xref: /freebsd/sys/geom/raid3/g_raid3.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid3/g_raid3.h>
48 
49 FEATURE(geom_raid3, "GEOM RAID-3 functionality");
50 
51 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
52 
53 SYSCTL_DECL(_kern_geom);
54 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0,
55     "GEOM_RAID3 stuff");
56 u_int g_raid3_debug = 0;
57 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
58 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
59     "Debug level");
60 static u_int g_raid3_timeout = 4;
61 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
62 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
63     0, "Time to wait on all raid3 components");
64 static u_int g_raid3_idletime = 5;
65 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
67     &g_raid3_idletime, 0, "Mark components as clean when idling");
68 static u_int g_raid3_disconnect_on_failure = 1;
69 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
70     &g_raid3_disconnect_on_failure);
71 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
72     &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
73 static u_int g_raid3_syncreqs = 2;
74 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
75 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
76     &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
77 static u_int g_raid3_use_malloc = 0;
78 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
79 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
80     &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
81 
82 static u_int g_raid3_n64k = 50;
83 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
84 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
85     "Maximum number of 64kB allocations");
86 static u_int g_raid3_n16k = 200;
87 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
88 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
89     "Maximum number of 16kB allocations");
90 static u_int g_raid3_n4k = 1200;
91 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
92 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
93     "Maximum number of 4kB allocations");
94 
95 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
96     "GEOM_RAID3 statistics");
97 static u_int g_raid3_parity_mismatch = 0;
98 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
99     &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
100 
101 #define	MSLEEP(ident, mtx, priority, wmesg, timeout)	do {		\
102 	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));	\
103 	msleep((ident), (mtx), (priority), (wmesg), (timeout));		\
104 	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));	\
105 } while (0)
106 
107 static eventhandler_tag g_raid3_pre_sync = NULL;
108 
109 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
110     struct g_geom *gp);
111 static g_taste_t g_raid3_taste;
112 static void g_raid3_init(struct g_class *mp);
113 static void g_raid3_fini(struct g_class *mp);
114 
115 struct g_class g_raid3_class = {
116 	.name = G_RAID3_CLASS_NAME,
117 	.version = G_VERSION,
118 	.ctlreq = g_raid3_config,
119 	.taste = g_raid3_taste,
120 	.destroy_geom = g_raid3_destroy_geom,
121 	.init = g_raid3_init,
122 	.fini = g_raid3_fini
123 };
124 
125 
126 static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
127 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
128 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
129 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
130     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
131 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
132 static int g_raid3_register_request(struct bio *pbp);
133 static void g_raid3_sync_release(struct g_raid3_softc *sc);
134 
135 
136 static const char *
137 g_raid3_disk_state2str(int state)
138 {
139 
140 	switch (state) {
141 	case G_RAID3_DISK_STATE_NODISK:
142 		return ("NODISK");
143 	case G_RAID3_DISK_STATE_NONE:
144 		return ("NONE");
145 	case G_RAID3_DISK_STATE_NEW:
146 		return ("NEW");
147 	case G_RAID3_DISK_STATE_ACTIVE:
148 		return ("ACTIVE");
149 	case G_RAID3_DISK_STATE_STALE:
150 		return ("STALE");
151 	case G_RAID3_DISK_STATE_SYNCHRONIZING:
152 		return ("SYNCHRONIZING");
153 	case G_RAID3_DISK_STATE_DISCONNECTED:
154 		return ("DISCONNECTED");
155 	default:
156 		return ("INVALID");
157 	}
158 }
159 
160 static const char *
161 g_raid3_device_state2str(int state)
162 {
163 
164 	switch (state) {
165 	case G_RAID3_DEVICE_STATE_STARTING:
166 		return ("STARTING");
167 	case G_RAID3_DEVICE_STATE_DEGRADED:
168 		return ("DEGRADED");
169 	case G_RAID3_DEVICE_STATE_COMPLETE:
170 		return ("COMPLETE");
171 	default:
172 		return ("INVALID");
173 	}
174 }
175 
176 const char *
177 g_raid3_get_diskname(struct g_raid3_disk *disk)
178 {
179 
180 	if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
181 		return ("[unknown]");
182 	return (disk->d_name);
183 }
184 
185 static void *
186 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
187 {
188 	void *ptr;
189 	enum g_raid3_zones zone;
190 
191 	if (g_raid3_use_malloc ||
192 	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
193 		ptr = malloc(size, M_RAID3, flags);
194 	else {
195 		ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
196 		   &sc->sc_zones[zone], flags);
197 		sc->sc_zones[zone].sz_requested++;
198 		if (ptr == NULL)
199 			sc->sc_zones[zone].sz_failed++;
200 	}
201 	return (ptr);
202 }
203 
204 static void
205 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
206 {
207 	enum g_raid3_zones zone;
208 
209 	if (g_raid3_use_malloc ||
210 	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
211 		free(ptr, M_RAID3);
212 	else {
213 		uma_zfree_arg(sc->sc_zones[zone].sz_zone,
214 		    ptr, &sc->sc_zones[zone]);
215 	}
216 }
217 
218 static int
219 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
220 {
221 	struct g_raid3_zone *sz = arg;
222 
223 	if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
224 		return (ENOMEM);
225 	sz->sz_inuse++;
226 	return (0);
227 }
228 
229 static void
230 g_raid3_uma_dtor(void *mem, int size, void *arg)
231 {
232 	struct g_raid3_zone *sz = arg;
233 
234 	sz->sz_inuse--;
235 }
236 
237 #define	g_raid3_xor(src, dst, size)					\
238 	_g_raid3_xor((uint64_t *)(src),					\
239 	    (uint64_t *)(dst), (size_t)size)
240 static void
241 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
242 {
243 
244 	KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
245 	for (; size > 0; size -= 128) {
246 		*dst++ ^= (*src++);
247 		*dst++ ^= (*src++);
248 		*dst++ ^= (*src++);
249 		*dst++ ^= (*src++);
250 		*dst++ ^= (*src++);
251 		*dst++ ^= (*src++);
252 		*dst++ ^= (*src++);
253 		*dst++ ^= (*src++);
254 		*dst++ ^= (*src++);
255 		*dst++ ^= (*src++);
256 		*dst++ ^= (*src++);
257 		*dst++ ^= (*src++);
258 		*dst++ ^= (*src++);
259 		*dst++ ^= (*src++);
260 		*dst++ ^= (*src++);
261 		*dst++ ^= (*src++);
262 	}
263 }
264 
265 static int
266 g_raid3_is_zero(struct bio *bp)
267 {
268 	static const uint64_t zeros[] = {
269 	    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
270 	};
271 	u_char *addr;
272 	ssize_t size;
273 
274 	size = bp->bio_length;
275 	addr = (u_char *)bp->bio_data;
276 	for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
277 		if (bcmp(addr, zeros, sizeof(zeros)) != 0)
278 			return (0);
279 	}
280 	return (1);
281 }
282 
283 /*
284  * --- Events handling functions ---
285  * Events in geom_raid3 are used to maintain disks and device status
286  * from one thread to simplify locking.
287  */
288 static void
289 g_raid3_event_free(struct g_raid3_event *ep)
290 {
291 
292 	free(ep, M_RAID3);
293 }
294 
295 int
296 g_raid3_event_send(void *arg, int state, int flags)
297 {
298 	struct g_raid3_softc *sc;
299 	struct g_raid3_disk *disk;
300 	struct g_raid3_event *ep;
301 	int error;
302 
303 	ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
304 	G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
305 	if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
306 		disk = NULL;
307 		sc = arg;
308 	} else {
309 		disk = arg;
310 		sc = disk->d_softc;
311 	}
312 	ep->e_disk = disk;
313 	ep->e_state = state;
314 	ep->e_flags = flags;
315 	ep->e_error = 0;
316 	mtx_lock(&sc->sc_events_mtx);
317 	TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
318 	mtx_unlock(&sc->sc_events_mtx);
319 	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
320 	mtx_lock(&sc->sc_queue_mtx);
321 	wakeup(sc);
322 	wakeup(&sc->sc_queue);
323 	mtx_unlock(&sc->sc_queue_mtx);
324 	if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
325 		return (0);
326 	sx_assert(&sc->sc_lock, SX_XLOCKED);
327 	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
328 	sx_xunlock(&sc->sc_lock);
329 	while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
330 		mtx_lock(&sc->sc_events_mtx);
331 		MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
332 		    hz * 5);
333 	}
334 	error = ep->e_error;
335 	g_raid3_event_free(ep);
336 	sx_xlock(&sc->sc_lock);
337 	return (error);
338 }
339 
340 static struct g_raid3_event *
341 g_raid3_event_get(struct g_raid3_softc *sc)
342 {
343 	struct g_raid3_event *ep;
344 
345 	mtx_lock(&sc->sc_events_mtx);
346 	ep = TAILQ_FIRST(&sc->sc_events);
347 	mtx_unlock(&sc->sc_events_mtx);
348 	return (ep);
349 }
350 
351 static void
352 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
353 {
354 
355 	mtx_lock(&sc->sc_events_mtx);
356 	TAILQ_REMOVE(&sc->sc_events, ep, e_next);
357 	mtx_unlock(&sc->sc_events_mtx);
358 }
359 
360 static void
361 g_raid3_event_cancel(struct g_raid3_disk *disk)
362 {
363 	struct g_raid3_softc *sc;
364 	struct g_raid3_event *ep, *tmpep;
365 
366 	sc = disk->d_softc;
367 	sx_assert(&sc->sc_lock, SX_XLOCKED);
368 
369 	mtx_lock(&sc->sc_events_mtx);
370 	TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
371 		if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
372 			continue;
373 		if (ep->e_disk != disk)
374 			continue;
375 		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
376 		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
377 			g_raid3_event_free(ep);
378 		else {
379 			ep->e_error = ECANCELED;
380 			wakeup(ep);
381 		}
382 	}
383 	mtx_unlock(&sc->sc_events_mtx);
384 }
385 
386 /*
387  * Return the number of disks in the given state.
388  * If state is equal to -1, count all connected disks.
389  */
390 u_int
391 g_raid3_ndisks(struct g_raid3_softc *sc, int state)
392 {
393 	struct g_raid3_disk *disk;
394 	u_int n, ndisks;
395 
396 	sx_assert(&sc->sc_lock, SX_LOCKED);
397 
398 	for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
399 		disk = &sc->sc_disks[n];
400 		if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
401 			continue;
402 		if (state == -1 || disk->d_state == state)
403 			ndisks++;
404 	}
405 	return (ndisks);
406 }
407 
408 static u_int
409 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
410 {
411 	struct bio *bp;
412 	u_int nreqs = 0;
413 
414 	mtx_lock(&sc->sc_queue_mtx);
415 	TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
416 		if (bp->bio_from == cp)
417 			nreqs++;
418 	}
419 	mtx_unlock(&sc->sc_queue_mtx);
420 	return (nreqs);
421 }
422 
423 static int
424 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
425 {
426 
427 	if (cp->index > 0) {
428 		G_RAID3_DEBUG(2,
429 		    "I/O requests for %s exist, can't destroy it now.",
430 		    cp->provider->name);
431 		return (1);
432 	}
433 	if (g_raid3_nrequests(sc, cp) > 0) {
434 		G_RAID3_DEBUG(2,
435 		    "I/O requests for %s in queue, can't destroy it now.",
436 		    cp->provider->name);
437 		return (1);
438 	}
439 	return (0);
440 }
441 
442 static void
443 g_raid3_destroy_consumer(void *arg, int flags __unused)
444 {
445 	struct g_consumer *cp;
446 
447 	g_topology_assert();
448 
449 	cp = arg;
450 	G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
451 	g_detach(cp);
452 	g_destroy_consumer(cp);
453 }
454 
455 static void
456 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
457 {
458 	struct g_provider *pp;
459 	int retaste_wait;
460 
461 	g_topology_assert();
462 
463 	cp->private = NULL;
464 	if (g_raid3_is_busy(sc, cp))
465 		return;
466 	G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
467 	pp = cp->provider;
468 	retaste_wait = 0;
469 	if (cp->acw == 1) {
470 		if ((pp->geom->flags & G_GEOM_WITHER) == 0)
471 			retaste_wait = 1;
472 	}
473 	G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
474 	    -cp->acw, -cp->ace, 0);
475 	if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
476 		g_access(cp, -cp->acr, -cp->acw, -cp->ace);
477 	if (retaste_wait) {
478 		/*
479 		 * After retaste event was send (inside g_access()), we can send
480 		 * event to detach and destroy consumer.
481 		 * A class, which has consumer to the given provider connected
482 		 * will not receive retaste event for the provider.
483 		 * This is the way how I ignore retaste events when I close
484 		 * consumers opened for write: I detach and destroy consumer
485 		 * after retaste event is sent.
486 		 */
487 		g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
488 		return;
489 	}
490 	G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
491 	g_detach(cp);
492 	g_destroy_consumer(cp);
493 }
494 
495 static int
496 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
497 {
498 	struct g_consumer *cp;
499 	int error;
500 
501 	g_topology_assert_not();
502 	KASSERT(disk->d_consumer == NULL,
503 	    ("Disk already connected (device %s).", disk->d_softc->sc_name));
504 
505 	g_topology_lock();
506 	cp = g_new_consumer(disk->d_softc->sc_geom);
507 	error = g_attach(cp, pp);
508 	if (error != 0) {
509 		g_destroy_consumer(cp);
510 		g_topology_unlock();
511 		return (error);
512 	}
513 	error = g_access(cp, 1, 1, 1);
514 		g_topology_unlock();
515 	if (error != 0) {
516 		g_detach(cp);
517 		g_destroy_consumer(cp);
518 		G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
519 		    pp->name, error);
520 		return (error);
521 	}
522 	disk->d_consumer = cp;
523 	disk->d_consumer->private = disk;
524 	disk->d_consumer->index = 0;
525 	G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
526 	return (0);
527 }
528 
529 static void
530 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
531 {
532 
533 	g_topology_assert();
534 
535 	if (cp == NULL)
536 		return;
537 	if (cp->provider != NULL)
538 		g_raid3_kill_consumer(sc, cp);
539 	else
540 		g_destroy_consumer(cp);
541 }
542 
543 /*
544  * Initialize disk. This means allocate memory, create consumer, attach it
545  * to the provider and open access (r1w1e1) to it.
