1 /*- 2 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/eventhandler.h> 41 #include <vm/uma.h> 42 #include <geom/geom.h> 43 #include <sys/proc.h> 44 #include <sys/kthread.h> 45 #include <sys/sched.h> 46 #include <geom/raid3/g_raid3.h> 47 48 49 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); 50 51 SYSCTL_DECL(_kern_geom); 52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); 53 u_int g_raid3_debug = 0; 54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug); 55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0, 56 "Debug level"); 57 static u_int g_raid3_timeout = 4; 58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout); 59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout, 60 0, "Time to wait on all raid3 components"); 61 static u_int g_raid3_idletime = 5; 62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime); 63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW, 64 &g_raid3_idletime, 0, "Mark components as clean when idling"); 65 static u_int g_raid3_disconnect_on_failure = 1; 66 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure", 67 &g_raid3_disconnect_on_failure); 68 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, 69 &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 70 static u_int g_raid3_syncreqs = 2; 71 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs); 72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, 73 &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); 74 static u_int g_raid3_use_malloc = 0; 75 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc); 76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, 77 &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); 78 79 static u_int g_raid3_n64k = 50; 80 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k); 81 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0, 82 "Maximum number of 64kB allocations"); 83 static u_int g_raid3_n16k = 200; 84 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k); 85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0, 86 "Maximum number of 16kB allocations"); 87 static u_int g_raid3_n4k = 1200; 88 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k); 89 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0, 90 "Maximum number of 4kB allocations"); 91 92 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 93 "GEOM_RAID3 statistics"); 94 static u_int g_raid3_parity_mismatch = 0; 95 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 96 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 97 98 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 99 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 100 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 101 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 102 } while (0) 103 104 static eventhandler_tag g_raid3_pre_sync = NULL; 105 106 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 107 struct g_geom *gp); 108 static g_taste_t g_raid3_taste; 109 static void g_raid3_init(struct g_class *mp); 110 static void g_raid3_fini(struct g_class *mp); 111 112 struct g_class g_raid3_class = { 113 .name = G_RAID3_CLASS_NAME, 114 .version = G_VERSION, 115 .ctlreq = g_raid3_config, 116 .taste = g_raid3_taste, 117 .destroy_geom = g_raid3_destroy_geom, 118 .init = g_raid3_init, 119 .fini = g_raid3_fini 120 }; 121 122 123 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 124 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 125 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 126 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 127 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 128 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 129 static int g_raid3_register_request(struct bio *pbp); 130 static void g_raid3_sync_release(struct g_raid3_softc *sc); 131 132 133 static const char * 134 g_raid3_disk_state2str(int state) 135 { 136 137 switch (state) { 138 case G_RAID3_DISK_STATE_NODISK: 139 return ("NODISK"); 140 case G_RAID3_DISK_STATE_NONE: 141 return ("NONE"); 142 case G_RAID3_DISK_STATE_NEW: 143 return ("NEW"); 144 case G_RAID3_DISK_STATE_ACTIVE: 145 return ("ACTIVE"); 146 case G_RAID3_DISK_STATE_STALE: 147 return ("STALE"); 148 case G_RAID3_DISK_STATE_SYNCHRONIZING: 149 return ("SYNCHRONIZING"); 150 case G_RAID3_DISK_STATE_DISCONNECTED: 151 return ("DISCONNECTED"); 152 default: 153 return ("INVALID"); 154 } 155 } 156 157 static const char * 158 g_raid3_device_state2str(int state) 159 { 160 161 switch (state) { 162 case G_RAID3_DEVICE_STATE_STARTING: 163 return ("STARTING"); 164 case G_RAID3_DEVICE_STATE_DEGRADED: 165 return ("DEGRADED"); 166 case G_RAID3_DEVICE_STATE_COMPLETE: 167 return ("COMPLETE"); 168 default: 169 return ("INVALID"); 170 } 171 } 172 173 const char * 174 g_raid3_get_diskname(struct g_raid3_disk *disk) 175 { 176 177 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 178 return ("[unknown]"); 179 return (disk->d_name); 180 } 181 182 static void * 183 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) 184 { 185 void *ptr; 186 enum g_raid3_zones zone; 187 188 if (g_raid3_use_malloc || 189 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 190 ptr = malloc(size, M_RAID3, flags); 191 else { 192 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone, 193 &sc->sc_zones[zone], flags); 194 sc->sc_zones[zone].sz_requested++; 195 if (ptr == NULL) 196 sc->sc_zones[zone].sz_failed++; 197 } 198 return (ptr); 199 } 200 201 static void 202 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) 203 { 204 enum g_raid3_zones zone; 205 206 if (g_raid3_use_malloc || 207 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 208 free(ptr, M_RAID3); 209 else { 210 uma_zfree_arg(sc->sc_zones[zone].sz_zone, 211 ptr, &sc->sc_zones[zone]); 212 } 213 } 214 215 static int 216 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) 217 { 218 struct g_raid3_zone *sz = arg; 219 220 if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) 221 return (ENOMEM); 222 sz->sz_inuse++; 223 return (0); 224 } 225 226 static void 227 g_raid3_uma_dtor(void *mem, int size, void *arg) 228 { 229 struct g_raid3_zone *sz = arg; 230 231 sz->sz_inuse--; 232 } 233 234 #define g_raid3_xor(src, dst, size) \ 235 _g_raid3_xor((uint64_t *)(src), \ 236 (uint64_t *)(dst), (size_t)size) 237 static void 238 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size) 239 { 240 241 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 242 for (; size > 0; size -= 128) { 243 *dst++ ^= (*src++); 244 *dst++ ^= (*src++); 245 *dst++ ^= (*src++); 246 *dst++ ^= (*src++); 247 *dst++ ^= (*src++); 248 *dst++ ^= (*src++); 249 *dst++ ^= (*src++); 250 *dst++ ^= (*src++); 251 *dst++ ^= (*src++); 252 *dst++ ^= (*src++); 253 *dst++ ^= (*src++); 254 *dst++ ^= (*src++); 255 *dst++ ^= (*src++); 256 *dst++ ^= (*src++); 257 *dst++ ^= (*src++); 258 *dst++ ^= (*src++); 259 } 260 } 261 262 static int 263 g_raid3_is_zero(struct bio *bp) 264 { 265 static const uint64_t zeros[] = { 266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 267 }; 268 u_char *addr; 269 ssize_t size; 270 271 size = bp->bio_length; 272 addr = (u_char *)bp->bio_data; 273 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 274 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 275 return (0); 276 } 277 return (1); 278 } 279 280 /* 281 * --- Events handling functions --- 282 * Events in geom_raid3 are used to maintain disks and device status 283 * from one thread to simplify locking. 284 */ 285 static void 286 g_raid3_event_free(struct g_raid3_event *ep) 287 { 288 289 free(ep, M_RAID3); 290 } 291 292 int 293 g_raid3_event_send(void *arg, int state, int flags) 294 { 295 struct g_raid3_softc *sc; 296 struct g_raid3_disk *disk; 297 struct g_raid3_event *ep; 298 int error; 299 300 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 301 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 302 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 303 disk = NULL; 304 sc = arg; 305 } else { 306 disk = arg; 307 sc = disk->d_softc; 308 } 309 ep->e_disk = disk; 310 ep->e_state = state; 311 ep->e_flags = flags; 312 ep->e_error = 0; 313 mtx_lock(&sc->sc_events_mtx); 314 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 315 mtx_unlock(&sc->sc_events_mtx); 316 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 317 mtx_lock(&sc->sc_queue_mtx); 318 wakeup(sc); 319 wakeup(&sc->sc_queue); 320 mtx_unlock(&sc->sc_queue_mtx); 321 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 322 return (0); 323 sx_assert(&sc->sc_lock, SX_XLOCKED); 324 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 325 sx_xunlock(&sc->sc_lock); 326 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 327 mtx_lock(&sc->sc_events_mtx); 328 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 329 hz * 5); 330 } 331 error = ep->e_error; 332 g_raid3_event_free(ep); 333 sx_xlock(&sc->sc_lock); 334 return (error); 335 } 336 337 static struct g_raid3_event * 338 g_raid3_event_get(struct g_raid3_softc *sc) 339 { 340 struct g_raid3_event *ep; 341 342 mtx_lock(&sc->sc_events_mtx); 343 ep = TAILQ_FIRST(&sc->sc_events); 344 mtx_unlock(&sc->sc_events_mtx); 345 return (ep); 346 } 347 348 static void 349 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) 350 { 351 352 mtx_lock(&sc->sc_events_mtx); 353 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 354 mtx_unlock(&sc->sc_events_mtx); 355 } 356 357 static void 358 g_raid3_event_cancel(struct g_raid3_disk *disk) 359 { 360 struct g_raid3_softc *sc; 361 struct g_raid3_event *ep, *tmpep; 362 363 sc = disk->d_softc; 364 sx_assert(&sc->sc_lock, SX_XLOCKED); 365 366 mtx_lock(&sc->sc_events_mtx); 367 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 368 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 369 continue; 370 if (ep->e_disk != disk) 371 continue; 372 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 373 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 374 g_raid3_event_free(ep); 375 else { 376 ep->e_error = ECANCELED; 377 wakeup(ep); 378 } 379 } 380 mtx_unlock(&sc->sc_events_mtx); 381 } 382 383 /* 384 * Return the number of disks in the given state. 