1 /*- 2 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/eventhandler.h> 41 #include <vm/uma.h> 42 #include <geom/geom.h> 43 #include <sys/proc.h> 44 #include <sys/kthread.h> 45 #include <sys/sched.h> 46 #include <geom/raid3/g_raid3.h> 47 48 49 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); 50 51 SYSCTL_DECL(_kern_geom); 52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); 53 u_int g_raid3_debug = 0; 54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug); 55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0, 56 "Debug level"); 57 static u_int g_raid3_timeout = 4; 58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout); 59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout, 60 0, "Time to wait on all raid3 components"); 61 static u_int g_raid3_idletime = 5; 62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime); 63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW, 64 &g_raid3_idletime, 0, "Mark components as clean when idling"); 65 static u_int g_raid3_disconnect_on_failure = 1; 66 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure", 67 &g_raid3_disconnect_on_failure); 68 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, 69 &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 70 static u_int g_raid3_syncreqs = 2; 71 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs); 72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, 73 &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); 74 static u_int g_raid3_use_malloc = 0; 75 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc); 76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, 77 &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); 78 79 static u_int g_raid3_n64k = 50; 80 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k); 81 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0, 82 "Maximum number of 64kB allocations"); 83 static u_int g_raid3_n16k = 200; 84 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k); 85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0, 86 "Maximum number of 16kB allocations"); 87 static u_int g_raid3_n4k = 1200; 88 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k); 89 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0, 90 "Maximum number of 4kB allocations"); 91 92 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 93 "GEOM_RAID3 statistics"); 94 static u_int g_raid3_parity_mismatch = 0; 95 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 96 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 97 98 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 99 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 100 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 101 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 102 } while (0) 103 104 static eventhandler_tag g_raid3_pre_sync = NULL; 105 106 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 107 struct g_geom *gp); 108 static g_taste_t g_raid3_taste; 109 static void g_raid3_init(struct g_class *mp); 110 static void g_raid3_fini(struct g_class *mp); 111 112 struct g_class g_raid3_class = { 113 .name = G_RAID3_CLASS_NAME, 114 .version = G_VERSION, 115 .ctlreq = g_raid3_config, 116 .taste = g_raid3_taste, 117 .destroy_geom = g_raid3_destroy_geom, 118 .init = g_raid3_init, 119 .fini = g_raid3_fini 120 }; 121 122 123 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 124 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 125 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 126 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 127 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 128 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 129 static int g_raid3_register_request(struct bio *pbp); 130 static void g_raid3_sync_release(struct g_raid3_softc *sc); 131 132 133 static const char * 134 g_raid3_disk_state2str(int state) 135 { 136 137 switch (state) { 138 case G_RAID3_DISK_STATE_NODISK: 139 return ("NODISK"); 140 case G_RAID3_DISK_STATE_NONE: 141 return ("NONE"); 142 case G_RAID3_DISK_STATE_NEW: 143 return ("NEW"); 144 case G_RAID3_DISK_STATE_ACTIVE: 145 return ("ACTIVE"); 146 case G_RAID3_DISK_STATE_STALE: 147 return ("STALE"); 148 case G_RAID3_DISK_STATE_SYNCHRONIZING: 149 return ("SYNCHRONIZING"); 150 case G_RAID3_DISK_STATE_DISCONNECTED: 151 return ("DISCONNECTED"); 152 default: 153 return ("INVALID"); 154 } 155 } 156 157 static const char * 158 g_raid3_device_state2str(int state) 159 { 160 161 switch (state) { 162 case G_RAID3_DEVICE_STATE_STARTING: 163 return ("STARTING"); 164 case G_RAID3_DEVICE_STATE_DEGRADED: 165 return ("DEGRADED"); 166 case G_RAID3_DEVICE_STATE_COMPLETE: 167 return ("COMPLETE"); 168 default: 169 return ("INVALID"); 170 } 171 } 172 173 const char * 174 g_raid3_get_diskname(struct g_raid3_disk *disk) 175 { 176 177 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 178 return ("[unknown]"); 179 return (disk->d_name); 180 } 181 182 static void * 183 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) 184 { 185 void *ptr; 186 187 if (g_raid3_use_malloc) 188 ptr = malloc(size, M_RAID3, flags); 189 else { 190 ptr = uma_zalloc_arg(sc->sc_zones[g_raid3_zone(size)].sz_zone, 191 &sc->sc_zones[g_raid3_zone(size)], flags); 192 sc->sc_zones[g_raid3_zone(size)].sz_requested++; 193 if (ptr == NULL) 194 sc->sc_zones[g_raid3_zone(size)].sz_failed++; 195 } 196 return (ptr); 197 } 198 199 static void 200 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) 201 { 202 203 if (g_raid3_use_malloc) 204 free(ptr, M_RAID3); 205 else { 206 uma_zfree_arg(sc->sc_zones[g_raid3_zone(size)].sz_zone, 207 ptr, &sc->sc_zones[g_raid3_zone(size)]); 208 } 209 } 210 211 static int 212 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) 213 { 214 struct g_raid3_zone *sz = arg; 215 216 if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) 217 return (ENOMEM); 218 sz->sz_inuse++; 219 return (0); 220 } 221 222 static void 223 g_raid3_uma_dtor(void *mem, int size, void *arg) 224 { 225 struct g_raid3_zone *sz = arg; 226 227 sz->sz_inuse--; 228 } 229 230 #define g_raid3_xor(src1, src2, dst, size) \ 231 _g_raid3_xor((uint64_t *)(src1), (uint64_t *)(src2), \ 232 (uint64_t *)(dst), (size_t)size) 233 static void 234 _g_raid3_xor(uint64_t *src1, uint64_t *src2, uint64_t *dst, size_t size) 235 { 236 237 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 238 for (; size > 0; size -= 128) { 239 *dst++ = (*src1++) ^ (*src2++); 240 *dst++ = (*src1++) ^ (*src2++); 241 *dst++ = (*src1++) ^ (*src2++); 242 *dst++ = (*src1++) ^ (*src2++); 243 *dst++ = (*src1++) ^ (*src2++); 244 *dst++ = (*src1++) ^ (*src2++); 245 *dst++ = (*src1++) ^ (*src2++); 246 *dst++ = (*src1++) ^ (*src2++); 247 *dst++ = (*src1++) ^ (*src2++); 248 *dst++ = (*src1++) ^ (*src2++); 249 *dst++ = (*src1++) ^ (*src2++); 250 *dst++ = (*src1++) ^ (*src2++); 251 *dst++ = (*src1++) ^ (*src2++); 252 *dst++ = (*src1++) ^ (*src2++); 253 *dst++ = (*src1++) ^ (*src2++); 254 *dst++ = (*src1++) ^ (*src2++); 255 } 256 } 257 258 static int 259 g_raid3_is_zero(struct bio *bp) 260 { 261 static const uint64_t zeros[] = { 262 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 263 }; 264 u_char *addr; 265 ssize_t size; 266 267 size = bp->bio_length; 268 addr = (u_char *)bp->bio_data; 269 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 270 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 271 return (0); 272 } 273 return (1); 274 } 275 276 /* 277 * --- Events handling functions --- 278 * Events in geom_raid3 are used to maintain disks and device status 279 * from one thread to simplify locking. 280 */ 281 static void 282 g_raid3_event_free(struct g_raid3_event *ep) 283 { 284 285 free(ep, M_RAID3); 286 } 287 288 int 289 g_raid3_event_send(void *arg, int state, int flags) 290 { 291 struct g_raid3_softc *sc; 292 struct g_raid3_disk *disk; 293 struct g_raid3_event *ep; 294 int error; 295 296 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 297 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 298 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 299 disk = NULL; 300 sc = arg; 301 } else { 302 disk = arg; 303 sc = disk->d_softc; 304 } 305 ep->e_disk = disk; 306 ep->e_state = state; 307 ep->e_flags = flags; 308 ep->e_error = 0; 309 mtx_lock(&sc->sc_events_mtx); 310 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 311 mtx_unlock(&sc->sc_events_mtx); 312 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 313 mtx_lock(&sc->sc_queue_mtx); 314 wakeup(sc); 315 wakeup(&sc->sc_queue); 316 mtx_unlock(&sc->sc_queue_mtx); 317 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 318 return (0); 319 sx_assert(&sc->sc_lock, SX_XLOCKED); 320 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 321 sx_xunlock(&sc->sc_lock); 322 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 323 mtx_lock(&sc->sc_events_mtx); 324 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 325 hz * 5); 326 } 327 error = ep->e_error; 328 g_raid3_event_free(ep); 329 sx_xlock(&sc->sc_lock); 330 return (error); 331 } 332 333 static struct g_raid3_event * 334 g_raid3_event_get(struct g_raid3_softc *sc) 335 { 336 struct g_raid3_event *ep; 337 338 mtx_lock(&sc->sc_events_mtx); 339 ep = TAILQ_FIRST(&sc->sc_events); 340 mtx_unlock(&sc->sc_events_mtx); 341 return (ep); 342 } 343 344 static void 345 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) 346 { 347 348 mtx_lock(&sc->sc_events_mtx); 349 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 350 mtx_unlock(&sc->sc_events_mtx); 351 } 352 353 static void 354 g_raid3_event_cancel(struct g_raid3_disk *disk) 355 { 356 struct g_raid3_softc *sc; 357 struct g_raid3_event *ep, *tmpep; 358 359 sc = disk->d_softc; 360 sx_assert(&sc->sc_lock, SX_XLOCKED); 361 362 mtx_lock(&sc->sc_events_mtx); 363 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 364 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 365 continue; 366 if (ep->e_disk != disk) 367 continue; 368 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 369 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 370 g_raid3_event_free(ep); 371 else { 372 ep->e_error = ECANCELED; 373 wakeup(ep); 374 } 375 } 376 mtx_unlock(&sc->sc_events_mtx); 377 } 378 379 /* 380 * Return the number of disks in the given state. 381 * If state is equal to -1, count all connected disks. 382 */ 383 u_int 384 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 385 { 386 struct g_raid3_disk *disk; 387 u_int n, ndisks; 388 389 sx_assert(&sc->sc_lock, SX_LOCKED); 390 391 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 392 disk = &sc->sc_disks[n]; 393 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 394 continue; 395 if (state == -1 || disk->d_state == state) 396 ndisks++; 397 } 398 return (ndisks); 399 } 400 401 static u_int 402 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 403 { 404 struct bio *bp; 405 u_int nreqs = 0; 406 407 mtx_lock(&sc->sc_queue_mtx); 408 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 409 if (bp->bio_from == cp) 410 nreqs++; 411 } 412 mtx_unlock(&sc->sc_queue_mtx); 413 return (nreqs); 414 } 415 416 static int 417 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 418 { 419 420 if (cp->index > 0) { 421 G_RAID3_DEBUG(2, 422 "I/O requests for %s exist, can't destroy it now.", 423 cp->provider->name); 424 return (1); 425 } 426 if (g_raid3_nrequests(sc, cp) > 0) { 427 G_RAID3_DEBUG(2, 428 "I/O requests for %s in queue, can't destroy it now.", 429 cp->provider->name); 430 return (1); 431 } 432 return (0); 433 } 434 435 static void 436 g_raid3_destroy_consumer(void *arg, int flags __unused) 437 { 438 struct g_consumer *cp; 439 440 g_topology_assert(); 441 442 cp = arg; 443 G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 444 g_detach(cp); 445 g_destroy_consumer(cp); 446 } 447 448 static void 449 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 450 { 451 struct g_provider *pp; 452 int retaste_wait; 453 454 g_topology_assert(); 455 456 cp->private = NULL; 457 if (g_raid3_is_busy(sc, cp)) 458 return; 459 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 460 pp = cp->provider; 461 retaste_wait = 0; 462 if (cp->acw == 1) { 463 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 464 retaste_wait = 1; 465 } 466 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, 467 -cp->acw, -cp->ace, 0); 468 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 469 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 470 if (retaste_wait) { 471 /* 472 * After retaste event was send (inside g_access()), we can send 473 * event to detach and destroy consumer. 474 * A class, which has consumer to the given provider connected 475 * will not receive retaste event for the provider. 