546  */
547 static struct g_raid3_disk *
548 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
549     struct g_raid3_metadata *md, int *errorp)
550 {
551 	struct g_raid3_disk *disk;
552 	int error;
553 
554 	disk = &sc->sc_disks[md->md_no];
555 	error = g_raid3_connect_disk(disk, pp);
556 	if (error != 0) {
557 		if (errorp != NULL)
558 			*errorp = error;
559 		return (NULL);
560 	}
561 	disk->d_state = G_RAID3_DISK_STATE_NONE;
562 	disk->d_flags = md->md_dflags;
563 	if (md->md_provider[0] != '\0')
564 		disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
565 	disk->d_sync.ds_consumer = NULL;
566 	disk->d_sync.ds_offset = md->md_sync_offset;
567 	disk->d_sync.ds_offset_done = md->md_sync_offset;
568 	disk->d_genid = md->md_genid;
569 	disk->d_sync.ds_syncid = md->md_syncid;
570 	if (errorp != NULL)
571 		*errorp = 0;
572 	return (disk);
573 }
574 
575 static void
576 g_raid3_destroy_disk(struct g_raid3_disk *disk)
577 {
578 	struct g_raid3_softc *sc;
579 
580 	g_topology_assert_not();
581 	sc = disk->d_softc;
582 	sx_assert(&sc->sc_lock, SX_XLOCKED);
583 
584 	if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
585 		return;
586 	g_raid3_event_cancel(disk);
587 	switch (disk->d_state) {
588 	case G_RAID3_DISK_STATE_SYNCHRONIZING:
589 		if (sc->sc_syncdisk != NULL)
590 			g_raid3_sync_stop(sc, 1);
591 		/* FALLTHROUGH */
592 	case G_RAID3_DISK_STATE_NEW:
593 	case G_RAID3_DISK_STATE_STALE:
594 	case G_RAID3_DISK_STATE_ACTIVE:
595 		g_topology_lock();
596 		g_raid3_disconnect_consumer(sc, disk->d_consumer);
597 		g_topology_unlock();
598 		disk->d_consumer = NULL;
599 		break;
600 	default:
601 		KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
602 		    g_raid3_get_diskname(disk),
603 		    g_raid3_disk_state2str(disk->d_state)));
604 	}
605 	disk->d_state = G_RAID3_DISK_STATE_NODISK;
606 }
607 
608 static void
609 g_raid3_destroy_device(struct g_raid3_softc *sc)
610 {
611 	struct g_raid3_event *ep;
612 	struct g_raid3_disk *disk;
613 	struct g_geom *gp;
614 	struct g_consumer *cp;
615 	u_int n;
616 
617 	g_topology_assert_not();
618 	sx_assert(&sc->sc_lock, SX_XLOCKED);
619 
620 	gp = sc->sc_geom;
621 	if (sc->sc_provider != NULL)
622 		g_raid3_destroy_provider(sc);
623 	for (n = 0; n < sc->sc_ndisks; n++) {
624 		disk = &sc->sc_disks[n];
625 		if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
626 			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
627 			g_raid3_update_metadata(disk);
628 			g_raid3_destroy_disk(disk);
629 		}
630 	}
631 	while ((ep = g_raid3_event_get(sc)) != NULL) {
632 		g_raid3_event_remove(sc, ep);
633 		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
634 			g_raid3_event_free(ep);
635 		else {
636 			ep->e_error = ECANCELED;
637 			ep->e_flags |= G_RAID3_EVENT_DONE;
638 			G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
639 			mtx_lock(&sc->sc_events_mtx);
640 			wakeup(ep);
641 			mtx_unlock(&sc->sc_events_mtx);
642 		}
643 	}
644 	callout_drain(&sc->sc_callout);
645 	cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
646 	g_topology_lock();
647 	if (cp != NULL)
648 		g_raid3_disconnect_consumer(sc, cp);
649 	g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
650 	G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
651 	g_wither_geom(gp, ENXIO);
652 	g_topology_unlock();
653 	if (!g_raid3_use_malloc) {
654 		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
655 		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
656 		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
657 	}
658 	mtx_destroy(&sc->sc_queue_mtx);
659 	mtx_destroy(&sc->sc_events_mtx);
660 	sx_xunlock(&sc->sc_lock);
661 	sx_destroy(&sc->sc_lock);
662 }
663 
664 static void
665 g_raid3_orphan(struct g_consumer *cp)
666 {
667 	struct g_raid3_disk *disk;
668 
669 	g_topology_assert();
670 
671 	disk = cp->private;
672 	if (disk == NULL)
673 		return;
674 	disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
675 	g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
676 	    G_RAID3_EVENT_DONTWAIT);
677 }
678 
679 static int
680 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
681 {
682 	struct g_raid3_softc *sc;
683 	struct g_consumer *cp;
684 	off_t offset, length;
685 	u_char *sector;
686 	int error = 0;
687 
688 	g_topology_assert_not();
689 	sc = disk->d_softc;
690 	sx_assert(&sc->sc_lock, SX_LOCKED);
691 
692 	cp = disk->d_consumer;
693 	KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
694 	KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
695 	KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
696 	    ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
697 	    cp->acw, cp->ace));
698 	length = cp->provider->sectorsize;
699 	offset = cp->provider->mediasize - length;
700 	sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
701 	if (md != NULL)
702 		raid3_metadata_encode(md, sector);
703 	error = g_write_data(cp, offset, sector, length);
704 	free(sector, M_RAID3);
705 	if (error != 0) {
706 		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
707 			G_RAID3_DEBUG(0, "Cannot write metadata on %s "
708 			    "(device=%s, error=%d).",
709 			    g_raid3_get_diskname(disk), sc->sc_name, error);
710 			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
711 		} else {
712 			G_RAID3_DEBUG(1, "Cannot write metadata on %s "
713 			    "(device=%s, error=%d).",
714 			    g_raid3_get_diskname(disk), sc->sc_name, error);
715 		}
716 		if (g_raid3_disconnect_on_failure &&
717 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
718 			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
719 			g_raid3_event_send(disk,
720 			    G_RAID3_DISK_STATE_DISCONNECTED,
721 			    G_RAID3_EVENT_DONTWAIT);
722 		}
723 	}
724 	return (error);
725 }
726 
727 int
728 g_raid3_clear_metadata(struct g_raid3_disk *disk)
729 {
730 	int error;
731 
732 	g_topology_assert_not();
733 	sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
734 
735 	error = g_raid3_write_metadata(disk, NULL);
736 	if (error == 0) {
737 		G_RAID3_DEBUG(2, "Metadata on %s cleared.",
738 		    g_raid3_get_diskname(disk));
739 	} else {
740 		G_RAID3_DEBUG(0,
741 		    "Cannot clear metadata on disk %s (error=%d).",
742 		    g_raid3_get_diskname(disk), error);
743 	}
744 	return (error);
745 }
746 
747 void
748 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
749 {
750 	struct g_raid3_softc *sc;
751 	struct g_provider *pp;
752 
753 	sc = disk->d_softc;
754 	strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
755 	md->md_version = G_RAID3_VERSION;
756 	strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
757 	md->md_id = sc->sc_id;
758 	md->md_all = sc->sc_ndisks;
759 	md->md_genid = sc->sc_genid;
760 	md->md_mediasize = sc->sc_mediasize;
761 	md->md_sectorsize = sc->sc_sectorsize;
762 	md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
763 	md->md_no = disk->d_no;
764 	md->md_syncid = disk->d_sync.ds_syncid;
765 	md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
766 	if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
767 		md->md_sync_offset = 0;
768 	else {
769 		md->md_sync_offset =
770 		    disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
771 	}
772 	if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
773 		pp = disk->d_consumer->provider;
774 	else
775 		pp = NULL;
776 	if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
777 		strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
778 	else
779 		bzero(md->md_provider, sizeof(md->md_provider));
780 	if (pp != NULL)
781 		md->md_provsize = pp->mediasize;
782 	else
783 		md->md_provsize = 0;
784 }
785 
786 void
787 g_raid3_update_metadata(struct g_raid3_disk *disk)
788 {
789 	struct g_raid3_softc *sc;
790 	struct g_raid3_metadata md;
791 	int error;
792 
793 	g_topology_assert_not();
794 	sc = disk->d_softc;
795 	sx_assert(&sc->sc_lock, SX_LOCKED);
796 
797 	g_raid3_fill_metadata(disk, &md);
798 	error = g_raid3_write_metadata(disk, &md);
799 	if (error == 0) {
800 		G_RAID3_DEBUG(2, "Metadata on %s updated.",
801 		    g_raid3_get_diskname(disk));
802 	} else {
803 		G_RAID3_DEBUG(0,
804 		    "Cannot update metadata on disk %s (error=%d).",
805 		    g_raid3_get_diskname(disk), error);
806 	}
807 }
808 
809 static void
810 g_raid3_bump_syncid(struct g_raid3_softc *sc)
811 {
812 	struct g_raid3_disk *disk;
813 	u_int n;
814 
815 	g_topology_assert_not();
816 	sx_assert(&sc->sc_lock, SX_XLOCKED);
817 	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
818 	    ("%s called with no active disks (device=%s).", __func__,
819 	    sc->sc_name));
820 
821 	sc->sc_syncid++;
822 	G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
823 	    sc->sc_syncid);
824 	for (n = 0; n < sc->sc_ndisks; n++) {
825 		disk = &sc->sc_disks[n];
826 		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
827 		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
828 			disk->d_sync.ds_syncid = sc->sc_syncid;
829 			g_raid3_update_metadata(disk);
830 		}
831 	}
832 }
833 
834 static void
835 g_raid3_bump_genid(struct g_raid3_softc *sc)
836 {
837 	struct g_raid3_disk *disk;
838 	u_int n;
839 
840 	g_topology_assert_not();
841 	sx_assert(&sc->sc_lock, SX_XLOCKED);
842 	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
843 	    ("%s called with no active disks (device=%s).", __func__,
844 	    sc->sc_name));
845 
846 	sc->sc_genid++;
847 	G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
848 	    sc->sc_genid);
849 	for (n = 0; n < sc->sc_ndisks; n++) {
850 		disk = &sc->sc_disks[n];
851 		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
852 		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
853 			disk->d_genid = sc->sc_genid;
854 			g_raid3_update_metadata(disk);
855 		}
856 	}
857 }
858 
859 static int
860 g_raid3_idle(struct g_raid3_softc *sc, int acw)
861 {
862 	struct g_raid3_disk *disk;
863 	u_int i;
864 	int timeout;
865 
866 	g_topology_assert_not();
867 	sx_assert(&sc->sc_lock, SX_XLOCKED);
868 
869 	if (sc->sc_provider == NULL)
870 		return (0);
871 	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
872 		return (0);
873 	if (sc->sc_idle)
874 		return (0);
875 	if (sc->sc_writes > 0)
876 		return (0);
877 	if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
878 		timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
879 		if (timeout > 0)
880 			return (timeout);
881 	}
882 	sc->sc_idle = 1;
883 	for (i = 0; i < sc->sc_ndisks; i++) {
884 		disk = &sc->sc_disks[i];
885 		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
886 			continue;
887 		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
888 		    g_raid3_get_diskname(disk), sc->sc_name);
889 		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
890 		g_raid3_update_metadata(disk);
891 	}
892 	return (0);
893 }
894 
895 static void
896 g_raid3_unidle(struct g_raid3_softc *sc)
897 {
898 	struct g_raid3_disk *disk;
899 	u_int i;
900 
901 	g_topology_assert_not();
902 	sx_assert(&sc->sc_lock, SX_XLOCKED);
903 
904 	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
905 		return;
906 	sc->sc_idle = 0;
907 	sc->sc_last_write = time_uptime;
908 	for (i = 0; i < sc->sc_ndisks; i++) {
909 		disk = &sc->sc_disks[i];
910 		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
911 			continue;
912 		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
913 		    g_raid3_get_diskname(disk), sc->sc_name);
914 		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
915 		g_raid3_update_metadata(disk);
916 	}
917 }
918 
919 /*
920  * Treat bio_driver1 field in parent bio as list head and field bio_caller1
921  * in child bio as pointer to the next element on the list.
922  */
923 #define	G_RAID3_HEAD_BIO(pbp)	(pbp)->bio_driver1
924 
925 #define	G_RAID3_NEXT_BIO(cbp)	(cbp)->bio_caller1
926 
927 #define	G_RAID3_FOREACH_BIO(pbp, bp)					\
928 	for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;		\
929 	    (bp) = G_RAID3_NEXT_BIO(bp))
930 
931 #define	G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)			\
932 	for ((bp) = G_RAID3_HEAD_BIO(pbp);				\
933 	    (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);	\
934 	    (bp) = (tmpbp))
935 
936 static void
937 g_raid3_init_bio(struct bio *pbp)
938 {
939 
940 	G_RAID3_HEAD_BIO(pbp) = NULL;
941 }
942 
943 static void
944 g_raid3_remove_bio(struct bio *cbp)
945 {
946 	struct bio *pbp, *bp;
947 
948 	pbp = cbp->bio_parent;
949 	if (G_RAID3_HEAD_BIO(pbp) == cbp)
950 		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
951 	else {
952 		G_RAID3_FOREACH_BIO(pbp, bp) {
953 			if (G_RAID3_NEXT_BIO(bp) == cbp) {
954 				G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
955 				break;
956 			}
957 		}
958 	}
959 	G_RAID3_NEXT_BIO(cbp) = NULL;
960 }
961 
962 static void
963 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
964 {
965 	struct bio *pbp, *bp;
966 
967 	g_raid3_remove_bio(sbp);
968 	pbp = dbp->bio_parent;
969 	G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
970 	if (G_RAID3_HEAD_BIO(pbp) == dbp)
971 		G_RAID3_HEAD_BIO(pbp) = sbp;
972 	else {
973 		G_RAID3_FOREACH_BIO(pbp, bp) {
974 			if (G_RAID3_NEXT_BIO(bp) == dbp) {
975 				G_RAID3_NEXT_BIO(bp) = sbp;
976 				break;
977 			}
978 		}
979 	}
980 	G_RAID3_NEXT_BIO(dbp) = NULL;
981 }
982 
983 static void
984 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
985 {
986 	struct bio *bp, *pbp;
987 	size_t size;
988 
989 	pbp = cbp->bio_parent;
990 	pbp->bio_children--;
991 	KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
992 	size = pbp->bio_length / (sc->sc_ndisks - 1);
993 	g_raid3_free(sc, cbp->bio_data, size);
994 	if (G_RAID3_HEAD_BIO(pbp) == cbp) {
995 		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
996 		G_RAID3_NEXT_BIO(cbp) = NULL;
997 		g_destroy_bio(cbp);
998 	} else {
999 		G_RAID3_FOREACH_BIO(pbp, bp) {
1000 			if (G_RAID3_NEXT_BIO(bp) == cbp)
1001 				break;
1002 		}
1003 		if (bp != NULL) {
1004 			KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
1005 			    ("NULL bp->bio_driver1"));
1006 			G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1007 			G_RAID3_NEXT_BIO(cbp) = NULL;
1008 		}
1009 		g_destroy_bio(cbp);
1010 	}
1011 }
1012 
1013 static struct bio *
1014 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1015 {
1016 	struct bio *bp, *cbp;
1017 	size_t size;
1018 	int memflag;
1019 
1020 	cbp = g_clone_bio(pbp);
1021 	if (cbp == NULL)
1022 		return (NULL);
1023 	size = pbp->bio_length / (sc->sc_ndisks - 1);
1024 	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1025 		memflag = M_WAITOK;
1026 	else
1027 		memflag = M_NOWAIT;
1028 	cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1029 	if (cbp->bio_data == NULL) {
1030 		pbp->bio_children--;
1031 		g_destroy_bio(cbp);
1032 		return (NULL);
1033 	}
1034 	G_RAID3_NEXT_BIO(cbp) = NULL;
1035 	if (G_RAID3_HEAD_BIO(pbp) == NULL)
1036 		G_RAID3_HEAD_BIO(pbp) = cbp;
1037 	else {
1038 		G_RAID3_FOREACH_BIO(pbp, bp) {
1039 			if (G_RAID3_NEXT_BIO(bp) == NULL) {
1040 				G_RAID3_NEXT_BIO(bp) = cbp;
1041 				break;
1042 			}
1043 		}
1044 	}
1045 	return (cbp);
1046 }
1047 
1048 static void
1049 g_raid3_scatter(struct bio *pbp)
1050 {
1051 	struct g_raid3_softc *sc;
1052 	struct g_raid3_disk *disk;
1053 	struct bio *bp, *cbp, *tmpbp;
1054 	off_t atom, cadd, padd, left;
1055 	int first;
1056 
1057 	sc = pbp->bio_to->geom->softc;
1058 	bp = NULL;
1059 	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1060 		/*
1061 		 * Find bio for which we should calculate data.