385 * If state is equal to -1, count all connected disks. 386 */ 387 u_int 388 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 389 { 390 struct g_raid3_disk *disk; 391 u_int n, ndisks; 392 393 sx_assert(&sc->sc_lock, SX_LOCKED); 394 395 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 396 disk = &sc->sc_disks[n]; 397 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 398 continue; 399 if (state == -1 || disk->d_state == state) 400 ndisks++; 401 } 402 return (ndisks); 403 } 404 405 static u_int 406 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 407 { 408 struct bio *bp; 409 u_int nreqs = 0; 410 411 mtx_lock(&sc->sc_queue_mtx); 412 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 413 if (bp->bio_from == cp) 414 nreqs++; 415 } 416 mtx_unlock(&sc->sc_queue_mtx); 417 return (nreqs); 418 } 419 420 static int 421 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 422 { 423 424 if (cp->index > 0) { 425 G_RAID3_DEBUG(2, 426 "I/O requests for %s exist, can't destroy it now.", 427 cp->provider->name); 428 return (1); 429 } 430 if (g_raid3_nrequests(sc, cp) > 0) { 431 G_RAID3_DEBUG(2, 432 "I/O requests for %s in queue, can't destroy it now.", 433 cp->provider->name); 434 return (1); 435 } 436 return (0); 437 } 438 439 static void 440 g_raid3_destroy_consumer(void *arg, int flags __unused) 441 { 442 struct g_consumer *cp; 443 444 g_topology_assert(); 445 446 cp = arg; 447 G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 448 g_detach(cp); 449 g_destroy_consumer(cp); 450 } 451 452 static void 453 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 454 { 455 struct g_provider *pp; 456 int retaste_wait; 457 458 g_topology_assert(); 459 460 cp->private = NULL; 461 if (g_raid3_is_busy(sc, cp)) 462 return; 463 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 464 pp = cp->provider; 465 retaste_wait = 0; 466 if (cp->acw == 1) { 467 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 468 retaste_wait = 1; 469 } 470 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, 471 -cp->acw, -cp->ace, 0); 472 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 473 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 474 if (retaste_wait) { 475 /* 476 * After retaste event was send (inside g_access()), we can send 477 * event to detach and destroy consumer. 478 * A class, which has consumer to the given provider connected 479 * will not receive retaste event for the provider. 480 * This is the way how I ignore retaste events when I close 481 * consumers opened for write: I detach and destroy consumer 482 * after retaste event is sent. 483 */ 484 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); 485 return; 486 } 487 G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); 488 g_detach(cp); 489 g_destroy_consumer(cp); 490 } 491 492 static int 493 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 494 { 495 struct g_consumer *cp; 496 int error; 497 498 g_topology_assert_not(); 499 KASSERT(disk->d_consumer == NULL, 500 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 501 502 g_topology_lock(); 503 cp = g_new_consumer(disk->d_softc->sc_geom); 504 error = g_attach(cp, pp); 505 if (error != 0) { 506 g_destroy_consumer(cp); 507 g_topology_unlock(); 508 return (error); 509 } 510 error = g_access(cp, 1, 1, 1); 511 g_topology_unlock(); 512 if (error != 0) { 513 g_detach(cp); 514 g_destroy_consumer(cp); 515 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", 516 pp->name, error); 517 return (error); 518 } 519 disk->d_consumer = cp; 520 disk->d_consumer->private = disk; 521 disk->d_consumer->index = 0; 522 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 523 return (0); 524 } 525 526 static void 527 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 528 { 529 530 g_topology_assert(); 531 532 if (cp == NULL) 533 return; 534 if (cp->provider != NULL) 535 g_raid3_kill_consumer(sc, cp); 536 else 537 g_destroy_consumer(cp); 538 } 539 540 /* 541 * Initialize disk. This means allocate memory, create consumer, attach it 542 * to the provider and open access (r1w1e1) to it. 543 */ 544 static struct g_raid3_disk * 545 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 546 struct g_raid3_metadata *md, int *errorp) 547 { 548 struct g_raid3_disk *disk; 549 int error; 550 551 disk = &sc->sc_disks[md->md_no]; 552 error = g_raid3_connect_disk(disk, pp); 553 if (error != 0) { 554 if (errorp != NULL) 555 *errorp = error; 556 return (NULL); 557 } 558 disk->d_state = G_RAID3_DISK_STATE_NONE; 559 disk->d_flags = md->md_dflags; 560 if (md->md_provider[0] != '\0') 561 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 562 disk->d_sync.ds_consumer = NULL; 563 disk->d_sync.ds_offset = md->md_sync_offset; 564 disk->d_sync.ds_offset_done = md->md_sync_offset; 565 disk->d_genid = md->md_genid; 566 disk->d_sync.ds_syncid = md->md_syncid; 567 if (errorp != NULL) 568 *errorp = 0; 569 return (disk); 570 } 571 572 static void 573 g_raid3_destroy_disk(struct g_raid3_disk *disk) 574 { 575 struct g_raid3_softc *sc; 576 577 g_topology_assert_not(); 578 sc = disk->d_softc; 579 sx_assert(&sc->sc_lock, SX_XLOCKED); 580 581 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 582 return; 583 g_raid3_event_cancel(disk); 584 switch (disk->d_state) { 585 case G_RAID3_DISK_STATE_SYNCHRONIZING: 586 if (sc->sc_syncdisk != NULL) 587 g_raid3_sync_stop(sc, 1); 588 /* FALLTHROUGH */ 589 case G_RAID3_DISK_STATE_NEW: 590 case G_RAID3_DISK_STATE_STALE: 591 case G_RAID3_DISK_STATE_ACTIVE: 592 g_topology_lock(); 593 g_raid3_disconnect_consumer(sc, disk->d_consumer); 594 g_topology_unlock(); 595 disk->d_consumer = NULL; 596 break; 597 default: 598 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 599 g_raid3_get_diskname(disk), 600 g_raid3_disk_state2str(disk->d_state))); 601 } 602 disk->d_state = G_RAID3_DISK_STATE_NODISK; 603 } 604 605 static void 606 g_raid3_destroy_device(struct g_raid3_softc *sc) 607 { 608 struct g_raid3_event *ep; 609 struct g_raid3_disk *disk; 610 struct g_geom *gp; 611 struct g_consumer *cp; 612 u_int n; 613 614 g_topology_assert_not(); 615 sx_assert(&sc->sc_lock, SX_XLOCKED); 616 617 gp = sc->sc_geom; 618 if (sc->sc_provider != NULL) 619 g_raid3_destroy_provider(sc); 620 for (n = 0; n < sc->sc_ndisks; n++) { 621 disk = &sc->sc_disks[n]; 622 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { 623 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 624 g_raid3_update_metadata(disk); 625 g_raid3_destroy_disk(disk); 626 } 627 } 628 while ((ep = g_raid3_event_get(sc)) != NULL) { 629 g_raid3_event_remove(sc, ep); 630 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 631 g_raid3_event_free(ep); 632 else { 633 ep->e_error = ECANCELED; 634 ep->e_flags |= G_RAID3_EVENT_DONE; 635 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 636 mtx_lock(&sc->sc_events_mtx); 637 wakeup(ep); 638 mtx_unlock(&sc->sc_events_mtx); 639 } 640 } 641 callout_drain(&sc->sc_callout); 642 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 643 g_topology_lock(); 644 if (cp != NULL) 645 g_raid3_disconnect_consumer(sc, cp); 646 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 647 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 648 g_wither_geom(gp, ENXIO); 649 g_topology_unlock(); 650 if (!g_raid3_use_malloc) { 651 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 652 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 653 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 654 } 655 mtx_destroy(&sc->sc_queue_mtx); 656 mtx_destroy(&sc->sc_events_mtx); 657 sx_xunlock(&sc->sc_lock); 658 sx_destroy(&sc->sc_lock); 659 } 660 661 static void 662 g_raid3_orphan(struct g_consumer *cp) 663 { 664 struct g_raid3_disk *disk; 665 666 g_topology_assert(); 667 668 disk = cp->private; 669 if (disk == NULL) 670 return; 671 disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; 672 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 673 G_RAID3_EVENT_DONTWAIT); 674 } 675 676 static int 677 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 