1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sbuf.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/eventhandler.h> 44 #include <vm/uma.h> 45 #include <geom/geom.h> 46 #include <geom/geom_dbg.h> 47 #include <sys/proc.h> 48 #include <sys/kthread.h> 49 #include <sys/sched.h> 50 #include <geom/raid3/g_raid3.h> 51 52 FEATURE(geom_raid3, "GEOM RAID-3 functionality"); 53 54 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); 55 56 SYSCTL_DECL(_kern_geom); 57 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, 58 "GEOM_RAID3 stuff"); 59 u_int g_raid3_debug = 0; 60 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0, 61 "Debug level"); 62 static u_int g_raid3_timeout = 4; 63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout, 64 0, "Time to wait on all raid3 components"); 65 static u_int g_raid3_idletime = 5; 66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN, 67 &g_raid3_idletime, 0, "Mark components as clean when idling"); 68 static u_int g_raid3_disconnect_on_failure = 1; 69 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 70 &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 71 static u_int g_raid3_syncreqs = 2; 72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, 73 &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); 74 static u_int g_raid3_use_malloc = 0; 75 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, 76 &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); 77 78 static u_int g_raid3_n64k = 50; 79 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0, 80 "Maximum number of 64kB allocations"); 81 static u_int g_raid3_n16k = 200; 82 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0, 83 "Maximum number of 16kB allocations"); 84 static u_int g_raid3_n4k = 1200; 85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0, 86 "Maximum number of 4kB allocations"); 87 88 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 89 "GEOM_RAID3 statistics"); 90 static u_int g_raid3_parity_mismatch = 0; 91 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 92 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 93 94 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 95 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 96 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 97 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 98 } while (0) 99 100 static eventhandler_tag g_raid3_post_sync = NULL; 101 static int g_raid3_shutdown = 0; 102 103 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 104 struct g_geom *gp); 105 static g_taste_t g_raid3_taste; 106 static void g_raid3_init(struct g_class *mp); 107 static void g_raid3_fini(struct g_class *mp); 108 109 struct g_class g_raid3_class = { 110 .name = G_RAID3_CLASS_NAME, 111 .version = G_VERSION, 112 .ctlreq = g_raid3_config, 113 .taste = g_raid3_taste, 114 .destroy_geom = g_raid3_destroy_geom, 115 .init = g_raid3_init, 116 .fini = g_raid3_fini 117 }; 118 119 120 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 121 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 122 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 123 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 124 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 125 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 126 static int g_raid3_register_request(struct bio *pbp); 127 static void g_raid3_sync_release(struct g_raid3_softc *sc); 128 129 130 static const char * 131 g_raid3_disk_state2str(int state) 132 { 133 134 switch (state) { 135 case G_RAID3_DISK_STATE_NODISK: 136 return ("NODISK"); 137 case G_RAID3_DISK_STATE_NONE: 138 return ("NONE"); 139 case G_RAID3_DISK_STATE_NEW: 140 return ("NEW"); 141 case G_RAID3_DISK_STATE_ACTIVE: 142 return ("ACTIVE"); 143 case G_RAID3_DISK_STATE_STALE: 144 return ("STALE"); 145 case G_RAID3_DISK_STATE_SYNCHRONIZING: 146 return ("SYNCHRONIZING"); 147 case G_RAID3_DISK_STATE_DISCONNECTED: 148 return ("DISCONNECTED"); 149 default: 150 return ("INVALID"); 151 } 152 } 153 154 static const char * 155 g_raid3_device_state2str(int state) 156 { 157 158 switch (state) { 159 case G_RAID3_DEVICE_STATE_STARTING: 160 return ("STARTING"); 161 case G_RAID3_DEVICE_STATE_DEGRADED: 162 return ("DEGRADED"); 163 case G_RAID3_DEVICE_STATE_COMPLETE: 164 return ("COMPLETE"); 165 default: 166 return ("INVALID"); 167 } 168 } 169 170 const char * 171 g_raid3_get_diskname(struct g_raid3_disk *disk) 172 { 173 174 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 175 return ("[unknown]"); 176 return (disk->d_name); 177 } 178 179 static void * 180 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) 181 { 182 void *ptr; 183 enum g_raid3_zones zone; 184 185 if (g_raid3_use_malloc || 186 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 187 ptr = malloc(size, M_RAID3, flags); 188 else { 189 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone, 190 &sc->sc_zones[zone], flags); 191 sc->sc_zones[zone].sz_requested++; 192 if (ptr == NULL) 193 sc->sc_zones[zone].sz_failed++; 194 } 195 return (ptr); 196 } 197 198 static void 199 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) 200 { 201 enum g_raid3_zones zone; 202 203 if (g_raid3_use_malloc || 204 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 205 free(ptr, M_RAID3); 206 else { 207 uma_zfree_arg(sc->sc_zones[zone].sz_zone, 208 ptr, &sc->sc_zones[zone]); 209 } 210 } 211 212 static int 213 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) 214 { 215 struct g_raid3_zone *sz = arg; 216 217 if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) 218 return (ENOMEM); 219 sz->sz_inuse++; 220 return (0); 221 } 222 223 static void 224 g_raid3_uma_dtor(void *mem, int size, void *arg) 225 { 226 struct g_raid3_zone *sz = arg; 227 228 sz->sz_inuse--; 229 } 230 231 #define g_raid3_xor(src, dst, size) \ 232 _g_raid3_xor((uint64_t *)(src), \ 233 (uint64_t *)(dst), (size_t)size) 234 static void 235 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size) 236 { 237 238 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 239 for (; size > 0; size -= 128) { 240 *dst++ ^= (*src++); 241 *dst++ ^= (*src++); 242 *dst++ ^= (*src++); 243 *dst++ ^= (*src++); 244 *dst++ ^= (*src++); 245 *dst++ ^= (*src++); 246 *dst++ ^= (*src++); 247 *dst++ ^= (*src++); 248 *dst++ ^= (*src++); 249 *dst++ ^= (*src++); 250 *dst++ ^= (*src++); 251 *dst++ ^= (*src++); 252 *dst++ ^= (*src++); 253 *dst++ ^= (*src++); 254 *dst++ ^= (*src++); 255 *dst++ ^= (*src++); 256 } 257 } 258 259 static int 260 g_raid3_is_zero(struct bio *bp) 261 { 262 static const uint64_t zeros[] = { 263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 264 }; 265 u_char *addr; 266 ssize_t size; 267 268 size = bp->bio_length; 269 addr = (u_char *)bp->bio_data; 270 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 271 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 272 return (0); 273 } 274 return (1); 275 } 276 277 /* 278 * --- Events handling functions --- 279 * Events in geom_raid3 are used to maintain disks and device status 280 * from one thread to simplify locking. 281 */ 282 static void 283 g_raid3_event_free(struct g_raid3_event *ep) 284 { 285 286 free(ep, M_RAID3); 287 } 288 289 int 290 g_raid3_event_send(void *arg, int state, int flags) 291 { 292 struct g_raid3_softc *sc; 293 struct g_raid3_disk *disk; 294 struct g_raid3_event *ep; 295 int error; 296 297 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 298 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 299 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 300 disk = NULL; 301 sc = arg; 302 } else { 303 disk = arg; 304 sc = disk->d_softc; 305 } 306 ep->e_disk = disk; 307 ep->e_state = state; 308 ep->e_flags = flags; 309 ep->e_error = 0; 310 mtx_lock(&sc->sc_events_mtx); 311 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 312 mtx_unlock(&sc->sc_events_mtx); 313 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 314 mtx_lock(&sc->sc_queue_mtx); 315 wakeup(sc); 316 wakeup(&sc->sc_queue); 317 mtx_unlock(&sc->sc_queue_mtx); 318 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 319 return (0); 320 sx_assert(&sc->sc_lock, SX_XLOCKED); 321 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 322 sx_xunlock(&sc->sc_lock); 323 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 324 mtx_lock(&sc->sc_events_mtx); 325 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 326 hz * 5); 327 } 328 error = ep->e_error; 329 g_raid3_event_free(ep); 330 sx_xlock(&sc->sc_lock); 331 return (error); 332 } 333 334 static struct g_raid3_event * 335 g_raid3_event_get(struct g_raid3_softc *sc) 336 { 337 struct g_raid3_event *ep; 338 339 mtx_lock(&sc->sc_events_mtx); 340 ep = TAILQ_FIRST(&sc->sc_events); 341 mtx_unlock(&sc->sc_events_mtx); 342 return (ep); 343 } 344 345 static void 346 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) 347 { 348 349 mtx_lock(&sc->sc_events_mtx); 350 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 351 mtx_unlock(&sc->sc_events_mtx); 352 } 353 354 static void 355 g_raid3_event_cancel(struct g_raid3_disk *disk) 356 { 357 struct g_raid3_softc *sc; 358 struct g_raid3_event *ep, *tmpep; 359 360 sc = disk->d_softc; 361 sx_assert(&sc->sc_lock, SX_XLOCKED); 362 363 mtx_lock(&sc->sc_events_mtx); 364 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 365 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 366 continue; 367 if (ep->e_disk != disk) 368 continue; 369 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 370 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 371 g_raid3_event_free(ep); 372 else { 373 ep->e_error = ECANCELED; 374 wakeup(ep); 375 } 376 } 377 mtx_unlock(&sc->sc_events_mtx); 378 } 379 380 /* 381 * Return the number of disks in the given state. 382 * If state is equal to -1, count all connected disks. 383 */ 384 u_int 385 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 386 { 387 struct g_raid3_disk *disk; 388 u_int n, ndisks; 389 390 sx_assert(&sc->sc_lock, SX_LOCKED); 391 392 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 393 disk = &sc->sc_disks[n]; 394 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 395 continue; 396 if (state == -1 || disk->d_state == state) 397 ndisks++; 398 } 399 return (ndisks); 400 } 401 402 static u_int 403 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 404 { 405 struct bio *bp; 406 u_int nreqs = 0; 407 408 mtx_lock(&sc->sc_queue_mtx); 409 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 410 if (bp->bio_from == cp) 411 nreqs++; 412 } 413 mtx_unlock(&sc->sc_queue_mtx); 414 return (nreqs); 415 } 416 417 static int 418 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 419 { 420 421 if (cp->index > 0) { 422 G_RAID3_DEBUG(2, 423 "I/O requests for %s exist, can't destroy it now.", 424 cp->provider->name); 425 return (1); 426 } 427 if (g_raid3_nrequests(sc, cp) > 0) { 428 G_RAID3_DEBUG(2, 429 "I/O requests for %s in queue, can't destroy it now.", 430 cp->provider->name); 431 return (1); 432 } 433 return (0); 434 } 435 436 static void 437 g_raid3_destroy_consumer(void *arg, int flags __unused) 438 { 439 struct g_consumer *cp; 440 441 g_topology_assert(); 442 443 cp = arg; 444 G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 445 g_detach(cp); 446 g_destroy_consumer(cp); 447 } 448 449 static void 450 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 451 { 452 struct g_provider *pp; 453 int retaste_wait; 454 455 g_topology_assert(); 456 457 cp->private = NULL; 458 if (g_raid3_is_busy(sc, cp)) 459 return; 460 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 461 pp = cp->provider; 462 retaste_wait = 0; 463 if (cp->acw == 1) { 464 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 465 retaste_wait = 1; 466 } 467 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, 468 -cp->acw, -cp->ace, 0); 469 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 470 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 471 if (retaste_wait) { 472 /* 473 * After retaste event was send (inside g_access()), we can send 474 * event to detach and destroy consumer. 475 * A class, which has consumer to the given provider connected 476 * will not receive retaste event for the provider. 