1062 		 */
1063 		G_RAID3_FOREACH_BIO(pbp, cbp) {
1064 			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1065 				bp = cbp;
1066 				break;
1067 			}
1068 		}
1069 		KASSERT(bp != NULL, ("NULL parity bio."));
1070 	}
1071 	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1072 	cadd = padd = 0;
1073 	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1074 		G_RAID3_FOREACH_BIO(pbp, cbp) {
1075 			if (cbp == bp)
1076 				continue;
1077 			bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1078 			padd += atom;
1079 		}
1080 		cadd += atom;
1081 	}
1082 	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1083 		/*
1084 		 * Calculate parity.
1085 		 */
1086 		first = 1;
1087 		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1088 			if (cbp == bp)
1089 				continue;
1090 			if (first) {
1091 				bcopy(cbp->bio_data, bp->bio_data,
1092 				    bp->bio_length);
1093 				first = 0;
1094 			} else {
1095 				g_raid3_xor(cbp->bio_data, bp->bio_data,
1096 				    bp->bio_length);
1097 			}
1098 			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1099 				g_raid3_destroy_bio(sc, cbp);
1100 		}
1101 	}
1102 	G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1103 		struct g_consumer *cp;
1104 
1105 		disk = cbp->bio_caller2;
1106 		cp = disk->d_consumer;
1107 		cbp->bio_to = cp->provider;
1108 		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1109 		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1110 		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1111 		    cp->acr, cp->acw, cp->ace));
1112 		cp->index++;
1113 		sc->sc_writes++;
1114 		g_io_request(cbp, cp);
1115 	}
1116 }
1117 
1118 static void
1119 g_raid3_gather(struct bio *pbp)
1120 {
1121 	struct g_raid3_softc *sc;
1122 	struct g_raid3_disk *disk;
1123 	struct bio *xbp, *fbp, *cbp;
1124 	off_t atom, cadd, padd, left;
1125 
1126 	sc = pbp->bio_to->geom->softc;
1127 	/*
1128 	 * Find bio for which we have to calculate data.
1129 	 * While going through this path, check if all requests
1130 	 * succeeded, if not, deny whole request.
1131 	 * If we're in COMPLETE mode, we allow one request to fail,
1132 	 * so if we find one, we're sending it to the parity consumer.
1133 	 * If there are more failed requests, we deny whole request.
1134 	 */
1135 	xbp = fbp = NULL;
1136 	G_RAID3_FOREACH_BIO(pbp, cbp) {
1137 		if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1138 			KASSERT(xbp == NULL, ("More than one parity bio."));
1139 			xbp = cbp;
1140 		}
1141 		if (cbp->bio_error == 0)
1142 			continue;
1143 		/*
1144 		 * Found failed request.
1145 		 */
1146 		if (fbp == NULL) {
1147 			if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1148 				/*
1149 				 * We are already in degraded mode, so we can't
1150 				 * accept any failures.
1151 				 */
1152 				if (pbp->bio_error == 0)
1153 					pbp->bio_error = cbp->bio_error;
1154 			} else {
1155 				fbp = cbp;
1156 			}
1157 		} else {
1158 			/*
1159 			 * Next failed request, that's too many.
1160 			 */
1161 			if (pbp->bio_error == 0)
1162 				pbp->bio_error = fbp->bio_error;
1163 		}
1164 		disk = cbp->bio_caller2;
1165 		if (disk == NULL)
1166 			continue;
1167 		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1168 			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1169 			G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1170 			    cbp->bio_error);
1171 		} else {
1172 			G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1173 			    cbp->bio_error);
1174 		}
1175 		if (g_raid3_disconnect_on_failure &&
1176 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1177 			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1178 			g_raid3_event_send(disk,
1179 			    G_RAID3_DISK_STATE_DISCONNECTED,
1180 			    G_RAID3_EVENT_DONTWAIT);
1181 		}
1182 	}
1183 	if (pbp->bio_error != 0)
1184 		goto finish;
1185 	if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1186 		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1187 		if (xbp != fbp)
1188 			g_raid3_replace_bio(xbp, fbp);
1189 		g_raid3_destroy_bio(sc, fbp);
1190 	} else if (fbp != NULL) {
1191 		struct g_consumer *cp;
1192 
1193 		/*
1194 		 * One request failed, so send the same request to
1195 		 * the parity consumer.
1196 		 */
1197 		disk = pbp->bio_driver2;
1198 		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1199 			pbp->bio_error = fbp->bio_error;
1200 			goto finish;
1201 		}
1202 		pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1203 		pbp->bio_inbed--;
1204 		fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1205 		if (disk->d_no == sc->sc_ndisks - 1)
1206 			fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1207 		fbp->bio_error = 0;
1208 		fbp->bio_completed = 0;
1209 		fbp->bio_children = 0;
1210 		fbp->bio_inbed = 0;
1211 		cp = disk->d_consumer;
1212 		fbp->bio_caller2 = disk;
1213 		fbp->bio_to = cp->provider;
1214 		G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1215 		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1216 		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1217 		    cp->acr, cp->acw, cp->ace));
1218 		cp->index++;
1219 		g_io_request(fbp, cp);
1220 		return;
1221 	}
1222 	if (xbp != NULL) {
1223 		/*
1224 		 * Calculate parity.
1225 		 */
1226 		G_RAID3_FOREACH_BIO(pbp, cbp) {
1227 			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1228 				continue;
1229 			g_raid3_xor(cbp->bio_data, xbp->bio_data,
1230 			    xbp->bio_length);
1231 		}
1232 		xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1233 		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1234 			if (!g_raid3_is_zero(xbp)) {
1235 				g_raid3_parity_mismatch++;
1236 				pbp->bio_error = EIO;
1237 				goto finish;
1238 			}
1239 			g_raid3_destroy_bio(sc, xbp);
1240 		}
1241 	}
1242 	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1243 	cadd = padd = 0;
1244 	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1245 		G_RAID3_FOREACH_BIO(pbp, cbp) {
1246 			bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1247 			pbp->bio_completed += atom;
1248 			padd += atom;
1249 		}
1250 		cadd += atom;
1251 	}
1252 finish:
1253 	if (pbp->bio_error == 0)
1254 		G_RAID3_LOGREQ(3, pbp, "Request finished.");
1255 	else {
1256 		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1257 			G_RAID3_LOGREQ(1, pbp, "Verification error.");
1258 		else
1259 			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1260 	}
1261 	pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1262 	while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1263 		g_raid3_destroy_bio(sc, cbp);
1264 	g_io_deliver(pbp, pbp->bio_error);
1265 }
1266 
1267 static void
1268 g_raid3_done(struct bio *bp)
1269 {
1270 	struct g_raid3_softc *sc;
1271 
1272 	sc = bp->bio_from->geom->softc;
1273 	bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1274 	G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1275 	mtx_lock(&sc->sc_queue_mtx);
1276 	bioq_insert_head(&sc->sc_queue, bp);
1277 	mtx_unlock(&sc->sc_queue_mtx);
1278 	wakeup(sc);
1279 	wakeup(&sc->sc_queue);
1280 }
1281 
1282 static void
1283 g_raid3_regular_request(struct bio *cbp)
1284 {
1285 	struct g_raid3_softc *sc;
1286 	struct g_raid3_disk *disk;
1287 	struct bio *pbp;
1288 
1289 	g_topology_assert_not();
1290 
1291 	pbp = cbp->bio_parent;
1292 	sc = pbp->bio_to->geom->softc;
1293 	cbp->bio_from->index--;
1294 	if (cbp->bio_cmd == BIO_WRITE)
1295 		sc->sc_writes--;
1296 	disk = cbp->bio_from->private;
1297 	if (disk == NULL) {
1298 		g_topology_lock();
1299 		g_raid3_kill_consumer(sc, cbp->bio_from);
1300 		g_topology_unlock();
1301 	}
1302 
1303 	G_RAID3_LOGREQ(3, cbp, "Request finished.");
1304 	pbp->bio_inbed++;
1305 	KASSERT(pbp->bio_inbed <= pbp->bio_children,
1306 	    ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1307 	    pbp->bio_children));
1308 	if (pbp->bio_inbed != pbp->bio_children)
1309 		return;
1310 	switch (pbp->bio_cmd) {
1311 	case BIO_READ:
1312 		g_raid3_gather(pbp);
1313 		break;
1314 	case BIO_WRITE:
1315 	case BIO_DELETE:
1316 	    {
1317 		int error = 0;
1318 
1319 		pbp->bio_completed = pbp->bio_length;
1320 		while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1321 			if (cbp->bio_error == 0) {
1322 				g_raid3_destroy_bio(sc, cbp);
1323 				continue;
1324 			}
1325 
1326 			if (error == 0)
1327 				error = cbp->bio_error;
1328 			else if (pbp->bio_error == 0) {
1329 				/*
1330 				 * Next failed request, that's too many.
1331 				 */
1332 				pbp->bio_error = error;
1333 			}
1334 
1335 			disk = cbp->bio_caller2;
1336 			if (disk == NULL) {
1337 				g_raid3_destroy_bio(sc, cbp);
1338 				continue;
1339 			}
1340 
1341 			if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1342 				disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1343 				G_RAID3_LOGREQ(0, cbp,
1344 				    "Request failed (error=%d).",
1345 				    cbp->bio_error);
1346 			} else {
1347 				G_RAID3_LOGREQ(1, cbp,
1348 				    "Request failed (error=%d).",
1349 				    cbp->bio_error);
1350 			}
1351 			if (g_raid3_disconnect_on_failure &&
1352 			    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1353 				sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1354 				g_raid3_event_send(disk,
1355 				    G_RAID3_DISK_STATE_DISCONNECTED,
1356 				    G_RAID3_EVENT_DONTWAIT);
1357 			}
1358 			g_raid3_destroy_bio(sc, cbp);
1359 		}
1360 		if (pbp->bio_error == 0)
1361 			G_RAID3_LOGREQ(3, pbp, "Request finished.");
1362 		else
1363 			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1364 		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1365 		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1366 		bioq_remove(&sc->sc_inflight, pbp);
1367 		/* Release delayed sync requests if possible. */
1368 		g_raid3_sync_release(sc);
1369 		g_io_deliver(pbp, pbp->bio_error);
1370 		break;
1371 	    }
1372 	}
1373 }
1374 
1375 static void
1376 g_raid3_sync_done(struct bio *bp)
1377 {
1378 	struct g_raid3_softc *sc;
1379 
1380 	G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1381 	sc = bp->bio_from->geom->softc;
1382 	bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1383 	mtx_lock(&sc->sc_queue_mtx);
1384 	bioq_insert_head(&sc->sc_queue, bp);
1385 	mtx_unlock(&sc->sc_queue_mtx);
1386 	wakeup(sc);
1387 	wakeup(&sc->sc_queue);
1388 }
1389 
1390 static void
1391 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1392 {
1393 	struct bio_queue_head queue;
1394 	struct g_raid3_disk *disk;
1395 	struct g_consumer *cp;
1396 	struct bio *cbp;
1397 	u_int i;
1398 
1399 	bioq_init(&queue);
1400 	for (i = 0; i < sc->sc_ndisks; i++) {
1401 		disk = &sc->sc_disks[i];
1402 		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1403 			continue;
1404 		cbp = g_clone_bio(bp);
1405 		if (cbp == NULL) {
1406 			for (cbp = bioq_first(&queue); cbp != NULL;
1407 			    cbp = bioq_first(&queue)) {
1408 				bioq_remove(&queue, cbp);
1409 				g_destroy_bio(cbp);
1410 			}
1411 			if (bp->bio_error == 0)
1412 				bp->bio_error = ENOMEM;
1413 			g_io_deliver(bp, bp->bio_error);
1414 			return;
1415 		}
1416 		bioq_insert_tail(&queue, cbp);
1417 		cbp->bio_done = g_std_done;
1418 		cbp->bio_caller1 = disk;
1419 		cbp->bio_to = disk->d_consumer->provider;
1420 	}
1421 	for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1422 		bioq_remove(&queue, cbp);
1423 		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1424 		disk = cbp->bio_caller1;
1425 		cbp->bio_caller1 = NULL;
1426 		cp = disk->d_consumer;
1427 		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1428 		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1429 		    cp->acr, cp->acw, cp->ace));
1430 		g_io_request(cbp, disk->d_consumer);
1431 	}
1432 }
1433 
1434 static void
1435 g_raid3_start(struct bio *bp)
1436 {
1437 	struct g_raid3_softc *sc;
1438 
1439 	sc = bp->bio_to->geom->softc;
1440 	/*
1441 	 * If sc == NULL or there are no valid disks, provider's error
1442 	 * should be set and g_raid3_start() should not be called at all.