678 { 679 struct g_raid3_softc *sc; 680 struct g_consumer *cp; 681 off_t offset, length; 682 u_char *sector; 683 int error = 0; 684 685 g_topology_assert_not(); 686 sc = disk->d_softc; 687 sx_assert(&sc->sc_lock, SX_LOCKED); 688 689 cp = disk->d_consumer; 690 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 691 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 692 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 693 ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, 694 cp->acw, cp->ace)); 695 length = cp->provider->sectorsize; 696 offset = cp->provider->mediasize - length; 697 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 698 if (md != NULL) 699 raid3_metadata_encode(md, sector); 700 error = g_write_data(cp, offset, sector, length); 701 free(sector, M_RAID3); 702 if (error != 0) { 703 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 704 G_RAID3_DEBUG(0, "Cannot write metadata on %s " 705 "(device=%s, error=%d).", 706 g_raid3_get_diskname(disk), sc->sc_name, error); 707 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 708 } else { 709 G_RAID3_DEBUG(1, "Cannot write metadata on %s " 710 "(device=%s, error=%d).", 711 g_raid3_get_diskname(disk), sc->sc_name, error); 712 } 713 if (g_raid3_disconnect_on_failure && 714 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 715 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 716 g_raid3_event_send(disk, 717 G_RAID3_DISK_STATE_DISCONNECTED, 718 G_RAID3_EVENT_DONTWAIT); 719 } 720 } 721 return (error); 722 } 723 724 int 725 g_raid3_clear_metadata(struct g_raid3_disk *disk) 726 { 727 int error; 728 729 g_topology_assert_not(); 730 sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); 731 732 error = g_raid3_write_metadata(disk, NULL); 733 if (error == 0) { 734 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 735 g_raid3_get_diskname(disk)); 736 } else { 737 G_RAID3_DEBUG(0, 738 "Cannot clear metadata on disk %s (error=%d).", 739 g_raid3_get_diskname(disk), error); 740 } 741 return (error); 742 } 743 744 void 745 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 746 { 747 struct g_raid3_softc *sc; 748 struct g_provider *pp; 749 750 sc = disk->d_softc; 751 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 752 md->md_version = G_RAID3_VERSION; 753 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 754 md->md_id = sc->sc_id; 755 md->md_all = sc->sc_ndisks; 756 md->md_genid = sc->sc_genid; 757 md->md_mediasize = sc->sc_mediasize; 758 md->md_sectorsize = sc->sc_sectorsize; 759 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 760 md->md_no = disk->d_no; 761 md->md_syncid = disk->d_sync.ds_syncid; 762 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 763 if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 764 md->md_sync_offset = 0; 765 else { 766 md->md_sync_offset = 767 disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); 768 } 769 if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) 770 pp = disk->d_consumer->provider; 771 else 772 pp = NULL; 773 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) 774 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); 775 else 776 bzero(md->md_provider, sizeof(md->md_provider)); 777 if (pp != NULL) 778 md->md_provsize = pp->mediasize; 779 else 780 md->md_provsize = 0; 781 } 782 783 void 784 g_raid3_update_metadata(struct g_raid3_disk *disk) 785 { 786 struct g_raid3_softc *sc; 787 struct g_raid3_metadata md; 788 int error; 789 790 g_topology_assert_not(); 791 sc = disk->d_softc; 792 sx_assert(&sc->sc_lock, SX_LOCKED); 793 794 g_raid3_fill_metadata(disk, &md); 795 error = g_raid3_write_metadata(disk, &md); 796 if (error == 0) { 797 G_RAID3_DEBUG(2, "Metadata on %s updated.", 798 g_raid3_get_diskname(disk)); 799 } else { 800 G_RAID3_DEBUG(0, 801 "Cannot update metadata on disk %s (error=%d).", 802 g_raid3_get_diskname(disk), error); 803 } 804 } 805 806 static void 807 g_raid3_bump_syncid(struct g_raid3_softc *sc) 808 { 809 struct g_raid3_disk *disk; 810 u_int n; 811 812 g_topology_assert_not(); 813 sx_assert(&sc->sc_lock, SX_XLOCKED); 814 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 815 ("%s called with no active disks (device=%s).", __func__, 816 sc->sc_name)); 817 818 sc->sc_syncid++; 819 G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, 820 sc->sc_syncid); 821 for (n = 0; n < sc->sc_ndisks; n++) { 822 disk = &sc->sc_disks[n]; 823 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 824 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 825 disk->d_sync.ds_syncid = sc->sc_syncid; 826 g_raid3_update_metadata(disk); 827 } 828 } 829 } 830 831 static void 832 g_raid3_bump_genid(struct g_raid3_softc *sc) 833 { 834 struct g_raid3_disk *disk; 835 u_int n; 836 837 g_topology_assert_not(); 838 sx_assert(&sc->sc_lock, SX_XLOCKED); 839 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 840 ("%s called with no active disks (device=%s).", __func__, 841 sc->sc_name)); 842 843 sc->sc_genid++; 844 G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, 845 sc->sc_genid); 846 for (n = 0; n < sc->sc_ndisks; n++) { 847 disk = &sc->sc_disks[n]; 848 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 849 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 850 disk->d_genid = sc->sc_genid; 851 g_raid3_update_metadata(disk); 852 } 853 } 854 } 855 856 static int 857 g_raid3_idle(struct g_raid3_softc *sc, int acw) 858 { 859 struct g_raid3_disk *disk; 860 u_int i; 861 int timeout; 862 863 g_topology_assert_not(); 864 sx_assert(&sc->sc_lock, SX_XLOCKED); 865 866 if (sc->sc_provider == NULL) 867 return (0); 868 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 869 return (0); 870 if (sc->sc_idle) 871 return (0); 872 if (sc->sc_writes > 0) 873 return (0); 874 if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { 875 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); 876 if (timeout > 0) 877 return (timeout); 878 } 879 sc->sc_idle = 1; 880 for (i = 0; i < sc->sc_ndisks; i++) { 881 disk = &sc->sc_disks[i]; 882 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 883 continue; 884 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 885 g_raid3_get_diskname(disk), sc->sc_name); 886 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 887 g_raid3_update_metadata(disk); 888 } 889 return (0); 890 } 891 892 static void 893 g_raid3_unidle(struct g_raid3_softc *sc) 894 { 895 struct g_raid3_disk *disk; 896 u_int i; 897 898 g_topology_assert_not(); 899 sx_assert(&sc->sc_lock, SX_XLOCKED); 900 901 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 902 return; 903 sc->sc_idle = 0; 904 sc->sc_last_write = time_uptime; 905 for (i = 0; i < sc->sc_ndisks; i++) { 906 disk = &sc->sc_disks[i]; 907 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 908 continue; 909 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 910 g_raid3_get_diskname(disk), sc->sc_name); 911 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 912 g_raid3_update_metadata(disk); 913 } 914 } 915 916 /* 917 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 918 * in child bio as pointer to the next element on the list. 919 */ 920 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 921 922 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 923 924 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 925 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 926 (bp) = G_RAID3_NEXT_BIO(bp)) 927 928 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 929 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 930 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 931 (bp) = (tmpbp)) 932 933 static void 934 g_raid3_init_bio(struct bio *pbp) 935 { 936 937 G_RAID3_HEAD_BIO(pbp) = NULL; 938 } 939 940 static void 941 g_raid3_remove_bio(struct bio *cbp) 942 { 943 struct bio *pbp, *bp; 944 945 pbp = cbp->bio_parent; 946 if (G_RAID3_HEAD_BIO(pbp) == cbp) 947 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 948 else { 949 G_RAID3_FOREACH_BIO(pbp, bp) { 950 if (G_RAID3_NEXT_BIO(bp) == cbp) { 951 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 952 break; 953 } 954 } 955 } 956 G_RAID3_NEXT_BIO(cbp) = NULL; 957 } 958 959 static void 960 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 961 { 962 struct bio *pbp, *bp; 963 964 g_raid3_remove_bio(sbp); 965 pbp = dbp->bio_parent; 966 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 967 if (G_RAID3_HEAD_BIO(pbp) == dbp) 968 G_RAID3_HEAD_BIO(pbp) = sbp; 969 else { 970 G_RAID3_FOREACH_BIO(pbp, bp) { 971 if (G_RAID3_NEXT_BIO(bp) == dbp) { 972 G_RAID3_NEXT_BIO(bp) = sbp; 973 break; 974 } 975 } 976 } 977 G_RAID3_NEXT_BIO(dbp) = NULL; 978 } 979 980 static void 981 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 982 { 983 struct bio *bp, *pbp; 984 size_t size; 985 986 pbp = cbp->bio_parent; 987 pbp->bio_children--; 988 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 989 size = pbp->bio_length / (sc->sc_ndisks - 1); 990 g_raid3_free(sc, cbp->bio_data, size); 991 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 992 