477 * This is the way how I ignore retaste events when I close 478 * consumers opened for write: I detach and destroy consumer 479 * after retaste event is sent. 480 */ 481 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); 482 return; 483 } 484 G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); 485 g_detach(cp); 486 g_destroy_consumer(cp); 487 } 488 489 static int 490 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 491 { 492 struct g_consumer *cp; 493 int error; 494 495 g_topology_assert_not(); 496 KASSERT(disk->d_consumer == NULL, 497 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 498 499 g_topology_lock(); 500 cp = g_new_consumer(disk->d_softc->sc_geom); 501 error = g_attach(cp, pp); 502 if (error != 0) { 503 g_destroy_consumer(cp); 504 g_topology_unlock(); 505 return (error); 506 } 507 error = g_access(cp, 1, 1, 1); 508 g_topology_unlock(); 509 if (error != 0) { 510 g_detach(cp); 511 g_destroy_consumer(cp); 512 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", 513 pp->name, error); 514 return (error); 515 } 516 disk->d_consumer = cp; 517 disk->d_consumer->private = disk; 518 disk->d_consumer->index = 0; 519 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 520 return (0); 521 } 522 523 static void 524 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 525 { 526 527 g_topology_assert(); 528 529 if (cp == NULL) 530 return; 531 if (cp->provider != NULL) 532 g_raid3_kill_consumer(sc, cp); 533 else 534 g_destroy_consumer(cp); 535 } 536 537 /* 538 * Initialize disk. This means allocate memory, create consumer, attach it 539 * to the provider and open access (r1w1e1) to it. 540 */ 541 static struct g_raid3_disk * 542 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 543 struct g_raid3_metadata *md, int *errorp) 544 { 545 struct g_raid3_disk *disk; 546 int error; 547 548 disk = &sc->sc_disks[md->md_no]; 549 error = g_raid3_connect_disk(disk, pp); 550 if (error != 0) { 551 if (errorp != NULL) 552 *errorp = error; 553 return (NULL); 554 } 555 disk->d_state = G_RAID3_DISK_STATE_NONE; 556 disk->d_flags = md->md_dflags; 557 if (md->md_provider[0] != '\0') 558 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 559 disk->d_sync.ds_consumer = NULL; 560 disk->d_sync.ds_offset = md->md_sync_offset; 561 disk->d_sync.ds_offset_done = md->md_sync_offset; 562 disk->d_genid = md->md_genid; 563 disk->d_sync.ds_syncid = md->md_syncid; 564 if (errorp != NULL) 565 *errorp = 0; 566 return (disk); 567 } 568 569 static void 570 g_raid3_destroy_disk(struct g_raid3_disk *disk) 571 { 572 struct g_raid3_softc *sc; 573 574 g_topology_assert_not(); 575 sc = disk->d_softc; 576 sx_assert(&sc->sc_lock, SX_XLOCKED); 577 578 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 579 return; 580 g_raid3_event_cancel(disk); 581 switch (disk->d_state) { 582 case G_RAID3_DISK_STATE_SYNCHRONIZING: 583 if (sc->sc_syncdisk != NULL) 584 g_raid3_sync_stop(sc, 1); 585 /* FALLTHROUGH */ 586 case G_RAID3_DISK_STATE_NEW: 587 case G_RAID3_DISK_STATE_STALE: 588 case G_RAID3_DISK_STATE_ACTIVE: 589 g_topology_lock(); 590 g_raid3_disconnect_consumer(sc, disk->d_consumer); 591 g_topology_unlock(); 592 disk->d_consumer = NULL; 593 break; 594 default: 595 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 596 g_raid3_get_diskname(disk), 597 g_raid3_disk_state2str(disk->d_state))); 598 } 599 disk->d_state = G_RAID3_DISK_STATE_NODISK; 600 } 601 602 static void 603 g_raid3_destroy_device(struct g_raid3_softc *sc) 604 { 605 struct g_raid3_event *ep; 606 struct g_raid3_disk *disk; 607 struct g_geom *gp; 608 struct g_consumer *cp; 609 u_int n; 610 611 g_topology_assert_not(); 612 sx_assert(&sc->sc_lock, SX_XLOCKED); 613 614 gp = sc->sc_geom; 615 if (sc->sc_provider != NULL) 616 g_raid3_destroy_provider(sc); 617 for (n = 0; n < sc->sc_ndisks; n++) { 618 disk = &sc->sc_disks[n]; 619 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { 620 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 621 g_raid3_update_metadata(disk); 622 g_raid3_destroy_disk(disk); 623 } 624 } 625 while ((ep = g_raid3_event_get(sc)) != NULL) { 626 g_raid3_event_remove(sc, ep); 627 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 628 g_raid3_event_free(ep); 629 else { 630 ep->e_error = ECANCELED; 631 ep->e_flags |= G_RAID3_EVENT_DONE; 632 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 633 mtx_lock(&sc->sc_events_mtx); 634 wakeup(ep); 635 mtx_unlock(&sc->sc_events_mtx); 636 } 637 } 638 callout_drain(&sc->sc_callout); 639 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 640 g_topology_lock(); 641 if (cp != NULL) 642 g_raid3_disconnect_consumer(sc, cp); 643 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 644 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 645 g_wither_geom(gp, ENXIO); 646 g_topology_unlock(); 647 if (!g_raid3_use_malloc) { 648 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 649 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 650 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 651 } 652 mtx_destroy(&sc->sc_queue_mtx); 653 mtx_destroy(&sc->sc_events_mtx); 654 sx_xunlock(&sc->sc_lock); 655 sx_destroy(&sc->sc_lock); 656 } 657 658 static void 659 g_raid3_orphan(struct g_consumer *cp) 660 { 661 struct g_raid3_disk *disk; 662 663 g_topology_assert(); 664 665 disk = cp->private; 666 if (disk == NULL) 667 return; 668 disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; 669 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 670 G_RAID3_EVENT_DONTWAIT); 671 } 672 673 static int 674 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 675 { 676 struct g_raid3_softc *sc; 677 struct g_consumer *cp; 678 off_t offset, length; 679 u_char *sector; 680 int error = 0; 681 682 g_topology_assert_not(); 683 sc = disk->d_softc; 684 sx_assert(&sc->sc_lock, SX_LOCKED); 685 686 cp = disk->d_consumer; 687 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 688 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 689 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 690 ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, 691 cp->acw, cp->ace)); 692 length = cp->provider->sectorsize; 693 offset = cp->provider->mediasize - length; 694 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 695 if (md != NULL) 696 raid3_metadata_encode(md, sector); 697 error = g_write_data(cp, offset, sector, length); 698 free(sector, M_RAID3); 699 if (error != 0) { 700 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 701 G_RAID3_DEBUG(0, "Cannot write metadata on %s " 702 "(device=%s, error=%d).", 703 g_raid3_get_diskname(disk), sc->sc_name, error); 704 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 705 } else { 706 G_RAID3_DEBUG(1, "Cannot write metadata on %s " 707 "(device=%s, error=%d).", 708 g_raid3_get_diskname(disk), sc->sc_name, error); 709 } 710 if (g_raid3_disconnect_on_failure && 711 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 712 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 713 g_raid3_event_send(disk, 714 G_RAID3_DISK_STATE_DISCONNECTED, 715 G_RAID3_EVENT_DONTWAIT); 716 } 717 } 718 return (error); 719 } 720 721 int 722 g_raid3_clear_metadata(struct g_raid3_disk *disk) 723 { 724 int error; 725 726 g_topology_assert_not(); 727 sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); 728 729 error = g_raid3_write_metadata(disk, NULL); 730 if (error == 0) { 731 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 732 g_raid3_get_diskname(disk)); 733 } else { 734 G_RAID3_DEBUG(0, 735 "Cannot clear metadata on disk %s (error=%d).", 736 g_raid3_get_diskname(disk), error); 737 } 738 return (error); 739 } 740 741 void 742 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 743 { 744 struct g_raid3_softc *sc; 745 struct g_provider *pp; 746 747 sc = disk->d_softc; 748 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 749 md->md_version = G_RAID3_VERSION; 750 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 751 md->md_id = sc->sc_id; 752 md->md_all = sc->sc_ndisks; 753 md->md_genid = sc->sc_genid; 754 md->md_mediasize = sc->sc_mediasize; 755 md->md_sectorsize = sc->sc_sectorsize; 756 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 757 md->md_no = disk->d_no; 758 md->md_syncid = disk->d_sync.ds_syncid; 759 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 760 if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 761 md->md_sync_offset = 0; 762 else { 763 md->md_sync_offset = 764 disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); 765 } 766 if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) 767 pp = disk->d_consumer->provider; 768 else 769 pp = NULL; 770 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) 771 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); 772 else 773 bzero(md->md_provider, sizeof(md->md_provider)); 774 if (pp != NULL) 775 md->md_provsize = pp->mediasize; 776 else 777 md->md_provsize = 0; 778 } 779 780 void 781 g_raid3_update_metadata(struct g_raid3_disk *disk) 782 { 783 struct g_raid3_softc *sc; 784 struct g_raid3_metadata md; 785 int error; 786 787 g_topology_assert_not(); 788 sc = disk->d_softc; 789 sx_assert(&sc->sc_lock, SX_LOCKED); 790 791 g_raid3_fill_metadata(disk, &md); 792 error = g_raid3_write_metadata(disk, &md); 793 if (error == 0) { 794 G_RAID3_DEBUG(2, "Metadata on %s updated.", 795 g_raid3_get_diskname(disk)); 796 } else { 797 G_RAID3_DEBUG(0, 798 "Cannot update metadata on disk %s (error=%d).", 799 g_raid3_get_diskname(disk), error); 800 } 801 } 802 803 static void 804 g_raid3_bump_syncid(struct g_raid3_softc *sc) 805 { 806 struct g_raid3_disk *disk; 807 u_int n; 808 809 g_topology_assert_not(); 810 sx_assert(&sc->sc_lock, SX_XLOCKED); 811 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 812 ("%s called with no active disks (device=%s).", __func__, 813 sc->sc_name)); 814 815 sc->sc_syncid++; 816 G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, 817 sc->sc_syncid); 818 for (n = 0; n < sc->sc_ndisks; n++) { 819 disk = &sc->sc_disks[n]; 820 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 821 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 822 disk->d_sync.ds_syncid = sc->sc_syncid; 823 g_raid3_update_metadata(disk); 824 } 825 } 826 } 827 828 static void 829 g_raid3_bump_genid(struct g_raid3_softc *sc) 830 { 831 struct g_raid3_disk *disk; 832 u_int n; 833 834 g_topology_assert_not(); 835 sx_assert(&sc->sc_lock, SX_XLOCKED); 836 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 837 ("%s called with no active disks (device=%s).", __func__, 838 sc->sc_name)); 839 840 sc->sc_genid++; 841 G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, 842 sc->sc_genid); 843 for (n = 0; n < sc->sc_ndisks; n++) { 844 disk = &sc->sc_disks[n]; 845 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 846 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 847 disk->d_genid = sc->sc_genid; 848 g_raid3_update_metadata(disk); 849 } 850 } 851 } 852 853 static int 854 g_raid3_idle(struct g_raid3_softc *sc, int acw) 855 { 856 struct g_raid3_disk *disk; 857 u_int i; 858 int timeout; 859 860 g_topology_assert_not(); 861 sx_assert(&sc->sc_lock, SX_XLOCKED); 862 863 if (sc->sc_provider == NULL) 864 return (0); 865 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 866 return (0); 867 if (sc->sc_idle) 868 return (0); 869 if (sc->sc_writes > 0) 870 return (0); 871 if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { 872 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); 873 if (!g_raid3_shutdown && timeout > 0) 874 return (timeout); 875 } 876 sc->sc_idle = 1; 877 for (i = 0; i < sc->sc_ndisks; i++) { 878 disk = &sc->sc_disks[i]; 879 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 880 continue; 881 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 882 g_raid3_get_diskname(disk), sc->sc_name); 883 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 884 g_raid3_update_metadata(disk); 885 } 886 return (0); 887 } 888 889 static void 890 g_raid3_unidle(struct g_raid3_softc *sc) 891 { 892 struct g_raid3_disk *disk; 893 u_int i; 894 895 g_topology_assert_not(); 896 sx_assert(&sc->sc_lock, SX_XLOCKED); 897 898 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 899 return; 900 sc->sc_idle = 0; 901 sc->sc_last_write = time_uptime; 902 for (i = 0; i < sc->sc_ndisks; i++) { 903 disk = &sc->sc_disks[i]; 904 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 905 continue; 906 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 907 g_raid3_get_diskname(disk), sc->sc_name); 908 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 909 g_raid3_update_metadata(disk); 910 } 911 } 912 913 /* 914 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 915 * in child bio as pointer to the next element on the list. 916 */ 917 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 918 919 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 920 921 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 922 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 923 (bp) = G_RAID3_NEXT_BIO(bp)) 924 925 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 926 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 927 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 928 (bp) = (tmpbp)) 929 930 static void 931 g_raid3_init_bio(struct bio *pbp) 932 { 933 934 G_RAID3_HEAD_BIO(pbp) = NULL; 935 } 936 937 static void 938 g_raid3_remove_bio(struct bio *cbp) 939 { 940 struct bio *pbp, *bp; 941 942 pbp = cbp->bio_parent; 943 if (G_RAID3_HEAD_BIO(pbp) == cbp) 944 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 945 else { 946 G_RAID3_FOREACH_BIO(pbp, bp) { 947 if (G_RAID3_NEXT_BIO(bp) == cbp) { 948 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 949 break; 950 } 951 } 952 } 953 G_RAID3_NEXT_BIO(cbp) = NULL; 954 } 955 956 static void 957 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 958 { 959 struct bio *pbp, *bp; 960 961 g_raid3_remove_bio(sbp); 962 pbp = dbp->bio_parent; 963 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 964 if (G_RAID3_HEAD_BIO(pbp) == dbp) 965 G_RAID3_HEAD_BIO(pbp) = sbp; 966 else { 967 G_RAID3_FOREACH_BIO(pbp, bp) { 968 if (G_RAID3_NEXT_BIO(bp) == dbp) { 969 G_RAID3_NEXT_BIO(bp) = sbp; 970 break; 971 } 972 } 973 } 974 G_RAID3_NEXT_BIO(dbp) = NULL; 975 } 976 977 static void 978 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 979 { 980 struct bio *bp, *pbp; 981 size_t size; 982 983 pbp = cbp->bio_parent; 984 pbp->bio_children--; 985 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 986 size = pbp->bio_length / (sc->sc_ndisks - 1); 987 g_raid3_free(sc, cbp->bio_data, size); 988 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 989 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 990 G_RAID3_NEXT_BIO(cbp) = NULL; 991 g_destroy_bio(cbp); 992 } else { 993 G_RAID3_FOREACH_BIO(pbp, bp) { 994 if (G_RAID3_NEXT_BIO(bp) == cbp) 995 break; 996 } 997 if (bp != NULL) { 998 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 999 ("NULL bp->bio_driver1")); 1000 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 1001 G_RAID3_NEXT_BIO(cbp) = NULL; 1002 } 1003 g_destroy_bio(cbp); 1004 } 1005 } 1006 1007 static struct bio * 1008 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 1009 { 1010 struct bio *bp, *cbp; 1011 size_t size; 1012 int memflag; 1013 1014 cbp = g_clone_bio(pbp); 1015 if (cbp == NULL) 1016 return (NULL); 1017 size = pbp->bio_length / (sc->sc_ndisks - 1); 1018 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 1019 memflag = M_WAITOK; 1020 else 1021 memflag = M_NOWAIT; 1022 cbp->bio_data = g_raid3_alloc(sc, size, memflag); 1023 if (cbp->bio_data == NULL) { 1024 pbp->bio_children--; 1025 g_destroy_bio(cbp); 1026 return (NULL); 1027 } 1028 G_RAID3_NEXT_BIO(cbp) = NULL; 1029 if (G_RAID3_HEAD_BIO(pbp) == NULL) 1030 G_RAID3_HEAD_BIO(pbp) = cbp; 1031 else { 1032 G_RAID3_FOREACH_BIO(pbp, bp) { 1033 if (G_RAID3_NEXT_BIO(bp) == NULL) { 1034 G_RAID3_NEXT_BIO(bp) = cbp; 1035 break; 1036 } 1037 } 1038 } 1039 return (cbp); 1040 } 1041 1042 static void 1043 g_raid3_scatter(struct bio *pbp) 1044 { 1045 struct g_raid3_softc *sc; 1046 struct g_raid3_disk *disk; 1047 struct bio *bp, *cbp, *tmpbp; 1048 off_t atom, cadd, padd, left; 1049 int first; 1050 1051 sc = pbp->bio_to->geom->softc; 1052 bp = NULL; 1053 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1054 /* 1055 * Find bio for which we should calculate data. 1056 */ 1057 G_RAID3_FOREACH_BIO(pbp, cbp) { 1058 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1059 bp = cbp; 1060 break; 1061 } 1062 } 1063 KASSERT(bp != NULL, ("NULL parity bio.")); 1064 } 1065 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1066 cadd = padd = 0; 1067 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1068 G_RAID3_FOREACH_BIO(pbp, cbp) { 1069 if (cbp == bp) 1070 continue; 1071 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 1072 padd += atom; 1073 } 1074 cadd += atom; 1075 } 1076 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1077 /* 1078 * Calculate parity. 1079 */ 1080 first = 1; 1081 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1082 if (cbp == bp) 1083 continue; 1084 if (first) { 1085 bcopy(cbp->bio_data, bp->bio_data, 1086 bp->bio_length); 1087 first = 0; 1088 } else { 1089 g_raid3_xor(cbp->bio_data, bp->bio_data, 1090 bp->bio_length); 1091 } 1092 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1093 g_raid3_destroy_bio(sc, cbp); 1094 } 1095 } 1096 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1097 struct g_consumer *cp; 1098 1099 disk = cbp->bio_caller2; 1100 cp = disk->d_consumer; 1101 cbp->bio_to = cp->provider; 1102 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1103 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1104 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1105 cp->acr, cp->acw, cp->ace)); 1106 cp->index++; 1107 sc->sc_writes++; 1108 g_io_request(cbp, cp); 1109 } 1110 } 1111 1112 static void 1113 g_raid3_gather(struct bio *pbp) 1114 { 1115 struct g_raid3_softc *sc; 1116 struct g_raid3_disk *disk; 1117 struct bio *xbp, *fbp, *cbp; 1118 off_t atom, cadd, padd, left; 1119 1120 sc = pbp->bio_to->geom->softc; 1121 /* 1122 * Find bio for which we have to calculate data. 1123 * While going through this path, check if all requests 1124 * succeeded, if not, deny whole request. 1125 * If we're in COMPLETE mode, we allow one request to fail, 1126 * so if we find one, we're sending it to the parity consumer. 1127 * If there are more failed requests, we deny whole request. 1128 */ 1129 xbp = fbp = NULL; 1130 G_RAID3_FOREACH_BIO(pbp, cbp) { 1131 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1132 KASSERT(xbp == NULL, ("More than one parity bio.")); 1133 xbp = cbp; 1134 } 1135 if (cbp->bio_error == 0) 1136 continue; 1137 /* 1138 * Found failed request. 1139 */ 1140 if (fbp == NULL) { 1141 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1142 /* 1143 * We are already in degraded mode, so we can't 1144 * accept any failures. 1145 */ 1146 if (pbp->bio_error == 0) 1147 pbp->bio_error = cbp->bio_error; 1148 } else { 1149 fbp = cbp; 1150 } 1151 } else { 1152 /* 1153 * Next failed request, that's too many. 1154 */ 1155 if (pbp->bio_error == 0) 1156 pbp->bio_error = fbp->bio_error; 1157 } 1158 disk = cbp->bio_caller2; 1159 if (disk == NULL) 1160 continue; 1161 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1162 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1163 G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", 1164 cbp->bio_error); 1165 } else { 1166 G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", 1167 cbp->bio_error); 1168 } 1169 if (g_raid3_disconnect_on_failure && 1170 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1171 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1172 g_raid3_event_send(disk, 1173 G_RAID3_DISK_STATE_DISCONNECTED, 1174 G_RAID3_EVENT_DONTWAIT); 1175 } 1176 } 1177 if (pbp->bio_error != 0) 1178 goto finish; 1179 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1180 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1181 if (xbp != fbp) 1182 g_raid3_replace_bio(xbp, fbp); 1183 g_raid3_destroy_bio(sc, fbp); 1184 } else if (fbp != NULL) { 1185 struct g_consumer *cp; 1186 1187 /* 1188 * One request failed, so send the same request to 1189 * the parity consumer. 1190 */ 1191 disk = pbp->bio_driver2; 1192 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1193 pbp->bio_error = fbp->bio_error; 1194 goto finish; 1195 } 1196 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1197 pbp->bio_inbed--; 1198 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1199 if (disk->d_no == sc->sc_ndisks - 1) 1200 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1201 fbp->bio_error = 0; 1202 fbp->bio_completed = 0; 1203 fbp->bio_children = 0; 1204 fbp->bio_inbed = 0; 1205 cp = disk->d_consumer; 1206 fbp->bio_caller2 = disk; 1207 fbp->bio_to = cp->provider; 1208 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1209 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1210 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1211 cp->acr, cp->acw, cp->ace)); 1212 cp->index++; 1213 g_io_request(fbp, cp); 1214 return; 1215 } 1216 if (xbp != NULL) { 1217 /* 1218 * Calculate parity. 1219 */ 1220 G_RAID3_FOREACH_BIO(pbp, cbp) { 1221 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1222 continue; 1223 g_raid3_xor(cbp->bio_data, xbp->bio_data, 1224 xbp->bio_length); 1225 } 1226 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1227 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1228 if (!g_raid3_is_zero(xbp)) { 1229 g_raid3_parity_mismatch++; 1230 pbp->bio_error = EIO; 1231 goto finish; 1232 } 1233 g_raid3_destroy_bio(sc, xbp); 1234 } 1235 } 1236 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1237 cadd = padd = 0; 1238 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1239 G_RAID3_FOREACH_BIO(pbp, cbp) { 1240 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1241 pbp->bio_completed += atom; 1242 padd += atom; 1243 } 1244 cadd += atom; 1245 } 1246 finish: 1247 if (pbp->bio_error == 0) 1248 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1249 else { 1250 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1251 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1252 else 1253 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1254 } 1255 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1256 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1257 g_raid3_destroy_bio(sc, cbp); 1258 g_io_deliver(pbp, pbp->bio_error); 1259 } 1260 1261 static void 1262 g_raid3_done(struct bio *bp) 1263 { 1264 struct g_raid3_softc *sc; 1265 1266 sc = bp->bio_from->geom->softc; 1267 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1268 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1269 mtx_lock(&sc->sc_queue_mtx); 1270 bioq_insert_head(&sc->sc_queue, bp); 1271 mtx_unlock(&sc->sc_queue_mtx); 1272 wakeup(sc); 1273 wakeup(&sc->sc_queue); 1274 } 1275 1276 static void 1277 g_raid3_regular_request(struct bio *cbp) 1278 { 1279 struct g_raid3_softc *sc; 1280 struct g_raid3_disk *disk; 1281 struct bio *pbp; 1282 1283 g_topology_assert_not(); 1284 1285 pbp = cbp->bio_parent; 1286 sc = pbp->bio_to->geom->softc; 1287 cbp->bio_from->index--; 1288 if (cbp->bio_cmd == BIO_WRITE) 1289 sc->sc_writes--; 1290 disk = cbp->bio_from->private; 1291 if (disk == NULL) { 1292 g_topology_lock(); 1293 g_raid3_kill_consumer(sc, cbp->bio_from); 1294 g_topology_unlock(); 1295 } 1296 1297 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1298 pbp->bio_inbed++; 1299 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1300 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1301 pbp->bio_children)); 1302 if (pbp->bio_inbed != pbp->bio_children) 1303 return; 1304 switch (pbp->bio_cmd) { 1305 case BIO_READ: 1306 g_raid3_gather(pbp); 1307 break; 1308 case BIO_WRITE: 1309 case BIO_DELETE: 1310 { 1311 int error = 0; 1312 1313 pbp->bio_completed = pbp->bio_length; 1314 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1315 if (cbp->bio_error == 0) { 1316 g_raid3_destroy_bio(sc, cbp); 1317 continue; 1318 } 1319 1320 if (error == 0) 1321 error = cbp->bio_error; 1322 else if (pbp->bio_error == 0) { 1323 /* 1324 * Next failed request, that's too many. 1325 */ 1326 pbp->bio_error = error; 1327 } 1328 1329 disk = cbp->bio_caller2; 1330 if (disk == NULL) { 1331 g_raid3_destroy_bio(sc, cbp); 1332 continue; 1333 } 1334 1335 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1336 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1337 G_RAID3_LOGREQ(0, cbp, 1338 "Request failed (error=%d).", 1339 cbp->bio_error); 1340 } else { 1341 G_RAID3_LOGREQ(1, cbp, 1342 "Request failed (error=%d).", 1343 cbp->bio_error); 1344 } 1345 if (g_raid3_disconnect_on_failure && 1346 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1347 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1348 g_raid3_event_send(disk, 1349 G_RAID3_DISK_STATE_DISCONNECTED, 1350 G_RAID3_EVENT_DONTWAIT); 1351 } 1352 g_raid3_destroy_bio(sc, cbp); 1353 } 1354 if (pbp->bio_error == 0) 1355 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1356 else 1357 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1358 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1359 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1360 bioq_remove(&sc->sc_inflight, pbp); 1361 /* Release delayed sync requests if possible. */ 1362 g_raid3_sync_release(sc); 1363 g_io_deliver(pbp, pbp->bio_error); 1364 break; 1365 } 1366 } 1367 } 1368 1369 static void 1370 g_raid3_sync_done(struct bio *bp) 1371 { 1372 struct g_raid3_softc *sc; 1373 1374 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1375 sc = bp->bio_from->geom->softc; 1376 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1377 mtx_lock(&sc->sc_queue_mtx); 1378 bioq_insert_head(&sc->sc_queue, bp); 1379 mtx_unlock(&sc->sc_queue_mtx); 1380 wakeup(sc); 1381 wakeup(&sc->sc_queue); 1382 } 1383 1384 static void 1385 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp) 1386 { 1387 struct bio_queue_head queue; 1388 struct g_raid3_disk *disk; 1389 struct g_consumer *cp; 1390 struct bio *cbp; 1391 u_int i; 1392 1393 bioq_init(&queue); 1394 for (i = 0; i < sc->sc_ndisks; i++) { 1395 disk = &sc->sc_disks[i]; 1396 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 1397 continue; 1398 cbp = g_clone_bio(bp); 1399 if (cbp == NULL) { 1400 for (cbp = bioq_first(&queue); cbp != NULL; 1401 cbp = bioq_first(&queue)) { 1402 bioq_remove(&queue, cbp); 1403 g_destroy_bio(cbp); 1404 } 1405 if (bp->bio_error == 0) 1406 bp->bio_error = ENOMEM; 1407 g_io_deliver(bp, bp->bio_error); 1408 return; 1409 } 1410 bioq_insert_tail(&queue, cbp); 1411 cbp->bio_done = g_std_done; 1412 cbp->bio_caller1 = disk; 1413 cbp->bio_to = disk->d_consumer->provider; 1414 } 1415 for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { 1416 bioq_remove(&queue, cbp); 1417 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1418 disk = cbp->bio_caller1; 1419 cbp->bio_caller1 = NULL; 1420 cp = disk->d_consumer; 1421 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1422 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1423 cp->acr, cp->acw, cp->ace)); 1424 g_io_request(cbp, disk->d_consumer); 1425 } 1426 } 1427 1428 static void 1429 g_raid3_start(struct bio *bp) 1430 { 1431 struct g_raid3_softc *sc; 1432 1433 sc = bp->bio_to->geom->softc; 1434 /* 1435 * If sc == NULL or there are no valid disks, provider's error 1436 * should be set and g_raid3_start() should not be called at all. 1437 */ 1438 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1439 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1440 ("Provider's error should be set (error=%d)(device=%s).", 1441 bp->bio_to->error, bp->bio_to->name)); 1442 G_RAID3_LOGREQ(3, bp, "Request received."); 1443 1444 switch (bp->bio_cmd) { 1445 case BIO_READ: 1446 case BIO_WRITE: 1447 case BIO_DELETE: 1448 break; 1449 case BIO_SPEEDUP: 1450 case BIO_FLUSH: 1451 g_raid3_flush(sc, bp); 1452 return; 1453 case BIO_GETATTR: 1454 default: 1455 g_io_deliver(bp, EOPNOTSUPP); 1456 return; 1457 } 1458 mtx_lock(&sc->sc_queue_mtx); 1459 bioq_insert_tail(&sc->sc_queue, bp); 1460 mtx_unlock(&sc->sc_queue_mtx); 1461 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1462 wakeup(sc); 1463 } 1464 1465 /* 1466 * Return TRUE if the given request is colliding with a in-progress 1467 * synchronization request. 