1443 	 */
1444 	KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1445 	    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1446 	    ("Provider's error should be set (error=%d)(device=%s).",
1447 	    bp->bio_to->error, bp->bio_to->name));
1448 	G_RAID3_LOGREQ(3, bp, "Request received.");
1449 
1450 	switch (bp->bio_cmd) {
1451 	case BIO_READ:
1452 	case BIO_WRITE:
1453 	case BIO_DELETE:
1454 		break;
1455 	case BIO_FLUSH:
1456 		g_raid3_flush(sc, bp);
1457 		return;
1458 	case BIO_GETATTR:
1459 	default:
1460 		g_io_deliver(bp, EOPNOTSUPP);
1461 		return;
1462 	}
1463 	mtx_lock(&sc->sc_queue_mtx);
1464 	bioq_insert_tail(&sc->sc_queue, bp);
1465 	mtx_unlock(&sc->sc_queue_mtx);
1466 	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1467 	wakeup(sc);
1468 }
1469 
1470 /*
1471  * Return TRUE if the given request is colliding with a in-progress
1472  * synchronization request.
1473  */
1474 static int
1475 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1476 {
1477 	struct g_raid3_disk *disk;
1478 	struct bio *sbp;
1479 	off_t rstart, rend, sstart, send;
1480 	int i;
1481 
1482 	disk = sc->sc_syncdisk;
1483 	if (disk == NULL)
1484 		return (0);
1485 	rstart = bp->bio_offset;
1486 	rend = bp->bio_offset + bp->bio_length;
1487 	for (i = 0; i < g_raid3_syncreqs; i++) {
1488 		sbp = disk->d_sync.ds_bios[i];
1489 		if (sbp == NULL)
1490 			continue;
1491 		sstart = sbp->bio_offset;
1492 		send = sbp->bio_length;
1493 		if (sbp->bio_cmd == BIO_WRITE) {
1494 			sstart *= sc->sc_ndisks - 1;
1495 			send *= sc->sc_ndisks - 1;
1496 		}
1497 		send += sstart;
1498 		if (rend > sstart && rstart < send)
1499 			return (1);
1500 	}
1501 	return (0);
1502 }
1503 
1504 /*
1505  * Return TRUE if the given sync request is colliding with a in-progress regular
1506  * request.
1507  */
1508 static int
1509 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1510 {
1511 	off_t rstart, rend, sstart, send;
1512 	struct bio *bp;
1513 
1514 	if (sc->sc_syncdisk == NULL)
1515 		return (0);
1516 	sstart = sbp->bio_offset;
1517 	send = sstart + sbp->bio_length;
1518 	TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1519 		rstart = bp->bio_offset;
1520 		rend = bp->bio_offset + bp->bio_length;
1521 		if (rend > sstart && rstart < send)
1522 			return (1);
1523 	}
1524 	return (0);
1525 }
1526 
1527 /*
1528  * Puts request onto delayed queue.
1529  */
1530 static void
1531 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1532 {
1533 
1534 	G_RAID3_LOGREQ(2, bp, "Delaying request.");
1535 	bioq_insert_head(&sc->sc_regular_delayed, bp);
1536 }
1537 
1538 /*
1539  * Puts synchronization request onto delayed queue.
1540  */
1541 static void
1542 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1543 {
1544 
1545 	G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1546 	bioq_insert_tail(&sc->sc_sync_delayed, bp);
1547 }
1548 
1549 /*
1550  * Releases delayed regular requests which don't collide anymore with sync
1551  * requests.
1552  */
1553 static void
1554 g_raid3_regular_release(struct g_raid3_softc *sc)
1555 {
1556 	struct bio *bp, *bp2;
1557 
1558 	TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1559 		if (g_raid3_sync_collision(sc, bp))
1560 			continue;
1561 		bioq_remove(&sc->sc_regular_delayed, bp);
1562 		G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1563 		mtx_lock(&sc->sc_queue_mtx);
1564 		bioq_insert_head(&sc->sc_queue, bp);
1565 #if 0
1566 		/*
1567 		 * wakeup() is not needed, because this function is called from
1568 		 * the worker thread.
1569 		 */
1570 		wakeup(&sc->sc_queue);
1571 #endif
1572 		mtx_unlock(&sc->sc_queue_mtx);
1573 	}
1574 }
1575 
1576 /*
1577  * Releases delayed sync requests which don't collide anymore with regular
1578  * requests.
1579  */
1580 static void
1581 g_raid3_sync_release(struct g_raid3_softc *sc)
1582 {
1583 	struct bio *bp, *bp2;
1584 
1585 	TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1586 		if (g_raid3_regular_collision(sc, bp))
1587 			continue;
1588 		bioq_remove(&sc->sc_sync_delayed, bp);
1589 		G_RAID3_LOGREQ(2, bp,
1590 		    "Releasing delayed synchronization request.");
1591 		g_io_request(bp, bp->bio_from);
1592 	}
1593 }
1594 
1595 /*
1596  * Handle synchronization requests.
1597  * Every synchronization request is two-steps process: first, READ request is
1598  * send to active provider and then WRITE request (with read data) to the provider
1599  * beeing synchronized. When WRITE is finished, new synchronization request is
1600  * send.
1601  */
1602 static void
1603 g_raid3_sync_request(struct bio *bp)
1604 {
1605 	struct g_raid3_softc *sc;
1606 	struct g_raid3_disk *disk;
1607 
1608 	bp->bio_from->index--;
1609 	sc = bp->bio_from->geom->softc;
1610 	disk = bp->bio_from->private;
1611 	if (disk == NULL) {
1612 		sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1613 		g_topology_lock();
1614 		g_raid3_kill_consumer(sc, bp->bio_from);
1615 		g_topology_unlock();
1616 		free(bp->bio_data, M_RAID3);
1617 		g_destroy_bio(bp);
1618 		sx_xlock(&sc->sc_lock);
1619 		return;
1620 	}
1621 
1622 	/*
1623 	 * Synchronization request.
1624 	 */
1625 	switch (bp->bio_cmd) {
1626 	case BIO_READ:
1627 	    {
1628 		struct g_consumer *cp;
1629 		u_char *dst, *src;
1630 		off_t left;
1631 		u_int atom;
1632 
1633 		if (bp->bio_error != 0) {
1634 			G_RAID3_LOGREQ(0, bp,
1635 			    "Synchronization request failed (error=%d).",
1636 			    bp->bio_error);
1637 			g_destroy_bio(bp);
1638 			return;
1639 		}
1640 		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1641 		atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1642 		dst = src = bp->bio_data;
1643 		if (disk->d_no == sc->sc_ndisks - 1) {
1644 			u_int n;
1645 
1646 			/* Parity component. */
1647 			for (left = bp->bio_length; left > 0;
1648 			    left -= sc->sc_sectorsize) {
1649 				bcopy(src, dst, atom);
1650 				src += atom;
1651 				for (n = 1; n < sc->sc_ndisks - 1; n++) {
1652 					g_raid3_xor(src, dst, atom);
1653 					src += atom;
1654 				}
1655 				dst += atom;
1656 			}
1657 		} else {
1658 			/* Regular component. */
1659 			src += atom * disk->d_no;
1660 			for (left = bp->bio_length; left > 0;
1661 			    left -= sc->sc_sectorsize) {
1662 				bcopy(src, dst, atom);
1663 				src += sc->sc_sectorsize;
1664 				dst += atom;
1665 			}
1666 		}
1667 		bp->bio_driver1 = bp->bio_driver2 = NULL;
1668 		bp->bio_pflags = 0;
1669 		bp->bio_offset /= sc->sc_ndisks - 1;
1670 		bp->bio_length /= sc->sc_ndisks - 1;
1671 		bp->bio_cmd = BIO_WRITE;
1672 		bp->bio_cflags = 0;
1673 		bp->bio_children = bp->bio_inbed = 0;
1674 		cp = disk->d_consumer;
1675 		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1676 		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1677 		    cp->acr, cp->acw, cp->ace));
1678 		cp->index++;
1679 		g_io_request(bp, cp);
1680 		return;
1681 	    }
1682 	case BIO_WRITE:
1683 	    {
1684 		struct g_raid3_disk_sync *sync;
1685 		off_t boffset, moffset;
1686 		void *data;
1687 		int i;
1688 
1689 		if (bp->bio_error != 0) {
1690 			G_RAID3_LOGREQ(0, bp,
1691 			    "Synchronization request failed (error=%d).",
1692 			    bp->bio_error);
1693 			g_destroy_bio(bp);
1694 			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1695 			g_raid3_event_send(disk,
1696 			    G_RAID3_DISK_STATE_DISCONNECTED,
1697 			    G_RAID3_EVENT_DONTWAIT);
1698 			return;
1699 		}
1700 		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1701 		sync = &disk->d_sync;
1702 		if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1703 		    sync->ds_consumer == NULL ||
1704 		    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1705 			/* Don't send more synchronization requests. */
1706 			sync->ds_inflight--;
1707 			if (sync->ds_bios != NULL) {
1708 				i = (int)(uintptr_t)bp->bio_caller1;
1709 				sync->ds_bios[i] = NULL;
1710 			}
1711 			free(bp->bio_data, M_RAID3);
1712 			g_destroy_bio(bp);
1713 			if (sync->ds_inflight > 0)
1714 				return;
1715 			if (sync->ds_consumer == NULL ||
1716 			    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1717 				return;
1718 			}
1719 			/*
1720 			 * Disk up-to-date, activate it.
1721 			 */
1722 			g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1723 			    G_RAID3_EVENT_DONTWAIT);
1724 			return;
1725 		}
1726 
1727 		/* Send next synchronization request. */
1728 		data = bp->bio_data;
1729 		bzero(bp, sizeof(*bp));
1730 		bp->bio_cmd = BIO_READ;
1731 		bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1732 		bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
1733 		sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1734 		bp->bio_done = g_raid3_sync_done;
1735 		bp->bio_data = data;
1736 		bp->bio_from = sync->ds_consumer;
1737 		bp->bio_to = sc->sc_provider;
1738 		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1739 		sync->ds_consumer->index++;
1740 		/*
1741 		 * Delay the request if it is colliding with a regular request.
1742 		 */
1743 		if (g_raid3_regular_collision(sc, bp))
1744 			g_raid3_sync_delay(sc, bp);
1745 		else
1746 			g_io_request(bp, sync->ds_consumer);
1747 
1748 		/* Release delayed requests if possible. */
1749 		g_raid3_regular_release(sc);
1750 
1751 		/* Find the smallest offset. */
1752 		moffset = sc->sc_mediasize;
1753 		for (i = 0; i < g_raid3_syncreqs; i++) {
1754 			bp = sync->ds_bios[i];
1755 			boffset = bp->bio_offset;
1756 			if (bp->bio_cmd == BIO_WRITE)
1757 				boffset *= sc->sc_ndisks - 1;
1758 			if (boffset < moffset)
1759 				moffset = boffset;
1760 		}
1761 		if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
1762 			/* Update offset_done on every 100 blocks. */
1763 			sync->ds_offset_done = moffset;
1764 			g_raid3_update_metadata(disk);
1765 		}
1766 		return;
1767 	    }
1768 	default:
1769 		KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1770 		    bp->bio_cmd, sc->sc_name));
1771 		break;
1772 	}
1773 }
1774 
1775 static int
1776 g_raid3_register_request(struct bio *pbp)
1777 {
1778 	struct g_raid3_softc *sc;
1779 	struct g_raid3_disk *disk;
1780 	struct g_consumer *cp;
1781 	struct bio *cbp, *tmpbp;
1782 	off_t offset, length;
1783 	u_int n, ndisks;
1784 	int round_robin, verify;
1785 
1786 	ndisks = 0;
1787 	sc = pbp->bio_to->geom->softc;
1788 	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1789 	    sc->sc_syncdisk == NULL) {
1790 		g_io_deliver(pbp, EIO);
1791 		return (0);
1792 	}
1793 	g_raid3_init_bio(pbp);
1794 	length = pbp->bio_length / (sc->sc_ndisks - 1);
1795 	offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1796 	round_robin = verify = 0;
1797 	switch (pbp->bio_cmd) {
1798 	case BIO_READ:
1799 		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1800 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1801 			pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1802 			verify = 1;
1803 			ndisks = sc->sc_ndisks;
1804 		} else {
1805 			verify = 0;
1806 			ndisks = sc->sc_ndisks - 1;
1807 		}
1808 		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1809 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1810 			round_robin = 1;
1811 		} else {
1812 			round_robin = 0;
1813 		}
1814 		KASSERT(!round_robin || !verify,
1815 		    ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1816 		pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1817 		break;
1818 	case BIO_WRITE:
1819 	case BIO_DELETE:
1820 		/*
1821 		 * Delay the request if it is colliding with a synchronization
1822 		 * request.
1823 		 */
1824 		if (g_raid3_sync_collision(sc, pbp)) {
1825 			g_raid3_regular_delay(sc, pbp);
1826 			return (0);
1827 		}
1828 
1829 		if (sc->sc_idle)
1830 			g_raid3_unidle(sc);
1831 		else
1832 			sc->sc_last_write = time_uptime;
1833 
1834 		ndisks = sc->sc_ndisks;
1835 		break;
1836 	}
1837 	for (n = 0; n < ndisks; n++) {
1838 		disk = &sc->sc_disks[n];
1839 		cbp = g_raid3_clone_bio(sc, pbp);
1840 		if (cbp == NULL) {
1841 			while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1842 				g_raid3_destroy_bio(sc, cbp);
1843 			/*
1844 			 * To prevent deadlock, we must run back up
1845 			 * with the ENOMEM for failed requests of any
1846 			 * of our consumers.  Our own sync requests
1847 			 * can stick around, as they are finite.
1848 			 */
1849 			if ((pbp->bio_cflags &
1850 			    G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1851 				g_io_deliver(pbp, ENOMEM);
1852 				return (0);
1853 			}
1854 			return (ENOMEM);
1855 		}
1856 		cbp->bio_offset = offset;
1857 		cbp->bio_length = length;
1858 		cbp->bio_done = g_raid3_done;
1859 		switch (pbp->bio_cmd) {
1860 		case BIO_READ:
1861 			if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1862 				/*
1863 				 * Replace invalid component with the parity
1864 				 * component.