476 * This is the way how I ignore retaste events when I close 477 * consumers opened for write: I detach and destroy consumer 478 * after retaste event is sent. 479 */ 480 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); 481 return; 482 } 483 G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); 484 g_detach(cp); 485 g_destroy_consumer(cp); 486 } 487 488 static int 489 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 490 { 491 struct g_consumer *cp; 492 int error; 493 494 g_topology_assert_not(); 495 KASSERT(disk->d_consumer == NULL, 496 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 497 498 g_topology_lock(); 499 cp = g_new_consumer(disk->d_softc->sc_geom); 500 error = g_attach(cp, pp); 501 if (error != 0) { 502 g_destroy_consumer(cp); 503 g_topology_unlock(); 504 return (error); 505 } 506 error = g_access(cp, 1, 1, 1); 507 g_topology_unlock(); 508 if (error != 0) { 509 g_detach(cp); 510 g_destroy_consumer(cp); 511 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", 512 pp->name, error); 513 return (error); 514 } 515 disk->d_consumer = cp; 516 disk->d_consumer->private = disk; 517 disk->d_consumer->index = 0; 518 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 519 return (0); 520 } 521 522 static void 523 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 524 { 525 526 g_topology_assert(); 527 528 if (cp == NULL) 529 return; 530 if (cp->provider != NULL) 531 g_raid3_kill_consumer(sc, cp); 532 else 533 g_destroy_consumer(cp); 534 } 535 536 /* 537 * Initialize disk. This means allocate memory, create consumer, attach it 538 * to the provider and open access (r1w1e1) to it. 539 */ 540 static struct g_raid3_disk * 541 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 542 struct g_raid3_metadata *md, int *errorp) 543 { 544 struct g_raid3_disk *disk; 545 int error; 546 547 disk = &sc->sc_disks[md->md_no]; 548 error = g_raid3_connect_disk(disk, pp); 549 if (error != 0) { 550 if (errorp != NULL) 551 *errorp = error; 552 return (NULL); 553 } 554 disk->d_state = G_RAID3_DISK_STATE_NONE; 555 disk->d_flags = md->md_dflags; 556 if (md->md_provider[0] != '\0') 557 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 558 disk->d_sync.ds_consumer = NULL; 559 disk->d_sync.ds_offset = md->md_sync_offset; 560 disk->d_sync.ds_offset_done = md->md_sync_offset; 561 disk->d_genid = md->md_genid; 562 disk->d_sync.ds_syncid = md->md_syncid; 563 if (errorp != NULL) 564 *errorp = 0; 565 return (disk); 566 } 567 568 static void 569 g_raid3_destroy_disk(struct g_raid3_disk *disk) 570 { 571 struct g_raid3_softc *sc; 572 573 g_topology_assert_not(); 574 sc = disk->d_softc; 575 sx_assert(&sc->sc_lock, SX_XLOCKED); 576 577 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 578 return; 579 g_raid3_event_cancel(disk); 580 switch (disk->d_state) { 581 case G_RAID3_DISK_STATE_SYNCHRONIZING: 582 if (sc->sc_syncdisk != NULL) 583 g_raid3_sync_stop(sc, 1); 584 /* FALLTHROUGH */ 585 case G_RAID3_DISK_STATE_NEW: 586 case G_RAID3_DISK_STATE_STALE: 587 case G_RAID3_DISK_STATE_ACTIVE: 588 g_topology_lock(); 589 g_raid3_disconnect_consumer(sc, disk->d_consumer); 590 g_topology_unlock(); 591 disk->d_consumer = NULL; 592 break; 593 default: 594 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 595 g_raid3_get_diskname(disk), 596 g_raid3_disk_state2str(disk->d_state))); 597 } 598 disk->d_state = G_RAID3_DISK_STATE_NODISK; 599 } 600 601 static void 602 g_raid3_destroy_device(struct g_raid3_softc *sc) 603 { 604 struct g_raid3_event *ep; 605 struct g_raid3_disk *disk; 606 struct g_geom *gp; 607 struct g_consumer *cp; 608 u_int n; 609 610 g_topology_assert_not(); 611 sx_assert(&sc->sc_lock, SX_XLOCKED); 612 613 gp = sc->sc_geom; 614 if (sc->sc_provider != NULL) 615 g_raid3_destroy_provider(sc); 616 for (n = 0; n < sc->sc_ndisks; n++) { 617 disk = &sc->sc_disks[n]; 618 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { 619 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 620 g_raid3_update_metadata(disk); 621 g_raid3_destroy_disk(disk); 622 } 623 } 624 while ((ep = g_raid3_event_get(sc)) != NULL) { 625 g_raid3_event_remove(sc, ep); 626 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 627 g_raid3_event_free(ep); 628 else { 629 ep->e_error = ECANCELED; 630 ep->e_flags |= G_RAID3_EVENT_DONE; 631 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 632 mtx_lock(&sc->sc_events_mtx); 633 wakeup(ep); 634 mtx_unlock(&sc->sc_events_mtx); 635 } 636 } 637 callout_drain(&sc->sc_callout); 638 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 639 g_topology_lock(); 640 if (cp != NULL) 641 g_raid3_disconnect_consumer(sc, cp); 642 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 643 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 644 g_wither_geom(gp, ENXIO); 645 g_topology_unlock(); 646 if (!g_raid3_use_malloc) { 647 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 648 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 649 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 650 } 651 mtx_destroy(&sc->sc_queue_mtx); 652 mtx_destroy(&sc->sc_events_mtx); 653 sx_xunlock(&sc->sc_lock); 654 sx_destroy(&sc->sc_lock); 655 } 656 657 static void 658 g_raid3_orphan(struct g_consumer *cp) 659 { 660 struct g_raid3_disk *disk; 661 662 g_topology_assert(); 663 664 disk = cp->private; 665 if (disk == NULL) 666 return; 667 disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; 668 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 669 G_RAID3_EVENT_DONTWAIT); 670 } 671 672 static int 673 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 674 { 675 struct g_raid3_softc *sc; 676 struct g_consumer *cp; 677 off_t offset, length; 678 u_char *sector; 679 int error = 0; 680 681 g_topology_assert_not(); 682 sc = disk->d_softc; 683 sx_assert(&sc->sc_lock, SX_LOCKED); 684 685 cp = disk->d_consumer; 686 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 687 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 688 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 689 ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, 690 cp->acw, cp->ace)); 691 length = cp->provider->sectorsize; 692 offset = cp->provider->mediasize - length; 693 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 694 if (md != NULL) 695 raid3_metadata_encode(md, sector); 696 error = g_write_data(cp, offset, sector, length); 697 free(sector, M_RAID3); 698 if (error != 0) { 699 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 700 G_RAID3_DEBUG(0, "Cannot write metadata on %s " 701 "(device=%s, error=%d).", 702 g_raid3_get_diskname(disk), sc->sc_name, error); 703 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 704 } else { 705 G_RAID3_DEBUG(1, "Cannot write metadata on %s " 706 "(device=%s, error=%d).", 707 g_raid3_get_diskname(disk), sc->sc_name, error); 708 } 709 if (g_raid3_disconnect_on_failure && 710 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 711 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 712 g_raid3_event_send(disk, 713 G_RAID3_DISK_STATE_DISCONNECTED, 714 G_RAID3_EVENT_DONTWAIT); 715 } 716 } 717 return (error); 718 } 719 720 int 721 g_raid3_clear_metadata(struct g_raid3_disk *disk) 722 { 723 int error; 724 725 g_topology_assert_not(); 726 sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); 727 728 error = g_raid3_write_metadata(disk, NULL); 729 if (error == 0) { 730 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 731 g_raid3_get_diskname(disk)); 732 } else { 733 G_RAID3_DEBUG(0, 734 "Cannot clear metadata on disk %s (error=%d).", 735 g_raid3_get_diskname(disk), error); 736 } 737 return (error); 738 } 739 740 void 741 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 742 { 743 struct g_raid3_softc *sc; 744 struct g_provider *pp; 745 746 sc = disk->d_softc; 747 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 748 md->md_version = G_RAID3_VERSION; 749 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 750 md->md_id = sc->sc_id; 751 md->md_all = sc->sc_ndisks; 752 md->md_genid = sc->sc_genid; 753 md->md_mediasize = sc->sc_mediasize; 754 md->md_sectorsize = sc->sc_sectorsize; 755 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 756 md->md_no = disk->d_no; 757 md->md_syncid = disk->d_sync.ds_syncid; 758 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 759 if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 760 md->md_sync_offset = 0; 761 else { 762 md->md_sync_offset = 763 disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); 764 } 765 if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) 766 pp = disk->d_consumer->provider; 767 else 768 pp = NULL; 769 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) 770 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); 771 else 772 bzero(md->md_provider, sizeof(md->md_provider)); 773 if (pp != NULL) 774 md->md_provsize = pp->mediasize; 775 else 776 md->md_provsize = 0; 777 } 778 779 void 780 g_raid3_update_metadata(struct g_raid3_disk *disk) 781 { 782 struct g_raid3_softc *sc; 783 struct g_raid3_metadata md; 784 int error; 785 786 g_topology_assert_not(); 787 sc = disk->d_softc; 788 sx_assert(&sc->sc_lock, SX_LOCKED); 789 790 g_raid3_fill_metadata(disk, &md); 791 error = g_raid3_write_metadata(disk, &md); 792 if (error == 0) { 793 G_RAID3_DEBUG(2, "Metadata on %s updated.", 794 g_raid3_get_diskname(disk)); 795 } else { 796 G_RAID3_DEBUG(0, 797 "Cannot update metadata on disk %s (error=%d).", 798 g_raid3_get_diskname(disk), error); 799 } 800 } 801 802 static void 803 g_raid3_bump_syncid(struct g_raid3_softc *sc) 804 { 805 struct g_raid3_disk *disk; 806 u_int n; 807 808 g_topology_assert_not(); 809 sx_assert(&sc->sc_lock, SX_XLOCKED); 810 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 811 ("%s called with no active disks (device=%s).", __func__, 812 sc->sc_name)); 813 814 sc->sc_syncid++; 815 G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, 816 sc->sc_syncid); 817 for (n = 0; n < sc->sc_ndisks; n++) { 818 disk = &sc->sc_disks[n]; 819 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 820 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 821 disk->d_sync.ds_syncid = sc->sc_syncid; 822 g_raid3_update_metadata(disk); 823 } 824 } 825 } 826 827 static void 828 g_raid3_bump_genid(struct g_raid3_softc *sc) 829 { 830 struct g_raid3_disk *disk; 831 u_int n; 832 833 g_topology_assert_not(); 834 sx_assert(&sc->sc_lock, SX_XLOCKED); 835 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 836 ("%s called with no active disks (device=%s).", __func__, 837 sc->sc_name)); 838 839 sc->sc_genid++; 840 G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, 841 sc->sc_genid); 842 for (n = 0; n < sc->sc_ndisks; n++) { 843 disk = &sc->sc_disks[n]; 844 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 845 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 846 disk->d_genid = sc->sc_genid; 847 g_raid3_update_metadata(disk); 848 } 849 } 850 } 851 852 static int 853 g_raid3_idle(struct g_raid3_softc *sc, int acw) 854 { 855 struct g_raid3_disk *disk; 856 u_int i; 857 int timeout; 858 859 g_topology_assert_not(); 860 sx_assert(&sc->sc_lock, SX_XLOCKED); 861 862 if (sc->sc_provider == NULL) 863 return (0); 864 if (sc->sc_idle) 865 return (0); 866 if (sc->sc_writes > 0) 867 return (0); 868 if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { 869 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); 870 if (timeout > 0) 871 return (timeout); 872 } 873 sc->sc_idle = 1; 874 for (i = 0; i < sc->sc_ndisks; i++) { 875 disk = &sc->sc_disks[i]; 876 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 877 continue; 878 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 879 g_raid3_get_diskname(disk), sc->sc_name); 880 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 881 g_raid3_update_metadata(disk); 882 } 883 return (0); 884 } 885 886 static void 887 g_raid3_unidle(struct g_raid3_softc *sc) 888 { 889 struct g_raid3_disk *disk; 890 u_int i; 891 892 g_topology_assert_not(); 893 sx_assert(&sc->sc_lock, SX_XLOCKED); 894 895 sc->sc_idle = 0; 896 sc->sc_last_write = time_uptime; 897 for (i = 0; i < sc->sc_ndisks; i++) { 898 disk = &sc->sc_disks[i]; 899 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 900 continue; 901 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 902 g_raid3_get_diskname(disk), sc->sc_name); 903 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 904 g_raid3_update_metadata(disk); 905 } 906 } 907 908 /* 909 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 910 * in child bio as pointer to the next element on the list. 911 */ 912 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 913 914 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 915 916 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 917 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 918 (bp) = G_RAID3_NEXT_BIO(bp)) 919 920 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 921 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 922 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 923 (bp) = (tmpbp)) 924 925 static void 926 g_raid3_init_bio(struct bio *pbp) 927 { 928 929 G_RAID3_HEAD_BIO(pbp) = NULL; 930 } 931 932 static void 933 g_raid3_remove_bio(struct bio *cbp) 934 { 935 struct bio *pbp, *bp; 936 937 pbp = cbp->bio_parent; 938 if (G_RAID3_HEAD_BIO(pbp) == cbp) 939 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 940 else { 941 G_RAID3_FOREACH_BIO(pbp, bp) { 942 if (G_RAID3_NEXT_BIO(bp) == cbp) { 943 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 944 break; 945 } 946 } 947 } 948 G_RAID3_NEXT_BIO(cbp) = NULL; 949 } 950 951 static void 952 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 953 { 954 struct bio *pbp, *bp; 955 956 g_raid3_remove_bio(sbp); 957 pbp = dbp->bio_parent; 958 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 959 if (G_RAID3_HEAD_BIO(pbp) == dbp) 960 G_RAID3_HEAD_BIO(pbp) = sbp; 961 else { 962 G_RAID3_FOREACH_BIO(pbp, bp) { 963 if (G_RAID3_NEXT_BIO(bp) == dbp) { 964 G_RAID3_NEXT_BIO(bp) = sbp; 965 break; 966 } 967 } 968 } 969 G_RAID3_NEXT_BIO(dbp) = NULL; 970 } 971 972 static void 973 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 974 { 975 struct bio *bp, *pbp; 976 size_t size; 977 978 pbp = cbp->bio_parent; 979 pbp->bio_children--; 980 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 981 size = pbp->bio_length / (sc->sc_ndisks - 1); 982 g_raid3_free(sc, cbp->bio_data, size); 983 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 984 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 985 G_RAID3_NEXT_BIO(cbp) = NULL; 986 g_destroy_bio(cbp); 987 } else { 988 G_RAID3_FOREACH_BIO(pbp, bp) { 989 if (G_RAID3_NEXT_BIO(bp) == cbp) 990 break; 991 } 992 if (bp != NULL) { 993 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 994 ("NULL bp->bio_driver1")); 995 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 996 G_RAID3_NEXT_BIO(cbp) = NULL; 997 } 998 g_destroy_bio(cbp); 999 } 1000 } 1001 1002 static struct bio * 1003 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 1004 { 1005 struct bio *bp, *cbp; 1006 size_t size; 1007 int memflag; 1008 1009 cbp = g_clone_bio(pbp); 1010 if (cbp == NULL) 1011 return (NULL); 1012 size = pbp->bio_length / (sc->sc_ndisks - 1); 1013 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 1014 memflag = M_WAITOK; 1015 else 1016 memflag = M_NOWAIT; 1017 cbp->bio_data = g_raid3_alloc(sc, size, memflag); 1018 if (cbp->bio_data == NULL) { 1019 pbp->bio_children--; 1020 g_destroy_bio(cbp); 1021 return (NULL); 1022 } 1023 G_RAID3_NEXT_BIO(cbp) = NULL; 1024 if (G_RAID3_HEAD_BIO(pbp) == NULL) 1025 G_RAID3_HEAD_BIO(pbp) = cbp; 1026 else { 1027 G_RAID3_FOREACH_BIO(pbp, bp) { 1028 if (G_RAID3_NEXT_BIO(bp) == NULL) { 1029 G_RAID3_NEXT_BIO(bp) = cbp; 1030 break; 1031 } 1032 } 1033 } 1034 return (cbp); 1035 } 1036 1037 static void 1038 g_raid3_scatter(struct bio *pbp) 1039 { 1040 struct g_raid3_softc *sc; 1041 struct g_raid3_disk *disk; 1042 struct bio *bp, *cbp, *tmpbp; 1043 off_t atom, cadd, padd, left; 1044 1045 sc = pbp->bio_to->geom->softc; 1046 bp = NULL; 1047 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1048 /* 1049 * Find bio for which we should calculate data. 1050 */ 1051 G_RAID3_FOREACH_BIO(pbp, cbp) { 1052 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1053 bp = cbp; 1054 break; 1055 } 1056 } 1057 KASSERT(bp != NULL, ("NULL parity bio.")); 1058 } 1059 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1060 cadd = padd = 0; 1061 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1062 G_RAID3_FOREACH_BIO(pbp, cbp) { 1063 if (cbp == bp) 1064 continue; 1065 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 1066 padd += atom; 1067 } 1068 cadd += atom; 1069 } 1070 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1071 /* 1072 * Calculate parity. 1073 */ 1074 bzero(bp->bio_data, bp->bio_length); 1075 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1076 if (cbp == bp) 1077 continue; 1078 g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_data, 1079 bp->bio_length); 1080 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1081 g_raid3_destroy_bio(sc, cbp); 1082 } 1083 } 1084 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1085 struct g_consumer *cp; 1086 1087 disk = cbp->bio_caller2; 1088 cp = disk->d_consumer; 1089 cbp->bio_to = cp->provider; 1090 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1091 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1092 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1093 cp->acr, cp->acw, cp->ace)); 1094 cp->index++; 1095 sc->sc_writes++; 1096 g_io_request(cbp, cp); 1097 } 1098 } 1099 1100 static void 1101 g_raid3_gather(struct bio *pbp) 1102 { 1103 struct g_raid3_softc *sc; 1104 struct g_raid3_disk *disk; 1105 struct bio *xbp, *fbp, *cbp; 1106 off_t atom, cadd, padd, left; 1107 1108 sc = pbp->bio_to->geom->softc; 1109 /* 1110 * Find bio for which we have to calculate data. 1111 * While going through this path, check if all requests 1112 * succeeded, if not, deny whole request. 1113 * If we're in COMPLETE mode, we allow one request to fail, 1114 * so if we find one, we're sending it to the parity consumer. 1115 * If there are more failed requests, we deny whole request. 1116 */ 1117 xbp = fbp = NULL; 1118 G_RAID3_FOREACH_BIO(pbp, cbp) { 1119 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1120 KASSERT(xbp == NULL, ("More than one parity bio.")); 1121 xbp = cbp; 1122 } 1123 if (cbp->bio_error == 0) 1124 continue; 1125 /* 1126 * Found failed request. 1127 */ 1128 if (fbp == NULL) { 1129 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1130 /* 1131 * We are already in degraded mode, so we can't 1132 * accept any failures. 1133 */ 1134 if (pbp->bio_error == 0) 1135 pbp->bio_error = cbp->bio_error; 1136 } else { 1137 fbp = cbp; 1138 } 1139 } else { 1140 /* 1141 * Next failed request, that's too many. 1142 */ 1143 if (pbp->bio_error == 0) 1144 pbp->bio_error = fbp->bio_error; 1145 } 1146 disk = cbp->bio_caller2; 1147 if (disk == NULL) 1148 continue; 1149 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1150 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1151 G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", 1152 cbp->bio_error); 1153 } else { 1154 G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", 1155 cbp->bio_error); 1156 } 1157 if (g_raid3_disconnect_on_failure && 1158 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1159 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1160 g_raid3_event_send(disk, 1161 G_RAID3_DISK_STATE_DISCONNECTED, 1162 G_RAID3_EVENT_DONTWAIT); 1163 } 1164 } 1165 if (pbp->bio_error != 0) 1166 goto finish; 1167 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1168 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1169 if (xbp != fbp) 1170 g_raid3_replace_bio(xbp, fbp); 1171 g_raid3_destroy_bio(sc, fbp); 1172 } else if (fbp != NULL) { 1173 struct g_consumer *cp; 1174 1175 /* 1176 * One request failed, so send the same request to 1177 * the parity consumer. 1178 */ 1179 disk = pbp->bio_driver2; 1180 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1181 pbp->bio_error = fbp->bio_error; 1182 goto finish; 1183 } 1184 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1185 pbp->bio_inbed--; 1186 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1187 if (disk->d_no == sc->sc_ndisks - 1) 1188 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1189 fbp->bio_error = 0; 1190 fbp->bio_completed = 0; 1191 fbp->bio_children = 0; 1192 fbp->bio_inbed = 0; 1193 cp = disk->d_consumer; 1194 fbp->bio_caller2 = disk; 1195 fbp->bio_to = cp->provider; 1196 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1197 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1198 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1199 cp->acr, cp->acw, cp->ace)); 1200 cp->index++; 1201 g_io_request(fbp, cp); 1202 return; 1203 } 1204 if (xbp != NULL) { 1205 /* 1206 * Calculate parity. 1207 */ 1208 G_RAID3_FOREACH_BIO(pbp, cbp) { 1209 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1210 continue; 1211 g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_data, 1212 xbp->bio_length); 1213 } 1214 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1215 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1216 if (!g_raid3_is_zero(xbp)) { 1217 g_raid3_parity_mismatch++; 1218 pbp->bio_error = EIO; 1219 goto finish; 1220 } 1221 g_raid3_destroy_bio(sc, xbp); 1222 } 1223 } 1224 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1225 cadd = padd = 0; 1226 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1227 G_RAID3_FOREACH_BIO(pbp, cbp) { 1228 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1229 pbp->bio_completed += atom; 1230 padd += atom; 1231 } 1232 cadd += atom; 1233 } 1234 finish: 1235 if (pbp->bio_error == 0) 1236 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1237 else { 1238 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1239 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1240 else 1241 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1242 } 1243 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1244 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1245 g_raid3_destroy_bio(sc, cbp); 1246 g_io_deliver(pbp, pbp->bio_error); 1247 } 1248 1249 static void 1250 g_raid3_done(struct bio *bp) 1251 { 1252 struct g_raid3_softc *sc; 1253 1254 sc = bp->bio_from->geom->softc; 1255 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1256 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1257 mtx_lock(&sc->sc_queue_mtx); 1258 bioq_insert_head(&sc->sc_queue, bp); 1259 wakeup(sc); 1260 wakeup(&sc->sc_queue); 1261 mtx_unlock(&sc->sc_queue_mtx); 1262 } 1263 1264 static void 1265 g_raid3_regular_request(struct bio *cbp) 1266 { 1267 struct g_raid3_softc *sc; 1268 struct g_raid3_disk *disk; 1269 struct bio *pbp; 1270 1271 g_topology_assert_not(); 1272 1273 pbp = cbp->bio_parent; 1274 sc = pbp->bio_to->geom->softc; 1275 cbp->bio_from->index--; 1276 if (cbp->bio_cmd == BIO_WRITE) 1277 sc->sc_writes--; 1278 disk = cbp->bio_from->private; 1279 if (disk == NULL) { 1280 g_topology_lock(); 1281 g_raid3_kill_consumer(sc, cbp->bio_from); 1282 g_topology_unlock(); 1283 } 1284 1285 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1286 pbp->bio_inbed++; 1287 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1288 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1289 pbp->bio_children)); 1290 if (pbp->bio_inbed != pbp->bio_children) 1291 return; 1292 switch (pbp->bio_cmd) { 1293 case BIO_READ: 1294 g_raid3_gather(pbp); 1295 break; 1296 case BIO_WRITE: 1297 case BIO_DELETE: 1298 { 1299 int error = 0; 1300 1301 pbp->bio_completed = pbp->bio_length; 1302 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1303 if (cbp->bio_error == 0) { 1304 g_raid3_destroy_bio(sc, cbp); 1305 continue; 1306 } 1307 1308 if (error == 0) 1309 error = cbp->bio_error; 1310 else if (pbp->bio_error == 0) { 1311 /* 1312 * Next failed request, that's too many. 1313 */ 1314 pbp->bio_error = error; 1315 } 1316 1317 disk = cbp->bio_caller2; 1318 if (disk == NULL) { 1319 g_raid3_destroy_bio(sc, cbp); 1320 continue; 1321 } 1322 1323 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1324 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1325 G_RAID3_LOGREQ(0, cbp, 1326 "Request failed (error=%d).", 1327 cbp->bio_error); 1328 } else { 1329 G_RAID3_LOGREQ(1, cbp, 1330 "Request failed (error=%d).", 1331 cbp->bio_error); 1332 } 1333 if (g_raid3_disconnect_on_failure && 1334 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1335 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1336 g_raid3_event_send(disk, 1337 G_RAID3_DISK_STATE_DISCONNECTED, 1338 G_RAID3_EVENT_DONTWAIT); 1339 } 1340 g_raid3_destroy_bio(sc, cbp); 1341 } 1342 if (pbp->bio_error == 0) 1343 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1344 else 1345 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1346 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1347 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1348 bioq_remove(&sc->sc_inflight, pbp); 1349 /* Release delayed sync requests if possible. */ 1350 g_raid3_sync_release(sc); 1351 g_io_deliver(pbp, pbp->bio_error); 1352 break; 1353 } 1354 } 1355 } 1356 1357 static void 1358 g_raid3_sync_done(struct bio *bp) 1359 { 1360 struct g_raid3_softc *sc; 1361 1362 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1363 sc = bp->bio_from->geom->softc; 1364 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1365 mtx_lock(&sc->sc_queue_mtx); 1366 bioq_insert_head(&sc->sc_queue, bp); 1367 wakeup(sc); 1368 wakeup(&sc->sc_queue); 1369 mtx_unlock(&sc->sc_queue_mtx); 1370 } 1371 1372 static void 1373 g_raid3_start(struct bio *bp) 1374 { 1375 struct g_raid3_softc *sc; 1376 1377 sc = bp->bio_to->geom->softc; 1378 /* 1379 * If sc == NULL or there are no valid disks, provider's error 1380 * should be set and g_raid3_start() should not be called at all. 1381 */ 1382 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1383 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1384 ("Provider's error should be set (error=%d)(device=%s).", 1385 bp->bio_to->error, bp->bio_to->name)); 1386 G_RAID3_LOGREQ(3, bp, "Request received."); 1387 1388 switch (bp->bio_cmd) { 1389 case BIO_READ: 1390 case BIO_WRITE: 1391 case BIO_DELETE: 1392 break; 1393 case BIO_GETATTR: 1394 default: 1395 g_io_deliver(bp, EOPNOTSUPP); 1396 return; 1397 } 1398 mtx_lock(&sc->sc_queue_mtx); 1399 bioq_insert_tail(&sc->sc_queue, bp); 1400 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1401 wakeup(sc); 1402 mtx_unlock(&sc->sc_queue_mtx); 1403 } 1404 1405 /* 1406 * Return TRUE if the given request is colliding with a in-progress 1407 * synchronization request. 