1468 */ 1469 static int 1470 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) 1471 { 1472 struct g_raid3_disk *disk; 1473 struct bio *sbp; 1474 off_t rstart, rend, sstart, send; 1475 int i; 1476 1477 disk = sc->sc_syncdisk; 1478 if (disk == NULL) 1479 return (0); 1480 rstart = bp->bio_offset; 1481 rend = bp->bio_offset + bp->bio_length; 1482 for (i = 0; i < g_raid3_syncreqs; i++) { 1483 sbp = disk->d_sync.ds_bios[i]; 1484 if (sbp == NULL) 1485 continue; 1486 sstart = sbp->bio_offset; 1487 send = sbp->bio_length; 1488 if (sbp->bio_cmd == BIO_WRITE) { 1489 sstart *= sc->sc_ndisks - 1; 1490 send *= sc->sc_ndisks - 1; 1491 } 1492 send += sstart; 1493 if (rend > sstart && rstart < send) 1494 return (1); 1495 } 1496 return (0); 1497 } 1498 1499 /* 1500 * Return TRUE if the given sync request is colliding with a in-progress regular 1501 * request. 1502 */ 1503 static int 1504 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) 1505 { 1506 off_t rstart, rend, sstart, send; 1507 struct bio *bp; 1508 1509 if (sc->sc_syncdisk == NULL) 1510 return (0); 1511 sstart = sbp->bio_offset; 1512 send = sstart + sbp->bio_length; 1513 TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { 1514 rstart = bp->bio_offset; 1515 rend = bp->bio_offset + bp->bio_length; 1516 if (rend > sstart && rstart < send) 1517 return (1); 1518 } 1519 return (0); 1520 } 1521 1522 /* 1523 * Puts request onto delayed queue. 1524 */ 1525 static void 1526 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) 1527 { 1528 1529 G_RAID3_LOGREQ(2, bp, "Delaying request."); 1530 bioq_insert_head(&sc->sc_regular_delayed, bp); 1531 } 1532 1533 /* 1534 * Puts synchronization request onto delayed queue. 1535 */ 1536 static void 1537 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) 1538 { 1539 1540 G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); 1541 bioq_insert_tail(&sc->sc_sync_delayed, bp); 1542 } 1543 1544 /* 1545 * Releases delayed regular requests which don't collide anymore with sync 1546 * requests. 1547 */ 1548 static void 1549 g_raid3_regular_release(struct g_raid3_softc *sc) 1550 { 1551 struct bio *bp, *bp2; 1552 1553 TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { 1554 if (g_raid3_sync_collision(sc, bp)) 1555 continue; 1556 bioq_remove(&sc->sc_regular_delayed, bp); 1557 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); 1558 mtx_lock(&sc->sc_queue_mtx); 1559 bioq_insert_head(&sc->sc_queue, bp); 1560 #if 0 1561 /* 1562 * wakeup() is not needed, because this function is called from 1563 * the worker thread. 1564 */ 1565 wakeup(&sc->sc_queue); 1566 #endif 1567 mtx_unlock(&sc->sc_queue_mtx); 1568 } 1569 } 1570 1571 /* 1572 * Releases delayed sync requests which don't collide anymore with regular 1573 * requests. 1574 */ 1575 static void 1576 g_raid3_sync_release(struct g_raid3_softc *sc) 1577 { 1578 struct bio *bp, *bp2; 1579 1580 TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { 1581 if (g_raid3_regular_collision(sc, bp)) 1582 continue; 1583 bioq_remove(&sc->sc_sync_delayed, bp); 1584 G_RAID3_LOGREQ(2, bp, 1585 "Releasing delayed synchronization request."); 1586 g_io_request(bp, bp->bio_from); 1587 } 1588 } 1589 1590 /* 1591 * Handle synchronization requests. 1592 * Every synchronization request is two-steps process: first, READ request is 1593 * send to active provider and then WRITE request (with read data) to the provider 1594 * being synchronized. When WRITE is finished, new synchronization request is 1595 * send. 1596 */ 1597 static void 1598 g_raid3_sync_request(struct bio *bp) 1599 { 1600 struct g_raid3_softc *sc; 1601 struct g_raid3_disk *disk; 1602 1603 bp->bio_from->index--; 1604 sc = bp->bio_from->geom->softc; 1605 disk = bp->bio_from->private; 1606 if (disk == NULL) { 1607 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 1608 g_topology_lock(); 1609 g_raid3_kill_consumer(sc, bp->bio_from); 1610 g_topology_unlock(); 1611 free(bp->bio_data, M_RAID3); 1612 g_destroy_bio(bp); 1613 sx_xlock(&sc->sc_lock); 1614 return; 1615 } 1616 1617 /* 1618 * Synchronization request. 1619 */ 1620 switch (bp->bio_cmd) { 1621 case BIO_READ: 1622 { 1623 struct g_consumer *cp; 1624 u_char *dst, *src; 1625 off_t left; 1626 u_int atom; 1627 1628 if (bp->bio_error != 0) { 1629 G_RAID3_LOGREQ(0, bp, 1630 "Synchronization request failed (error=%d).", 1631 bp->bio_error); 1632 g_destroy_bio(bp); 1633 return; 1634 } 1635 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1636 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1637 dst = src = bp->bio_data; 1638 if (disk->d_no == sc->sc_ndisks - 1) { 1639 u_int n; 1640 1641 /* Parity component. */ 1642 for (left = bp->bio_length; left > 0; 1643 left -= sc->sc_sectorsize) { 1644 bcopy(src, dst, atom); 1645 src += atom; 1646 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1647 g_raid3_xor(src, dst, atom); 1648 src += atom; 1649 } 1650 dst += atom; 1651 } 1652 } else { 1653 /* Regular component. */ 1654 src += atom * disk->d_no; 1655 for (left = bp->bio_length; left > 0; 1656 left -= sc->sc_sectorsize) { 1657 bcopy(src, dst, atom); 1658 src += sc->sc_sectorsize; 1659 dst += atom; 1660 } 1661 } 1662 bp->bio_driver1 = bp->bio_driver2 = NULL; 1663 bp->bio_pflags = 0; 1664 bp->bio_offset /= sc->sc_ndisks - 1; 1665 bp->bio_length /= sc->sc_ndisks - 1; 1666 bp->bio_cmd = BIO_WRITE; 1667 bp->bio_cflags = 0; 1668 bp->bio_children = bp->bio_inbed = 0; 1669 cp = disk->d_consumer; 1670 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1671 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1672 cp->acr, cp->acw, cp->ace)); 1673 cp->index++; 1674 g_io_request(bp, cp); 1675 return; 1676 } 1677 case BIO_WRITE: 1678 { 1679 struct g_raid3_disk_sync *sync; 1680 off_t boffset, moffset; 1681 void *data; 1682 int i; 1683 1684 if (bp->bio_error != 0) { 1685 G_RAID3_LOGREQ(0, bp, 1686 "Synchronization request failed (error=%d).", 1687 bp->bio_error); 1688 g_destroy_bio(bp); 1689 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1690 g_raid3_event_send(disk, 1691 G_RAID3_DISK_STATE_DISCONNECTED, 1692 G_RAID3_EVENT_DONTWAIT); 1693 return; 1694 } 1695 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1696 sync = &disk->d_sync; 1697 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || 1698 sync->ds_consumer == NULL || 1699 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1700 /* Don't send more synchronization requests. */ 1701 sync->ds_inflight--; 1702 if (sync->ds_bios != NULL) { 1703 i = (int)(uintptr_t)bp->bio_caller1; 1704 sync->ds_bios[i] = NULL; 1705 } 1706 free(bp->bio_data, M_RAID3); 1707 g_destroy_bio(bp); 1708 if (sync->ds_inflight > 0) 1709 return; 1710 if (sync->ds_consumer == NULL || 1711 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1712 return; 1713 } 1714 /* 1715 * Disk up-to-date, activate it. 1716 */ 1717 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1718 G_RAID3_EVENT_DONTWAIT); 1719 return; 1720 } 1721 1722 /* Send next synchronization request. */ 1723 data = bp->bio_data; 1724 g_reset_bio(bp); 1725 bp->bio_cmd = BIO_READ; 1726 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); 1727 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 1728 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1729 bp->bio_done = g_raid3_sync_done; 1730 bp->bio_data = data; 1731 bp->bio_from = sync->ds_consumer; 1732 bp->bio_to = sc->sc_provider; 1733 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1734 sync->ds_consumer->index++; 1735 /* 1736 * Delay the request if it is colliding with a regular request. 1737 */ 1738 if (g_raid3_regular_collision(sc, bp)) 1739 g_raid3_sync_delay(sc, bp); 1740 else 1741 g_io_request(bp, sync->ds_consumer); 1742 1743 /* Release delayed requests if possible. */ 1744 g_raid3_regular_release(sc); 1745 1746 /* Find the smallest offset. */ 1747 moffset = sc->sc_mediasize; 1748 for (i = 0; i < g_raid3_syncreqs; i++) { 1749 bp = sync->ds_bios[i]; 1750 boffset = bp->bio_offset; 1751 if (bp->bio_cmd == BIO_WRITE) 1752 boffset *= sc->sc_ndisks - 1; 1753 if (boffset < moffset) 1754 moffset = boffset; 1755 } 1756 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) { 1757 /* Update offset_done on every 100 blocks. */ 1758 sync->ds_offset_done = moffset; 1759 g_raid3_update_metadata(disk); 1760 } 1761 return; 1762 } 1763 default: 1764 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1765 bp->bio_cmd, sc->sc_name)); 1766 break; 1767 } 1768 } 1769 1770 static int 1771 g_raid3_register_request(struct bio *pbp) 1772 { 1773 struct g_raid3_softc *sc; 1774 struct g_raid3_disk *disk; 1775 struct g_consumer *cp; 1776 struct bio *cbp, *tmpbp; 1777 off_t offset, length; 1778 u_int n, ndisks; 1779 int round_robin, verify; 1780 1781 ndisks = 0; 1782 sc = pbp->bio_to->geom->softc; 1783 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1784 sc->sc_syncdisk == NULL) { 1785 g_io_deliver(pbp, EIO); 1786 return (0); 1787 } 1788 g_raid3_init_bio(pbp); 1789 length = pbp->bio_length / (sc->sc_ndisks - 1); 1790 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1791 round_robin = verify = 0; 1792 switch (pbp->bio_cmd) { 1793 case BIO_READ: 1794 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1795 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1796 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1797 verify = 1; 1798 ndisks = sc->sc_ndisks; 1799 } else { 1800 verify = 0; 1801 ndisks = sc->sc_ndisks - 1; 1802 } 1803 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1804 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1805 round_robin = 1; 1806 } else { 1807 round_robin = 0; 1808 } 1809 KASSERT(!round_robin || !verify, 1810 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1811 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1812 break; 1813 case BIO_WRITE: 1814 case BIO_DELETE: 1815 /* 1816 * Delay the request if it is colliding with a synchronization 1817 * request. 1818 */ 1819 if (g_raid3_sync_collision(sc, pbp)) { 1820 g_raid3_regular_delay(sc, pbp); 1821 return (0); 1822 } 1823 1824 if (sc->sc_idle) 1825 g_raid3_unidle(sc); 1826 else 1827 sc->sc_last_write = time_uptime; 1828 1829 ndisks = sc->sc_ndisks; 1830 break; 1831 } 1832 for (n = 0; n < ndisks; n++) { 1833 disk = &sc->sc_disks[n]; 1834 cbp = g_raid3_clone_bio(sc, pbp); 1835 if (cbp == NULL) { 1836 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1837 g_raid3_destroy_bio(sc, cbp); 1838 /* 1839 * To prevent deadlock, we must run back up 1840 * with the ENOMEM for failed requests of any 1841 * of our consumers. Our own sync requests 1842 * can stick around, as they are finite. 1843 */ 1844 if ((pbp->bio_cflags & 1845 G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1846 g_io_deliver(pbp, ENOMEM); 1847 return (0); 1848 } 1849 return (ENOMEM); 1850 } 1851 cbp->bio_offset = offset; 1852 cbp->bio_length = length; 1853 cbp->bio_done = g_raid3_done; 1854 switch (pbp->bio_cmd) { 1855 case BIO_READ: 1856 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1857 /* 1858 * Replace invalid component with the parity 1859 * component. 1860 */ 1861 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1862 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1863 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1864 } else if (round_robin && 1865 disk->d_no == sc->sc_round_robin) { 1866 /* 1867 * In round-robin mode skip one data component 1868 * and use parity component when reading. 1869 */ 1870 pbp->bio_driver2 = disk; 1871 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1872 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1873 sc->sc_round_robin++; 1874 round_robin = 0; 1875 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1876 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1877 } 1878 break; 1879 case BIO_WRITE: 1880 case BIO_DELETE: 1881 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1882 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1883 if (n == ndisks - 1) { 1884 /* 1885 * Active parity component, mark it as such. 1886 */ 1887 cbp->bio_cflags |= 1888 G_RAID3_BIO_CFLAG_PARITY; 1889 } 1890 } else { 1891 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1892 if (n == ndisks - 1) { 1893 /* 1894 * Parity component is not connected, 1895 * so destroy its request. 