1865 				 */
1866 				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1867 				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1868 				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1869 			} else if (round_robin &&
1870 			    disk->d_no == sc->sc_round_robin) {
1871 				/*
1872 				 * In round-robin mode skip one data component
1873 				 * and use parity component when reading.
1874 				 */
1875 				pbp->bio_driver2 = disk;
1876 				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1877 				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1878 				sc->sc_round_robin++;
1879 				round_robin = 0;
1880 			} else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1881 				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1882 			}
1883 			break;
1884 		case BIO_WRITE:
1885 		case BIO_DELETE:
1886 			if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1887 			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1888 				if (n == ndisks - 1) {
1889 					/*
1890 					 * Active parity component, mark it as such.
1891 					 */
1892 					cbp->bio_cflags |=
1893 					    G_RAID3_BIO_CFLAG_PARITY;
1894 				}
1895 			} else {
1896 				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1897 				if (n == ndisks - 1) {
1898 					/*
1899 					 * Parity component is not connected,
1900 					 * so destroy its request.
1901 					 */
1902 					pbp->bio_pflags |=
1903 					    G_RAID3_BIO_PFLAG_NOPARITY;
1904 					g_raid3_destroy_bio(sc, cbp);
1905 					cbp = NULL;
1906 				} else {
1907 					cbp->bio_cflags |=
1908 					    G_RAID3_BIO_CFLAG_NODISK;
1909 					disk = NULL;
1910 				}
1911 			}
1912 			break;
1913 		}
1914 		if (cbp != NULL)
1915 			cbp->bio_caller2 = disk;
1916 	}
1917 	switch (pbp->bio_cmd) {
1918 	case BIO_READ:
1919 		if (round_robin) {
1920 			/*
1921 			 * If we are in round-robin mode and 'round_robin' is
1922 			 * still 1, it means, that we skipped parity component
1923 			 * for this read and must reset sc_round_robin field.
1924 			 */
1925 			sc->sc_round_robin = 0;
1926 		}
1927 		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1928 			disk = cbp->bio_caller2;
1929 			cp = disk->d_consumer;
1930 			cbp->bio_to = cp->provider;
1931 			G_RAID3_LOGREQ(3, cbp, "Sending request.");
1932 			KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1933 			    ("Consumer %s not opened (r%dw%de%d).",
1934 			    cp->provider->name, cp->acr, cp->acw, cp->ace));
1935 			cp->index++;
1936 			g_io_request(cbp, cp);
1937 		}
1938 		break;
1939 	case BIO_WRITE:
1940 	case BIO_DELETE:
1941 		/*
1942 		 * Put request onto inflight queue, so we can check if new
1943 		 * synchronization requests don't collide with it.
1944 		 */
1945 		bioq_insert_tail(&sc->sc_inflight, pbp);
1946 
1947 		/*
1948 		 * Bump syncid on first write.
1949 		 */
1950 		if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1951 			sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1952 			g_raid3_bump_syncid(sc);
1953 		}
1954 		g_raid3_scatter(pbp);
1955 		break;
1956 	}
1957 	return (0);
1958 }
1959 
1960 static int
1961 g_raid3_can_destroy(struct g_raid3_softc *sc)
1962 {
1963 	struct g_geom *gp;
1964 	struct g_consumer *cp;
1965 
1966 	g_topology_assert();
1967 	gp = sc->sc_geom;
1968 	if (gp->softc == NULL)
1969 		return (1);
1970 	LIST_FOREACH(cp, &gp->consumer, consumer) {
1971 		if (g_raid3_is_busy(sc, cp))
1972 			return (0);
1973 	}
1974 	gp = sc->sc_sync.ds_geom;
1975 	LIST_FOREACH(cp, &gp->consumer, consumer) {
1976 		if (g_raid3_is_busy(sc, cp))
1977 			return (0);
1978 	}
1979 	G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1980 	    sc->sc_name);
1981 	return (1);
1982 }
1983 
1984 static int
1985 g_raid3_try_destroy(struct g_raid3_softc *sc)
1986 {
1987 
1988 	g_topology_assert_not();
1989 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1990 
1991 	if (sc->sc_rootmount != NULL) {
1992 		G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1993 		    sc->sc_rootmount);
1994 		root_mount_rel(sc->sc_rootmount);
1995 		sc->sc_rootmount = NULL;
1996 	}
1997 
1998 	g_topology_lock();
1999 	if (!g_raid3_can_destroy(sc)) {
2000 		g_topology_unlock();
2001 		return (0);
2002 	}
2003 	sc->sc_geom->softc = NULL;
2004 	sc->sc_sync.ds_geom->softc = NULL;
2005 	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2006 		g_topology_unlock();
2007 		G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2008 		    &sc->sc_worker);
2009 		/* Unlock sc_lock here, as it can be destroyed after wakeup. */
2010 		sx_xunlock(&sc->sc_lock);
2011 		wakeup(&sc->sc_worker);
2012 		sc->sc_worker = NULL;
2013 	} else {
2014 		g_topology_unlock();
2015 		g_raid3_destroy_device(sc);
2016 		free(sc->sc_disks, M_RAID3);
2017 		free(sc, M_RAID3);
2018 	}
2019 	return (1);
2020 }
2021 
2022 /*
2023  * Worker thread.
2024  */
2025 static void
2026 g_raid3_worker(void *arg)
2027 {
2028 	struct g_raid3_softc *sc;
2029 	struct g_raid3_event *ep;
2030 	struct bio *bp;
2031 	int timeout;
2032 
2033 	sc = arg;
2034 	thread_lock(curthread);
2035 	sched_prio(curthread, PRIBIO);
2036 	thread_unlock(curthread);
2037 
2038 	sx_xlock(&sc->sc_lock);
2039 	for (;;) {
2040 		G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2041 		/*
2042 		 * First take a look at events.
2043 		 * This is important to handle events before any I/O requests.
2044 		 */
2045 		ep = g_raid3_event_get(sc);
2046 		if (ep != NULL) {
2047 			g_raid3_event_remove(sc, ep);
2048 			if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2049 				/* Update only device status. */
2050 				G_RAID3_DEBUG(3,
2051 				    "Running event for device %s.",
2052 				    sc->sc_name);
2053 				ep->e_error = 0;
2054 				g_raid3_update_device(sc, 1);
2055 			} else {
2056 				/* Update disk status. */
2057 				G_RAID3_DEBUG(3, "Running event for disk %s.",
2058 				     g_raid3_get_diskname(ep->e_disk));
2059 				ep->e_error = g_raid3_update_disk(ep->e_disk,
2060 				    ep->e_state);
2061 				if (ep->e_error == 0)
2062 					g_raid3_update_device(sc, 0);
2063 			}
2064 			if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2065 				KASSERT(ep->e_error == 0,
2066 				    ("Error cannot be handled."));
2067 				g_raid3_event_free(ep);
2068 			} else {
2069 				ep->e_flags |= G_RAID3_EVENT_DONE;
2070 				G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2071 				    ep);
2072 				mtx_lock(&sc->sc_events_mtx);
2073 				wakeup(ep);
2074 				mtx_unlock(&sc->sc_events_mtx);
2075 			}
2076 			if ((sc->sc_flags &
2077 			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2078 				if (g_raid3_try_destroy(sc)) {
2079 					curthread->td_pflags &= ~TDP_GEOM;
2080 					G_RAID3_DEBUG(1, "Thread exiting.");
2081 					kproc_exit(0);
2082 				}
2083 			}
2084 			G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2085 			continue;
2086 		}
2087 		/*
2088 		 * Check if we can mark array as CLEAN and if we can't take
2089 		 * how much seconds should we wait.
2090 		 */
2091 		timeout = g_raid3_idle(sc, -1);
2092 		/*
2093 		 * Now I/O requests.
2094 		 */
2095 		/* Get first request from the queue. */
2096 		mtx_lock(&sc->sc_queue_mtx);
2097 		bp = bioq_first(&sc->sc_queue);
2098 		if (bp == NULL) {
2099 			if ((sc->sc_flags &
2100 			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2101 				mtx_unlock(&sc->sc_queue_mtx);
2102 				if (g_raid3_try_destroy(sc)) {
2103 					curthread->td_pflags &= ~TDP_GEOM;
2104 					G_RAID3_DEBUG(1, "Thread exiting.");
2105 					kproc_exit(0);
2106 				}
2107 				mtx_lock(&sc->sc_queue_mtx);
2108 			}
2109 			sx_xunlock(&sc->sc_lock);
2110 			/*
2111 			 * XXX: We can miss an event here, because an event
2112 			 *      can be added without sx-device-lock and without
2113 			 *      mtx-queue-lock. Maybe I should just stop using
2114 			 *      dedicated mutex for events synchronization and
2115 			 *      stick with the queue lock?
2116 			 *      The event will hang here until next I/O request
2117 			 *      or next event is received.
2118 			 */
2119 			MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2120 			    timeout * hz);
2121 			sx_xlock(&sc->sc_lock);
2122 			G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2123 			continue;
2124 		}
2125 process:
2126 		bioq_remove(&sc->sc_queue, bp);
2127 		mtx_unlock(&sc->sc_queue_mtx);
2128 
2129 		if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2130 		    (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2131 			g_raid3_sync_request(bp);	/* READ */
2132 		} else if (bp->bio_to != sc->sc_provider) {
2133 			if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2134 				g_raid3_regular_request(bp);
2135 			else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2136 				g_raid3_sync_request(bp);	/* WRITE */
2137 			else {
2138 				KASSERT(0,
2139 				    ("Invalid request cflags=0x%hhx to=%s.",
2140 				    bp->bio_cflags, bp->bio_to->name));
2141 			}
2142 		} else if (g_raid3_register_request(bp) != 0) {
2143 			mtx_lock(&sc->sc_queue_mtx);
2144 			bioq_insert_head(&sc->sc_queue, bp);
2145 			/*
2146 			 * We are short in memory, let see if there are finished
2147 			 * request we can free.
2148 			 */
2149 			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2150 				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2151 					goto process;
2152 			}
2153 			/*
2154 			 * No finished regular request, so at least keep
2155 			 * synchronization running.
2156 			 */
2157 			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2158 				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2159 					goto process;
2160 			}
2161 			sx_xunlock(&sc->sc_lock);
2162 			MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2163 			    "r3:lowmem", hz / 10);
2164 			sx_xlock(&sc->sc_lock);
2165 		}
2166 		G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2167 	}
2168 }
2169 
2170 static void
2171 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2172 {
2173 
2174 	sx_assert(&sc->sc_lock, SX_LOCKED);
2175 	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2176 		return;
2177 	if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2178 		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2179 		    g_raid3_get_diskname(disk), sc->sc_name);
2180 		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2181 	} else if (sc->sc_idle &&
2182 	    (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2183 		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2184 		    g_raid3_get_diskname(disk), sc->sc_name);
2185 		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2186 	}
2187 }
2188 
2189 static void
2190 g_raid3_sync_start(struct g_raid3_softc *sc)
2191 {
2192 	struct g_raid3_disk *disk;
2193 	struct g_consumer *cp;
2194 	struct bio *bp;
2195 	int error;
2196 	u_int n;
2197 
2198 	g_topology_assert_not();
2199 	sx_assert(&sc->sc_lock, SX_XLOCKED);
2200 
2201 	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2202 	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2203 	    sc->sc_state));
2204 	KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2205 	    sc->sc_name, sc->sc_state));
2206 	disk = NULL;
2207 	for (n = 0; n < sc->sc_ndisks; n++) {
2208 		if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2209 			continue;
2210 		disk = &sc->sc_disks[n];
2211 		break;
2212 	}
2213 	if (disk == NULL)
2214 		return;
2215 
2216 	sx_xunlock(&sc->sc_lock);
2217 	g_topology_lock();
2218 	cp = g_new_consumer(sc->sc_sync.ds_geom);
2219 	error = g_attach(cp, sc->sc_provider);
2220 	KASSERT(error == 0,
2221 	    ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2222 	error = g_access(cp, 1, 0, 0);
2223 	KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2224 	g_topology_unlock();
2225 	sx_xlock(&sc->sc_lock);
2226 
2227 	G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2228 	    g_raid3_get_diskname(disk));
2229 	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2230 		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2231 	KASSERT(disk->d_sync.ds_consumer == NULL,
2232 	    ("Sync consumer already exists (device=%s, disk=%s).",
2233 	    sc->sc_name, g_raid3_get_diskname(disk)));
2234 
2235 	disk->d_sync.ds_consumer = cp;
2236 	disk->d_sync.ds_consumer->private = disk;
2237 	disk->d_sync.ds_consumer->index = 0;
2238 	sc->sc_syncdisk = disk;
2239 
2240 	/*
2241 	 * Allocate memory for synchronization bios and initialize them.
2242 	 */
2243 	disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2244 	    M_RAID3, M_WAITOK);
2245 	for (n = 0; n < g_raid3_syncreqs; n++) {
2246 		bp = g_alloc_bio();
2247 		disk->d_sync.ds_bios[n] = bp;
2248 		bp->bio_parent = NULL;
2249 		bp->bio_cmd = BIO_READ;
2250 		bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
2251 		bp->bio_cflags = 0;
2252 		bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2253 		bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
2254 		disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2255 		bp->bio_done = g_raid3_sync_done;
2256 		bp->bio_from = disk->d_sync.ds_consumer;
2257 		bp->bio_to = sc->sc_provider;
2258 		bp->bio_caller1 = (void *)(uintptr_t)n;
2259 	}
2260 
2261 	/* Set the number of in-flight synchronization requests. */
2262 	disk->d_sync.ds_inflight = g_raid3_syncreqs;
2263 
2264 	/*
2265 	 * Fire off first synchronization requests.
2266 	 */
2267 	for (n = 0; n < g_raid3_syncreqs; n++) {
2268 		bp = disk->d_sync.ds_bios[n];
2269 		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2270 		disk->d_sync.ds_consumer->index++;
2271 		/*
2272 		 * Delay the request if it is colliding with a regular request.
2273 		 */
2274 		if (g_raid3_regular_collision(sc, bp))
2275 			g_raid3_sync_delay(sc, bp);
2276 		else
2277 			g_io_request(bp, disk->d_sync.ds_consumer);
2278 	}
2279 }
2280 
2281 /*
2282  * Stop synchronization process.