1408 */ 1409 static int 1410 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) 1411 { 1412 struct g_raid3_disk *disk; 1413 struct bio *sbp; 1414 off_t rstart, rend, sstart, send; 1415 int i; 1416 1417 disk = sc->sc_syncdisk; 1418 if (disk == NULL) 1419 return (0); 1420 rstart = bp->bio_offset; 1421 rend = bp->bio_offset + bp->bio_length; 1422 for (i = 0; i < g_raid3_syncreqs; i++) { 1423 sbp = disk->d_sync.ds_bios[i]; 1424 if (sbp == NULL) 1425 continue; 1426 sstart = sbp->bio_offset; 1427 send = sbp->bio_length; 1428 if (sbp->bio_cmd == BIO_WRITE) { 1429 sstart *= sc->sc_ndisks - 1; 1430 send *= sc->sc_ndisks - 1; 1431 } 1432 send += sstart; 1433 if (rend > sstart && rstart < send) 1434 return (1); 1435 } 1436 return (0); 1437 } 1438 1439 /* 1440 * Return TRUE if the given sync request is colliding with a in-progress regular 1441 * request. 1442 */ 1443 static int 1444 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) 1445 { 1446 off_t rstart, rend, sstart, send; 1447 struct bio *bp; 1448 1449 if (sc->sc_syncdisk == NULL) 1450 return (0); 1451 sstart = sbp->bio_offset; 1452 send = sstart + sbp->bio_length; 1453 TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { 1454 rstart = bp->bio_offset; 1455 rend = bp->bio_offset + bp->bio_length; 1456 if (rend > sstart && rstart < send) 1457 return (1); 1458 } 1459 return (0); 1460 } 1461 1462 /* 1463 * Puts request onto delayed queue. 1464 */ 1465 static void 1466 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) 1467 { 1468 1469 G_RAID3_LOGREQ(2, bp, "Delaying request."); 1470 bioq_insert_head(&sc->sc_regular_delayed, bp); 1471 } 1472 1473 /* 1474 * Puts synchronization request onto delayed queue. 1475 */ 1476 static void 1477 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) 1478 { 1479 1480 G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); 1481 bioq_insert_tail(&sc->sc_sync_delayed, bp); 1482 } 1483 1484 /* 1485 * Releases delayed regular requests which don't collide anymore with sync 1486 * requests. 1487 */ 1488 static void 1489 g_raid3_regular_release(struct g_raid3_softc *sc) 1490 { 1491 struct bio *bp, *bp2; 1492 1493 TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { 1494 if (g_raid3_sync_collision(sc, bp)) 1495 continue; 1496 bioq_remove(&sc->sc_regular_delayed, bp); 1497 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); 1498 mtx_lock(&sc->sc_queue_mtx); 1499 bioq_insert_head(&sc->sc_queue, bp); 1500 #if 0 1501 /* 1502 * wakeup() is not needed, because this function is called from 1503 * the worker thread. 1504 */ 1505 wakeup(&sc->sc_queue); 1506 #endif 1507 mtx_unlock(&sc->sc_queue_mtx); 1508 } 1509 } 1510 1511 /* 1512 * Releases delayed sync requests which don't collide anymore with regular 1513 * requests. 1514 */ 1515 static void 1516 g_raid3_sync_release(struct g_raid3_softc *sc) 1517 { 1518 struct bio *bp, *bp2; 1519 1520 TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { 1521 if (g_raid3_regular_collision(sc, bp)) 1522 continue; 1523 bioq_remove(&sc->sc_sync_delayed, bp); 1524 G_RAID3_LOGREQ(2, bp, 1525 "Releasing delayed synchronization request."); 1526 g_io_request(bp, bp->bio_from); 1527 } 1528 } 1529 1530 /* 1531 * Handle synchronization requests. 1532 * Every synchronization request is two-steps process: first, READ request is 1533 * send to active provider and then WRITE request (with read data) to the provider 1534 * beeing synchronized. When WRITE is finished, new synchronization request is 1535 * send. 1536 */ 1537 static void 1538 g_raid3_sync_request(struct bio *bp) 1539 { 1540 struct g_raid3_softc *sc; 1541 struct g_raid3_disk *disk; 1542 1543 bp->bio_from->index--; 1544 sc = bp->bio_from->geom->softc; 1545 disk = bp->bio_from->private; 1546 if (disk == NULL) { 1547 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 1548 g_topology_lock(); 1549 g_raid3_kill_consumer(sc, bp->bio_from); 1550 g_topology_unlock(); 1551 free(bp->bio_data, M_RAID3); 1552 g_destroy_bio(bp); 1553 sx_xlock(&sc->sc_lock); 1554 return; 1555 } 1556 1557 /* 1558 * Synchronization request. 1559 */ 1560 switch (bp->bio_cmd) { 1561 case BIO_READ: 1562 { 1563 struct g_consumer *cp; 1564 u_char *dst, *src; 1565 off_t left; 1566 u_int atom; 1567 1568 if (bp->bio_error != 0) { 1569 G_RAID3_LOGREQ(0, bp, 1570 "Synchronization request failed (error=%d).", 1571 bp->bio_error); 1572 g_destroy_bio(bp); 1573 return; 1574 } 1575 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1576 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1577 dst = src = bp->bio_data; 1578 if (disk->d_no == sc->sc_ndisks - 1) { 1579 u_int n; 1580 1581 /* Parity component. */ 1582 for (left = bp->bio_length; left > 0; 1583 left -= sc->sc_sectorsize) { 1584 bcopy(src, dst, atom); 1585 src += atom; 1586 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1587 g_raid3_xor(src, dst, dst, atom); 1588 src += atom; 1589 } 1590 dst += atom; 1591 } 1592 } else { 1593 /* Regular component. */ 1594 src += atom * disk->d_no; 1595 for (left = bp->bio_length; left > 0; 1596 left -= sc->sc_sectorsize) { 1597 bcopy(src, dst, atom); 1598 src += sc->sc_sectorsize; 1599 dst += atom; 1600 } 1601 } 1602 bp->bio_driver1 = bp->bio_driver2 = NULL; 1603 bp->bio_pflags = 0; 1604 bp->bio_offset /= sc->sc_ndisks - 1; 1605 bp->bio_length /= sc->sc_ndisks - 1; 1606 bp->bio_cmd = BIO_WRITE; 1607 bp->bio_cflags = 0; 1608 bp->bio_children = bp->bio_inbed = 0; 1609 cp = disk->d_consumer; 1610 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1611 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1612 cp->acr, cp->acw, cp->ace)); 1613 cp->index++; 1614 g_io_request(bp, cp); 1615 return; 1616 } 1617 case BIO_WRITE: 1618 { 1619 struct g_raid3_disk_sync *sync; 1620 off_t boffset, moffset; 1621 void *data; 1622 int i; 1623 1624 if (bp->bio_error != 0) { 1625 G_RAID3_LOGREQ(0, bp, 1626 "Synchronization request failed (error=%d).", 1627 bp->bio_error); 1628 g_destroy_bio(bp); 1629 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1630 g_raid3_event_send(disk, 1631 G_RAID3_DISK_STATE_DISCONNECTED, 1632 G_RAID3_EVENT_DONTWAIT); 1633 return; 1634 } 1635 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1636 sync = &disk->d_sync; 1637 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || 1638 sync->ds_consumer == NULL || 1639 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1640 /* Don't send more synchronization requests. */ 1641 sync->ds_inflight--; 1642 if (sync->ds_bios != NULL) { 1643 i = (int)(uintptr_t)bp->bio_caller1; 1644 sync->ds_bios[i] = NULL; 1645 } 1646 free(bp->bio_data, M_RAID3); 1647 g_destroy_bio(bp); 1648 if (sync->ds_inflight > 0) 1649 return; 1650 if (sync->ds_consumer == NULL || 1651 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1652 return; 1653 } 1654 /* 1655 * Disk up-to-date, activate it. 1656 */ 1657 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1658 G_RAID3_EVENT_DONTWAIT); 1659 return; 1660 } 1661 1662 /* Send next synchronization request. */ 1663 data = bp->bio_data; 1664 bzero(bp, sizeof(*bp)); 1665 bp->bio_cmd = BIO_READ; 1666 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); 1667 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 1668 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1669 bp->bio_done = g_raid3_sync_done; 1670 bp->bio_data = data; 1671 bp->bio_from = sync->ds_consumer; 1672 bp->bio_to = sc->sc_provider; 1673 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1674 sync->ds_consumer->index++; 1675 /* 1676 * Delay the request if it is colliding with a regular request. 1677 */ 1678 if (g_raid3_regular_collision(sc, bp)) 1679 g_raid3_sync_delay(sc, bp); 1680 else 1681 g_io_request(bp, sync->ds_consumer); 1682 1683 /* Release delayed requests if possible. */ 1684 g_raid3_regular_release(sc); 1685 1686 /* Find the smallest offset. */ 1687 moffset = sc->sc_mediasize; 1688 for (i = 0; i < g_raid3_syncreqs; i++) { 1689 bp = sync->ds_bios[i]; 1690 boffset = bp->bio_offset; 1691 if (bp->bio_cmd == BIO_WRITE) 1692 boffset *= sc->sc_ndisks - 1; 1693 if (boffset < moffset) 1694 moffset = boffset; 1695 } 1696 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) { 1697 /* Update offset_done on every 100 blocks. */ 1698 sync->ds_offset_done = moffset; 1699 g_raid3_update_metadata(disk); 1700 } 1701 return; 1702 } 1703 default: 1704 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1705 bp->bio_cmd, sc->sc_name)); 1706 break; 1707 } 1708 } 1709 1710 static int 1711 g_raid3_register_request(struct bio *pbp) 1712 { 1713 struct g_raid3_softc *sc; 1714 struct g_raid3_disk *disk; 1715 struct g_consumer *cp; 1716 struct bio *cbp, *tmpbp; 1717 off_t offset, length; 1718 u_int n, ndisks; 1719 int round_robin, verify; 1720 1721 ndisks = 0; 1722 sc = pbp->bio_to->geom->softc; 1723 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1724 sc->sc_syncdisk == NULL) { 1725 g_io_deliver(pbp, EIO); 1726 return (0); 1727 } 1728 g_raid3_init_bio(pbp); 1729 length = pbp->bio_length / (sc->sc_ndisks - 1); 1730 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1731 round_robin = verify = 0; 1732 switch (pbp->bio_cmd) { 1733 case BIO_READ: 1734 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1735 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1736 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1737 verify = 1; 1738 ndisks = sc->sc_ndisks; 1739 } else { 1740 verify = 0; 1741 ndisks = sc->sc_ndisks - 1; 1742 } 1743 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1744 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1745 round_robin = 1; 1746 } else { 1747 round_robin = 0; 1748 } 1749 KASSERT(!round_robin || !verify, 1750 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1751 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1752 break; 1753 case BIO_WRITE: 1754 case BIO_DELETE: 1755 /* 1756 * Delay the request if it is colliding with a synchronization 1757 * request. 1758 */ 1759 if (g_raid3_sync_collision(sc, pbp)) { 1760 g_raid3_regular_delay(sc, pbp); 1761 return (0); 1762 } 1763 1764 if (sc->sc_idle) 1765 g_raid3_unidle(sc); 1766 else 1767 sc->sc_last_write = time_uptime; 1768 1769 ndisks = sc->sc_ndisks; 1770 break; 1771 } 1772 for (n = 0; n < ndisks; n++) { 1773 disk = &sc->sc_disks[n]; 1774 cbp = g_raid3_clone_bio(sc, pbp); 1775 if (cbp == NULL) { 1776 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1777 g_raid3_destroy_bio(sc, cbp); 1778 /* 1779 * To prevent deadlock, we must run back up 1780 * with the ENOMEM for failed requests of any 1781 * of our consumers. Our own sync requests 1782 * can stick around, as they are finite. 1783 */ 1784 if ((pbp->bio_cflags & 1785 G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1786 g_io_deliver(pbp, ENOMEM); 1787 return (0); 1788 } 1789 return (ENOMEM); 1790 } 1791 cbp->bio_offset = offset; 1792 cbp->bio_length = length; 1793 cbp->bio_done = g_raid3_done; 1794 switch (pbp->bio_cmd) { 1795 case BIO_READ: 1796 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1797 /* 1798 * Replace invalid component with the parity 1799 * component. 1800 */ 1801 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1802 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1803 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1804 } else if (round_robin && 1805 disk->d_no == sc->sc_round_robin) { 1806 /* 1807 * In round-robin mode skip one data component 1808 * and use parity component when reading. 1809 */ 1810 pbp->bio_driver2 = disk; 1811 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1812 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1813 sc->sc_round_robin++; 1814 round_robin = 0; 1815 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1816 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1817 } 1818 break; 1819 case BIO_WRITE: 1820 case BIO_DELETE: 1821 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1822 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1823 if (n == ndisks - 1) { 1824 /* 1825 * Active parity component, mark it as such. 1826 */ 1827 cbp->bio_cflags |= 1828 G_RAID3_BIO_CFLAG_PARITY; 1829 } 1830 } else { 1831 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1832 if (n == ndisks - 1) { 1833 /* 1834 * Parity component is not connected, 1835 * so destroy its request. 