 1 selects the type of reset
675 	 * to attempt: 0 selects a "soft" reset, and 1 selects a
676 	 * "hard" reset.  We try a "hard" reset.  The first write sets
677 	 * bit 1 to select a "hard" reset and clears bit 2.  The
678 	 * second write forces a 0 -> 1 transition in bit 2 to trigger
679 	 * a reset.
680 	 */
681 	outb(0xcf9, 0x2);
682 	outb(0xcf9, 0x6);
683 	DELAY(500000);  /* wait 0.5 sec to see if that did it */
684 
685 	/*
686 	 * Attempt to force a reset via the Fast A20 and Init register
687 	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
688 	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
689 	 * preserve bit 1 while setting bit 0.  We also must clear bit
690 	 * 0 before setting it if it isn't already clear.
691 	 */
692 	b = inb(0x92);
693 	if (b != 0xff) {
694 		if ((b & 0x1) != 0)
695 			outb(0x92, b & 0xfe);
696 		outb(0x92, b | 0x1);
697 		DELAY(500000);  /* wait 0.5 sec to see if that did it */
698 	}
699 
700 	printf("No known reset method worked, attempting CPU shutdown\n");
701 	DELAY(1000000); /* wait 1 sec for printf to complete */
702 
703 	/* Wipe the IDT. */
704 	null_idt.rd_limit = 0;
705 	null_idt.rd_base = 0;
706 	lidt(&null_idt);
707 
708 	/* "good night, sweet prince .... <THUNK!>" */
709 	breakpoint();
710 
711 	/* NOTREACHED */
712 	while(1);
713 }
714 
715 /*
716  * Get an sf_buf from the freelist.  May block if none are available.
717  */
718 void
719 sf_buf_map(struct sf_buf *sf, int flags)
720 {
721 	pt_entry_t opte, *ptep;
722 
723 	/*
724 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
725 	 * virtual address from the TLB.  Since the reference count for
726 	 * the sf_buf's old mapping was zero, that mapping is not
727 	 * currently in use.  Consequently, there is no need to exchange
728 	 * the old and new PTEs atomically, even under PAE.
729 	 */
730 	ptep = vtopte(sf->kva);
731 	opte = *ptep;
732 	*ptep = VM_PAGE_TO_PHYS(sf->m) | pgeflag | PG_RW | PG_V |
733 	    pmap_cache_bits(sf->m->md.pat_mode, 0);
734 
735 	/*
736 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
737 	 * virtual-to-physical mapping was not used, then any processor
738 	 * that has invalidated the sf_buf's virtual address from its TLB
739 	 * since the last used mapping need not invalidate again.
740 	 */
741 #ifdef SMP
742 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
743 		CPU_ZERO(&sf->cpumask);
744 
745 	sf_buf_shootdown(sf, flags);
746 #else
747 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
748 		pmap_invalidate_page(kernel_pmap, sf->kva);
749 #endif
750 }
751 
752 #ifdef SMP
753 void
754 sf_buf_shootdown(struct sf_buf *sf, int flags)
755 {
756 	cpuset_t other_cpus;
757 	u_int cpuid;
758 
759 	sched_pin();
760 	cpuid = PCPU_GET(cpuid);
761 	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
762 		CPU_SET(cpuid, &sf->cpumask);
763 		invlpg(sf->kva);
764 	}
765 	if ((flags & SFB_CPUPRIVATE) == 0) {
766 		other_cpus = all_cpus;
767 		CPU_CLR(cpuid, &other_cpus);
768 		CPU_NAND(&other_cpus, &sf->cpumask);
769 		if (!CPU_EMPTY(&other_cpus)) {
770 			CPU_OR(&sf->cpumask, &other_cpus);
771 			smp_masked_invlpg(other_cpus, sf->kva);
772 		}
773 	}
774 	sched_unpin();
775 }
776 #endif
777 
778 /*
779  * MD part of sf_buf_free().
780  */
781 int
782 sf_buf_unmap(struct sf_buf *sf)
783 {
784 
785 	return (0);
786 }
787 
788 static void
789 sf_buf_invalidate(struct sf_buf *sf)
790 {
791 	vm_page_t m = sf->m;
792 
793 	/*
794 	 * Use pmap_qenter to update the pte for
795 	 * existing mapping, in particular, the PAT
796 	 * settings are recalculated.
797 	 */
798 	pmap_qenter(sf->kva, &m, 1);
799 	pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE, FALSE);
800 }
801 
802 /*
803  * Invalidate the cache lines that may belong to the page, if
804  * (possibly old) mapping of the page by sf buffer exists.  Returns
805  * TRUE when mapping was found and cache invalidated.
806  */
807 boolean_t
808 sf_buf_invalidate_cache(vm_page_t m)
809 {
810 
811 	return (sf_buf_process_page(m, sf_buf_invalidate));
812 }
813 
814 /*
815  * Software interrupt handler for queued VM system processing.
816  */
817 void
818 swi_vm(void *dummy)
819 {
820 	if (busdma_swi_pending != 0)
821 		busdma_swi();
822 }
823 
824 /*
825  * Tell whether this address is in some physical memory region.
826  * Currently used by the kernel coredump code in order to avoid
827  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
828  * or other unpredictable behaviour.
829  */
830 
831 int
832 is_physical_memory(vm_paddr_t addr)
833 {
834 
835 #ifdef DEV_ISA
836 	/* The ISA ``memory hole''. */
837 	if (addr >= 0xa0000 && addr < 0x100000)
838 		return 0;
839 #endif
840 
841 	/*
842 	 * stuff other tests for known memory-mapped devices (PCI?)
843 	 * here
844 	 */
845 
846 	return 1;
847 }
848