1896 */ 1897 pbp->bio_pflags |= 1898 G_RAID3_BIO_PFLAG_NOPARITY; 1899 g_raid3_destroy_bio(sc, cbp); 1900 cbp = NULL; 1901 } else { 1902 cbp->bio_cflags |= 1903 G_RAID3_BIO_CFLAG_NODISK; 1904 disk = NULL; 1905 } 1906 } 1907 break; 1908 } 1909 if (cbp != NULL) 1910 cbp->bio_caller2 = disk; 1911 } 1912 switch (pbp->bio_cmd) { 1913 case BIO_READ: 1914 if (round_robin) { 1915 /* 1916 * If we are in round-robin mode and 'round_robin' is 1917 * still 1, it means, that we skipped parity component 1918 * for this read and must reset sc_round_robin field. 1919 */ 1920 sc->sc_round_robin = 0; 1921 } 1922 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1923 disk = cbp->bio_caller2; 1924 cp = disk->d_consumer; 1925 cbp->bio_to = cp->provider; 1926 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1927 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1928 ("Consumer %s not opened (r%dw%de%d).", 1929 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1930 cp->index++; 1931 g_io_request(cbp, cp); 1932 } 1933 break; 1934 case BIO_WRITE: 1935 case BIO_DELETE: 1936 /* 1937 * Put request onto inflight queue, so we can check if new 1938 * synchronization requests don't collide with it. 1939 */ 1940 bioq_insert_tail(&sc->sc_inflight, pbp); 1941 1942 /* 1943 * Bump syncid on first write. 1944 */ 1945 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { 1946 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 1947 g_raid3_bump_syncid(sc); 1948 } 1949 g_raid3_scatter(pbp); 1950 break; 1951 } 1952 return (0); 1953 } 1954 1955 static int 1956 g_raid3_can_destroy(struct g_raid3_softc *sc) 1957 { 1958 struct g_geom *gp; 1959 struct g_consumer *cp; 1960 1961 g_topology_assert(); 1962 gp = sc->sc_geom; 1963 if (gp->softc == NULL) 1964 return (1); 1965 LIST_FOREACH(cp, &gp->consumer, consumer) { 1966 if (g_raid3_is_busy(sc, cp)) 1967 return (0); 1968 } 1969 gp = sc->sc_sync.ds_geom; 1970 LIST_FOREACH(cp, &gp->consumer, consumer) { 1971 if (g_raid3_is_busy(sc, cp)) 1972 return (0); 1973 } 1974 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1975 sc->sc_name); 1976 return (1); 1977 } 1978 1979 static int 1980 g_raid3_try_destroy(struct g_raid3_softc *sc) 1981 { 1982 1983 g_topology_assert_not(); 1984 sx_assert(&sc->sc_lock, SX_XLOCKED); 1985 1986 if (sc->sc_rootmount != NULL) { 1987 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 1988 sc->sc_rootmount); 1989 root_mount_rel(sc->sc_rootmount); 1990 sc->sc_rootmount = NULL; 1991 } 1992 1993 g_topology_lock(); 1994 if (!g_raid3_can_destroy(sc)) { 1995 g_topology_unlock(); 1996 return (0); 1997 } 1998 sc->sc_geom->softc = NULL; 1999 sc->sc_sync.ds_geom->softc = NULL; 2000 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 2001 g_topology_unlock(); 2002 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2003 &sc->sc_worker); 2004 /* Unlock sc_lock here, as it can be destroyed after wakeup. */ 2005 sx_xunlock(&sc->sc_lock); 2006 wakeup(&sc->sc_worker); 2007 sc->sc_worker = NULL; 2008 } else { 2009 g_topology_unlock(); 2010 g_raid3_destroy_device(sc); 2011 free(sc->sc_disks, M_RAID3); 2012 free(sc, M_RAID3); 2013 } 2014 return (1); 2015 } 2016 2017 /* 2018 * Worker thread. 2019 */ 2020 static void 2021 g_raid3_worker(void *arg) 2022 { 2023 struct g_raid3_softc *sc; 2024 struct g_raid3_event *ep; 2025 struct bio *bp; 2026 int timeout; 2027 2028 sc = arg; 2029 thread_lock(curthread); 2030 sched_prio(curthread, PRIBIO); 2031 thread_unlock(curthread); 2032 2033 sx_xlock(&sc->sc_lock); 2034 for (;;) { 2035 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 2036 /* 2037 * First take a look at events. 2038 * This is important to handle events before any I/O requests. 2039 */ 2040 ep = g_raid3_event_get(sc); 2041 if (ep != NULL) { 2042 g_raid3_event_remove(sc, ep); 2043 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 2044 /* Update only device status. */ 2045 G_RAID3_DEBUG(3, 2046 "Running event for device %s.", 2047 sc->sc_name); 2048 ep->e_error = 0; 2049 g_raid3_update_device(sc, 1); 2050 } else { 2051 /* Update disk status. */ 2052 G_RAID3_DEBUG(3, "Running event for disk %s.", 2053 g_raid3_get_diskname(ep->e_disk)); 2054 ep->e_error = g_raid3_update_disk(ep->e_disk, 2055 ep->e_state); 2056 if (ep->e_error == 0) 2057 g_raid3_update_device(sc, 0); 2058 } 2059 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 2060 KASSERT(ep->e_error == 0, 2061 ("Error cannot be handled.")); 2062 g_raid3_event_free(ep); 2063 } else { 2064 ep->e_flags |= G_RAID3_EVENT_DONE; 2065 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2066 ep); 2067 mtx_lock(&sc->sc_events_mtx); 2068 wakeup(ep); 2069 mtx_unlock(&sc->sc_events_mtx); 2070 } 2071 if ((sc->sc_flags & 2072 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2073 if (g_raid3_try_destroy(sc)) { 2074 curthread->td_pflags &= ~TDP_GEOM; 2075 G_RAID3_DEBUG(1, "Thread exiting."); 2076 kproc_exit(0); 2077 } 2078 } 2079 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 2080 continue; 2081 } 2082 /* 2083 * Check if we can mark array as CLEAN and if we can't take 2084 * how much seconds should we wait. 2085 */ 2086 timeout = g_raid3_idle(sc, -1); 2087 /* 2088 * Now I/O requests. 2089 */ 2090 /* Get first request from the queue. */ 2091 mtx_lock(&sc->sc_queue_mtx); 2092 bp = bioq_first(&sc->sc_queue); 2093 if (bp == NULL) { 2094 if ((sc->sc_flags & 2095 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2096 mtx_unlock(&sc->sc_queue_mtx); 2097 if (g_raid3_try_destroy(sc)) { 2098 curthread->td_pflags &= ~TDP_GEOM; 2099 G_RAID3_DEBUG(1, "Thread exiting."); 2100 kproc_exit(0); 2101 } 2102 mtx_lock(&sc->sc_queue_mtx); 2103 } 2104 sx_xunlock(&sc->sc_lock); 2105 /* 2106 * XXX: We can miss an event here, because an event 2107 * can be added without sx-device-lock and without 2108 * mtx-queue-lock. Maybe I should just stop using 2109 * dedicated mutex for events synchronization and 2110 * stick with the queue lock? 2111 * The event will hang here until next I/O request 2112 * or next event is received. 2113 */ 2114 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", 2115 timeout * hz); 2116 sx_xlock(&sc->sc_lock); 2117 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 2118 continue; 2119 } 2120 process: 2121 bioq_remove(&sc->sc_queue, bp); 2122 mtx_unlock(&sc->sc_queue_mtx); 2123 2124 if (bp->bio_from->geom == sc->sc_sync.ds_geom && 2125 (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 2126 g_raid3_sync_request(bp); /* READ */ 2127 } else if (bp->bio_to != sc->sc_provider) { 2128 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 2129 g_raid3_regular_request(bp); 2130 else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) 2131 g_raid3_sync_request(bp); /* WRITE */ 2132 else { 2133 KASSERT(0, 2134 ("Invalid request cflags=0x%hx to=%s.", 2135 bp->bio_cflags, bp->bio_to->name)); 2136 } 2137 } else if (g_raid3_register_request(bp) != 0) { 2138 mtx_lock(&sc->sc_queue_mtx); 2139 bioq_insert_head(&sc->sc_queue, bp); 2140 /* 2141 * We are short in memory, let see if there are finished 2142 * request we can free. 2143 */ 2144 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2145 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) 2146 goto process; 2147 } 2148 /* 2149 * No finished regular request, so at least keep 2150 * synchronization running. 2151 */ 2152 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2153 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) 2154 goto process; 2155 } 2156 sx_xunlock(&sc->sc_lock); 2157 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, 2158 "r3:lowmem", hz / 10); 2159 sx_xlock(&sc->sc_lock); 2160 } 2161 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); 2162 } 2163 } 2164 2165 static void 2166 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) 2167 { 2168 2169 sx_assert(&sc->sc_lock, SX_LOCKED); 2170 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 2171 return; 2172 if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 2173 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 2174 g_raid3_get_diskname(disk), sc->sc_name); 2175 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2176 } else if (sc->sc_idle && 2177 (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { 2178 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 2179 g_raid3_get_diskname(disk), sc->sc_name); 2180 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2181 } 2182 } 2183 2184 static void 2185 g_raid3_sync_start(struct g_raid3_softc *sc) 2186 { 2187 struct g_raid3_disk *disk; 2188 struct g_consumer *cp; 2189 struct bio *bp; 2190 int error; 2191 u_int n; 2192 2193 g_topology_assert_not(); 2194 sx_assert(&sc->sc_lock, SX_XLOCKED); 2195 2196 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2197 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2198 sc->sc_state)); 2199 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 2200 sc->sc_name, sc->sc_state)); 2201 disk = NULL; 2202 for (n = 0; n < sc->sc_ndisks; n++) { 2203 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 2204 continue; 2205 disk = &sc->sc_disks[n]; 2206 break; 2207 } 2208 if (disk == NULL) 2209 return; 2210 2211 sx_xunlock(&sc->sc_lock); 2212 g_topology_lock(); 2213 cp = g_new_consumer(sc->sc_sync.ds_geom); 2214 error = g_attach(cp, sc->sc_provider); 2215 KASSERT(error == 0, 2216 ("Cannot attach to %s (error=%d).", sc->sc_name, error)); 2217 error = g_access(cp, 1, 0, 0); 2218 KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); 2219 g_topology_unlock(); 2220 sx_xlock(&sc->sc_lock); 2221 2222 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 2223 g_raid3_get_diskname(disk)); 2224 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0) 2225 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2226 KASSERT(disk->d_sync.ds_consumer == NULL, 2227 ("Sync consumer already exists (device=%s, disk=%s).", 2228 sc->sc_name, g_raid3_get_diskname(disk))); 2229 2230 disk->d_sync.ds_consumer = cp; 2231 disk->d_sync.ds_consumer->private = disk; 2232 disk->d_sync.ds_consumer->index = 0; 2233 sc->sc_syncdisk = disk; 2234 2235 /* 2236 * Allocate memory for synchronization bios and initialize them. 2237 */ 2238 disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, 2239 M_RAID3, M_WAITOK); 2240 for (n = 0; n < g_raid3_syncreqs; n++) { 2241 bp = g_alloc_bio(); 2242 disk->d_sync.ds_bios[n] = bp; 2243 bp->bio_parent = NULL; 2244 bp->bio_cmd = BIO_READ; 2245 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); 2246 bp->bio_cflags = 0; 2247 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 2248 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 2249 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 2250 bp->bio_done = g_raid3_sync_done; 2251 bp->bio_from = disk->d_sync.ds_consumer; 2252 bp->bio_to = sc->sc_provider; 2253 bp->bio_caller1 = (void *)(uintptr_t)n; 2254 } 2255 2256 /* Set the number of in-flight synchronization requests. */ 2257 disk->d_sync.ds_inflight = g_raid3_syncreqs; 2258 2259 /* 2260 * Fire off first synchronization requests. 2261 */ 2262 for (n = 0; n < g_raid3_syncreqs; n++) { 2263 bp = disk->d_sync.ds_bios[n]; 2264 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 2265 disk->d_sync.ds_consumer->index++; 2266 /* 2267 * Delay the request if it is colliding with a regular request. 2268 */ 2269 if (g_raid3_regular_collision(sc, bp)) 2270 g_raid3_sync_delay(sc, bp); 2271 else 2272 g_io_request(bp, disk->d_sync.ds_consumer); 2273 } 2274 } 2275 2276 /* 2277 * Stop synchronization process. 