1836 */ 1837 pbp->bio_pflags |= 1838 G_RAID3_BIO_PFLAG_NOPARITY; 1839 g_raid3_destroy_bio(sc, cbp); 1840 cbp = NULL; 1841 } else { 1842 cbp->bio_cflags |= 1843 G_RAID3_BIO_CFLAG_NODISK; 1844 disk = NULL; 1845 } 1846 } 1847 break; 1848 } 1849 if (cbp != NULL) 1850 cbp->bio_caller2 = disk; 1851 } 1852 switch (pbp->bio_cmd) { 1853 case BIO_READ: 1854 if (round_robin) { 1855 /* 1856 * If we are in round-robin mode and 'round_robin' is 1857 * still 1, it means, that we skipped parity component 1858 * for this read and must reset sc_round_robin field. 1859 */ 1860 sc->sc_round_robin = 0; 1861 } 1862 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1863 disk = cbp->bio_caller2; 1864 cp = disk->d_consumer; 1865 cbp->bio_to = cp->provider; 1866 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1867 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1868 ("Consumer %s not opened (r%dw%de%d).", 1869 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1870 cp->index++; 1871 g_io_request(cbp, cp); 1872 } 1873 break; 1874 case BIO_WRITE: 1875 case BIO_DELETE: 1876 /* 1877 * Put request onto inflight queue, so we can check if new 1878 * synchronization requests don't collide with it. 1879 */ 1880 bioq_insert_tail(&sc->sc_inflight, pbp); 1881 1882 /* 1883 * Bump syncid on first write. 1884 */ 1885 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { 1886 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 1887 g_raid3_bump_syncid(sc); 1888 } 1889 g_raid3_scatter(pbp); 1890 break; 1891 } 1892 return (0); 1893 } 1894 1895 static int 1896 g_raid3_can_destroy(struct g_raid3_softc *sc) 1897 { 1898 struct g_geom *gp; 1899 struct g_consumer *cp; 1900 1901 g_topology_assert(); 1902 gp = sc->sc_geom; 1903 if (gp->softc == NULL) 1904 return (1); 1905 LIST_FOREACH(cp, &gp->consumer, consumer) { 1906 if (g_raid3_is_busy(sc, cp)) 1907 return (0); 1908 } 1909 gp = sc->sc_sync.ds_geom; 1910 LIST_FOREACH(cp, &gp->consumer, consumer) { 1911 if (g_raid3_is_busy(sc, cp)) 1912 return (0); 1913 } 1914 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1915 sc->sc_name); 1916 return (1); 1917 } 1918 1919 static int 1920 g_raid3_try_destroy(struct g_raid3_softc *sc) 1921 { 1922 1923 g_topology_assert_not(); 1924 sx_assert(&sc->sc_lock, SX_XLOCKED); 1925 1926 if (sc->sc_rootmount != NULL) { 1927 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 1928 sc->sc_rootmount); 1929 root_mount_rel(sc->sc_rootmount); 1930 sc->sc_rootmount = NULL; 1931 } 1932 1933 g_topology_lock(); 1934 if (!g_raid3_can_destroy(sc)) { 1935 g_topology_unlock(); 1936 return (0); 1937 } 1938 sc->sc_geom->softc = NULL; 1939 sc->sc_sync.ds_geom->softc = NULL; 1940 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 1941 g_topology_unlock(); 1942 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1943 &sc->sc_worker); 1944 /* Unlock sc_lock here, as it can be destroyed after wakeup. */ 1945 sx_xunlock(&sc->sc_lock); 1946 wakeup(&sc->sc_worker); 1947 sc->sc_worker = NULL; 1948 } else { 1949 g_topology_unlock(); 1950 g_raid3_destroy_device(sc); 1951 free(sc->sc_disks, M_RAID3); 1952 free(sc, M_RAID3); 1953 } 1954 return (1); 1955 } 1956 1957 /* 1958 * Worker thread. 1959 */ 1960 static void 1961 g_raid3_worker(void *arg) 1962 { 1963 struct g_raid3_softc *sc; 1964 struct g_raid3_event *ep; 1965 struct bio *bp; 1966 int timeout; 1967 1968 sc = arg; 1969 mtx_lock_spin(&sched_lock); 1970 sched_prio(curthread, PRIBIO); 1971 mtx_unlock_spin(&sched_lock); 1972 1973 sx_xlock(&sc->sc_lock); 1974 for (;;) { 1975 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 1976 /* 1977 * First take a look at events. 1978 * This is important to handle events before any I/O requests. 1979 */ 1980 ep = g_raid3_event_get(sc); 1981 if (ep != NULL) { 1982 g_raid3_event_remove(sc, ep); 1983 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 1984 /* Update only device status. */ 1985 G_RAID3_DEBUG(3, 1986 "Running event for device %s.", 1987 sc->sc_name); 1988 ep->e_error = 0; 1989 g_raid3_update_device(sc, 1); 1990 } else { 1991 /* Update disk status. */ 1992 G_RAID3_DEBUG(3, "Running event for disk %s.", 1993 g_raid3_get_diskname(ep->e_disk)); 1994 ep->e_error = g_raid3_update_disk(ep->e_disk, 1995 ep->e_state); 1996 if (ep->e_error == 0) 1997 g_raid3_update_device(sc, 0); 1998 } 1999 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 2000 KASSERT(ep->e_error == 0, 2001 ("Error cannot be handled.")); 2002 g_raid3_event_free(ep); 2003 } else { 2004 ep->e_flags |= G_RAID3_EVENT_DONE; 2005 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2006 ep); 2007 mtx_lock(&sc->sc_events_mtx); 2008 wakeup(ep); 2009 mtx_unlock(&sc->sc_events_mtx); 2010 } 2011 if ((sc->sc_flags & 2012 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2013 if (g_raid3_try_destroy(sc)) { 2014 curthread->td_pflags &= ~TDP_GEOM; 2015 G_RAID3_DEBUG(1, "Thread exiting."); 2016 kthread_exit(0); 2017 } 2018 } 2019 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 2020 continue; 2021 } 2022 /* 2023 * Check if we can mark array as CLEAN and if we can't take 2024 * how much seconds should we wait. 2025 */ 2026 timeout = g_raid3_idle(sc, -1); 2027 /* 2028 * Now I/O requests. 2029 */ 2030 /* Get first request from the queue. */ 2031 mtx_lock(&sc->sc_queue_mtx); 2032 bp = bioq_first(&sc->sc_queue); 2033 if (bp == NULL) { 2034 if ((sc->sc_flags & 2035 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2036 mtx_unlock(&sc->sc_queue_mtx); 2037 if (g_raid3_try_destroy(sc)) { 2038 curthread->td_pflags &= ~TDP_GEOM; 2039 G_RAID3_DEBUG(1, "Thread exiting."); 2040 kthread_exit(0); 2041 } 2042 mtx_lock(&sc->sc_queue_mtx); 2043 } 2044 sx_xunlock(&sc->sc_lock); 2045 /* 2046 * XXX: We can miss an event here, because an event 2047 * can be added without sx-device-lock and without 2048 * mtx-queue-lock. Maybe I should just stop using 2049 * dedicated mutex for events synchronization and 2050 * stick with the queue lock? 2051 * The event will hang here until next I/O request 2052 * or next event is received. 2053 */ 2054 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", 2055 timeout * hz); 2056 sx_xlock(&sc->sc_lock); 2057 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 2058 continue; 2059 } 2060 process: 2061 bioq_remove(&sc->sc_queue, bp); 2062 mtx_unlock(&sc->sc_queue_mtx); 2063 2064 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 2065 g_raid3_regular_request(bp); 2066 else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) 2067 g_raid3_sync_request(bp); 2068 else if (g_raid3_register_request(bp) != 0) { 2069 mtx_lock(&sc->sc_queue_mtx); 2070 bioq_insert_head(&sc->sc_queue, bp); 2071 /* 2072 * We are short in memory, let see if there are finished 2073 * request we can free. 2074 */ 2075 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2076 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) 2077 goto process; 2078 } 2079 /* 2080 * No finished regular request, so at least keep 2081 * synchronization running. 2082 */ 2083 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2084 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) 2085 goto process; 2086 } 2087 sx_xunlock(&sc->sc_lock); 2088 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, 2089 "r3:lowmem", hz / 10); 2090 sx_xlock(&sc->sc_lock); 2091 } 2092 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); 2093 } 2094 } 2095 2096 static void 2097 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) 2098 { 2099 2100 sx_assert(&sc->sc_lock, SX_LOCKED); 2101 if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 2102 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 2103 g_raid3_get_diskname(disk), sc->sc_name); 2104 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2105 } else if (sc->sc_idle && 2106 (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { 2107 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 2108 g_raid3_get_diskname(disk), sc->sc_name); 2109 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2110 } 2111 } 2112 2113 static void 2114 g_raid3_sync_start(struct g_raid3_softc *sc) 2115 { 2116 struct g_raid3_disk *disk; 2117 struct g_consumer *cp; 2118 struct bio *bp; 2119 int error; 2120 u_int n; 2121 2122 g_topology_assert_not(); 2123 sx_assert(&sc->sc_lock, SX_XLOCKED); 2124 2125 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2126 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2127 sc->sc_state)); 2128 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 2129 sc->sc_name, sc->sc_state)); 2130 disk = NULL; 2131 for (n = 0; n < sc->sc_ndisks; n++) { 2132 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 2133 continue; 2134 disk = &sc->sc_disks[n]; 2135 break; 2136 } 2137 if (disk == NULL) 2138 return; 2139 2140 sx_xunlock(&sc->sc_lock); 2141 g_topology_lock(); 2142 cp = g_new_consumer(sc->sc_sync.ds_geom); 2143 error = g_attach(cp, sc->sc_provider); 2144 KASSERT(error == 0, 2145 ("Cannot attach to %s (error=%d).", sc->sc_name, error)); 2146 error = g_access(cp, 1, 0, 0); 2147 KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); 2148 g_topology_unlock(); 2149 sx_xlock(&sc->sc_lock); 2150 2151 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 2152 g_raid3_get_diskname(disk)); 2153 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2154 KASSERT(disk->d_sync.ds_consumer == NULL, 2155 ("Sync consumer already exists (device=%s, disk=%s).", 2156 sc->sc_name, g_raid3_get_diskname(disk))); 2157 2158 disk->d_sync.ds_consumer = cp; 2159 disk->d_sync.ds_consumer->private = disk; 2160 disk->d_sync.ds_consumer->index = 0; 2161 sc->sc_syncdisk = disk; 2162 2163 /* 2164 * Allocate memory for synchronization bios and initialize them. 2165 */ 2166 disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, 2167 M_RAID3, M_WAITOK); 2168 for (n = 0; n < g_raid3_syncreqs; n++) { 2169 bp = g_alloc_bio(); 2170 disk->d_sync.ds_bios[n] = bp; 2171 bp->bio_parent = NULL; 2172 bp->bio_cmd = BIO_READ; 2173 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); 2174 bp->bio_cflags = 0; 2175 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 2176 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 2177 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 2178 bp->bio_done = g_raid3_sync_done; 2179 bp->bio_from = disk->d_sync.ds_consumer; 2180 bp->bio_to = sc->sc_provider; 2181 bp->bio_caller1 = (void *)(uintptr_t)n; 2182 } 2183 2184 /* Set the number of in-flight synchronization requests. */ 2185 disk->d_sync.ds_inflight = g_raid3_syncreqs; 2186 2187 /* 2188 * Fire off first synchronization requests. 2189 */ 2190 for (n = 0; n < g_raid3_syncreqs; n++) { 2191 bp = disk->d_sync.ds_bios[n]; 2192 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 2193 disk->d_sync.ds_consumer->index++; 2194 /* 2195 * Delay the request if it is colliding with a regular request. 2196 */ 2197 if (g_raid3_regular_collision(sc, bp)) 2198 g_raid3_sync_delay(sc, bp); 2199 else 2200 g_io_request(bp, disk->d_sync.ds_consumer); 2201 } 2202 } 2203 2204 /* 2205 * Stop synchronization process. 