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 993 G_RAID3_NEXT_BIO(cbp) = NULL; 994 g_destroy_bio(cbp); 995 } else { 996 G_RAID3_FOREACH_BIO(pbp, bp) { 997 if (G_RAID3_NEXT_BIO(bp) == cbp) 998 break; 999 } 1000 if (bp != NULL) { 1001 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 1002 ("NULL bp->bio_driver1")); 1003 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 1004 G_RAID3_NEXT_BIO(cbp) = NULL; 1005 } 1006 g_destroy_bio(cbp); 1007 } 1008 } 1009 1010 static struct bio * 1011 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 1012 { 1013 struct bio *bp, *cbp; 1014 size_t size; 1015 int memflag; 1016 1017 cbp = g_clone_bio(pbp); 1018 if (cbp == NULL) 1019 return (NULL); 1020 size = pbp->bio_length / (sc->sc_ndisks - 1); 1021 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 1022 memflag = M_WAITOK; 1023 else 1024 memflag = M_NOWAIT; 1025 cbp->bio_data = g_raid3_alloc(sc, size, memflag); 1026 if (cbp->bio_data == NULL) { 1027 pbp->bio_children--; 1028 g_destroy_bio(cbp); 1029 return (NULL); 1030 } 1031 G_RAID3_NEXT_BIO(cbp) = NULL; 1032 if (G_RAID3_HEAD_BIO(pbp) == NULL) 1033 G_RAID3_HEAD_BIO(pbp) = cbp; 1034 else { 1035 G_RAID3_FOREACH_BIO(pbp, bp) { 1036 if (G_RAID3_NEXT_BIO(bp) == NULL) { 1037 G_RAID3_NEXT_BIO(bp) = cbp; 1038 break; 1039 } 1040 } 1041 } 1042 return (cbp); 1043 } 1044 1045 static void 1046 g_raid3_scatter(struct bio *pbp) 1047 { 1048 struct g_raid3_softc *sc; 1049 struct g_raid3_disk *disk; 1050 struct bio *bp, *cbp, *tmpbp; 1051 off_t atom, cadd, padd, left; 1052 int first; 1053 1054 sc = pbp->bio_to->geom->softc; 1055 bp = NULL; 1056 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1057 /* 1058 * Find bio for which we should calculate data. 1059 */ 1060 G_RAID3_FOREACH_BIO(pbp, cbp) { 1061 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1062 bp = cbp; 1063 break; 1064 } 1065 } 1066 KASSERT(bp != NULL, ("NULL parity bio.")); 1067 } 1068 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1069 cadd = padd = 0; 1070 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1071 G_RAID3_FOREACH_BIO(pbp, cbp) { 1072 if (cbp == bp) 1073 continue; 1074 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 1075 padd += atom; 1076 } 1077 cadd += atom; 1078 } 1079 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1080 /* 1081 * Calculate parity. 1082 */ 1083 first = 1; 1084 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1085 if (cbp == bp) 1086 continue; 1087 if (first) { 1088 bcopy(cbp->bio_data, bp->bio_data, 1089 bp->bio_length); 1090 first = 0; 1091 } else { 1092 g_raid3_xor(cbp->bio_data, bp->bio_data, 1093 bp->bio_length); 1094 } 1095 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1096 g_raid3_destroy_bio(sc, cbp); 1097 } 1098 } 1099 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1100 struct g_consumer *cp; 1101 1102 disk = cbp->bio_caller2; 1103 cp = disk->d_consumer; 1104 cbp->bio_to = cp->provider; 1105 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1106 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1107 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1108 cp->acr, cp->acw, cp->ace)); 1109 cp->index++; 1110 sc->sc_writes++; 1111 g_io_request(cbp, cp); 1112 } 1113 } 1114 1115 static void 1116 g_raid3_gather(struct bio *pbp) 1117 { 1118 struct g_raid3_softc *sc; 1119 struct g_raid3_disk *disk; 1120 struct bio *xbp, *fbp, *cbp; 1121 off_t atom, cadd, padd, left; 1122 1123 sc = pbp->bio_to->geom->softc; 1124 /* 1125 * Find bio for which we have to calculate data. 1126 * While going through this path, check if all requests 1127 * succeeded, if not, deny whole request. 1128 * If we're in COMPLETE mode, we allow one request to fail, 1129 * so if we find one, we're sending it to the parity consumer. 1130 * If there are more failed requests, we deny whole request. 1131 */ 1132 xbp = fbp = NULL; 1133 G_RAID3_FOREACH_BIO(pbp, cbp) { 1134 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1135 KASSERT(xbp == NULL, ("More than one parity bio.")); 1136 xbp = cbp; 1137 } 1138 if (cbp->bio_error == 0) 1139 continue; 1140 /* 1141 * Found failed request. 1142 */ 1143 if (fbp == NULL) { 1144 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1145 /* 1146 * We are already in degraded mode, so we can't 1147 * accept any failures. 1148 */ 1149 if (pbp->bio_error == 0) 1150 pbp->bio_error = cbp->bio_error; 1151 } else { 1152 fbp = cbp; 1153 } 1154 } else { 1155 /* 1156 * Next failed request, that's too many. 1157 */ 1158 if (pbp->bio_error == 0) 1159 pbp->bio_error = fbp->bio_error; 1160 } 1161 disk = cbp->bio_caller2; 1162 if (disk == NULL) 1163 continue; 1164 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1165 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1166 G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", 1167 cbp->bio_error); 1168 } else { 1169 G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", 1170 cbp->bio_error); 1171 } 1172 if (g_raid3_disconnect_on_failure && 1173 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1174 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1175 g_raid3_event_send(disk, 1176 G_RAID3_DISK_STATE_DISCONNECTED, 1177 G_RAID3_EVENT_DONTWAIT); 1178 } 1179 } 1180 if (pbp->bio_error != 0) 1181 goto finish; 1182 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1183 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1184 if (xbp != fbp) 1185 g_raid3_replace_bio(xbp, fbp); 1186 g_raid3_destroy_bio(sc, fbp); 1187 } else if (fbp != NULL) { 1188 struct g_consumer *cp; 1189 1190 /* 1191 * One request failed, so send the same request to 1192 * the parity consumer. 1193 */ 1194 disk = pbp->bio_driver2; 1195 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1196 pbp->bio_error = fbp->bio_error; 1197 goto finish; 1198 } 1199 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1200 pbp->bio_inbed--; 1201 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1202 if (disk->d_no == sc->sc_ndisks - 1) 1203 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1204 fbp->bio_error = 0; 1205 fbp->bio_completed = 0; 1206 fbp->bio_children = 0; 1207 fbp->bio_inbed = 0; 1208 cp = disk->d_consumer; 1209 fbp->bio_caller2 = disk; 1210 fbp->bio_to = cp->provider; 1211 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1212 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1213 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1214 cp->acr, cp->acw, cp->ace)); 1215 cp->index++; 1216 g_io_request(fbp, cp); 1217 return; 1218 } 1219 if (xbp != NULL) { 1220 /* 1221 * Calculate parity. 1222 */ 1223 G_RAID3_FOREACH_BIO(pbp, cbp) { 1224 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1225 continue; 1226 g_raid3_xor(cbp->bio_data, xbp->bio_data, 1227 xbp->bio_length); 1228 } 1229 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1230 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1231 if (!g_raid3_is_zero(xbp)) { 1232 g_raid3_parity_mismatch++; 1233 pbp->bio_error = EIO; 1234 goto finish; 1235 } 1236 g_raid3_destroy_bio(sc, xbp); 1237 } 1238 } 1239 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1240 cadd = padd = 0; 1241 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1242 G_RAID3_FOREACH_BIO(pbp, cbp) { 1243 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1244 pbp->bio_completed += atom; 1245 padd += atom; 1246 } 1247 cadd += atom; 1248 } 1249 finish: 1250 if (pbp->bio_error == 0) 1251 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1252 else { 1253 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1254 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1255 else 1256 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1257 } 1258 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1259 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1260 g_raid3_destroy_bio(sc, cbp); 1261 g_io_deliver(pbp, pbp->bio_error); 1262 } 1263 1264 static void 1265 g_raid3_done(struct bio *bp) 1266 { 1267 struct g_raid3_softc *sc; 1268 1269 sc = bp->bio_from->geom->softc; 1270 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1271 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1272 mtx_lock(&sc->sc_queue_mtx); 1273 bioq_insert_head(&sc->sc_queue, bp); 1274 mtx_unlock(&sc->sc_queue_mtx); 1275 wakeup(sc); 1276 wakeup(&sc->sc_queue); 1277 } 1278 1279 static void 1280 g_raid3_regular_request(struct bio *cbp) 1281 { 1282 struct g_raid3_softc *sc; 1283 struct g_raid3_disk *disk; 1284 struct bio *pbp; 1285 1286 g_topology_assert_not(); 1287 1288 pbp = cbp->bio_parent; 1289 sc = pbp->bio_to->geom->softc; 1290 cbp->bio_from->index--; 1291 if (cbp->bio_cmd == BIO_WRITE) 1292 sc->sc_writes--; 1293 disk = cbp->bio_from->private; 1294 if (disk == NULL) { 1295 g_topology_lock(); 1296 g_raid3_kill_consumer(sc, cbp->bio_from); 1297 g_topology_unlock(); 1298 } 1299 1300 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1301 pbp->bio_inbed++; 1302 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1303 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1304 pbp->bio_children)); 1305 if (pbp->bio_inbed != pbp->bio_children) 