2283  * type: 0 - synchronization finished
2284  *       1 - synchronization stopped
2285  */
2286 static void
2287 g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2288 {
2289 	struct g_raid3_disk *disk;
2290 	struct g_consumer *cp;
2291 
2292 	g_topology_assert_not();
2293 	sx_assert(&sc->sc_lock, SX_LOCKED);
2294 
2295 	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2296 	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2297 	    sc->sc_state));
2298 	disk = sc->sc_syncdisk;
2299 	sc->sc_syncdisk = NULL;
2300 	KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2301 	KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2302 	    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2303 	    g_raid3_disk_state2str(disk->d_state)));
2304 	if (disk->d_sync.ds_consumer == NULL)
2305 		return;
2306 
2307 	if (type == 0) {
2308 		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2309 		    sc->sc_name, g_raid3_get_diskname(disk));
2310 	} else /* if (type == 1) */ {
2311 		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2312 		    sc->sc_name, g_raid3_get_diskname(disk));
2313 	}
2314 	free(disk->d_sync.ds_bios, M_RAID3);
2315 	disk->d_sync.ds_bios = NULL;
2316 	cp = disk->d_sync.ds_consumer;
2317 	disk->d_sync.ds_consumer = NULL;
2318 	disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2319 	sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2320 	g_topology_lock();
2321 	g_raid3_kill_consumer(sc, cp);
2322 	g_topology_unlock();
2323 	sx_xlock(&sc->sc_lock);
2324 }
2325 
2326 static void
2327 g_raid3_launch_provider(struct g_raid3_softc *sc)
2328 {
2329 	struct g_provider *pp;
2330 	struct g_raid3_disk *disk;
2331 	int n;
2332 
2333 	sx_assert(&sc->sc_lock, SX_LOCKED);
2334 
2335 	g_topology_lock();
2336 	pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2337 	pp->mediasize = sc->sc_mediasize;
2338 	pp->sectorsize = sc->sc_sectorsize;
2339 	pp->stripesize = 0;
2340 	pp->stripeoffset = 0;
2341 	for (n = 0; n < sc->sc_ndisks; n++) {
2342 		disk = &sc->sc_disks[n];
2343 		if (disk->d_consumer && disk->d_consumer->provider &&
2344 		    disk->d_consumer->provider->stripesize > pp->stripesize) {
2345 			pp->stripesize = disk->d_consumer->provider->stripesize;
2346 			pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2347 		}
2348 	}
2349 	pp->stripesize *= sc->sc_ndisks - 1;
2350 	pp->stripeoffset *= sc->sc_ndisks - 1;
2351 	sc->sc_provider = pp;
2352 	g_error_provider(pp, 0);
2353 	g_topology_unlock();
2354 	G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2355 	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2356 
2357 	if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2358 		g_raid3_sync_start(sc);
2359 }
2360 
2361 static void
2362 g_raid3_destroy_provider(struct g_raid3_softc *sc)
2363 {
2364 	struct bio *bp;
2365 
2366 	g_topology_assert_not();
2367 	KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2368 	    sc->sc_name));
2369 
2370 	g_topology_lock();
2371 	g_error_provider(sc->sc_provider, ENXIO);
2372 	mtx_lock(&sc->sc_queue_mtx);
2373 	while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2374 		bioq_remove(&sc->sc_queue, bp);
2375 		g_io_deliver(bp, ENXIO);
2376 	}
2377 	mtx_unlock(&sc->sc_queue_mtx);
2378 	G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2379 	    sc->sc_provider->name);
2380 	sc->sc_provider->flags |= G_PF_WITHER;
2381 	g_orphan_provider(sc->sc_provider, ENXIO);
2382 	g_topology_unlock();
2383 	sc->sc_provider = NULL;
2384 	if (sc->sc_syncdisk != NULL)
2385 		g_raid3_sync_stop(sc, 1);
2386 }
2387 
2388 static void
2389 g_raid3_go(void *arg)
2390 {
2391 	struct g_raid3_softc *sc;
2392 
2393 	sc = arg;
2394 	G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2395 	g_raid3_event_send(sc, 0,
2396 	    G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2397 }
2398 
2399 static u_int
2400 g_raid3_determine_state(struct g_raid3_disk *disk)
2401 {
2402 	struct g_raid3_softc *sc;
2403 	u_int state;
2404 
2405 	sc = disk->d_softc;
2406 	if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2407 		if ((disk->d_flags &
2408 		    G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2409 			/* Disk does not need synchronization. */
2410 			state = G_RAID3_DISK_STATE_ACTIVE;
2411 		} else {
2412 			if ((sc->sc_flags &
2413 			     G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2414 			    (disk->d_flags &
2415 			     G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2416 				/*
2417 				 * We can start synchronization from
2418 				 * the stored offset.
2419 				 */
2420 				state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2421 			} else {
2422 				state = G_RAID3_DISK_STATE_STALE;
2423 			}
2424 		}
2425 	} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2426 		/*
2427 		 * Reset all synchronization data for this disk,
2428 		 * because if it even was synchronized, it was
2429 		 * synchronized to disks with different syncid.
2430 		 */
2431 		disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2432 		disk->d_sync.ds_offset = 0;
2433 		disk->d_sync.ds_offset_done = 0;
2434 		disk->d_sync.ds_syncid = sc->sc_syncid;
2435 		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2436 		    (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2437 			state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2438 		} else {
2439 			state = G_RAID3_DISK_STATE_STALE;
2440 		}
2441 	} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2442 		/*
2443 		 * Not good, NOT GOOD!
2444 		 * It means that device was started on stale disks
2445 		 * and more fresh disk just arrive.
2446 		 * If there were writes, device is broken, sorry.
2447 		 * I think the best choice here is don't touch
2448 		 * this disk and inform the user loudly.
2449 		 */
2450 		G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2451 		    "disk (%s) arrives!! It will not be connected to the "
2452 		    "running device.", sc->sc_name,
2453 		    g_raid3_get_diskname(disk));
2454 		g_raid3_destroy_disk(disk);
2455 		state = G_RAID3_DISK_STATE_NONE;
2456 		/* Return immediately, because disk was destroyed. */
2457 		return (state);
2458 	}
2459 	G_RAID3_DEBUG(3, "State for %s disk: %s.",
2460 	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2461 	return (state);
2462 }
2463 
2464 /*
2465  * Update device state.
2466  */
2467 static void
2468 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2469 {
2470 	struct g_raid3_disk *disk;
2471 	u_int state;
2472 
2473 	sx_assert(&sc->sc_lock, SX_XLOCKED);
2474 
2475 	switch (sc->sc_state) {
2476 	case G_RAID3_DEVICE_STATE_STARTING:
2477 	    {
2478 		u_int n, ndirty, ndisks, genid, syncid;
2479 
2480 		KASSERT(sc->sc_provider == NULL,
2481 		    ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2482 		/*
2483 		 * Are we ready? We are, if all disks are connected or
2484 		 * one disk is missing and 'force' is true.
2485 		 */
2486 		if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2487 			if (!force)
2488 				callout_drain(&sc->sc_callout);
2489 		} else {
2490 			if (force) {
2491 				/*
2492 				 * Timeout expired, so destroy device.
2493 				 */
2494 				sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2495 				G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2496 				    __LINE__, sc->sc_rootmount);
2497 				root_mount_rel(sc->sc_rootmount);
2498 				sc->sc_rootmount = NULL;
2499 			}
2500 			return;
2501 		}
2502 
2503 		/*
2504 		 * Find the biggest genid.
2505 		 */
2506 		genid = 0;
2507 		for (n = 0; n < sc->sc_ndisks; n++) {
2508 			disk = &sc->sc_disks[n];
2509 			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2510 				continue;
2511 			if (disk->d_genid > genid)
2512 				genid = disk->d_genid;
2513 		}
2514 		sc->sc_genid = genid;
2515 		/*
2516 		 * Remove all disks without the biggest genid.
2517 		 */
2518 		for (n = 0; n < sc->sc_ndisks; n++) {
2519 			disk = &sc->sc_disks[n];
2520 			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2521 				continue;
2522 			if (disk->d_genid < genid) {
2523 				G_RAID3_DEBUG(0,
2524 				    "Component %s (device %s) broken, skipping.",
2525 				    g_raid3_get_diskname(disk), sc->sc_name);
2526 				g_raid3_destroy_disk(disk);
2527 			}
2528 		}
2529 
2530 		/*
2531 		 * There must be at least 'sc->sc_ndisks - 1' components
2532 		 * with the same syncid and without SYNCHRONIZING flag.
2533 		 */
2534 
2535 		/*
2536 		 * Find the biggest syncid, number of valid components and
2537 		 * number of dirty components.
2538 		 */
2539 		ndirty = ndisks = syncid = 0;
2540 		for (n = 0; n < sc->sc_ndisks; n++) {
2541 			disk = &sc->sc_disks[n];
2542 			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2543 				continue;
2544 			if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2545 				ndirty++;
2546 			if (disk->d_sync.ds_syncid > syncid) {
2547 				syncid = disk->d_sync.ds_syncid;
2548 				ndisks = 0;
2549 			} else if (disk->d_sync.ds_syncid < syncid) {
2550 				continue;
2551 			}
2552 			if ((disk->d_flags &
2553 			    G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2554 				continue;
2555 			}
2556 			ndisks++;
2557 		}
2558 		/*
2559 		 * Do we have enough valid components?
2560 		 */
2561 		if (ndisks + 1 < sc->sc_ndisks) {
2562 			G_RAID3_DEBUG(0,
2563 			    "Device %s is broken, too few valid components.",
2564 			    sc->sc_name);
2565 			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2566 			return;
2567 		}
2568 		/*
2569 		 * If there is one DIRTY component and all disks are present,
2570 		 * mark it for synchronization. If there is more than one DIRTY
2571 		 * component, mark parity component for synchronization.
2572 		 */
2573 		if (ndisks == sc->sc_ndisks && ndirty == 1) {
2574 			for (n = 0; n < sc->sc_ndisks; n++) {
2575 				disk = &sc->sc_disks[n];
2576 				if ((disk->d_flags &
2577 				    G_RAID3_DISK_FLAG_DIRTY) == 0) {
2578 					continue;
2579 				}
2580 				disk->d_flags |=
2581 				    G_RAID3_DISK_FLAG_SYNCHRONIZING;
2582 			}
2583 		} else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2584 			disk = &sc->sc_disks[sc->sc_ndisks - 1];
2585 			disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2586 		}
2587 
2588 		sc->sc_syncid = syncid;
2589 		if (force) {
2590 			/* Remember to bump syncid on first write. */
2591 			sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2592 		}
2593 		if (ndisks == sc->sc_ndisks)
2594 			state = G_RAID3_DEVICE_STATE_COMPLETE;
2595 		else /* if (ndisks == sc->sc_ndisks - 1) */
2596 			state = G_RAID3_DEVICE_STATE_DEGRADED;
2597 		G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2598 		    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2599 		    g_raid3_device_state2str(state));
2600 		sc->sc_state = state;
2601 		for (n = 0; n < sc->sc_ndisks; n++) {
2602 			disk = &sc->sc_disks[n];
2603 			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2604 				continue;
2605 			state = g_raid3_determine_state(disk);
2606 			g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2607 			if (state == G_RAID3_DISK_STATE_STALE)
2608 				sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2609 		}
2610 		break;
2611 	    }
2612 	case G_RAID3_DEVICE_STATE_DEGRADED:
2613 		/*
2614 		 * Genid need to be bumped immediately, so do it here.
2615 		 */
2616 		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2617 			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2618 			g_raid3_bump_genid(sc);
2619 		}
2620 
2621 		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2622 			return;
2623 		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2624 		    sc->sc_ndisks - 1) {
2625 			if (sc->sc_provider != NULL)
2626 				g_raid3_destroy_provider(sc);
2627 			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2628 			return;
2629 		}
2630 		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2631 		    sc->sc_ndisks) {
2632 			state = G_RAID3_DEVICE_STATE_COMPLETE;
2633 			G_RAID3_DEBUG(1,
2634 			    "Device %s state changed from %s to %s.",
2635 			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2636 			    g_raid3_device_state2str(state));
2637 			sc->sc_state = state;
2638 		}
2639 		if (sc->sc_provider == NULL)
2640 			g_raid3_launch_provider(sc);
2641 		if (sc->sc_rootmount != NULL) {
2642 			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2643 			    sc->sc_rootmount);
2644 			root_mount_rel(sc->sc_rootmount);
2645 			sc->sc_rootmount = NULL;
2646 		}
2647 		break;
2648 	case G_RAID3_DEVICE_STATE_COMPLETE:
2649 		/*
2650 		 * Genid need to be bumped immediately, so do it here.
2651 		 */
2652 		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2653 			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2654 			g_raid3_bump_genid(sc);
2655 		}
2656 
2657 		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2658 			return;
2659 		KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2660 		    sc->sc_ndisks - 1,
2661 		    ("Too few ACTIVE components in COMPLETE state (device %s).",
2662 		    sc->sc_name));
2663 		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2664 		    sc->sc_ndisks - 1) {
2665 			state = G_RAID3_DEVICE_STATE_DEGRADED;
2666 			G_RAID3_DEBUG(1,
2667 			    "Device %s state changed from %s to %s.",
2668 			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2669 			    g_raid3_device_state2str(state));
2670 			sc->sc_state = state;
2671 		}
2672 		if (sc->sc_provider == NULL)
2673 			g_raid3_launch_provider(sc);
2674 		if (sc->sc_rootmount != NULL) {
2675 			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2676 			    sc->sc_rootmount);
2677 			root_mount_rel(sc->sc_rootmount);
2678 			sc->sc_rootmount = NULL;
2679 		}
2680 		break;
2681 	default:
2682 		KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2683 		    g_raid3_device_state2str(sc->sc_state)));
2684 		break;
2685 	}
2686 }
2687 
2688 /*
2689  * Update disk state and device state if needed.
2690  */
2691 #define	DISK_STATE_CHANGED()	G_RAID3_DEBUG(1,			\
2692 	"Disk %s state changed from %s to %s (device %s).",		\
2693 	g_raid3_get_diskname(disk),					\
2694 	g_raid3_disk_state2str(disk->d_state),				\
2695 	g_raid3_disk_state2str(state), sc->sc_name)
2696 static int
2697 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2698 {
2699 	struct g_raid3_softc *sc;
2700 
2701 	sc = disk->d_softc;
2702 	sx_assert(&sc->sc_lock, SX_XLOCKED);
2703 
2704 again:
2705 	G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2706 	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2707 	    g_raid3_disk_state2str(state));
2708 	switch (state) {
2709 	case G_RAID3_DISK_STATE_NEW:
2710 		/*
2711 		 * Possible scenarios:
2712 		 * 1. New disk arrive.