2206 * type: 0 - synchronization finished 2207 * 1 - synchronization stopped 2208 */ 2209 static void 2210 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 2211 { 2212 struct g_raid3_disk *disk; 2213 struct g_consumer *cp; 2214 2215 g_topology_assert_not(); 2216 sx_assert(&sc->sc_lock, SX_LOCKED); 2217 2218 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2219 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2220 sc->sc_state)); 2221 disk = sc->sc_syncdisk; 2222 sc->sc_syncdisk = NULL; 2223 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 2224 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2225 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2226 g_raid3_disk_state2str(disk->d_state))); 2227 if (disk->d_sync.ds_consumer == NULL) 2228 return; 2229 2230 if (type == 0) { 2231 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 2232 sc->sc_name, g_raid3_get_diskname(disk)); 2233 } else /* if (type == 1) */ { 2234 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 2235 sc->sc_name, g_raid3_get_diskname(disk)); 2236 } 2237 free(disk->d_sync.ds_bios, M_RAID3); 2238 disk->d_sync.ds_bios = NULL; 2239 cp = disk->d_sync.ds_consumer; 2240 disk->d_sync.ds_consumer = NULL; 2241 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2242 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 2243 g_topology_lock(); 2244 g_raid3_kill_consumer(sc, cp); 2245 g_topology_unlock(); 2246 sx_xlock(&sc->sc_lock); 2247 } 2248 2249 static void 2250 g_raid3_launch_provider(struct g_raid3_softc *sc) 2251 { 2252 struct g_provider *pp; 2253 2254 sx_assert(&sc->sc_lock, SX_LOCKED); 2255 2256 g_topology_lock(); 2257 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2258 pp->mediasize = sc->sc_mediasize; 2259 pp->sectorsize = sc->sc_sectorsize; 2260 sc->sc_provider = pp; 2261 g_error_provider(pp, 0); 2262 g_topology_unlock(); 2263 G_RAID3_DEBUG(0, "Device %s: provider %s launched.", sc->sc_name, 2264 pp->name); 2265 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2266 g_raid3_sync_start(sc); 2267 } 2268 2269 static void 2270 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2271 { 2272 struct bio *bp; 2273 2274 g_topology_assert_not(); 2275 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2276 sc->sc_name)); 2277 2278 g_topology_lock(); 2279 g_error_provider(sc->sc_provider, ENXIO); 2280 mtx_lock(&sc->sc_queue_mtx); 2281 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2282 bioq_remove(&sc->sc_queue, bp); 2283 g_io_deliver(bp, ENXIO); 2284 } 2285 mtx_unlock(&sc->sc_queue_mtx); 2286 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2287 sc->sc_provider->name); 2288 sc->sc_provider->flags |= G_PF_WITHER; 2289 g_orphan_provider(sc->sc_provider, ENXIO); 2290 g_topology_unlock(); 2291 sc->sc_provider = NULL; 2292 if (sc->sc_syncdisk != NULL) 2293 g_raid3_sync_stop(sc, 1); 2294 } 2295 2296 static void 2297 g_raid3_go(void *arg) 2298 { 2299 struct g_raid3_softc *sc; 2300 2301 sc = arg; 2302 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2303 g_raid3_event_send(sc, 0, 2304 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2305 } 2306 2307 static u_int 2308 g_raid3_determine_state(struct g_raid3_disk *disk) 2309 { 2310 struct g_raid3_softc *sc; 2311 u_int state; 2312 2313 sc = disk->d_softc; 2314 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2315 if ((disk->d_flags & 2316 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2317 /* Disk does not need synchronization. */ 2318 state = G_RAID3_DISK_STATE_ACTIVE; 2319 } else { 2320 if ((sc->sc_flags & 2321 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2322 (disk->d_flags & 2323 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2324 /* 2325 * We can start synchronization from 2326 * the stored offset. 2327 */ 2328 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2329 } else { 2330 state = G_RAID3_DISK_STATE_STALE; 2331 } 2332 } 2333 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2334 /* 2335 * Reset all synchronization data for this disk, 2336 * because if it even was synchronized, it was 2337 * synchronized to disks with different syncid. 2338 */ 2339 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2340 disk->d_sync.ds_offset = 0; 2341 disk->d_sync.ds_offset_done = 0; 2342 disk->d_sync.ds_syncid = sc->sc_syncid; 2343 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2344 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2345 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2346 } else { 2347 state = G_RAID3_DISK_STATE_STALE; 2348 } 2349 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2350 /* 2351 * Not good, NOT GOOD! 2352 * It means that device was started on stale disks 2353 * and more fresh disk just arrive. 2354 * If there were writes, device is fucked up, sorry. 2355 * I think the best choice here is don't touch 2356 * this disk and inform the user laudly. 2357 */ 2358 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2359 "disk (%s) arrives!! It will not be connected to the " 2360 "running device.", sc->sc_name, 2361 g_raid3_get_diskname(disk)); 2362 g_raid3_destroy_disk(disk); 2363 state = G_RAID3_DISK_STATE_NONE; 2364 /* Return immediately, because disk was destroyed. */ 2365 return (state); 2366 } 2367 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2368 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2369 return (state); 2370 } 2371 2372 /* 2373 * Update device state. 2374 */ 2375 static void 2376 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2377 { 2378 struct g_raid3_disk *disk; 2379 u_int state; 2380 2381 sx_assert(&sc->sc_lock, SX_XLOCKED); 2382 2383 switch (sc->sc_state) { 2384 case G_RAID3_DEVICE_STATE_STARTING: 2385 { 2386 u_int n, ndirty, ndisks, genid, syncid; 2387 2388 KASSERT(sc->sc_provider == NULL, 2389 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2390 /* 2391 * Are we ready? We are, if all disks are connected or 2392 * one disk is missing and 'force' is true. 2393 */ 2394 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2395 if (!force) 2396 callout_drain(&sc->sc_callout); 2397 } else { 2398 if (force) { 2399 /* 2400 * Timeout expired, so destroy device. 2401 */ 2402 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2403 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", 2404 __LINE__, sc->sc_rootmount); 2405 root_mount_rel(sc->sc_rootmount); 2406 sc->sc_rootmount = NULL; 2407 } 2408 return; 2409 } 2410 2411 /* 2412 * Find the biggest genid. 2413 */ 2414 genid = 0; 2415 for (n = 0; n < sc->sc_ndisks; n++) { 2416 disk = &sc->sc_disks[n]; 2417 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2418 continue; 2419 if (disk->d_genid > genid) 2420 genid = disk->d_genid; 2421 } 2422 sc->sc_genid = genid; 2423 /* 2424 * Remove all disks without the biggest genid. 2425 */ 2426 for (n = 0; n < sc->sc_ndisks; n++) { 2427 disk = &sc->sc_disks[n]; 2428 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2429 continue; 2430 if (disk->d_genid < genid) { 2431 G_RAID3_DEBUG(0, 2432 "Component %s (device %s) broken, skipping.", 2433 g_raid3_get_diskname(disk), sc->sc_name); 2434 g_raid3_destroy_disk(disk); 2435 } 2436 } 2437 2438 /* 2439 * There must be at least 'sc->sc_ndisks - 1' components 2440 * with the same syncid and without SYNCHRONIZING flag. 2441 */ 2442 2443 /* 2444 * Find the biggest syncid, number of valid components and 2445 * number of dirty components. 2446 */ 2447 ndirty = ndisks = syncid = 0; 2448 for (n = 0; n < sc->sc_ndisks; n++) { 2449 disk = &sc->sc_disks[n]; 2450 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2451 continue; 2452 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2453 ndirty++; 2454 if (disk->d_sync.ds_syncid > syncid) { 2455 syncid = disk->d_sync.ds_syncid; 2456 ndisks = 0; 2457 } else if (disk->d_sync.ds_syncid < syncid) { 2458 continue; 2459 } 2460 if ((disk->d_flags & 2461 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2462 continue; 2463 } 2464 ndisks++; 2465 } 2466 /* 2467 * Do we have enough valid components? 2468 */ 2469 if (ndisks + 1 < sc->sc_ndisks) { 2470 G_RAID3_DEBUG(0, 2471 "Device %s is broken, too few valid components.", 2472 sc->sc_name); 2473 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2474 return; 2475 } 2476 /* 2477 * If there is one DIRTY component and all disks are present, 2478 * mark it for synchronization. If there is more than one DIRTY 2479 * component, mark parity component for synchronization. 2480 */ 2481 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2482 for (n = 0; n < sc->sc_ndisks; n++) { 2483 disk = &sc->sc_disks[n]; 2484 if ((disk->d_flags & 2485 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2486 continue; 2487 } 2488 disk->d_flags |= 2489 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2490 } 2491 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2492 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2493 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2494 } 2495 2496 sc->sc_syncid = syncid; 2497 if (force) { 2498 /* Remember to bump syncid on first write. */ 2499 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2500 } 2501 if (ndisks == sc->sc_ndisks) 2502 state = G_RAID3_DEVICE_STATE_COMPLETE; 2503 else /* if (ndisks == sc->sc_ndisks - 1) */ 2504 state = G_RAID3_DEVICE_STATE_DEGRADED; 2505 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2506 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2507 g_raid3_device_state2str(state)); 2508 sc->sc_state = state; 2509 for (n = 0; n < sc->sc_ndisks; n++) { 2510 disk = &sc->sc_disks[n]; 2511 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2512 continue; 2513 state = g_raid3_determine_state(disk); 2514 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2515 if (state == G_RAID3_DISK_STATE_STALE) 2516 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2517 } 2518 break; 2519 } 2520 case G_RAID3_DEVICE_STATE_DEGRADED: 2521 /* 2522 * Genid need to be bumped immediately, so do it here. 2523 */ 2524 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2525 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2526 g_raid3_bump_genid(sc); 2527 } 2528 2529 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2530 return; 2531 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2532 sc->sc_ndisks - 1) { 2533 if (sc->sc_provider != NULL) 2534 g_raid3_destroy_provider(sc); 2535 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2536 return; 2537 } 2538 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2539 sc->sc_ndisks) { 2540 state = G_RAID3_DEVICE_STATE_COMPLETE; 2541 G_RAID3_DEBUG(1, 2542 "Device %s state changed from %s to %s.", 2543 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2544 g_raid3_device_state2str(state)); 2545 sc->sc_state = state; 2546 } 2547 if (sc->sc_provider == NULL) 2548 g_raid3_launch_provider(sc); 2549 if (sc->sc_rootmount != NULL) { 2550 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2551 sc->sc_rootmount); 2552 root_mount_rel(sc->sc_rootmount); 2553 sc->sc_rootmount = NULL; 2554 } 2555 break; 2556 case G_RAID3_DEVICE_STATE_COMPLETE: 2557 /* 2558 * Genid need to be bumped immediately, so do it here. 2559 */ 2560 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2561 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2562 g_raid3_bump_genid(sc); 2563 } 2564 2565 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2566 return; 2567 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2568 sc->sc_ndisks - 1, 2569 ("Too few ACTIVE components in COMPLETE state (device %s).", 2570 sc->sc_name)); 2571 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2572 sc->sc_ndisks - 1) { 2573 state = G_RAID3_DEVICE_STATE_DEGRADED; 2574 G_RAID3_DEBUG(1, 2575 "Device %s state changed from %s to %s.", 2576 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2577 g_raid3_device_state2str(state)); 2578 sc->sc_state = state; 2579 } 2580 if (sc->sc_provider == NULL) 2581 g_raid3_launch_provider(sc); 2582 if (sc->sc_rootmount != NULL) { 2583 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2584 sc->sc_rootmount); 2585 root_mount_rel(sc->sc_rootmount); 2586 sc->sc_rootmount = NULL; 2587 } 2588 break; 2589 default: 2590 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2591 g_raid3_device_state2str(sc->sc_state))); 2592 break; 2593 } 2594 } 2595 2596 /* 2597 * Update disk state and device state if needed. 2598 */ 2599 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2600 "Disk %s state changed from %s to %s (device %s).", \ 2601 g_raid3_get_diskname(disk), \ 2602 g_raid3_disk_state2str(disk->d_state), \ 2603 g_raid3_disk_state2str(state), sc->sc_name) 2604 static int 2605 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2606 { 2607 struct g_raid3_softc *sc; 2608 2609 sc = disk->d_softc; 2610 sx_assert(&sc->sc_lock, SX_XLOCKED); 2611 2612 again: 2613 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2614 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2615 g_raid3_disk_state2str(state)); 2616 switch (state) { 2617 case G_RAID3_DISK_STATE_NEW: 2618 /* 2619 * Possible scenarios: 2620 * 1. New disk arrive. 2621 */ 2622 /* Previous state should be NONE. */ 2623 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2624 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2625 g_raid3_disk_state2str(disk->d_state))); 2626 DISK_STATE_CHANGED(); 2627 2628 disk->d_state = state; 2629 G_RAID3_DEBUG(0, "Device %s: provider %s detected.", 2630 sc->sc_name, g_raid3_get_diskname(disk)); 2631 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2632 break; 2633 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2634 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2635 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2636 g_raid3_device_state2str(sc->sc_state), 2637 g_raid3_get_diskname(disk), 2638 g_raid3_disk_state2str(disk->d_state))); 2639 state = g_raid3_determine_state(disk); 2640 if (state != G_RAID3_DISK_STATE_NONE) 2641 goto again; 2642 break; 2643 case G_RAID3_DISK_STATE_ACTIVE: 2644 /* 2645 * Possible scenarios: 2646 * 1. New disk does not need synchronization. 2647 * 2. Synchronization process finished successfully. 2648 */ 2649 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2650 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2651 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2652 g_raid3_device_state2str(sc->sc_state), 2653 g_raid3_get_diskname(disk), 2654 g_raid3_disk_state2str(disk->d_state))); 2655 /* Previous state should be NEW or SYNCHRONIZING. */ 2656 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2657 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2658 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2659 g_raid3_disk_state2str(disk->d_state))); 2660 DISK_STATE_CHANGED(); 2661 2662 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2663 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2664 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2665 g_raid3_sync_stop(sc, 0); 2666 } 2667 disk->d_state = state; 2668 disk->d_sync.ds_offset = 0; 2669 disk->d_sync.ds_offset_done = 0; 2670 g_raid3_update_idle(sc, disk); 2671 g_raid3_update_metadata(disk); 2672 G_RAID3_DEBUG(0, "Device %s: provider %s activated.", 2673 sc->sc_name, g_raid3_get_diskname(disk)); 2674 break; 2675 case G_RAID3_DISK_STATE_STALE: 2676 /* 2677 * Possible scenarios: 2678 * 1. Stale disk was connected. 