1306 return; 1307 switch (pbp->bio_cmd) { 1308 case BIO_READ: 1309 g_raid3_gather(pbp); 1310 break; 1311 case BIO_WRITE: 1312 case BIO_DELETE: 1313 { 1314 int error = 0; 1315 1316 pbp->bio_completed = pbp->bio_length; 1317 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1318 if (cbp->bio_error == 0) { 1319 g_raid3_destroy_bio(sc, cbp); 1320 continue; 1321 } 1322 1323 if (error == 0) 1324 error = cbp->bio_error; 1325 else if (pbp->bio_error == 0) { 1326 /* 1327 * Next failed request, that's too many. 1328 */ 1329 pbp->bio_error = error; 1330 } 1331 1332 disk = cbp->bio_caller2; 1333 if (disk == NULL) { 1334 g_raid3_destroy_bio(sc, cbp); 1335 continue; 1336 } 1337 1338 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1339 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1340 G_RAID3_LOGREQ(0, cbp, 1341 "Request failed (error=%d).", 1342 cbp->bio_error); 1343 } else { 1344 G_RAID3_LOGREQ(1, cbp, 1345 "Request failed (error=%d).", 1346 cbp->bio_error); 1347 } 1348 if (g_raid3_disconnect_on_failure && 1349 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1350 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1351 g_raid3_event_send(disk, 1352 G_RAID3_DISK_STATE_DISCONNECTED, 1353 G_RAID3_EVENT_DONTWAIT); 1354 } 1355 g_raid3_destroy_bio(sc, cbp); 1356 } 1357 if (pbp->bio_error == 0) 1358 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1359 else 1360 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1361 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1362 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1363 bioq_remove(&sc->sc_inflight, pbp); 1364 /* Release delayed sync requests if possible. */ 1365 g_raid3_sync_release(sc); 1366 g_io_deliver(pbp, pbp->bio_error); 1367 break; 1368 } 1369 } 1370 } 1371 1372 static void 1373 g_raid3_sync_done(struct bio *bp) 1374 { 1375 struct g_raid3_softc *sc; 1376 1377 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1378 sc = bp->bio_from->geom->softc; 1379 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1380 mtx_lock(&sc->sc_queue_mtx); 1381 bioq_insert_head(&sc->sc_queue, bp); 1382 mtx_unlock(&sc->sc_queue_mtx); 1383 wakeup(sc); 1384 wakeup(&sc->sc_queue); 1385 } 1386 1387 static void 1388 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp) 1389 { 1390 struct bio_queue_head queue; 1391 struct g_raid3_disk *disk; 1392 struct g_consumer *cp; 1393 struct bio *cbp; 1394 u_int i; 1395 1396 bioq_init(&queue); 1397 for (i = 0; i < sc->sc_ndisks; i++) { 1398 disk = &sc->sc_disks[i]; 1399 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 1400 continue; 1401 cbp = g_clone_bio(bp); 1402 if (cbp == NULL) { 1403 for (cbp = bioq_first(&queue); cbp != NULL; 1404 cbp = bioq_first(&queue)) { 1405 bioq_remove(&queue, cbp); 1406 g_destroy_bio(cbp); 1407 } 1408 if (bp->bio_error == 0) 1409 bp->bio_error = ENOMEM; 1410 g_io_deliver(bp, bp->bio_error); 1411 return; 1412 } 1413 bioq_insert_tail(&queue, cbp); 1414 cbp->bio_done = g_std_done; 1415 cbp->bio_caller1 = disk; 1416 cbp->bio_to = disk->d_consumer->provider; 1417 } 1418 for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { 1419 bioq_remove(&queue, cbp); 1420 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1421 disk = cbp->bio_caller1; 1422 cbp->bio_caller1 = NULL; 1423 cp = disk->d_consumer; 1424 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1425 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1426 cp->acr, cp->acw, cp->ace)); 1427 g_io_request(cbp, disk->d_consumer); 1428 } 1429 } 1430 1431 static void 1432 g_raid3_start(struct bio *bp) 1433 { 1434 struct g_raid3_softc *sc; 1435 1436 sc = bp->bio_to->geom->softc; 1437 /* 1438 * If sc == NULL or there are no valid disks, provider's error 1439 * should be set and g_raid3_start() should not be called at all. 1440 */ 1441 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1442 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1443 ("Provider's error should be set (error=%d)(device=%s).", 1444 bp->bio_to->error, bp->bio_to->name)); 1445 G_RAID3_LOGREQ(3, bp, "Request received."); 1446 1447 switch (bp->bio_cmd) { 1448 case BIO_READ: 1449 case BIO_WRITE: 1450 case BIO_DELETE: 1451 break; 1452 case BIO_FLUSH: 1453 g_raid3_flush(sc, bp); 1454 return; 1455 case BIO_GETATTR: 1456 default: 1457 g_io_deliver(bp, EOPNOTSUPP); 1458 return; 1459 } 1460 mtx_lock(&sc->sc_queue_mtx); 1461 bioq_insert_tail(&sc->sc_queue, bp); 1462 mtx_unlock(&sc->sc_queue_mtx); 1463 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1464 wakeup(sc); 1465 } 1466 1467 /* 1468 * Return TRUE if the given request is colliding with a in-progress 1469 * synchronization request. 1470 */ 1471 static int 1472 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) 1473 { 1474 struct g_raid3_disk *disk; 1475 struct bio *sbp; 1476 off_t rstart, rend, sstart, send; 1477 int i; 1478 1479 disk = sc->sc_syncdisk; 1480 if (disk == NULL) 1481 return (0); 1482 rstart = bp->bio_offset; 1483 rend = bp->bio_offset + bp->bio_length; 1484 for (i = 0; i < g_raid3_syncreqs; i++) { 1485 sbp = disk->d_sync.ds_bios[i]; 1486 if (sbp == NULL) 1487 continue; 1488 sstart = sbp->bio_offset; 1489 send = sbp->bio_length; 1490 if (sbp->bio_cmd == BIO_WRITE) { 1491 sstart *= sc->sc_ndisks - 1; 1492 send *= sc->sc_ndisks - 1; 1493 } 1494 send += sstart; 1495 if (rend > sstart && rstart < send) 1496 return (1); 1497 } 1498 return (0); 1499 } 1500 1501 /* 1502 * Return TRUE if the given sync request is colliding with a in-progress regular 1503 * request. 1504 */ 1505 static int 1506 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) 1507 { 1508 off_t rstart, rend, sstart, send; 1509 struct bio *bp; 1510 1511 if (sc->sc_syncdisk == NULL) 1512 return (0); 1513 sstart = sbp->bio_offset; 1514 send = sstart + sbp->bio_length; 1515 TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { 1516 rstart = bp->bio_offset; 1517 rend = bp->bio_offset + bp->bio_length; 1518 if (rend > sstart && rstart < send) 1519 return (1); 1520 } 1521 return (0); 1522 } 1523 1524 /* 1525 * Puts request onto delayed queue. 1526 */ 1527 static void 1528 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) 1529 { 1530 1531 G_RAID3_LOGREQ(2, bp, "Delaying request."); 1532 bioq_insert_head(&sc->sc_regular_delayed, bp); 1533 } 1534 1535 /* 1536 * Puts synchronization request onto delayed queue. 1537 */ 1538 static void 1539 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) 1540 { 1541 1542 G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); 1543 bioq_insert_tail(&sc->sc_sync_delayed, bp); 1544 } 1545 1546 /* 1547 * Releases delayed regular requests which don't collide anymore with sync 1548 * requests. 1549 */ 1550 static void 1551 g_raid3_regular_release(struct g_raid3_softc *sc) 1552 { 1553 struct bio *bp, *bp2; 1554 1555 TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { 1556 if (g_raid3_sync_collision(sc, bp)) 1557 continue; 1558 bioq_remove(&sc->sc_regular_delayed, bp); 1559 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); 1560 mtx_lock(&sc->sc_queue_mtx); 1561 bioq_insert_head(&sc->sc_queue, bp); 1562 #if 0 1563 /* 1564 * wakeup() is not needed, because this function is called from 1565 * the worker thread. 1566 */ 1567 wakeup(&sc->sc_queue); 1568 #endif 1569 mtx_unlock(&sc->sc_queue_mtx); 1570 } 1571 } 1572 1573 /* 1574 * Releases delayed sync requests which don't collide anymore with regular 1575 * requests. 1576 */ 1577 static void 1578 g_raid3_sync_release(struct g_raid3_softc *sc) 1579 { 1580 struct bio *bp, *bp2; 1581 1582 TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { 1583 if (g_raid3_regular_collision(sc, bp)) 1584 continue; 1585 bioq_remove(&sc->sc_sync_delayed, bp); 1586 G_RAID3_LOGREQ(2, bp, 1587 "Releasing delayed synchronization request."); 1588 g_io_request(bp, bp->bio_from); 1589 } 1590 } 1591 1592 /* 1593 * Handle synchronization requests. 1594 * Every synchronization request is two-steps process: first, READ request is 1595 * send to active provider and then WRITE request (with read data) to the provider 1596 * beeing synchronized. When WRITE is finished, new synchronization request is 1597 * send. 1598 */ 1599 static void 1600 g_raid3_sync_request(struct bio *bp) 1601 { 1602 struct g_raid3_softc *sc; 1603 struct g_raid3_disk *disk; 1604 1605 bp->bio_from->index--; 1606 sc = bp->bio_from->geom->softc; 1607 disk = bp->bio_from->private; 1608 if (disk == NULL) { 1609 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 1610 g_topology_lock(); 1611 g_raid3_kill_consumer(sc, bp->bio_from); 1612 g_topology_unlock(); 1613 free(bp->bio_data, M_RAID3); 1614 g_destroy_bio(bp); 1615 sx_xlock(&sc->sc_lock); 1616 return; 1617 } 1618 1619 /* 1620 * Synchronization request. 