2713 		 */
2714 		/* Previous state should be NONE. */
2715 		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2716 		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2717 		    g_raid3_disk_state2str(disk->d_state)));
2718 		DISK_STATE_CHANGED();
2719 
2720 		disk->d_state = state;
2721 		G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2722 		    sc->sc_name, g_raid3_get_diskname(disk));
2723 		if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2724 			break;
2725 		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2726 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2727 		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2728 		    g_raid3_device_state2str(sc->sc_state),
2729 		    g_raid3_get_diskname(disk),
2730 		    g_raid3_disk_state2str(disk->d_state)));
2731 		state = g_raid3_determine_state(disk);
2732 		if (state != G_RAID3_DISK_STATE_NONE)
2733 			goto again;
2734 		break;
2735 	case G_RAID3_DISK_STATE_ACTIVE:
2736 		/*
2737 		 * Possible scenarios:
2738 		 * 1. New disk does not need synchronization.
2739 		 * 2. Synchronization process finished successfully.
2740 		 */
2741 		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2742 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2743 		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2744 		    g_raid3_device_state2str(sc->sc_state),
2745 		    g_raid3_get_diskname(disk),
2746 		    g_raid3_disk_state2str(disk->d_state)));
2747 		/* Previous state should be NEW or SYNCHRONIZING. */
2748 		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2749 		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2750 		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2751 		    g_raid3_disk_state2str(disk->d_state)));
2752 		DISK_STATE_CHANGED();
2753 
2754 		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2755 			disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2756 			disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2757 			g_raid3_sync_stop(sc, 0);
2758 		}
2759 		disk->d_state = state;
2760 		disk->d_sync.ds_offset = 0;
2761 		disk->d_sync.ds_offset_done = 0;
2762 		g_raid3_update_idle(sc, disk);
2763 		g_raid3_update_metadata(disk);
2764 		G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2765 		    sc->sc_name, g_raid3_get_diskname(disk));
2766 		break;
2767 	case G_RAID3_DISK_STATE_STALE:
2768 		/*
2769 		 * Possible scenarios:
2770 		 * 1. Stale disk was connected.
2771 		 */
2772 		/* Previous state should be NEW. */
2773 		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2774 		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2775 		    g_raid3_disk_state2str(disk->d_state)));
2776 		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2777 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2778 		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2779 		    g_raid3_device_state2str(sc->sc_state),
2780 		    g_raid3_get_diskname(disk),
2781 		    g_raid3_disk_state2str(disk->d_state)));
2782 		/*
2783 		 * STALE state is only possible if device is marked
2784 		 * NOAUTOSYNC.
2785 		 */
2786 		KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2787 		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2788 		    g_raid3_device_state2str(sc->sc_state),
2789 		    g_raid3_get_diskname(disk),
2790 		    g_raid3_disk_state2str(disk->d_state)));
2791 		DISK_STATE_CHANGED();
2792 
2793 		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2794 		disk->d_state = state;
2795 		g_raid3_update_metadata(disk);
2796 		G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2797 		    sc->sc_name, g_raid3_get_diskname(disk));
2798 		break;
2799 	case G_RAID3_DISK_STATE_SYNCHRONIZING:
2800 		/*
2801 		 * Possible scenarios:
2802 		 * 1. Disk which needs synchronization was connected.
2803 		 */
2804 		/* Previous state should be NEW. */
2805 		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2806 		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2807 		    g_raid3_disk_state2str(disk->d_state)));
2808 		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2809 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2810 		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2811 		    g_raid3_device_state2str(sc->sc_state),
2812 		    g_raid3_get_diskname(disk),
2813 		    g_raid3_disk_state2str(disk->d_state)));
2814 		DISK_STATE_CHANGED();
2815 
2816 		if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2817 			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2818 		disk->d_state = state;
2819 		if (sc->sc_provider != NULL) {
2820 			g_raid3_sync_start(sc);
2821 			g_raid3_update_metadata(disk);
2822 		}
2823 		break;
2824 	case G_RAID3_DISK_STATE_DISCONNECTED:
2825 		/*
2826 		 * Possible scenarios:
2827 		 * 1. Device wasn't running yet, but disk disappear.
2828 		 * 2. Disk was active and disapppear.
2829 		 * 3. Disk disappear during synchronization process.
2830 		 */
2831 		if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2832 		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2833 			/*
2834 			 * Previous state should be ACTIVE, STALE or
2835 			 * SYNCHRONIZING.
2836 			 */
2837 			KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2838 			    disk->d_state == G_RAID3_DISK_STATE_STALE ||
2839 			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2840 			    ("Wrong disk state (%s, %s).",
2841 			    g_raid3_get_diskname(disk),
2842 			    g_raid3_disk_state2str(disk->d_state)));
2843 		} else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2844 			/* Previous state should be NEW. */
2845 			KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2846 			    ("Wrong disk state (%s, %s).",
2847 			    g_raid3_get_diskname(disk),
2848 			    g_raid3_disk_state2str(disk->d_state)));
2849 			/*
2850 			 * Reset bumping syncid if disk disappeared in STARTING
2851 			 * state.
2852 			 */
2853 			if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2854 				sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2855 #ifdef	INVARIANTS
2856 		} else {
2857 			KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2858 			    sc->sc_name,
2859 			    g_raid3_device_state2str(sc->sc_state),
2860 			    g_raid3_get_diskname(disk),
2861 			    g_raid3_disk_state2str(disk->d_state)));
2862 #endif
2863 		}
2864 		DISK_STATE_CHANGED();
2865 		G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2866 		    sc->sc_name, g_raid3_get_diskname(disk));
2867 
2868 		g_raid3_destroy_disk(disk);
2869 		break;
2870 	default:
2871 		KASSERT(1 == 0, ("Unknown state (%u).", state));
2872 		break;
2873 	}
2874 	return (0);
2875 }
2876 #undef	DISK_STATE_CHANGED
2877 
2878 int
2879 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2880 {
2881 	struct g_provider *pp;
2882 	u_char *buf;
2883 	int error;
2884 
2885 	g_topology_assert();
2886 
2887 	error = g_access(cp, 1, 0, 0);
2888 	if (error != 0)
2889 		return (error);
2890 	pp = cp->provider;
2891 	g_topology_unlock();
2892 	/* Metadata are stored on last sector. */
2893 	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2894 	    &error);
2895 	g_topology_lock();
2896 	g_access(cp, -1, 0, 0);
2897 	if (buf == NULL) {
2898 		G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2899 		    cp->provider->name, error);
2900 		return (error);
2901 	}
2902 
2903 	/* Decode metadata. */
2904 	error = raid3_metadata_decode(buf, md);
2905 	g_free(buf);
2906 	if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2907 		return (EINVAL);
2908 	if (md->md_version > G_RAID3_VERSION) {
2909 		G_RAID3_DEBUG(0,
2910 		    "Kernel module is too old to handle metadata from %s.",
2911 		    cp->provider->name);
2912 		return (EINVAL);
2913 	}
2914 	if (error != 0) {
2915 		G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2916 		    cp->provider->name);
2917 		return (error);
2918 	}
2919 	if (md->md_sectorsize > MAXPHYS) {
2920 		G_RAID3_DEBUG(0, "The blocksize is too big.");
2921 		return (EINVAL);
2922 	}
2923 
2924 	return (0);
2925 }
2926 
2927 static int
2928 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2929     struct g_raid3_metadata *md)
2930 {
2931 
2932 	if (md->md_no >= sc->sc_ndisks) {
2933 		G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2934 		    pp->name, md->md_no);
2935 		return (EINVAL);
2936 	}
2937 	if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2938 		G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2939 		    pp->name, md->md_no);
2940 		return (EEXIST);
2941 	}
2942 	if (md->md_all != sc->sc_ndisks) {
2943 		G_RAID3_DEBUG(1,
2944 		    "Invalid '%s' field on disk %s (device %s), skipping.",
2945 		    "md_all", pp->name, sc->sc_name);
2946 		return (EINVAL);
2947 	}
2948 	if ((md->md_mediasize % md->md_sectorsize) != 0) {
2949 		G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2950 		    "0) on disk %s (device %s), skipping.", pp->name,
2951 		    sc->sc_name);
2952 		return (EINVAL);
2953 	}
2954 	if (md->md_mediasize != sc->sc_mediasize) {
2955 		G_RAID3_DEBUG(1,
2956 		    "Invalid '%s' field on disk %s (device %s), skipping.",
2957 		    "md_mediasize", pp->name, sc->sc_name);
2958 		return (EINVAL);
2959 	}
2960 	if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2961 		G_RAID3_DEBUG(1,
2962 		    "Invalid '%s' field on disk %s (device %s), skipping.",
2963 		    "md_mediasize", pp->name, sc->sc_name);
2964 		return (EINVAL);
2965 	}
2966 	if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2967 		G_RAID3_DEBUG(1,
2968 		    "Invalid size of disk %s (device %s), skipping.", pp->name,
2969 		    sc->sc_name);
2970 		return (EINVAL);
2971 	}
2972 	if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2973 		G_RAID3_DEBUG(1,
2974 		    "Invalid '%s' field on disk %s (device %s), skipping.",
2975 		    "md_sectorsize", pp->name, sc->sc_name);
2976 		return (EINVAL);
2977 	}
2978 	if (md->md_sectorsize != sc->sc_sectorsize) {
2979 		G_RAID3_DEBUG(1,
2980 		    "Invalid '%s' field on disk %s (device %s), skipping.",
2981 		    "md_sectorsize", pp->name, sc->sc_name);
2982 		return (EINVAL);
2983 	}
2984 	if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2985 		G_RAID3_DEBUG(1,
2986 		    "Invalid sector size of disk %s (device %s), skipping.",
2987 		    pp->name, sc->sc_name);
2988 		return (EINVAL);
2989 	}
2990 	if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2991 		G_RAID3_DEBUG(1,
2992 		    "Invalid device flags on disk %s (device %s), skipping.",
2993 		    pp->name, sc->sc_name);
2994 		return (EINVAL);
2995 	}
2996 	if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2997 	    (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2998 		/*
2999 		 * VERIFY and ROUND-ROBIN options are mutally exclusive.
3000 		 */
3001 		G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
3002 		    "disk %s (device %s), skipping.", pp->name, sc->sc_name);
3003 		return (EINVAL);
3004 	}
3005 	if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
3006 		G_RAID3_DEBUG(1,
3007 		    "Invalid disk flags on disk %s (device %s), skipping.",
3008 		    pp->name, sc->sc_name);
3009 		return (EINVAL);
3010 	}
3011 	return (0);
3012 }
3013 
3014 int
3015 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3016     struct g_raid3_metadata *md)
3017 {
3018 	struct g_raid3_disk *disk;
3019 	int error;
3020 
3021 	g_topology_assert_not();
3022 	G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3023 
3024 	error = g_raid3_check_metadata(sc, pp, md);
3025 	if (error != 0)
3026 		return (error);
3027 	if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3028 	    md->md_genid < sc->sc_genid) {
3029 		G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3030 		    pp->name, sc->sc_name);
3031 		return (EINVAL);
3032 	}
3033 	disk = g_raid3_init_disk(sc, pp, md, &error);
3034 	if (disk == NULL)
3035 		return (error);
3036 	error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3037 	    G_RAID3_EVENT_WAIT);
3038 	if (error != 0)
3039 		return (error);
3040 	if (md->md_version < G_RAID3_VERSION) {
3041 		G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3042 		    pp->name, md->md_version, G_RAID3_VERSION);
3043 		g_raid3_update_metadata(disk);
3044 	}
3045 	return (0);
3046 }
3047 
3048 static void
3049 g_raid3_destroy_delayed(void *arg, int flag)
3050 {
3051 	struct g_raid3_softc *sc;
3052 	int error;
3053 
3054 	if (flag == EV_CANCEL) {
3055 		G_RAID3_DEBUG(1, "Destroying canceled.");
3056 		return;
3057 	}
3058 	sc = arg;
3059 	g_topology_unlock();
3060 	sx_xlock(&sc->sc_lock);
3061 	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3062 	    ("DESTROY flag set on %s.", sc->sc_name));
3063 	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3064 	    ("DESTROYING flag not set on %s.", sc->sc_name));
3065 	G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3066 	error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3067 	if (error != 0) {
3068 		G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3069 		sx_xunlock(&sc->sc_lock);
3070 	}
3071 	g_topology_lock();
3072 }
3073 
3074 static int
3075 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3076 {
3077 	struct g_raid3_softc *sc;
3078 	int dcr, dcw, dce, error = 0;
3079 
3080 	g_topology_assert();
3081 	G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3082 	    acw, ace);
3083 
3084 	sc = pp->geom->softc;
3085 	if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3086 		return (0);
3087 	KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3088 
3089 	dcr = pp->acr + acr;
3090 	dcw = pp->acw + acw;
3091 	dce = pp->ace + ace;
3092 
3093 	g_topology_unlock();
3094 	sx_xlock(&sc->sc_lock);
3095 	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3096 	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3097 		if (acr > 0 || acw > 0 || ace > 0)
3098 			error = ENXIO;
3099 		goto end;
3100 	}
3101 	if (dcw == 0 && !sc->sc_idle)
3102 		g_raid3_idle(sc, dcw);
3103 	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3104 		if (acr > 0 || acw > 0 || ace > 0) {
3105 			error = ENXIO;
3106 			goto end;
3107 		}
3108 		if (dcr == 0 && dcw == 0 && dce == 0) {
3109 			g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3110 			    sc, NULL);
3111 		}
3112 	}
3113 end:
3114 	sx_xunlock(&sc->sc_lock);
3115 	g_topology_lock();
3116 	return (error);
3117 }
3118 
3119 static struct g_geom *
3120 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3121 {
3122 	struct g_raid3_softc *sc;
3123 	struct g_geom *gp;
3124 	int error, timeout;
3125 	u_int n;
3126 
3127 	g_topology_assert();
3128 	G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3129 
3130 	/* One disk is minimum. */
3131 	if (md->md_all < 1)
3132 		return (NULL);
3133 	/*
3134 	 * Action geom.