2679 */ 2680 /* Previous state should be NEW. */ 2681 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2682 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2683 g_raid3_disk_state2str(disk->d_state))); 2684 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2685 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2686 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2687 g_raid3_device_state2str(sc->sc_state), 2688 g_raid3_get_diskname(disk), 2689 g_raid3_disk_state2str(disk->d_state))); 2690 /* 2691 * STALE state is only possible if device is marked 2692 * NOAUTOSYNC. 2693 */ 2694 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2695 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2696 g_raid3_device_state2str(sc->sc_state), 2697 g_raid3_get_diskname(disk), 2698 g_raid3_disk_state2str(disk->d_state))); 2699 DISK_STATE_CHANGED(); 2700 2701 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2702 disk->d_state = state; 2703 g_raid3_update_metadata(disk); 2704 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2705 sc->sc_name, g_raid3_get_diskname(disk)); 2706 break; 2707 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2708 /* 2709 * Possible scenarios: 2710 * 1. Disk which needs synchronization was connected. 2711 */ 2712 /* Previous state should be NEW. */ 2713 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2714 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2715 g_raid3_disk_state2str(disk->d_state))); 2716 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2717 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2718 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2719 g_raid3_device_state2str(sc->sc_state), 2720 g_raid3_get_diskname(disk), 2721 g_raid3_disk_state2str(disk->d_state))); 2722 DISK_STATE_CHANGED(); 2723 2724 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2725 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2726 disk->d_state = state; 2727 if (sc->sc_provider != NULL) { 2728 g_raid3_sync_start(sc); 2729 g_raid3_update_metadata(disk); 2730 } 2731 break; 2732 case G_RAID3_DISK_STATE_DISCONNECTED: 2733 /* 2734 * Possible scenarios: 2735 * 1. Device wasn't running yet, but disk disappear. 2736 * 2. Disk was active and disapppear. 2737 * 3. Disk disappear during synchronization process. 2738 */ 2739 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2740 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2741 /* 2742 * Previous state should be ACTIVE, STALE or 2743 * SYNCHRONIZING. 2744 */ 2745 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2746 disk->d_state == G_RAID3_DISK_STATE_STALE || 2747 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2748 ("Wrong disk state (%s, %s).", 2749 g_raid3_get_diskname(disk), 2750 g_raid3_disk_state2str(disk->d_state))); 2751 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2752 /* Previous state should be NEW. */ 2753 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2754 ("Wrong disk state (%s, %s).", 2755 g_raid3_get_diskname(disk), 2756 g_raid3_disk_state2str(disk->d_state))); 2757 /* 2758 * Reset bumping syncid if disk disappeared in STARTING 2759 * state. 2760 */ 2761 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) 2762 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 2763 #ifdef INVARIANTS 2764 } else { 2765 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2766 sc->sc_name, 2767 g_raid3_device_state2str(sc->sc_state), 2768 g_raid3_get_diskname(disk), 2769 g_raid3_disk_state2str(disk->d_state))); 2770 #endif 2771 } 2772 DISK_STATE_CHANGED(); 2773 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2774 sc->sc_name, g_raid3_get_diskname(disk)); 2775 2776 g_raid3_destroy_disk(disk); 2777 break; 2778 default: 2779 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2780 break; 2781 } 2782 return (0); 2783 } 2784 #undef DISK_STATE_CHANGED 2785 2786 int 2787 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2788 { 2789 struct g_provider *pp; 2790 u_char *buf; 2791 int error; 2792 2793 g_topology_assert(); 2794 2795 error = g_access(cp, 1, 0, 0); 2796 if (error != 0) 2797 return (error); 2798 pp = cp->provider; 2799 g_topology_unlock(); 2800 /* Metadata are stored on last sector. */ 2801 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2802 &error); 2803 g_topology_lock(); 2804 g_access(cp, -1, 0, 0); 2805 if (buf == NULL) { 2806 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", 2807 cp->provider->name, error); 2808 return (error); 2809 } 2810 2811 /* Decode metadata. */ 2812 error = raid3_metadata_decode(buf, md); 2813 g_free(buf); 2814 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2815 return (EINVAL); 2816 if (md->md_version > G_RAID3_VERSION) { 2817 G_RAID3_DEBUG(0, 2818 "Kernel module is too old to handle metadata from %s.", 2819 cp->provider->name); 2820 return (EINVAL); 2821 } 2822 if (error != 0) { 2823 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2824 cp->provider->name); 2825 return (error); 2826 } 2827 2828 return (0); 2829 } 2830 2831 static int 2832 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2833 struct g_raid3_metadata *md) 2834 { 2835 2836 if (md->md_no >= sc->sc_ndisks) { 2837 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2838 pp->name, md->md_no); 2839 return (EINVAL); 2840 } 2841 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2842 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2843 pp->name, md->md_no); 2844 return (EEXIST); 2845 } 2846 if (md->md_all != sc->sc_ndisks) { 2847 G_RAID3_DEBUG(1, 2848 "Invalid '%s' field on disk %s (device %s), skipping.", 2849 "md_all", pp->name, sc->sc_name); 2850 return (EINVAL); 2851 } 2852 if (md->md_mediasize != sc->sc_mediasize) { 2853 G_RAID3_DEBUG(1, 2854 "Invalid '%s' field on disk %s (device %s), skipping.", 2855 "md_mediasize", pp->name, sc->sc_name); 2856 return (EINVAL); 2857 } 2858 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2859 G_RAID3_DEBUG(1, 2860 "Invalid '%s' field on disk %s (device %s), skipping.", 2861 "md_mediasize", pp->name, sc->sc_name); 2862 return (EINVAL); 2863 } 2864 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2865 G_RAID3_DEBUG(1, 2866 "Invalid size of disk %s (device %s), skipping.", pp->name, 2867 sc->sc_name); 2868 return (EINVAL); 2869 } 2870 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2871 G_RAID3_DEBUG(1, 2872 "Invalid '%s' field on disk %s (device %s), skipping.", 2873 "md_sectorsize", pp->name, sc->sc_name); 2874 return (EINVAL); 2875 } 2876 if (md->md_sectorsize != sc->sc_sectorsize) { 2877 G_RAID3_DEBUG(1, 2878 "Invalid '%s' field on disk %s (device %s), skipping.", 2879 "md_sectorsize", pp->name, sc->sc_name); 2880 return (EINVAL); 2881 } 2882 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2883 G_RAID3_DEBUG(1, 2884 "Invalid sector size of disk %s (device %s), skipping.", 2885 pp->name, sc->sc_name); 2886 return (EINVAL); 2887 } 2888 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2889 G_RAID3_DEBUG(1, 2890 "Invalid device flags on disk %s (device %s), skipping.", 2891 pp->name, sc->sc_name); 2892 return (EINVAL); 2893 } 2894 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2895 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2896 /* 2897 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2898 */ 2899 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2900 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2901 return (EINVAL); 2902 } 2903 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 2904 G_RAID3_DEBUG(1, 2905 "Invalid disk flags on disk %s (device %s), skipping.", 2906 pp->name, sc->sc_name); 2907 return (EINVAL); 2908 } 2909 return (0); 2910 } 2911 2912 int 2913 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 2914 struct g_raid3_metadata *md) 2915 { 2916 struct g_raid3_disk *disk; 2917 int error; 2918 2919 g_topology_assert_not(); 2920 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 2921 2922 error = g_raid3_check_metadata(sc, pp, md); 2923 if (error != 0) 2924 return (error); 2925 if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && 2926 md->md_genid < sc->sc_genid) { 2927 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", 2928 pp->name, sc->sc_name); 2929 return (EINVAL); 2930 } 2931 disk = g_raid3_init_disk(sc, pp, md, &error); 2932 if (disk == NULL) 2933 return (error); 2934 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 2935 G_RAID3_EVENT_WAIT); 2936 if (error != 0) 2937 return (error); 2938 if (md->md_version < G_RAID3_VERSION) { 2939 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", 2940 pp->name, md->md_version, G_RAID3_VERSION); 2941 g_raid3_update_metadata(disk); 2942 } 2943 return (0); 2944 } 2945 2946 static void 2947 g_raid3_destroy_delayed(void *arg, int flag) 2948 { 2949 struct g_raid3_softc *sc; 2950 int error; 2951 2952 if (flag == EV_CANCEL) { 2953 G_RAID3_DEBUG(1, "Destroying canceled."); 2954 return; 2955 } 2956 sc = arg; 2957 g_topology_unlock(); 2958 sx_xlock(&sc->sc_lock); 2959 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, 2960 ("DESTROY flag set on %s.", sc->sc_name)); 2961 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, 2962 ("DESTROYING flag not set on %s.", sc->sc_name)); 2963 G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); 2964 error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); 2965 if (error != 0) { 2966 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); 2967 sx_xunlock(&sc->sc_lock); 2968 } 2969 g_topology_lock(); 2970 } 2971 2972 static int 2973 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 2974 { 2975 struct g_raid3_softc *sc; 2976 int dcr, dcw, dce, error = 0; 2977 2978 g_topology_assert(); 2979 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 2980 acw, ace); 2981 2982 sc = pp->geom->softc; 2983 if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0) 2984 return (0); 2985 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 2986 2987 dcr = pp->acr + acr; 2988 dcw = pp->acw + acw; 2989 dce = pp->ace + ace; 2990 2991 g_topology_unlock(); 2992 sx_xlock(&sc->sc_lock); 2993 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || 2994 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { 2995 if (acr > 0 || acw > 0 || ace > 0) 2996 error = ENXIO; 2997 goto end; 2998 } 2999 if (dcw == 0 && !sc->sc_idle) 3000 g_raid3_idle(sc, dcw); 3001 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { 3002 if (acr > 0 || acw > 0 || ace > 0) { 3003 error = ENXIO; 3004 goto end; 3005 } 3006 if (dcr == 0 && dcw == 0 && dce == 0) { 3007 g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, 3008 sc, NULL); 3009 } 3010 } 3011 end: 3012 sx_xunlock(&sc->sc_lock); 3013 g_topology_lock(); 3014 return (error); 3015 } 3016 3017 static struct g_geom * 3018 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 3019 { 3020 struct g_raid3_softc *sc; 3021 struct g_geom *gp; 3022 int error, timeout; 3023 u_int n; 3024 3025 g_topology_assert(); 3026 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 3027 3028 /* One disk is minimum. */ 3029 if (md->md_all < 1) 3030 return (NULL); 3031 /* 3032 * Action geom. 3033 */ 3034 gp = g_new_geomf(mp, "%s", md->md_name); 3035 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 3036 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 3037 M_WAITOK | M_ZERO); 3038 gp->start = g_raid3_start; 3039 gp->orphan = g_raid3_orphan; 3040 gp->access = g_raid3_access; 3041 gp->dumpconf = g_raid3_dumpconf; 3042 3043 sc->sc_id = md->md_id; 3044 sc->sc_mediasize = md->md_mediasize; 3045 sc->sc_sectorsize = md->md_sectorsize; 3046 sc->sc_ndisks = md->md_all; 3047 sc->sc_round_robin = 0; 3048 sc->sc_flags = md->md_mflags; 3049 sc->sc_bump_id = 0; 3050 sc->sc_idle = 1; 3051 sc->sc_last_write = time_uptime; 3052 sc->sc_writes = 0; 3053 for (n = 0; n < sc->sc_ndisks; n++) { 3054 sc->sc_disks[n].d_softc = sc; 3055 sc->sc_disks[n].d_no = n; 3056 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 3057 } 3058 sx_init(&sc->sc_lock, "graid3:lock"); 3059 bioq_init(&sc->sc_queue); 3060 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 3061 bioq_init(&sc->sc_regular_delayed); 3062 bioq_init(&sc->sc_inflight); 3063 bioq_init(&sc->sc_sync_delayed); 3064 TAILQ_INIT(&sc->sc_events); 3065 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 3066 