2278 * type: 0 - synchronization finished 2279 * 1 - synchronization stopped 2280 */ 2281 static void 2282 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 2283 { 2284 struct g_raid3_disk *disk; 2285 struct g_consumer *cp; 2286 2287 g_topology_assert_not(); 2288 sx_assert(&sc->sc_lock, SX_LOCKED); 2289 2290 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2291 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2292 sc->sc_state)); 2293 disk = sc->sc_syncdisk; 2294 sc->sc_syncdisk = NULL; 2295 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 2296 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2297 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2298 g_raid3_disk_state2str(disk->d_state))); 2299 if (disk->d_sync.ds_consumer == NULL) 2300 return; 2301 2302 if (type == 0) { 2303 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 2304 sc->sc_name, g_raid3_get_diskname(disk)); 2305 } else /* if (type == 1) */ { 2306 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 2307 sc->sc_name, g_raid3_get_diskname(disk)); 2308 } 2309 free(disk->d_sync.ds_bios, M_RAID3); 2310 disk->d_sync.ds_bios = NULL; 2311 cp = disk->d_sync.ds_consumer; 2312 disk->d_sync.ds_consumer = NULL; 2313 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2314 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 2315 g_topology_lock(); 2316 g_raid3_kill_consumer(sc, cp); 2317 g_topology_unlock(); 2318 sx_xlock(&sc->sc_lock); 2319 } 2320 2321 static void 2322 g_raid3_launch_provider(struct g_raid3_softc *sc) 2323 { 2324 struct g_provider *pp; 2325 struct g_raid3_disk *disk; 2326 int n; 2327 2328 sx_assert(&sc->sc_lock, SX_LOCKED); 2329 2330 g_topology_lock(); 2331 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2332 pp->mediasize = sc->sc_mediasize; 2333 pp->sectorsize = sc->sc_sectorsize; 2334 pp->stripesize = 0; 2335 pp->stripeoffset = 0; 2336 for (n = 0; n < sc->sc_ndisks; n++) { 2337 disk = &sc->sc_disks[n]; 2338 if (disk->d_consumer && disk->d_consumer->provider && 2339 disk->d_consumer->provider->stripesize > pp->stripesize) { 2340 pp->stripesize = disk->d_consumer->provider->stripesize; 2341 pp->stripeoffset = disk->d_consumer->provider->stripeoffset; 2342 } 2343 } 2344 pp->stripesize *= sc->sc_ndisks - 1; 2345 pp->stripeoffset *= sc->sc_ndisks - 1; 2346 sc->sc_provider = pp; 2347 g_error_provider(pp, 0); 2348 g_topology_unlock(); 2349 G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name, 2350 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks); 2351 2352 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2353 g_raid3_sync_start(sc); 2354 } 2355 2356 static void 2357 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2358 { 2359 struct bio *bp; 2360 2361 g_topology_assert_not(); 2362 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2363 sc->sc_name)); 2364 2365 g_topology_lock(); 2366 g_error_provider(sc->sc_provider, ENXIO); 2367 mtx_lock(&sc->sc_queue_mtx); 2368 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2369 bioq_remove(&sc->sc_queue, bp); 2370 g_io_deliver(bp, ENXIO); 2371 } 2372 mtx_unlock(&sc->sc_queue_mtx); 2373 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2374 sc->sc_provider->name); 2375 g_wither_provider(sc->sc_provider, ENXIO); 2376 g_topology_unlock(); 2377 sc->sc_provider = NULL; 2378 if (sc->sc_syncdisk != NULL) 2379 g_raid3_sync_stop(sc, 1); 2380 } 2381 2382 static void 2383 g_raid3_go(void *arg) 2384 { 2385 struct g_raid3_softc *sc; 2386 2387 sc = arg; 2388 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2389 g_raid3_event_send(sc, 0, 2390 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2391 } 2392 2393 static u_int 2394 g_raid3_determine_state(struct g_raid3_disk *disk) 2395 { 2396 struct g_raid3_softc *sc; 2397 u_int state; 2398 2399 sc = disk->d_softc; 2400 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2401 if ((disk->d_flags & 2402 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2403 /* Disk does not need synchronization. */ 2404 state = G_RAID3_DISK_STATE_ACTIVE; 2405 } else { 2406 if ((sc->sc_flags & 2407 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2408 (disk->d_flags & 2409 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2410 /* 2411 * We can start synchronization from 2412 * the stored offset. 2413 */ 2414 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2415 } else { 2416 state = G_RAID3_DISK_STATE_STALE; 2417 } 2418 } 2419 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2420 /* 2421 * Reset all synchronization data for this disk, 2422 * because if it even was synchronized, it was 2423 * synchronized to disks with different syncid. 2424 */ 2425 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2426 disk->d_sync.ds_offset = 0; 2427 disk->d_sync.ds_offset_done = 0; 2428 disk->d_sync.ds_syncid = sc->sc_syncid; 2429 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2430 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2431 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2432 } else { 2433 state = G_RAID3_DISK_STATE_STALE; 2434 } 2435 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2436 /* 2437 * Not good, NOT GOOD! 2438 * It means that device was started on stale disks 2439 * and more fresh disk just arrive. 2440 * If there were writes, device is broken, sorry. 2441 * I think the best choice here is don't touch 2442 * this disk and inform the user loudly. 2443 */ 2444 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2445 "disk (%s) arrives!! It will not be connected to the " 2446 "running device.", sc->sc_name, 2447 g_raid3_get_diskname(disk)); 2448 g_raid3_destroy_disk(disk); 2449 state = G_RAID3_DISK_STATE_NONE; 2450 /* Return immediately, because disk was destroyed. */ 2451 return (state); 2452 } 2453 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2454 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2455 return (state); 2456 } 2457 2458 /* 2459 * Update device state. 2460 */ 2461 static void 2462 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2463 { 2464 struct g_raid3_disk *disk; 2465 u_int state; 2466 2467 sx_assert(&sc->sc_lock, SX_XLOCKED); 2468 2469 switch (sc->sc_state) { 2470 case G_RAID3_DEVICE_STATE_STARTING: 2471 { 2472 u_int n, ndirty, ndisks, genid, syncid; 2473 2474 KASSERT(sc->sc_provider == NULL, 2475 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2476 /* 2477 * Are we ready? We are, if all disks are connected or 2478 * one disk is missing and 'force' is true. 2479 */ 2480 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2481 if (!force) 2482 callout_drain(&sc->sc_callout); 2483 } else { 2484 if (force) { 2485 /* 2486 * Timeout expired, so destroy device. 2487 */ 2488 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2489 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", 2490 __LINE__, sc->sc_rootmount); 2491 root_mount_rel(sc->sc_rootmount); 2492 sc->sc_rootmount = NULL; 2493 } 2494 return; 2495 } 2496 2497 /* 2498 * Find the biggest genid. 2499 */ 2500 genid = 0; 2501 for (n = 0; n < sc->sc_ndisks; n++) { 2502 disk = &sc->sc_disks[n]; 2503 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2504 continue; 2505 if (disk->d_genid > genid) 2506 genid = disk->d_genid; 2507 } 2508 sc->sc_genid = genid; 2509 /* 2510 * Remove all disks without the biggest genid. 2511 */ 2512 for (n = 0; n < sc->sc_ndisks; n++) { 2513 disk = &sc->sc_disks[n]; 2514 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2515 continue; 2516 if (disk->d_genid < genid) { 2517 G_RAID3_DEBUG(0, 2518 "Component %s (device %s) broken, skipping.", 2519 g_raid3_get_diskname(disk), sc->sc_name); 2520 g_raid3_destroy_disk(disk); 2521 } 2522 } 2523 2524 /* 2525 * There must be at least 'sc->sc_ndisks - 1' components 2526 * with the same syncid and without SYNCHRONIZING flag. 2527 */ 2528 2529 /* 2530 * Find the biggest syncid, number of valid components and 2531 * number of dirty components. 2532 */ 2533 ndirty = ndisks = syncid = 0; 2534 for (n = 0; n < sc->sc_ndisks; n++) { 2535 disk = &sc->sc_disks[n]; 2536 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2537 continue; 2538 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2539 ndirty++; 2540 if (disk->d_sync.ds_syncid > syncid) { 2541 syncid = disk->d_sync.ds_syncid; 2542 ndisks = 0; 2543 } else if (disk->d_sync.ds_syncid < syncid) { 2544 continue; 2545 } 2546 if ((disk->d_flags & 2547 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2548 continue; 2549 } 2550 ndisks++; 2551 } 2552 /* 2553 * Do we have enough valid components? 2554 */ 2555 if (ndisks + 1 < sc->sc_ndisks) { 2556 G_RAID3_DEBUG(0, 2557 "Device %s is broken, too few valid components.", 2558 sc->sc_name); 2559 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2560 return; 2561 } 2562 /* 2563 * If there is one DIRTY component and all disks are present, 2564 * mark it for synchronization. If there is more than one DIRTY 2565 * component, mark parity component for synchronization. 2566 */ 2567 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2568 for (n = 0; n < sc->sc_ndisks; n++) { 2569 disk = &sc->sc_disks[n]; 2570 if ((disk->d_flags & 2571 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2572 continue; 2573 } 2574 disk->d_flags |= 2575 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2576 } 2577 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2578 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2579 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2580 } 2581 2582 sc->sc_syncid = syncid; 2583 if (force) { 2584 /* Remember to bump syncid on first write. */ 2585 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2586 } 2587 if (ndisks == sc->sc_ndisks) 2588 state = G_RAID3_DEVICE_STATE_COMPLETE; 2589 else /* if (ndisks == sc->sc_ndisks - 1) */ 2590 state = G_RAID3_DEVICE_STATE_DEGRADED; 2591 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2592 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2593 g_raid3_device_state2str(state)); 2594 sc->sc_state = state; 2595 for (n = 0; n < sc->sc_ndisks; n++) { 2596 disk = &sc->sc_disks[n]; 2597 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2598 continue; 2599 state = g_raid3_determine_state(disk); 2600 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2601 if (state == G_RAID3_DISK_STATE_STALE) 2602 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2603 } 2604 break; 2605 } 2606 case G_RAID3_DEVICE_STATE_DEGRADED: 2607 /* 2608 * Genid need to be bumped immediately, so do it here. 2609 */ 2610 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2611 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2612 g_raid3_bump_genid(sc); 2613 } 2614 2615 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2616 return; 2617 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2618 sc->sc_ndisks - 1) { 2619 if (sc->sc_provider != NULL) 2620 g_raid3_destroy_provider(sc); 2621 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2622 return; 2623 } 2624 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2625 sc->sc_ndisks) { 2626 state = G_RAID3_DEVICE_STATE_COMPLETE; 2627 G_RAID3_DEBUG(1, 2628 "Device %s state changed from %s to %s.", 2629 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2630 g_raid3_device_state2str(state)); 2631 sc->sc_state = state; 2632 } 2633 if (sc->sc_provider == NULL) 2634 g_raid3_launch_provider(sc); 2635 if (sc->sc_rootmount != NULL) { 2636 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2637 sc->sc_rootmount); 2638 root_mount_rel(sc->sc_rootmount); 2639 sc->sc_rootmount = NULL; 2640 } 2641 break; 2642 case G_RAID3_DEVICE_STATE_COMPLETE: 2643 /* 2644 * Genid need to be bumped immediately, so do it here. 2645 */ 2646 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2647 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2648 g_raid3_bump_genid(sc); 2649 } 2650 2651 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2652 return; 2653 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2654 sc->sc_ndisks - 1, 2655 ("Too few ACTIVE components in COMPLETE state (device %s).", 2656 sc->sc_name)); 2657 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2658 sc->sc_ndisks - 1) { 2659 state = G_RAID3_DEVICE_STATE_DEGRADED; 2660 G_RAID3_DEBUG(1, 2661 "Device %s state changed from %s to %s.", 2662 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2663 g_raid3_device_state2str(state)); 2664 sc->sc_state = state; 2665 } 2666 if (sc->sc_provider == NULL) 2667 g_raid3_launch_provider(sc); 2668 if (sc->sc_rootmount != NULL) { 2669 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2670 sc->sc_rootmount); 2671 root_mount_rel(sc->sc_rootmount); 2672 sc->sc_rootmount = NULL; 2673 } 2674 break; 2675 default: 2676 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2677 g_raid3_device_state2str(sc->sc_state))); 2678 break; 2679 } 2680 } 2681 2682 /* 2683 * Update disk state and device state if needed. 2684 */ 2685 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2686 "Disk %s state changed from %s to %s (device %s).", \ 2687 g_raid3_get_diskname(disk), \ 2688 g_raid3_disk_state2str(disk->d_state), \ 2689 g_raid3_disk_state2str(state), sc->sc_name) 2690 static int 2691 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2692 { 2693 struct g_raid3_softc *sc; 2694 2695 sc = disk->d_softc; 2696 sx_assert(&sc->sc_lock, SX_XLOCKED); 2697 2698 again: 2699 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2700 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2701 g_raid3_disk_state2str(state)); 2702 switch (state) { 2703 case G_RAID3_DISK_STATE_NEW: 2704 /* 2705 * Possible scenarios: 2706 * 1. New disk arrive. 2707 */ 2708 /* Previous state should be NONE. */ 2709 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2710 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2711 g_raid3_disk_state2str(disk->d_state))); 2712 DISK_STATE_CHANGED(); 2713 2714 disk->d_state = state; 2715 G_RAID3_DEBUG(1, "Device %s: provider %s detected.", 2716 sc->sc_name, g_raid3_get_diskname(disk)); 2717 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2718 break; 2719 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2720 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2721 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2722 g_raid3_device_state2str(sc->sc_state), 2723 g_raid3_get_diskname(disk), 2724 g_raid3_disk_state2str(disk->d_state))); 2725 state = g_raid3_determine_state(disk); 2726 if (state != G_RAID3_DISK_STATE_NONE) 2727 goto again; 2728 break; 2729 case G_RAID3_DISK_STATE_ACTIVE: 2730 /* 2731 * Possible scenarios: 2732 * 1. New disk does not need synchronization. 2733 * 2. Synchronization process finished successfully. 