3135 	 */
3136 	gp = g_new_geomf(mp, "%s", md->md_name);
3137 	sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3138 	sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3139 	    M_WAITOK | M_ZERO);
3140 	gp->start = g_raid3_start;
3141 	gp->orphan = g_raid3_orphan;
3142 	gp->access = g_raid3_access;
3143 	gp->dumpconf = g_raid3_dumpconf;
3144 
3145 	sc->sc_id = md->md_id;
3146 	sc->sc_mediasize = md->md_mediasize;
3147 	sc->sc_sectorsize = md->md_sectorsize;
3148 	sc->sc_ndisks = md->md_all;
3149 	sc->sc_round_robin = 0;
3150 	sc->sc_flags = md->md_mflags;
3151 	sc->sc_bump_id = 0;
3152 	sc->sc_idle = 1;
3153 	sc->sc_last_write = time_uptime;
3154 	sc->sc_writes = 0;
3155 	for (n = 0; n < sc->sc_ndisks; n++) {
3156 		sc->sc_disks[n].d_softc = sc;
3157 		sc->sc_disks[n].d_no = n;
3158 		sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3159 	}
3160 	sx_init(&sc->sc_lock, "graid3:lock");
3161 	bioq_init(&sc->sc_queue);
3162 	mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3163 	bioq_init(&sc->sc_regular_delayed);
3164 	bioq_init(&sc->sc_inflight);
3165 	bioq_init(&sc->sc_sync_delayed);
3166 	TAILQ_INIT(&sc->sc_events);
3167 	mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3168 	callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
3169 	sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3170 	gp->softc = sc;
3171 	sc->sc_geom = gp;
3172 	sc->sc_provider = NULL;
3173 	/*
3174 	 * Synchronization geom.
3175 	 */
3176 	gp = g_new_geomf(mp, "%s.sync", md->md_name);
3177 	gp->softc = sc;
3178 	gp->orphan = g_raid3_orphan;
3179 	sc->sc_sync.ds_geom = gp;
3180 
3181 	if (!g_raid3_use_malloc) {
3182 		sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3183 		    65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3184 		    UMA_ALIGN_PTR, 0);
3185 		sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3186 		sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3187 		sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3188 		    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3189 		sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3190 		    16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3191 		    UMA_ALIGN_PTR, 0);
3192 		sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3193 		sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3194 		sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3195 		    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3196 		sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3197 		    4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3198 		    UMA_ALIGN_PTR, 0);
3199 		sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3200 		sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3201 		sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3202 		    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3203 	}
3204 
3205 	error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3206 	    "g_raid3 %s", md->md_name);
3207 	if (error != 0) {
3208 		G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3209 		    sc->sc_name);
3210 		if (!g_raid3_use_malloc) {
3211 			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3212 			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3213 			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3214 		}
3215 		g_destroy_geom(sc->sc_sync.ds_geom);
3216 		mtx_destroy(&sc->sc_events_mtx);
3217 		mtx_destroy(&sc->sc_queue_mtx);
3218 		sx_destroy(&sc->sc_lock);
3219 		g_destroy_geom(sc->sc_geom);
3220 		free(sc->sc_disks, M_RAID3);
3221 		free(sc, M_RAID3);
3222 		return (NULL);
3223 	}
3224 
3225 	G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3226 	    sc->sc_name, sc->sc_ndisks, sc->sc_id);
3227 
3228 	sc->sc_rootmount = root_mount_hold("GRAID3");
3229 	G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3230 
3231 	/*
3232 	 * Run timeout.
3233 	 */
3234 	timeout = atomic_load_acq_int(&g_raid3_timeout);
3235 	callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3236 	return (sc->sc_geom);
3237 }
3238 
3239 int
3240 g_raid3_destroy(struct g_raid3_softc *sc, int how)
3241 {
3242 	struct g_provider *pp;
3243 
3244 	g_topology_assert_not();
3245 	if (sc == NULL)
3246 		return (ENXIO);
3247 	sx_assert(&sc->sc_lock, SX_XLOCKED);
3248 
3249 	pp = sc->sc_provider;
3250 	if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3251 		switch (how) {
3252 		case G_RAID3_DESTROY_SOFT:
3253 			G_RAID3_DEBUG(1,
3254 			    "Device %s is still open (r%dw%de%d).", pp->name,
3255 			    pp->acr, pp->acw, pp->ace);
3256 			return (EBUSY);
3257 		case G_RAID3_DESTROY_DELAYED:
3258 			G_RAID3_DEBUG(1,
3259 			    "Device %s will be destroyed on last close.",
3260 			    pp->name);
3261 			if (sc->sc_syncdisk != NULL)
3262 				g_raid3_sync_stop(sc, 1);
3263 			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3264 			return (EBUSY);
3265 		case G_RAID3_DESTROY_HARD:
3266 			G_RAID3_DEBUG(1, "Device %s is still open, so it "
3267 			    "can't be definitely removed.", pp->name);
3268 			break;
3269 		}
3270 	}
3271 
3272 	g_topology_lock();
3273 	if (sc->sc_geom->softc == NULL) {
3274 		g_topology_unlock();
3275 		return (0);
3276 	}
3277 	sc->sc_geom->softc = NULL;
3278 	sc->sc_sync.ds_geom->softc = NULL;
3279 	g_topology_unlock();
3280 
3281 	sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3282 	sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3283 	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3284 	sx_xunlock(&sc->sc_lock);
3285 	mtx_lock(&sc->sc_queue_mtx);
3286 	wakeup(sc);
3287 	wakeup(&sc->sc_queue);
3288 	mtx_unlock(&sc->sc_queue_mtx);
3289 	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3290 	while (sc->sc_worker != NULL)
3291 		tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3292 	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3293 	sx_xlock(&sc->sc_lock);
3294 	g_raid3_destroy_device(sc);
3295 	free(sc->sc_disks, M_RAID3);
3296 	free(sc, M_RAID3);
3297 	return (0);
3298 }
3299 
3300 static void
3301 g_raid3_taste_orphan(struct g_consumer *cp)
3302 {
3303 
3304 	KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3305 	    cp->provider->name));
3306 }
3307 
3308 static struct g_geom *
3309 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3310 {
3311 	struct g_raid3_metadata md;
3312 	struct g_raid3_softc *sc;
3313 	struct g_consumer *cp;
3314 	struct g_geom *gp;
3315 	int error;
3316 
3317 	g_topology_assert();
3318 	g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3319 	G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3320 
3321 	gp = g_new_geomf(mp, "raid3:taste");
3322 	/* This orphan function should be never called. */
3323 	gp->orphan = g_raid3_taste_orphan;
3324 	cp = g_new_consumer(gp);
3325 	g_attach(cp, pp);
3326 	error = g_raid3_read_metadata(cp, &md);
3327 	g_detach(cp);
3328 	g_destroy_consumer(cp);
3329 	g_destroy_geom(gp);
3330 	if (error != 0)
3331 		return (NULL);
3332 	gp = NULL;
3333 
3334 	if (md.md_provider[0] != '\0' &&
3335 	    !g_compare_names(md.md_provider, pp->name))
3336 		return (NULL);
3337 	if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3338 		return (NULL);
3339 	if (g_raid3_debug >= 2)
3340 		raid3_metadata_dump(&md);
3341 
3342 	/*
3343 	 * Let's check if device already exists.
3344 	 */
3345 	sc = NULL;
3346 	LIST_FOREACH(gp, &mp->geom, geom) {
3347 		sc = gp->softc;
3348 		if (sc == NULL)
3349 			continue;
3350 		if (sc->sc_sync.ds_geom == gp)
3351 			continue;
3352 		if (strcmp(md.md_name, sc->sc_name) != 0)
3353 			continue;
3354 		if (md.md_id != sc->sc_id) {
3355 			G_RAID3_DEBUG(0, "Device %s already configured.",
3356 			    sc->sc_name);
3357 			return (NULL);
3358 		}
3359 		break;
3360 	}
3361 	if (gp == NULL) {
3362 		gp = g_raid3_create(mp, &md);
3363 		if (gp == NULL) {
3364 			G_RAID3_DEBUG(0, "Cannot create device %s.",
3365 			    md.md_name);
3366 			return (NULL);
3367 		}
3368 		sc = gp->softc;
3369 	}
3370 	G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3371 	g_topology_unlock();
3372 	sx_xlock(&sc->sc_lock);
3373 	error = g_raid3_add_disk(sc, pp, &md);
3374 	if (error != 0) {
3375 		G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3376 		    pp->name, gp->name, error);
3377 		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3378 		    sc->sc_ndisks) {
3379 			g_cancel_event(sc);
3380 			g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3381 			g_topology_lock();
3382 			return (NULL);
3383 		}
3384 		gp = NULL;
3385 	}
3386 	sx_xunlock(&sc->sc_lock);
3387 	g_topology_lock();
3388 	return (gp);
3389 }
3390 
3391 static int
3392 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3393     struct g_geom *gp)
3394 {
3395 	struct g_raid3_softc *sc;
3396 	int error;
3397 
3398 	g_topology_unlock();
3399 	sc = gp->softc;
3400 	sx_xlock(&sc->sc_lock);
3401 	g_cancel_event(sc);
3402 	error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3403 	if (error != 0)
3404 		sx_xunlock(&sc->sc_lock);
3405 	g_topology_lock();
3406 	return (error);
3407 }
3408 
3409 static void
3410 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3411     struct g_consumer *cp, struct g_provider *pp)
3412 {
3413 	struct g_raid3_softc *sc;
3414 
3415 	g_topology_assert();
3416 
3417 	sc = gp->softc;
3418 	if (sc == NULL)
3419 		return;
3420 	/* Skip synchronization geom. */
3421 	if (gp == sc->sc_sync.ds_geom)
3422 		return;
3423 	if (pp != NULL) {
3424 		/* Nothing here. */
3425 	} else if (cp != NULL) {
3426 		struct g_raid3_disk *disk;
3427 
3428 		disk = cp->private;
3429 		if (disk == NULL)
3430 			return;
3431 		g_topology_unlock();
3432 		sx_xlock(&sc->sc_lock);
3433 		sbuf_printf(sb, "%s<Type>", indent);
3434 		if (disk->d_no == sc->sc_ndisks - 1)
3435 			sbuf_printf(sb, "PARITY");
3436 		else
3437 			sbuf_printf(sb, "DATA");
3438 		sbuf_printf(sb, "</Type>\n");
3439 		sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3440 		    (u_int)disk->d_no);
3441 		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3442 			sbuf_printf(sb, "%s<Synchronized>", indent);
3443 			if (disk->d_sync.ds_offset == 0)
3444 				sbuf_printf(sb, "0%%");
3445 			else {
3446 				sbuf_printf(sb, "%u%%",
3447 				    (u_int)((disk->d_sync.ds_offset * 100) /
3448 				    (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3449 			}
3450 			sbuf_printf(sb, "</Synchronized>\n");
3451 		}
3452 		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3453 		    disk->d_sync.ds_syncid);
3454 		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3455 		sbuf_printf(sb, "%s<Flags>", indent);
3456 		if (disk->d_flags == 0)
3457 			sbuf_printf(sb, "NONE");
3458 		else {
3459 			int first = 1;
3460 
3461 #define	ADD_FLAG(flag, name)	do {					\
3462 	if ((disk->d_flags & (flag)) != 0) {				\
3463 		if (!first)						\
3464 			sbuf_printf(sb, ", ");				\
3465 		else							\
3466 			first = 0;					\
3467 		sbuf_printf(sb, name);					\
3468 	}								\
3469 } while (0)
3470 			ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3471 			ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3472 			ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3473 			    "SYNCHRONIZING");
3474 			ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3475 			ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3476 #undef	ADD_FLAG
3477 		}
3478 		sbuf_printf(sb, "</Flags>\n");
3479 		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3480 		    g_raid3_disk_state2str(disk->d_state));
3481 		sx_xunlock(&sc->sc_lock);
3482 		g_topology_lock();
3483 	} else {
3484 		g_topology_unlock();
3485 		sx_xlock(&sc->sc_lock);
3486 		if (!g_raid3_use_malloc) {
3487 			sbuf_printf(sb,
3488 			    "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3489 			    sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3490 			sbuf_printf(sb,
3491 			    "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3492 			    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3493 			sbuf_printf(sb,
3494 			    "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3495 			    sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3496 			sbuf_printf(sb,
3497 			    "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3498 			    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3499 			sbuf_printf(sb,
3500 			    "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3501 			    sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3502 			sbuf_printf(sb,
3503 			    "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3504 			    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3505 		}
3506 		sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3507 		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3508 		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3509 		sbuf_printf(sb, "%s<Flags>", indent);
3510 		if (sc->sc_flags == 0)
3511 			sbuf_printf(sb, "NONE");
3512 		else {
3513 			int first = 1;
3514 
3515 #define	ADD_FLAG(flag, name)	do {					\
3516 	if ((sc->sc_flags & (flag)) != 0) {				\
3517 		if (!first)						\
3518 			sbuf_printf(sb, ", ");				\
3519 		else							\
3520 			first = 0;					\
3521 		sbuf_printf(sb, name);					\
3522 	}								\
3523 } while (0)
3524 			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3525 			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3526 			ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3527 			    "ROUND-ROBIN");
3528 			ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3529 #undef	ADD_FLAG
3530 		}
3531 		sbuf_printf(sb, "</Flags>\n");
3532 		sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3533 		    sc->sc_ndisks);
3534 		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3535 		    g_raid3_device_state2str(sc->sc_state));
3536 		sx_xunlock(&sc->sc_lock);
3537 		g_topology_lock();
3538 	}
3539 }
3540 
3541 static void
3542 g_raid3_shutdown_pre_sync(void *arg, int howto)
3543 {
3544 	struct g_class *mp;
3545 	struct g_geom *gp, *gp2;
3546 	struct g_raid3_softc *sc;
3547 	int error;
3548 
3549 	mp = arg;
3550 	DROP_GIANT();
3551 	g_topology_lock();
3552 	LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3553 		if ((sc = gp->softc) == NULL)
3554 			continue;
3555 		/* Skip synchronization geom. */
3556 		if (gp == sc->sc_sync.ds_geom)
3557 			continue;
3558 		g_topology_unlock();
3559 		sx_xlock(&sc->sc_lock);
3560 		g_cancel_event(sc);
3561 		error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3562 		if (error != 0)
3563 			sx_xunlock(&sc->sc_lock);
3564 		g_topology_lock();
3565 	}
3566 	g_topology_unlock();
3567 	PICKUP_GIANT();
3568 }
3569 
3570 static void
3571 g_raid3_init(struct g_class *mp)
3572 {
3573 
3574 	g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
3575 	    g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
3576 	if (g_raid3_pre_sync == NULL)
3577 		G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3578 }
3579 
3580 static void
3581 g_raid3_fini(struct g_class *mp)
3582 {
3583 
3584 	if (g_raid3_pre_sync != NULL)
3585 		EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync);
3586 }
3587 
3588 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
3589