callout_init(&sc->sc_callout, CALLOUT_MPSAFE); 3067 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 3068 gp->softc = sc; 3069 sc->sc_geom = gp; 3070 sc->sc_provider = NULL; 3071 /* 3072 * Synchronization geom. 3073 */ 3074 gp = g_new_geomf(mp, "%s.sync", md->md_name); 3075 gp->softc = sc; 3076 gp->orphan = g_raid3_orphan; 3077 sc->sc_sync.ds_geom = gp; 3078 3079 if (!g_raid3_use_malloc) { 3080 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 3081 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3082 UMA_ALIGN_PTR, 0); 3083 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; 3084 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; 3085 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = 3086 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; 3087 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 3088 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3089 UMA_ALIGN_PTR, 0); 3090 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; 3091 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; 3092 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = 3093 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; 3094 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 3095 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3096 UMA_ALIGN_PTR, 0); 3097 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; 3098 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; 3099 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = 3100 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; 3101 } 3102 3103 error = kthread_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 3104 "g_raid3 %s", md->md_name); 3105 if (error != 0) { 3106 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 3107 sc->sc_name); 3108 if (!g_raid3_use_malloc) { 3109 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 3110 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 3111 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 3112 } 3113 g_destroy_geom(sc->sc_sync.ds_geom); 3114 mtx_destroy(&sc->sc_events_mtx); 3115 mtx_destroy(&sc->sc_queue_mtx); 3116 sx_destroy(&sc->sc_lock); 3117 g_destroy_geom(sc->sc_geom); 3118 free(sc->sc_disks, M_RAID3); 3119 free(sc, M_RAID3); 3120 return (NULL); 3121 } 3122 3123 G_RAID3_DEBUG(0, "Device %s created (id=%u).", sc->sc_name, sc->sc_id); 3124 3125 sc->sc_rootmount = root_mount_hold("GRAID3"); 3126 G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); 3127 3128 /* 3129 * Run timeout. 3130 */ 3131 timeout = atomic_load_acq_int(&g_raid3_timeout); 3132 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 3133 return (sc->sc_geom); 3134 } 3135 3136 int 3137 g_raid3_destroy(struct g_raid3_softc *sc, int how) 3138 { 3139 struct g_provider *pp; 3140 3141 g_topology_assert_not(); 3142 if (sc == NULL) 3143 return (ENXIO); 3144 sx_assert(&sc->sc_lock, SX_XLOCKED); 3145 3146 pp = sc->sc_provider; 3147 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 3148 switch (how) { 3149 case G_RAID3_DESTROY_SOFT: 3150 G_RAID3_DEBUG(1, 3151 "Device %s is still open (r%dw%de%d).", pp->name, 3152 pp->acr, pp->acw, pp->ace); 3153 return (EBUSY); 3154 case G_RAID3_DESTROY_DELAYED: 3155 G_RAID3_DEBUG(1, 3156 "Device %s will be destroyed on last close.", 3157 pp->name); 3158 if (sc->sc_syncdisk != NULL) 3159 g_raid3_sync_stop(sc, 1); 3160 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; 3161 return (EBUSY); 3162 case G_RAID3_DESTROY_HARD: 3163 G_RAID3_DEBUG(1, "Device %s is still open, so it " 3164 "can't be definitely removed.", pp->name); 3165 break; 3166 } 3167 } 3168 3169 g_topology_lock(); 3170 if (sc->sc_geom->softc == NULL) { 3171 g_topology_unlock(); 3172 return (0); 3173 } 3174 sc->sc_geom->softc = NULL; 3175 sc->sc_sync.ds_geom->softc = NULL; 3176 g_topology_unlock(); 3177 3178 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 3179 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 3180 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 3181 sx_xunlock(&sc->sc_lock); 3182 mtx_lock(&sc->sc_queue_mtx); 3183 wakeup(sc); 3184 wakeup(&sc->sc_queue); 3185 mtx_unlock(&sc->sc_queue_mtx); 3186 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 3187 while (sc->sc_worker != NULL) 3188 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 3189 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 3190 sx_xlock(&sc->sc_lock); 3191 g_raid3_destroy_device(sc); 3192 free(sc->sc_disks, M_RAID3); 3193 free(sc, M_RAID3); 3194 return (0); 3195 } 3196 3197 static void 3198 g_raid3_taste_orphan(struct g_consumer *cp) 3199 { 3200 3201 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 3202 cp->provider->name)); 3203 } 3204 3205 static struct g_geom * 3206 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 3207 { 3208 struct g_raid3_metadata md; 3209 struct g_raid3_softc *sc; 3210 struct g_consumer *cp; 3211 struct g_geom *gp; 3212 int error; 3213 3214 g_topology_assert(); 3215 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 3216 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 3217 3218 gp = g_new_geomf(mp, "raid3:taste"); 3219 /* This orphan function should be never called. */ 3220 gp->orphan = g_raid3_taste_orphan; 3221 cp = g_new_consumer(gp); 3222 g_attach(cp, pp); 3223 error = g_raid3_read_metadata(cp, &md); 3224 g_detach(cp); 3225 g_destroy_consumer(cp); 3226 g_destroy_geom(gp); 3227 if (error != 0) 3228 return (NULL); 3229 gp = NULL; 3230 3231 if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0) 3232 return (NULL); 3233 if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) 3234 return (NULL); 3235 if (g_raid3_debug >= 2) 3236 raid3_metadata_dump(&md); 3237 3238 /* 3239 * Let's check if device already exists. 3240 */ 3241 sc = NULL; 3242 LIST_FOREACH(gp, &mp->geom, geom) { 3243 sc = gp->softc; 3244 if (sc == NULL) 3245 continue; 3246 if (sc->sc_sync.ds_geom == gp) 3247 continue; 3248 if (strcmp(md.md_name, sc->sc_name) != 0) 3249 continue; 3250 if (md.md_id != sc->sc_id) { 3251 G_RAID3_DEBUG(0, "Device %s already configured.", 3252 sc->sc_name); 3253 return (NULL); 3254 } 3255 break; 3256 } 3257 if (gp == NULL) { 3258 gp = g_raid3_create(mp, &md); 3259 if (gp == NULL) { 3260 G_RAID3_DEBUG(0, "Cannot create device %s.", 3261 md.md_name); 3262 return (NULL); 3263 } 3264 sc = gp->softc; 3265 } 3266 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 3267 g_topology_unlock(); 3268 sx_xlock(&sc->sc_lock); 3269 error = g_raid3_add_disk(sc, pp, &md); 3270 if (error != 0) { 3271 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 3272 pp->name, gp->name, error); 3273 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 3274 sc->sc_ndisks) { 3275 g_cancel_event(sc); 3276 g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); 3277 g_topology_lock(); 3278 return (NULL); 3279 } 3280 gp = NULL; 3281 } 3282 sx_xunlock(&sc->sc_lock); 3283 g_topology_lock(); 3284 return (gp); 3285 } 3286 3287 static int 3288 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 3289 struct g_geom *gp) 3290 { 3291 struct g_raid3_softc *sc; 3292 int error; 3293 3294 g_topology_unlock(); 3295 sc = gp->softc; 3296 sx_xlock(&sc->sc_lock); 3297 g_cancel_event(sc); 3298 error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); 3299 if (error != 0) 3300 sx_xunlock(&sc->sc_lock); 3301 g_topology_lock(); 3302 return (error); 3303 } 3304 3305 static void 3306 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 3307 struct g_consumer *cp, struct g_provider *pp) 3308 { 3309 struct g_raid3_softc *sc; 3310 3311 g_topology_assert(); 3312 3313 sc = gp->softc; 3314 if (sc == NULL) 3315 return; 3316 /* Skip synchronization geom. */ 3317 if (gp == sc->sc_sync.ds_geom) 3318 return; 3319 if (pp != NULL) { 3320 /* Nothing here. */ 3321 } else if (cp != NULL) { 3322 struct g_raid3_disk *disk; 3323 3324 disk = cp->private; 3325 if (disk == NULL) 3326 return; 3327 g_topology_unlock(); 3328 sx_xlock(&sc->sc_lock); 3329 sbuf_printf(sb, "%s<Type>", indent); 3330 if (disk->d_no == sc->sc_ndisks - 1) 3331 sbuf_printf(sb, "PARITY"); 3332 else 3333 sbuf_printf(sb, "DATA"); 3334 sbuf_printf(sb, "</Type>\n"); 3335 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 3336 (u_int)disk->d_no); 3337 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 3338 sbuf_printf(sb, "%s<Synchronized>", indent); 3339 if (disk->d_sync.ds_offset == 0) 3340 sbuf_printf(sb, "0%%"); 3341 else { 3342 sbuf_printf(sb, "%u%%", 3343 (u_int)((disk->d_sync.ds_offset * 100) / 3344 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 3345 } 3346 sbuf_printf(sb, "</Synchronized>\n"); 3347 } 3348 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 3349 disk->d_sync.ds_syncid); 3350 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); 3351 sbuf_printf(sb, "%s<Flags>", indent); 3352 if (disk->d_flags == 0) 3353 sbuf_printf(sb, "NONE"); 3354 else { 3355 int first = 1; 3356 3357 #define ADD_FLAG(flag, name) do { \ 3358 if ((disk->d_flags & (flag)) != 0) { \ 3359 if (!first) \ 3360 sbuf_printf(sb, ", "); \ 3361 else \ 3362 first = 0; \ 3363 sbuf_printf(sb, name); \ 3364 } \ 3365 } while (0) 3366 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 3367 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 3368 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 3369 "SYNCHRONIZING"); 3370 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 3371 ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); 3372 #undef ADD_FLAG 3373 } 3374 sbuf_printf(sb, "</Flags>\n"); 3375 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3376 g_raid3_disk_state2str(disk->d_state)); 3377 sx_xunlock(&sc->sc_lock); 3378 g_topology_lock(); 3379 } else { 3380 g_topology_unlock(); 3381 sx_xlock(&sc->sc_lock); 3382 if (!g_raid3_use_malloc) { 3383 sbuf_printf(sb, 3384 "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent, 3385 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); 3386 sbuf_printf(sb, 3387 "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent, 3388 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); 3389 sbuf_printf(sb, 3390 "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent, 3391 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); 3392 sbuf_printf(sb, 3393 "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent, 3394 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); 3395 sbuf_printf(sb, 3396 "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent, 3397 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); 3398 sbuf_printf(sb, 3399 "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent, 3400 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); 3401 } 3402 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 3403 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 3404 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); 3405 sbuf_printf(sb, "%s<Flags>", indent); 3406 if (sc->sc_flags == 0) 3407 sbuf_printf(sb, "NONE"); 3408 else { 3409 int first = 1; 3410 3411 #define ADD_FLAG(flag, name) do { \ 3412 if ((sc->sc_flags & (flag)) != 0) { \ 3413 if (!first) \ 3414 sbuf_printf(sb, ", "); \ 3415 else \ 3416 first = 0; \ 3417 sbuf_printf(sb, name); \ 3418 } \ 3419 } while (0) 3420 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3421 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3422 "ROUND-ROBIN"); 3423 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3424 #undef ADD_FLAG 3425 } 3426 sbuf_printf(sb, "</Flags>\n"); 3427 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3428 sc->sc_ndisks); 3429 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3430 g_raid3_device_state2str(sc->sc_state)); 3431 sx_xunlock(&sc->sc_lock); 3432 g_topology_lock(); 3433 } 3434 } 3435 3436 static void 3437 g_raid3_shutdown_pre_sync(void *arg, int howto) 3438 { 3439 struct g_class *mp; 3440 struct g_geom *gp, *gp2; 3441 struct g_raid3_softc *sc; 3442 int error; 3443 3444 mp = arg; 3445 DROP_GIANT(); 3446 g_topology_lock(); 3447 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3448 if ((sc = gp->softc) == NULL) 3449 continue; 3450 /* Skip synchronization geom. */ 3451 if (gp == sc->sc_sync.ds_geom) 3452 continue; 3453 g_topology_unlock(); 3454 sx_xlock(&sc->sc_lock); 3455 g_cancel_event(sc); 3456 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); 3457 if (error != 0) 3458 sx_xunlock(&sc->sc_lock); 3459 g_topology_lock(); 3460 } 3461 g_topology_unlock(); 3462 PICKUP_GIANT(); 3463 } 3464 3465 static void 3466 g_raid3_init(struct g_class *mp) 3467 { 3468 3469 g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, 3470 g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); 3471 if (g_raid3_pre_sync == NULL) 3472 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3473 } 3474 3475 static void 3476 g_raid3_fini(struct g_class *mp) 3477 { 3478 3479 if (g_raid3_pre_sync != NULL) 3480 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync); 3481 } 3482 3483 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3484