2734 */ 2735 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2736 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2737 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2738 g_raid3_device_state2str(sc->sc_state), 2739 g_raid3_get_diskname(disk), 2740 g_raid3_disk_state2str(disk->d_state))); 2741 /* Previous state should be NEW or SYNCHRONIZING. */ 2742 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2743 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2744 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2745 g_raid3_disk_state2str(disk->d_state))); 2746 DISK_STATE_CHANGED(); 2747 2748 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2749 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2750 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2751 g_raid3_sync_stop(sc, 0); 2752 } 2753 disk->d_state = state; 2754 disk->d_sync.ds_offset = 0; 2755 disk->d_sync.ds_offset_done = 0; 2756 g_raid3_update_idle(sc, disk); 2757 g_raid3_update_metadata(disk); 2758 G_RAID3_DEBUG(1, "Device %s: provider %s activated.", 2759 sc->sc_name, g_raid3_get_diskname(disk)); 2760 break; 2761 case G_RAID3_DISK_STATE_STALE: 2762 /* 2763 * Possible scenarios: 2764 * 1. Stale disk was connected. 2765 */ 2766 /* Previous state should be NEW. */ 2767 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2768 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2769 g_raid3_disk_state2str(disk->d_state))); 2770 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2771 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2772 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2773 g_raid3_device_state2str(sc->sc_state), 2774 g_raid3_get_diskname(disk), 2775 g_raid3_disk_state2str(disk->d_state))); 2776 /* 2777 * STALE state is only possible if device is marked 2778 * NOAUTOSYNC. 2779 */ 2780 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2781 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2782 g_raid3_device_state2str(sc->sc_state), 2783 g_raid3_get_diskname(disk), 2784 g_raid3_disk_state2str(disk->d_state))); 2785 DISK_STATE_CHANGED(); 2786 2787 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2788 disk->d_state = state; 2789 g_raid3_update_metadata(disk); 2790 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2791 sc->sc_name, g_raid3_get_diskname(disk)); 2792 break; 2793 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2794 /* 2795 * Possible scenarios: 2796 * 1. Disk which needs synchronization was connected. 2797 */ 2798 /* Previous state should be NEW. */ 2799 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2800 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2801 g_raid3_disk_state2str(disk->d_state))); 2802 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2803 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2804 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2805 g_raid3_device_state2str(sc->sc_state), 2806 g_raid3_get_diskname(disk), 2807 g_raid3_disk_state2str(disk->d_state))); 2808 DISK_STATE_CHANGED(); 2809 2810 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2811 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2812 disk->d_state = state; 2813 if (sc->sc_provider != NULL) { 2814 g_raid3_sync_start(sc); 2815 g_raid3_update_metadata(disk); 2816 } 2817 break; 2818 case G_RAID3_DISK_STATE_DISCONNECTED: 2819 /* 2820 * Possible scenarios: 2821 * 1. Device wasn't running yet, but disk disappear. 2822 * 2. Disk was active and disapppear. 2823 * 3. Disk disappear during synchronization process. 2824 */ 2825 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2826 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2827 /* 2828 * Previous state should be ACTIVE, STALE or 2829 * SYNCHRONIZING. 2830 */ 2831 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2832 disk->d_state == G_RAID3_DISK_STATE_STALE || 2833 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2834 ("Wrong disk state (%s, %s).", 2835 g_raid3_get_diskname(disk), 2836 g_raid3_disk_state2str(disk->d_state))); 2837 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2838 /* Previous state should be NEW. */ 2839 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2840 ("Wrong disk state (%s, %s).", 2841 g_raid3_get_diskname(disk), 2842 g_raid3_disk_state2str(disk->d_state))); 2843 /* 2844 * Reset bumping syncid if disk disappeared in STARTING 2845 * state. 2846 */ 2847 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) 2848 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 2849 #ifdef INVARIANTS 2850 } else { 2851 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2852 sc->sc_name, 2853 g_raid3_device_state2str(sc->sc_state), 2854 g_raid3_get_diskname(disk), 2855 g_raid3_disk_state2str(disk->d_state))); 2856 #endif 2857 } 2858 DISK_STATE_CHANGED(); 2859 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2860 sc->sc_name, g_raid3_get_diskname(disk)); 2861 2862 g_raid3_destroy_disk(disk); 2863 break; 2864 default: 2865 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2866 break; 2867 } 2868 return (0); 2869 } 2870 #undef DISK_STATE_CHANGED 2871 2872 int 2873 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2874 { 2875 struct g_provider *pp; 2876 u_char *buf; 2877 int error; 2878 2879 g_topology_assert(); 2880 2881 error = g_access(cp, 1, 0, 0); 2882 if (error != 0) 2883 return (error); 2884 pp = cp->provider; 2885 g_topology_unlock(); 2886 /* Metadata are stored on last sector. */ 2887 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2888 &error); 2889 g_topology_lock(); 2890 g_access(cp, -1, 0, 0); 2891 if (buf == NULL) { 2892 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", 2893 cp->provider->name, error); 2894 return (error); 2895 } 2896 2897 /* Decode metadata. */ 2898 error = raid3_metadata_decode(buf, md); 2899 g_free(buf); 2900 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2901 return (EINVAL); 2902 if (md->md_version > G_RAID3_VERSION) { 2903 G_RAID3_DEBUG(0, 2904 "Kernel module is too old to handle metadata from %s.", 2905 cp->provider->name); 2906 return (EINVAL); 2907 } 2908 if (error != 0) { 2909 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2910 cp->provider->name); 2911 return (error); 2912 } 2913 if (md->md_sectorsize > MAXPHYS) { 2914 G_RAID3_DEBUG(0, "The blocksize is too big."); 2915 return (EINVAL); 2916 } 2917 2918 return (0); 2919 } 2920 2921 static int 2922 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2923 struct g_raid3_metadata *md) 2924 { 2925 2926 if (md->md_no >= sc->sc_ndisks) { 2927 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2928 pp->name, md->md_no); 2929 return (EINVAL); 2930 } 2931 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2932 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2933 pp->name, md->md_no); 2934 return (EEXIST); 2935 } 2936 if (md->md_all != sc->sc_ndisks) { 2937 G_RAID3_DEBUG(1, 2938 "Invalid '%s' field on disk %s (device %s), skipping.", 2939 "md_all", pp->name, sc->sc_name); 2940 return (EINVAL); 2941 } 2942 if ((md->md_mediasize % md->md_sectorsize) != 0) { 2943 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != " 2944 "0) on disk %s (device %s), skipping.", pp->name, 2945 sc->sc_name); 2946 return (EINVAL); 2947 } 2948 if (md->md_mediasize != sc->sc_mediasize) { 2949 G_RAID3_DEBUG(1, 2950 "Invalid '%s' field on disk %s (device %s), skipping.", 2951 "md_mediasize", pp->name, sc->sc_name); 2952 return (EINVAL); 2953 } 2954 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2955 G_RAID3_DEBUG(1, 2956 "Invalid '%s' field on disk %s (device %s), skipping.", 2957 "md_mediasize", pp->name, sc->sc_name); 2958 return (EINVAL); 2959 } 2960 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2961 G_RAID3_DEBUG(1, 2962 "Invalid size of disk %s (device %s), skipping.", pp->name, 2963 sc->sc_name); 2964 return (EINVAL); 2965 } 2966 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2967 G_RAID3_DEBUG(1, 2968 "Invalid '%s' field on disk %s (device %s), skipping.", 2969 "md_sectorsize", pp->name, sc->sc_name); 2970 return (EINVAL); 2971 } 2972 if (md->md_sectorsize != sc->sc_sectorsize) { 2973 G_RAID3_DEBUG(1, 2974 "Invalid '%s' field on disk %s (device %s), skipping.", 2975 "md_sectorsize", pp->name, sc->sc_name); 2976 return (EINVAL); 2977 } 2978 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2979 G_RAID3_DEBUG(1, 2980 "Invalid sector size of disk %s (device %s), skipping.", 2981 pp->name, sc->sc_name); 2982 return (EINVAL); 2983 } 2984 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2985 G_RAID3_DEBUG(1, 2986 "Invalid device flags on disk %s (device %s), skipping.", 2987 pp->name, sc->sc_name); 2988 return (EINVAL); 2989 } 2990 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2991 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2992 /* 2993 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2994 */ 2995 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2996 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2997 return (EINVAL); 2998 } 2999 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 3000 G_RAID3_DEBUG(1, 3001 "Invalid disk flags on disk %s (device %s), skipping.", 3002 pp->name, sc->sc_name); 3003 return (EINVAL); 3004 } 3005 return (0); 3006 } 3007 3008 int 3009 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 3010 struct g_raid3_metadata *md) 3011 { 3012 struct g_raid3_disk *disk; 3013 int error; 3014 3015 g_topology_assert_not(); 3016 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 3017 3018 error = g_raid3_check_metadata(sc, pp, md); 3019 if (error != 0) 3020 return (error); 3021 if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && 3022 md->md_genid < sc->sc_genid) { 3023 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", 3024 pp->name, sc->sc_name); 3025 return (EINVAL); 3026 } 3027 disk = g_raid3_init_disk(sc, pp, md, &error); 3028 if (disk == NULL) 3029 return (error); 3030 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 3031 G_RAID3_EVENT_WAIT); 3032 if (error != 0) 3033 return (error); 3034 if (md->md_version < G_RAID3_VERSION) { 3035 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", 3036 pp->name, md->md_version, G_RAID3_VERSION); 3037 g_raid3_update_metadata(disk); 3038 } 3039 return (0); 3040 } 3041 3042 static void 3043 g_raid3_destroy_delayed(void *arg, int flag) 3044 { 3045 struct g_raid3_softc *sc; 3046 int error; 3047 3048 if (flag == EV_CANCEL) { 3049 G_RAID3_DEBUG(1, "Destroying canceled."); 3050 return; 3051 } 3052 sc = arg; 3053 g_topology_unlock(); 3054 sx_xlock(&sc->sc_lock); 3055 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, 3056 ("DESTROY flag set on %s.", sc->sc_name)); 3057 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, 3058 ("DESTROYING flag not set on %s.", sc->sc_name)); 3059 G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); 3060 error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); 3061 if (error != 0) { 3062 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); 3063 sx_xunlock(&sc->sc_lock); 3064 } 3065 g_topology_lock(); 3066 } 3067 3068 static int 3069 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 3070 { 3071 struct g_raid3_softc *sc; 3072 int dcr, dcw, dce, error = 0; 3073 3074 g_topology_assert(); 3075 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 3076 acw, ace); 3077 3078 sc = pp->geom->softc; 3079 if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0) 3080 return (0); 3081 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 3082 3083 dcr = pp->acr + acr; 3084 dcw = pp->acw + acw; 3085 dce = pp->ace + ace; 3086 3087 g_topology_unlock(); 3088 sx_xlock(&sc->sc_lock); 3089 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || 3090 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { 3091 if (acr > 0 || acw > 0 || ace > 0) 3092 error = ENXIO; 3093 goto end; 3094 } 3095 if (dcw == 0) 3096 g_raid3_idle(sc, dcw); 3097 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { 3098 if (acr > 0 || acw > 0 || ace > 0) { 3099 error = ENXIO; 3100 goto end; 3101 } 3102 if (dcr == 0 && dcw == 0 && dce == 0) { 3103 g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, 3104 sc, NULL); 3105 } 3106 } 3107 end: 3108 sx_xunlock(&sc->sc_lock); 3109 g_topology_lock(); 3110 return (error); 3111 } 3112 3113 static struct g_geom * 3114 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 3115 { 3116 struct g_raid3_softc *sc; 3117 struct g_geom *gp; 3118 int error, timeout; 3119 u_int n; 3120 3121 g_topology_assert(); 3122 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 3123 3124 /* One disk is minimum. */ 3125 if (md->md_all < 1) 3126 return (NULL); 3127 /* 3128 * Action geom. 3129 */ 3130 gp = g_new_geomf(mp, "%s", md->md_name); 3131 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 3132 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 3133 M_WAITOK | M_ZERO); 3134 gp->start = g_raid3_start; 3135 gp->orphan = g_raid3_orphan; 3136 gp->access = g_raid3_access; 3137 gp->dumpconf = g_raid3_dumpconf; 3138 3139 sc->sc_id = md->md_id; 3140 sc->sc_mediasize = md->md_mediasize; 3141 sc->sc_sectorsize = md->md_sectorsize; 3142 sc->sc_ndisks = md->md_all; 3143 sc->sc_round_robin = 0; 3144 sc->sc_flags = md->md_mflags; 3145 sc->sc_bump_id = 0; 3146 sc->sc_idle = 1; 3147 sc->sc_last_write = time_uptime; 3148 sc->sc_writes = 0; 3149 for (n = 0; n < sc->sc_ndisks; n++) { 3150 sc->sc_disks[n].d_softc = sc; 3151 sc->sc_disks[n].d_no = n; 3152 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 3153 } 3154 sx_init(&sc->sc_lock, "graid3:lock"); 3155 bioq_init(&sc->sc_queue); 3156 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 3157 bioq_init(&sc->sc_regular_delayed); 3158 bioq_init(&sc->sc_inflight); 3159 bioq_init(&sc->sc_sync_delayed); 3160 TAILQ_INIT(&sc->sc_events); 3161 