1621 */ 1622 switch (bp->bio_cmd) { 1623 case BIO_READ: 1624 { 1625 struct g_consumer *cp; 1626 u_char *dst, *src; 1627 off_t left; 1628 u_int atom; 1629 1630 if (bp->bio_error != 0) { 1631 G_RAID3_LOGREQ(0, bp, 1632 "Synchronization request failed (error=%d).", 1633 bp->bio_error); 1634 g_destroy_bio(bp); 1635 return; 1636 } 1637 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1638 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1639 dst = src = bp->bio_data; 1640 if (disk->d_no == sc->sc_ndisks - 1) { 1641 u_int n; 1642 1643 /* Parity component. */ 1644 for (left = bp->bio_length; left > 0; 1645 left -= sc->sc_sectorsize) { 1646 bcopy(src, dst, atom); 1647 src += atom; 1648 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1649 g_raid3_xor(src, dst, atom); 1650 src += atom; 1651 } 1652 dst += atom; 1653 } 1654 } else { 1655 /* Regular component. */ 1656 src += atom * disk->d_no; 1657 for (left = bp->bio_length; left > 0; 1658 left -= sc->sc_sectorsize) { 1659 bcopy(src, dst, atom); 1660 src += sc->sc_sectorsize; 1661 dst += atom; 1662 } 1663 } 1664 bp->bio_driver1 = bp->bio_driver2 = NULL; 1665 bp->bio_pflags = 0; 1666 bp->bio_offset /= sc->sc_ndisks - 1; 1667 bp->bio_length /= sc->sc_ndisks - 1; 1668 bp->bio_cmd = BIO_WRITE; 1669 bp->bio_cflags = 0; 1670 bp->bio_children = bp->bio_inbed = 0; 1671 cp = disk->d_consumer; 1672 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1673 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1674 cp->acr, cp->acw, cp->ace)); 1675 cp->index++; 1676 g_io_request(bp, cp); 1677 return; 1678 } 1679 case BIO_WRITE: 1680 { 1681 struct g_raid3_disk_sync *sync; 1682 off_t boffset, moffset; 1683 void *data; 1684 int i; 1685 1686 if (bp->bio_error != 0) { 1687 G_RAID3_LOGREQ(0, bp, 1688 "Synchronization request failed (error=%d).", 1689 bp->bio_error); 1690 g_destroy_bio(bp); 1691 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1692 g_raid3_event_send(disk, 1693 G_RAID3_DISK_STATE_DISCONNECTED, 1694 G_RAID3_EVENT_DONTWAIT); 1695 return; 1696 } 1697 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1698 sync = &disk->d_sync; 1699 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || 1700 sync->ds_consumer == NULL || 1701 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1702 /* Don't send more synchronization requests. */ 1703 sync->ds_inflight--; 1704 if (sync->ds_bios != NULL) { 1705 i = (int)(uintptr_t)bp->bio_caller1; 1706 sync->ds_bios[i] = NULL; 1707 } 1708 free(bp->bio_data, M_RAID3); 1709 g_destroy_bio(bp); 1710 if (sync->ds_inflight > 0) 1711 return; 1712 if (sync->ds_consumer == NULL || 1713 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1714 return; 1715 } 1716 /* 1717 * Disk up-to-date, activate it. 1718 */ 1719 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1720 G_RAID3_EVENT_DONTWAIT); 1721 return; 1722 } 1723 1724 /* Send next synchronization request. */ 1725 data = bp->bio_data; 1726 bzero(bp, sizeof(*bp)); 1727 bp->bio_cmd = BIO_READ; 1728 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); 1729 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 1730 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1731 bp->bio_done = g_raid3_sync_done; 1732 bp->bio_data = data; 1733 bp->bio_from = sync->ds_consumer; 1734 bp->bio_to = sc->sc_provider; 1735 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1736 sync->ds_consumer->index++; 1737 /* 1738 * Delay the request if it is colliding with a regular request. 1739 */ 1740 if (g_raid3_regular_collision(sc, bp)) 1741 g_raid3_sync_delay(sc, bp); 1742 else 1743 g_io_request(bp, sync->ds_consumer); 1744 1745 /* Release delayed requests if possible. */ 1746 g_raid3_regular_release(sc); 1747 1748 /* Find the smallest offset. */ 1749 moffset = sc->sc_mediasize; 1750 for (i = 0; i < g_raid3_syncreqs; i++) { 1751 bp = sync->ds_bios[i]; 1752 boffset = bp->bio_offset; 1753 if (bp->bio_cmd == BIO_WRITE) 1754 boffset *= sc->sc_ndisks - 1; 1755 if (boffset < moffset) 1756 moffset = boffset; 1757 } 1758 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) { 1759 /* Update offset_done on every 100 blocks. */ 1760 sync->ds_offset_done = moffset; 1761 g_raid3_update_metadata(disk); 1762 } 1763 return; 1764 } 1765 default: 1766 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1767 bp->bio_cmd, sc->sc_name)); 1768 break; 1769 } 1770 } 1771 1772 static int 1773 g_raid3_register_request(struct bio *pbp) 1774 { 1775 struct g_raid3_softc *sc; 1776 struct g_raid3_disk *disk; 1777 struct g_consumer *cp; 1778 struct bio *cbp, *tmpbp; 1779 off_t offset, length; 1780 u_int n, ndisks; 1781 int round_robin, verify; 1782 1783 ndisks = 0; 1784 sc = pbp->bio_to->geom->softc; 1785 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1786 sc->sc_syncdisk == NULL) { 1787 g_io_deliver(pbp, EIO); 1788 return (0); 1789 } 1790 g_raid3_init_bio(pbp); 1791 length = pbp->bio_length / (sc->sc_ndisks - 1); 1792 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1793 round_robin = verify = 0; 1794 switch (pbp->bio_cmd) { 1795 case BIO_READ: 1796 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1797 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1798 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1799 verify = 1; 1800 ndisks = sc->sc_ndisks; 1801 } else { 1802 verify = 0; 1803 ndisks = sc->sc_ndisks - 1; 1804 } 1805 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1806 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1807 round_robin = 1; 1808 } else { 1809 round_robin = 0; 1810 } 1811 KASSERT(!round_robin || !verify, 1812 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1813 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1814 break; 1815 case BIO_WRITE: 1816 case BIO_DELETE: 1817 /* 1818 * Delay the request if it is colliding with a synchronization 1819 * request. 1820 */ 1821 if (g_raid3_sync_collision(sc, pbp)) { 1822 g_raid3_regular_delay(sc, pbp); 1823 return (0); 1824 } 1825 1826 if (sc->sc_idle) 1827 g_raid3_unidle(sc); 1828 else 1829 sc->sc_last_write = time_uptime; 1830 1831 ndisks = sc->sc_ndisks; 1832 break; 1833 } 1834 for (n = 0; n < ndisks; n++) { 1835 disk = &sc->sc_disks[n]; 1836 cbp = g_raid3_clone_bio(sc, pbp); 1837 if (cbp == NULL) { 1838 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1839 g_raid3_destroy_bio(sc, cbp); 1840 /* 1841 * To prevent deadlock, we must run back up 1842 * with the ENOMEM for failed requests of any 1843 * of our consumers. Our own sync requests 1844 * can stick around, as they are finite. 1845 */ 1846 if ((pbp->bio_cflags & 1847 G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1848 g_io_deliver(pbp, ENOMEM); 1849 return (0); 1850 } 1851 return (ENOMEM); 1852 } 1853 cbp->bio_offset = offset; 1854 cbp->bio_length = length; 1855 cbp->bio_done = g_raid3_done; 1856 switch (pbp->bio_cmd) { 1857 case BIO_READ: 1858 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1859 /* 1860 * Replace invalid component with the parity 1861 * component. 1862 */ 1863 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1864 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1865 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1866 } else if (round_robin && 1867 disk->d_no == sc->sc_round_robin) { 1868 /* 1869 * In round-robin mode skip one data component 1870 * and use parity component when reading. 1871 */ 1872 pbp->bio_driver2 = disk; 1873 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1874 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1875 sc->sc_round_robin++; 1876 round_robin = 0; 1877 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1878 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1879 } 1880 break; 1881 case BIO_WRITE: 1882 case BIO_DELETE: 1883 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1884 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1885 if (n == ndisks - 1) { 1886 /* 1887 * Active parity component, mark it as such. 1888 */ 1889 cbp->bio_cflags |= 1890 G_RAID3_BIO_CFLAG_PARITY; 1891 } 1892 } else { 1893 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1894 if (n == ndisks - 1) { 1895 /* 1896 * Parity component is not connected, 1897 * so destroy its request. 1898 */ 1899 pbp->bio_pflags |= 1900 G_RAID3_BIO_PFLAG_NOPARITY; 1901 g_raid3_destroy_bio(sc, cbp); 1902 cbp = NULL; 1903 } else { 1904 cbp->bio_cflags |= 1905 G_RAID3_BIO_CFLAG_NODISK; 1906 disk = NULL; 1907 } 1908 } 1909 break; 1910 } 1911 if (cbp != NULL) 1912 cbp->bio_caller2 = disk; 1913 } 1914 switch (pbp->bio_cmd) { 1915 case BIO_READ: 1916 if (round_robin) { 1917 /* 1918 * If we are in round-robin mode and 'round_robin' is 1919 * still 1, it means, that we skipped parity component 1920 * for this read and must reset sc_round_robin field. 1921 */ 1922 sc->sc_round_robin = 0; 1923 } 1924 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1925 disk = cbp->bio_caller2; 1926 cp = disk->d_consumer; 1927 cbp->bio_to = cp->provider; 1928 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1929 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1930 ("Consumer %s not opened (r%dw%de%d).", 1931 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1932 cp->index++; 1933 g_io_request(cbp, cp); 1934 } 1935 break; 1936 case BIO_WRITE: 1937 case BIO_DELETE: 1938 /* 1939 * Put request onto inflight queue, so we can check if new 1940 * synchronization requests don't collide with it. 1941 */ 1942 bioq_insert_tail(&sc->sc_inflight, pbp); 1943 1944 /* 1945 * Bump syncid on first write. 1946 */ 1947 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { 1948 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 1949 g_raid3_bump_syncid(sc); 1950 } 1951 g_raid3_scatter(pbp); 1952 break; 1953 } 1954 return (0); 1955 } 1956 1957 static int 1958 g_raid3_can_destroy(struct g_raid3_softc *sc) 1959 { 1960 struct g_geom *gp; 1961 struct g_consumer *cp; 1962 1963 g_topology_assert(); 1964 gp = sc->sc_geom; 1965 if (gp->softc == NULL) 1966 return (1); 1967 LIST_FOREACH(cp, &gp->consumer, consumer) { 1968 if (g_raid3_is_busy(sc, cp)) 1969 return (0); 1970 } 1971 gp = sc->sc_sync.ds_geom; 1972 LIST_FOREACH(cp, &gp->consumer, consumer) { 1973 if (g_raid3_is_busy(sc, cp)) 1974 return (0); 1975 } 1976 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1977 sc->sc_name); 1978 return (1); 1979 } 1980 1981 static int 1982 g_raid3_try_destroy(struct g_raid3_softc *sc) 1983 { 1984 1985 g_topology_assert_not(); 1986 sx_assert(&sc->sc_lock, SX_XLOCKED); 1987 1988 if (sc->sc_rootmount != NULL) { 1989 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 1990 sc->sc_rootmount); 1991 root_mount_rel(sc->sc_rootmount); 1992 sc->sc_rootmount = NULL; 1993 } 1994 1995 g_topology_lock(); 1996 if (!g_raid3_can_destroy(sc)) { 1997 g_topology_unlock(); 1998 return (0); 1999 } 2000 sc->sc_geom->softc = NULL; 2001 sc->sc_sync.ds_geom->softc = NULL; 2002 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 2003 g_topology_unlock(); 2004 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2005 &sc->sc_worker); 2006 /* Unlock sc_lock here, as it can be destroyed after wakeup. */ 2007 sx_xunlock(&sc->sc_lock); 2008 wakeup(&sc->sc_worker); 2009 sc->sc_worker = NULL; 2010 } else { 2011 g_topology_unlock(); 2012 g_raid3_destroy_device(sc); 2013 free(sc->sc_disks, M_RAID3); 2014 free(sc, M_RAID3); 2015 } 2016 return (1); 2017 } 2018 2019 /* 2020 * Worker thread. 2021 */ 2022 static void 2023 g_raid3_worker(void *arg) 2024 { 2025 struct g_raid3_softc *sc; 2026 struct g_raid3_event *ep; 2027 struct bio *bp; 2028 int timeout; 2029 2030 sc = arg; 2031 thread_lock(curthread); 2032 sched_prio(curthread, PRIBIO); 2033 thread_unlock(curthread); 2034 2035 sx_xlock(&sc->sc_lock); 2036 for (;;) { 2037 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 2038 /* 2039 * First take a look at events. 2040 * This is important to handle events before any I/O requests. 2041 */ 2042 ep = g_raid3_event_get(sc); 2043 if (ep != NULL) { 2044 g_raid3_event_remove(sc, ep); 2045 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 2046 /* Update only device status. */ 2047 G_RAID3_DEBUG(3, 2048 "Running event for device %s.", 2049 sc->sc_name); 2050 ep->e_error = 0; 2051 g_raid3_update_device(sc, 1); 2052 } else { 2053 /* Update disk status. */ 2054 G_RAID3_DEBUG(3, "Running event for disk %s.", 2055 g_raid3_get_diskname(ep->e_disk)); 2056 ep->e_error = g_raid3_update_disk(ep->e_disk, 2057 ep->e_state); 2058 if (ep->e_error == 0) 2059 g_raid3_update_device(sc, 0); 2060 } 2061 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 2062 KASSERT(ep->e_error == 0, 2063 ("Error cannot be handled.")); 2064 g_raid3_event_free(ep); 2065 } else { 2066 ep->e_flags |= G_RAID3_EVENT_DONE; 2067 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2068 ep); 2069 mtx_lock(&sc->sc_events_mtx); 2070 wakeup(ep); 2071 mtx_unlock(&sc->sc_events_mtx); 2072 } 2073 if ((sc->sc_flags & 2074 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2075 if (g_raid3_try_destroy(sc)) { 2076 curthread->td_pflags &= ~TDP_GEOM; 2077 G_RAID3_DEBUG(1, "Thread exiting."); 2078 kproc_exit(0); 2079 } 2080 } 2081 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 2082 continue; 2083 } 2084 /* 2085 * Check if we can mark array as CLEAN and if we can't take 2086 * how much seconds should we wait. 2087 */ 2088 timeout = g_raid3_idle(sc, -1); 2089 /* 2090 * Now I/O requests. 2091 */ 2092 /* Get first request from the queue. */ 2093 mtx_lock(&sc->sc_queue_mtx); 2094 bp = bioq_first(&sc->sc_queue); 2095 if (bp == NULL) { 2096 if ((sc->sc_flags & 2097 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2098 mtx_unlock(&sc->sc_queue_mtx); 2099 if (g_raid3_try_destroy(sc)) { 2100 curthread->td_pflags &= ~TDP_GEOM; 2101 G_RAID3_DEBUG(1, "Thread exiting."); 2102 kproc_exit(0); 2103 } 2104 mtx_lock(&sc->sc_queue_mtx); 2105 } 2106 sx_xunlock(&sc->sc_lock); 2107 /* 2108 * XXX: We can miss an event here, because an event 2109 * can be added without sx-device-lock and without 2110 * mtx-queue-lock. Maybe I should just stop using 2111 * dedicated mutex for events synchronization and 2112 * stick with the queue lock? 2113 * The event will hang here until next I/O request 2114 * or next event is received. 2115 */ 2116 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", 2117 timeout * hz); 2118 sx_xlock(&sc->sc_lock); 2119 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 2120 continue; 2121 } 2122 process: 2123 bioq_remove(&sc->sc_queue, bp); 2124 mtx_unlock(&sc->sc_queue_mtx); 2125 2126 if (bp->bio_from->geom == sc->sc_sync.ds_geom && 2127 (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 2128 g_raid3_sync_request(bp); /* READ */ 2129 } else if (bp->bio_to != sc->sc_provider) { 2130 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 2131 g_raid3_regular_request(bp); 2132 else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) 2133 g_raid3_sync_request(bp); /* WRITE */ 2134 else { 2135 KASSERT(0, 2136 ("Invalid request cflags=0x%hhx to=%s.", 2137 bp->bio_cflags, bp->bio_to->name)); 2138 } 2139 } else if (g_raid3_register_request(bp) != 0) { 2140 mtx_lock(&sc->sc_queue_mtx); 2141 bioq_insert_head(&sc->sc_queue, bp); 2142 /* 2143 * We are short in memory, let see if there are finished 2144 * request we can free. 2145 */ 2146 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2147 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) 2148 goto process; 2149 } 2150 /* 2151 * No finished regular request, so at least keep 2152 * synchronization running. 2153 */ 2154 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2155 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) 2156 goto process; 2157 } 2158 sx_xunlock(&sc->sc_lock); 2159 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, 2160 "r3:lowmem", hz / 10); 2161 sx_xlock(&sc->sc_lock); 2162 } 2163 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); 2164 } 2165 } 2166 2167 static void 2168 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) 2169 { 2170 2171 sx_assert(&sc->sc_lock, SX_LOCKED); 2172 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 2173 return; 2174 if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 2175 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 2176 g_raid3_get_diskname(disk), sc->sc_name); 2177 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2178 } else if (sc->sc_idle && 2179 (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { 2180 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 2181 g_raid3_get_diskname(disk), sc->sc_name); 2182 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2183 } 2184 } 2185 2186 static void 2187 g_raid3_sync_start(struct g_raid3_softc *sc) 2188 { 2189 struct g_raid3_disk *disk; 2190 struct g_consumer *cp; 2191 struct bio *bp; 2192 int error; 2193 u_int n; 2194 2195 g_topology_assert_not(); 2196 sx_assert(&sc->sc_lock, SX_XLOCKED); 2197 2198 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2199 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2200 sc->sc_state)); 2201 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 2202 sc->sc_name, sc->sc_state)); 2203 disk = NULL; 2204 for (n = 0; n < sc->sc_ndisks; n++) { 2205 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 2206 continue; 2207 disk = &sc->sc_disks[n]; 2208 break; 2209 } 2210 if (disk == NULL) 2211 return; 2212 2213 sx_xunlock(&sc->sc_lock); 2214 g_topology_lock(); 2215 cp = g_new_consumer(sc->sc_sync.ds_geom); 2216 error = g_attach(cp, sc->sc_provider); 2217 KASSERT(error == 0, 2218 ("Cannot attach to %s (error=%d).", sc->sc_name, error)); 2219 error = g_access(cp, 1, 0, 0); 2220 KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); 2221 g_topology_unlock(); 2222 sx_xlock(&sc->sc_lock); 2223 2224 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 2225 g_raid3_get_diskname(disk)); 2226 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0) 2227 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2228 KASSERT(disk->d_sync.ds_consumer == NULL, 2229 ("Sync consumer already exists (device=%s, disk=%s).", 2230 sc->sc_name, g_raid3_get_diskname(disk))); 2231 2232 disk->d_sync.ds_consumer = cp; 2233 disk->d_sync.ds_consumer->private = disk; 2234 disk->d_sync.ds_consumer->index = 0; 2235 sc->sc_syncdisk = disk; 2236 2237 /* 2238 * Allocate memory for synchronization bios and initialize them. 2239 */ 2240 disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, 2241 M_RAID3, M_WAITOK); 2242 for (n = 0; n < g_raid3_syncreqs; n++) { 2243 bp = g_alloc_bio(); 2244 disk->d_sync.ds_bios[n] = bp; 2245 bp->bio_parent = NULL; 2246 bp->bio_cmd = BIO_READ; 2247 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); 2248 bp->bio_cflags = 0; 2249 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 2250 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 2251 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 2252 bp->bio_done = g_raid3_sync_done; 2253 bp->bio_from = disk->d_sync.ds_consumer; 2254 bp->bio_to = sc->sc_provider; 2255 bp->bio_caller1 = (void *)(uintptr_t)n; 2256 } 2257 2258 /* Set the number of in-flight synchronization requests. */ 2259 disk->d_sync.ds_inflight = g_raid3_syncreqs; 2260 2261 /* 2262 * Fire off first synchronization requests. 