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 3162 callout_init(&sc->sc_callout, 1); 3163 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 3164 gp->softc = sc; 3165 sc->sc_geom = gp; 3166 sc->sc_provider = NULL; 3167 /* 3168 * Synchronization geom. 3169 */ 3170 gp = g_new_geomf(mp, "%s.sync", md->md_name); 3171 gp->softc = sc; 3172 gp->orphan = g_raid3_orphan; 3173 sc->sc_sync.ds_geom = gp; 3174 3175 if (!g_raid3_use_malloc) { 3176 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 3177 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3178 UMA_ALIGN_PTR, 0); 3179 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; 3180 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; 3181 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = 3182 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; 3183 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 3184 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3185 UMA_ALIGN_PTR, 0); 3186 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; 3187 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; 3188 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = 3189 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; 3190 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 3191 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3192 UMA_ALIGN_PTR, 0); 3193 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; 3194 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; 3195 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = 3196 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; 3197 } 3198 3199 error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 3200 "g_raid3 %s", md->md_name); 3201 if (error != 0) { 3202 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 3203 sc->sc_name); 3204 if (!g_raid3_use_malloc) { 3205 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 3206 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 3207 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 3208 } 3209 g_destroy_geom(sc->sc_sync.ds_geom); 3210 mtx_destroy(&sc->sc_events_mtx); 3211 mtx_destroy(&sc->sc_queue_mtx); 3212 sx_destroy(&sc->sc_lock); 3213 g_destroy_geom(sc->sc_geom); 3214 free(sc->sc_disks, M_RAID3); 3215 free(sc, M_RAID3); 3216 return (NULL); 3217 } 3218 3219 G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).", 3220 sc->sc_name, sc->sc_ndisks, sc->sc_id); 3221 3222 sc->sc_rootmount = root_mount_hold("GRAID3"); 3223 G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); 3224 3225 /* 3226 * Run timeout. 3227 */ 3228 timeout = atomic_load_acq_int(&g_raid3_timeout); 3229 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 3230 return (sc->sc_geom); 3231 } 3232 3233 int 3234 g_raid3_destroy(struct g_raid3_softc *sc, int how) 3235 { 3236 struct g_provider *pp; 3237 3238 g_topology_assert_not(); 3239 if (sc == NULL) 3240 return (ENXIO); 3241 sx_assert(&sc->sc_lock, SX_XLOCKED); 3242 3243 pp = sc->sc_provider; 3244 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 3245 switch (how) { 3246 case G_RAID3_DESTROY_SOFT: 3247 G_RAID3_DEBUG(1, 3248 "Device %s is still open (r%dw%de%d).", pp->name, 3249 pp->acr, pp->acw, pp->ace); 3250 return (EBUSY); 3251 case G_RAID3_DESTROY_DELAYED: 3252 G_RAID3_DEBUG(1, 3253 "Device %s will be destroyed on last close.", 3254 pp->name); 3255 if (sc->sc_syncdisk != NULL) 3256 g_raid3_sync_stop(sc, 1); 3257 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; 3258 return (EBUSY); 3259 case G_RAID3_DESTROY_HARD: 3260 G_RAID3_DEBUG(1, "Device %s is still open, so it " 3261 "can't be definitely removed.", pp->name); 3262 break; 3263 } 3264 } 3265 3266 g_topology_lock(); 3267 if (sc->sc_geom->softc == NULL) { 3268 g_topology_unlock(); 3269 return (0); 3270 } 3271 sc->sc_geom->softc = NULL; 3272 sc->sc_sync.ds_geom->softc = NULL; 3273 g_topology_unlock(); 3274 3275 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 3276 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 3277 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 3278 sx_xunlock(&sc->sc_lock); 3279 mtx_lock(&sc->sc_queue_mtx); 3280 wakeup(sc); 3281 wakeup(&sc->sc_queue); 3282 mtx_unlock(&sc->sc_queue_mtx); 3283 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 3284 while (sc->sc_worker != NULL) 3285 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 3286 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 3287 sx_xlock(&sc->sc_lock); 3288 g_raid3_destroy_device(sc); 3289 free(sc->sc_disks, M_RAID3); 3290 free(sc, M_RAID3); 3291 return (0); 3292 } 3293 3294 static void 3295 g_raid3_taste_orphan(struct g_consumer *cp) 3296 { 3297 3298 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 3299 cp->provider->name)); 3300 } 3301 3302 static struct g_geom * 3303 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 3304 { 3305 struct g_raid3_metadata md; 3306 struct g_raid3_softc *sc; 3307 struct g_consumer *cp; 3308 struct g_geom *gp; 3309 int error; 3310 3311 g_topology_assert(); 3312 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 3313 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 3314 3315 gp = g_new_geomf(mp, "raid3:taste"); 3316 /* This orphan function should be never called. */ 3317 gp->orphan = g_raid3_taste_orphan; 3318 cp = g_new_consumer(gp); 3319 g_attach(cp, pp); 3320 error = g_raid3_read_metadata(cp, &md); 3321 g_detach(cp); 3322 g_destroy_consumer(cp); 3323 g_destroy_geom(gp); 3324 if (error != 0) 3325 return (NULL); 3326 gp = NULL; 3327 3328 if (md.md_provider[0] != '\0' && 3329 !g_compare_names(md.md_provider, pp->name)) 3330 return (NULL); 3331 if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) 3332 return (NULL); 3333 if (g_raid3_debug >= 2) 3334 raid3_metadata_dump(&md); 3335 3336 /* 3337 * Let's check if device already exists. 3338 */ 3339 sc = NULL; 3340 LIST_FOREACH(gp, &mp->geom, geom) { 3341 sc = gp->softc; 3342 if (sc == NULL) 3343 continue; 3344 if (sc->sc_sync.ds_geom == gp) 3345 continue; 3346 if (strcmp(md.md_name, sc->sc_name) != 0) 3347 continue; 3348 if (md.md_id != sc->sc_id) { 3349 G_RAID3_DEBUG(0, "Device %s already configured.", 3350 sc->sc_name); 3351 return (NULL); 3352 } 3353 break; 3354 } 3355 if (gp == NULL) { 3356 gp = g_raid3_create(mp, &md); 3357 if (gp == NULL) { 3358 G_RAID3_DEBUG(0, "Cannot create device %s.", 3359 md.md_name); 3360 return (NULL); 3361 } 3362 sc = gp->softc; 3363 } 3364 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 3365 g_topology_unlock(); 3366 sx_xlock(&sc->sc_lock); 3367 error = g_raid3_add_disk(sc, pp, &md); 3368 if (error != 0) { 3369 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 3370 pp->name, gp->name, error); 3371 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 3372 sc->sc_ndisks) { 3373 g_cancel_event(sc); 3374 g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); 3375 g_topology_lock(); 3376 return (NULL); 3377 } 3378 gp = NULL; 3379 } 3380 sx_xunlock(&sc->sc_lock); 3381 g_topology_lock(); 3382 return (gp); 3383 } 3384 3385 static int 3386 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 3387 struct g_geom *gp) 3388 { 3389 struct g_raid3_softc *sc; 3390 int error; 3391 3392 g_topology_unlock(); 3393 sc = gp->softc; 3394 sx_xlock(&sc->sc_lock); 3395 g_cancel_event(sc); 3396 error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); 3397 if (error != 0) 3398 sx_xunlock(&sc->sc_lock); 3399 g_topology_lock(); 3400 return (error); 3401 } 3402 3403 static void 3404 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 3405 struct g_consumer *cp, struct g_provider *pp) 3406 { 3407 struct g_raid3_softc *sc; 3408 3409 g_topology_assert(); 3410 3411 sc = gp->softc; 3412 if (sc == NULL) 3413 return; 3414 /* Skip synchronization geom. */ 3415 if (gp == sc->sc_sync.ds_geom) 3416 return; 3417 if (pp != NULL) { 3418 /* Nothing here. */ 3419 } else if (cp != NULL) { 3420 struct g_raid3_disk *disk; 3421 3422 disk = cp->private; 3423 if (disk == NULL) 3424 return; 3425 g_topology_unlock(); 3426 sx_xlock(&sc->sc_lock); 3427 sbuf_printf(sb, "%s<Type>", indent); 3428 if (disk->d_no == sc->sc_ndisks - 1) 3429 sbuf_cat(sb, "PARITY"); 3430 else 3431 sbuf_cat(sb, "DATA"); 3432 sbuf_cat(sb, "</Type>\n"); 3433 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 3434 (u_int)disk->d_no); 3435 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 3436 sbuf_printf(sb, "%s<Synchronized>", indent); 3437 if (disk->d_sync.ds_offset == 0) 3438 sbuf_cat(sb, "0%"); 3439 else { 3440 sbuf_printf(sb, "%u%%", 3441 (u_int)((disk->d_sync.ds_offset * 100) / 3442 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 3443 } 3444 sbuf_cat(sb, "</Synchronized>\n"); 3445 if (disk->d_sync.ds_offset > 0) { 3446 sbuf_printf(sb, "%s<BytesSynced>%jd" 3447 "</BytesSynced>\n", indent, 3448 (intmax_t)disk->d_sync.ds_offset); 3449 } 3450 } 3451 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 3452 disk->d_sync.ds_syncid); 3453 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); 3454 sbuf_printf(sb, "%s<Flags>", indent); 3455 if (disk->d_flags == 0) 3456 sbuf_cat(sb, "NONE"); 3457 else { 3458 int first = 1; 3459 3460 #define ADD_FLAG(flag, name) do { \ 3461 if ((disk->d_flags & (flag)) != 0) { \ 3462 if (!first) \ 3463 sbuf_cat(sb, ", "); \ 3464 else \ 3465 first = 0; \ 3466 sbuf_cat(sb, name); \ 3467 } \ 3468 } while (0) 3469 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 3470 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 3471 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 3472 "SYNCHRONIZING"); 3473 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 3474 ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); 3475 #undef ADD_FLAG 3476 } 3477 sbuf_cat(sb, "</Flags>\n"); 3478 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3479 g_raid3_disk_state2str(disk->d_state)); 3480 sx_xunlock(&sc->sc_lock); 3481 g_topology_lock(); 3482 } else { 3483 g_topology_unlock(); 3484 sx_xlock(&sc->sc_lock); 3485 if (!g_raid3_use_malloc) { 3486 sbuf_printf(sb, 3487 "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent, 3488 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); 3489 sbuf_printf(sb, 3490 "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent, 3491 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); 3492 sbuf_printf(sb, 3493 "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent, 3494 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); 3495 sbuf_printf(sb, 3496 "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent, 3497 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); 3498 sbuf_printf(sb, 3499 "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent, 3500 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); 3501 sbuf_printf(sb, 3502 "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent, 3503 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); 3504 } 3505 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 3506 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 3507 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); 3508 sbuf_printf(sb, "%s<Flags>", indent); 3509 if (sc->sc_flags == 0) 3510 sbuf_cat(sb, "NONE"); 3511 else { 3512 int first = 1; 3513 3514 #define ADD_FLAG(flag, name) do { \ 3515 if ((sc->sc_flags & (flag)) != 0) { \ 3516 if (!first) \ 3517 sbuf_cat(sb, ", "); \ 3518 else \ 3519 first = 0; \ 3520 sbuf_cat(sb, name); \ 3521 } \ 3522 } while (0) 3523 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); 3524 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3525 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3526 "ROUND-ROBIN"); 3527 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3528 #undef ADD_FLAG 3529 } 3530 sbuf_cat(sb, "</Flags>\n"); 3531 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3532 sc->sc_ndisks); 3533 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3534 g_raid3_device_state2str(sc->sc_state)); 3535 sx_xunlock(&sc->sc_lock); 3536 g_topology_lock(); 3537 } 3538 } 3539 3540 static void 3541 g_raid3_shutdown_post_sync(void *arg, int howto) 3542 { 3543 struct g_class *mp; 3544 struct g_geom *gp, *gp2; 3545 struct g_raid3_softc *sc; 3546 int error; 3547 3548 mp = arg; 3549 g_topology_lock(); 3550 g_raid3_shutdown = 1; 3551 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3552 if ((sc = gp->softc) == NULL) 3553 continue; 3554 /* Skip synchronization geom. */ 3555 if (gp == sc->sc_sync.ds_geom) 3556 continue; 3557 g_topology_unlock(); 3558 sx_xlock(&sc->sc_lock); 3559 g_raid3_idle(sc, -1); 3560 g_cancel_event(sc); 3561 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); 3562 if (error != 0) 3563 sx_xunlock(&sc->sc_lock); 3564 g_topology_lock(); 3565 } 3566 g_topology_unlock(); 3567 } 3568 3569 static void 3570 g_raid3_init(struct g_class *mp) 3571 { 3572 3573 g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 3574 g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 3575 if (g_raid3_post_sync == NULL) 3576 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3577 } 3578 3579 static void 3580 g_raid3_fini(struct g_class *mp) 3581 { 3582 3583 if (g_raid3_post_sync != NULL) 3584 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync); 3585 } 3586 3587 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3588 MODULE_VERSION(geom_raid3, 0); 3589