2263 */ 2264 for (n = 0; n < g_raid3_syncreqs; n++) { 2265 bp = disk->d_sync.ds_bios[n]; 2266 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 2267 disk->d_sync.ds_consumer->index++; 2268 /* 2269 * Delay the request if it is colliding with a regular request. 2270 */ 2271 if (g_raid3_regular_collision(sc, bp)) 2272 g_raid3_sync_delay(sc, bp); 2273 else 2274 g_io_request(bp, disk->d_sync.ds_consumer); 2275 } 2276 } 2277 2278 /* 2279 * Stop synchronization process. 2280 * type: 0 - synchronization finished 2281 * 1 - synchronization stopped 2282 */ 2283 static void 2284 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 2285 { 2286 struct g_raid3_disk *disk; 2287 struct g_consumer *cp; 2288 2289 g_topology_assert_not(); 2290 sx_assert(&sc->sc_lock, SX_LOCKED); 2291 2292 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2293 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2294 sc->sc_state)); 2295 disk = sc->sc_syncdisk; 2296 sc->sc_syncdisk = NULL; 2297 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 2298 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2299 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2300 g_raid3_disk_state2str(disk->d_state))); 2301 if (disk->d_sync.ds_consumer == NULL) 2302 return; 2303 2304 if (type == 0) { 2305 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 2306 sc->sc_name, g_raid3_get_diskname(disk)); 2307 } else /* if (type == 1) */ { 2308 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 2309 sc->sc_name, g_raid3_get_diskname(disk)); 2310 } 2311 free(disk->d_sync.ds_bios, M_RAID3); 2312 disk->d_sync.ds_bios = NULL; 2313 cp = disk->d_sync.ds_consumer; 2314 disk->d_sync.ds_consumer = NULL; 2315 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2316 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 2317 g_topology_lock(); 2318 g_raid3_kill_consumer(sc, cp); 2319 g_topology_unlock(); 2320 sx_xlock(&sc->sc_lock); 2321 } 2322 2323 static void 2324 g_raid3_launch_provider(struct g_raid3_softc *sc) 2325 { 2326 struct g_provider *pp; 2327 struct g_raid3_disk *disk; 2328 int n; 2329 2330 sx_assert(&sc->sc_lock, SX_LOCKED); 2331 2332 g_topology_lock(); 2333 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2334 pp->mediasize = sc->sc_mediasize; 2335 pp->sectorsize = sc->sc_sectorsize; 2336 pp->stripesize = 0; 2337 pp->stripeoffset = 0; 2338 for (n = 0; n < sc->sc_ndisks; n++) { 2339 disk = &sc->sc_disks[n]; 2340 if (disk->d_consumer && disk->d_consumer->provider && 2341 disk->d_consumer->provider->stripesize > pp->stripesize) { 2342 pp->stripesize = disk->d_consumer->provider->stripesize; 2343 pp->stripeoffset = disk->d_consumer->provider->stripeoffset; 2344 } 2345 } 2346 pp->stripesize *= sc->sc_ndisks - 1; 2347 pp->stripeoffset *= sc->sc_ndisks - 1; 2348 sc->sc_provider = pp; 2349 g_error_provider(pp, 0); 2350 g_topology_unlock(); 2351 G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name, 2352 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks); 2353 2354 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2355 g_raid3_sync_start(sc); 2356 } 2357 2358 static void 2359 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2360 { 2361 struct bio *bp; 2362 2363 g_topology_assert_not(); 2364 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2365 sc->sc_name)); 2366 2367 g_topology_lock(); 2368 g_error_provider(sc->sc_provider, ENXIO); 2369 mtx_lock(&sc->sc_queue_mtx); 2370 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2371 bioq_remove(&sc->sc_queue, bp); 2372 g_io_deliver(bp, ENXIO); 2373 } 2374 mtx_unlock(&sc->sc_queue_mtx); 2375 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2376 sc->sc_provider->name); 2377 sc->sc_provider->flags |= G_PF_WITHER; 2378 g_orphan_provider(sc->sc_provider, ENXIO); 2379 g_topology_unlock(); 2380 sc->sc_provider = NULL; 2381 if (sc->sc_syncdisk != NULL) 2382 g_raid3_sync_stop(sc, 1); 2383 } 2384 2385 static void 2386 g_raid3_go(void *arg) 2387 { 2388 struct g_raid3_softc *sc; 2389 2390 sc = arg; 2391 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2392 g_raid3_event_send(sc, 0, 2393 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2394 } 2395 2396 static u_int 2397 g_raid3_determine_state(struct g_raid3_disk *disk) 2398 { 2399 struct g_raid3_softc *sc; 2400 u_int state; 2401 2402 sc = disk->d_softc; 2403 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2404 if ((disk->d_flags & 2405 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2406 /* Disk does not need synchronization. */ 2407 state = G_RAID3_DISK_STATE_ACTIVE; 2408 } else { 2409 if ((sc->sc_flags & 2410 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2411 (disk->d_flags & 2412 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2413 /* 2414 * We can start synchronization from 2415 * the stored offset. 2416 */ 2417 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2418 } else { 2419 state = G_RAID3_DISK_STATE_STALE; 2420 } 2421 } 2422 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2423 /* 2424 * Reset all synchronization data for this disk, 2425 * because if it even was synchronized, it was 2426 * synchronized to disks with different syncid. 2427 */ 2428 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2429 disk->d_sync.ds_offset = 0; 2430 disk->d_sync.ds_offset_done = 0; 2431 disk->d_sync.ds_syncid = sc->sc_syncid; 2432 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2433 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2434 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2435 } else { 2436 state = G_RAID3_DISK_STATE_STALE; 2437 } 2438 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2439 /* 2440 * Not good, NOT GOOD! 2441 * It means that device was started on stale disks 2442 * and more fresh disk just arrive. 2443 * If there were writes, device is broken, sorry. 2444 * I think the best choice here is don't touch 2445 * this disk and inform the user loudly. 2446 */ 2447 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2448 "disk (%s) arrives!! It will not be connected to the " 2449 "running device.", sc->sc_name, 2450 g_raid3_get_diskname(disk)); 2451 g_raid3_destroy_disk(disk); 2452 state = G_RAID3_DISK_STATE_NONE; 2453 /* Return immediately, because disk was destroyed. */ 2454 return (state); 2455 } 2456 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2457 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2458 return (state); 2459 } 2460 2461 /* 2462 * Update device state. 2463 */ 2464 static void 2465 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2466 { 2467 struct g_raid3_disk *disk; 2468 u_int state; 2469 2470 sx_assert(&sc->sc_lock, SX_XLOCKED); 2471 2472 switch (sc->sc_state) { 2473 case G_RAID3_DEVICE_STATE_STARTING: 2474 { 2475 u_int n, ndirty, ndisks, genid, syncid; 2476 2477 KASSERT(sc->sc_provider == NULL, 2478 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2479 /* 2480 * Are we ready? We are, if all disks are connected or 2481 * one disk is missing and 'force' is true. 2482 */ 2483 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2484 if (!force) 2485 callout_drain(&sc->sc_callout); 2486 } else { 2487 if (force) { 2488 /* 2489 * Timeout expired, so destroy device. 2490 */ 2491 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2492 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", 2493 __LINE__, sc->sc_rootmount); 2494 root_mount_rel(sc->sc_rootmount); 2495 sc->sc_rootmount = NULL; 2496 } 2497 return; 2498 } 2499 2500 /* 2501 * Find the biggest genid. 2502 */ 2503 genid = 0; 2504 for (n = 0; n < sc->sc_ndisks; n++) { 2505 disk = &sc->sc_disks[n]; 2506 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2507 continue; 2508 if (disk->d_genid > genid) 2509 genid = disk->d_genid; 2510 } 2511 sc->sc_genid = genid; 2512 /* 2513 * Remove all disks without the biggest genid. 2514 */ 2515 for (n = 0; n < sc->sc_ndisks; n++) { 2516 disk = &sc->sc_disks[n]; 2517 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2518 continue; 2519 if (disk->d_genid < genid) { 2520 G_RAID3_DEBUG(0, 2521 "Component %s (device %s) broken, skipping.", 2522 g_raid3_get_diskname(disk), sc->sc_name); 2523 g_raid3_destroy_disk(disk); 2524 } 2525 } 2526 2527 /* 2528 * There must be at least 'sc->sc_ndisks - 1' components 2529 * with the same syncid and without SYNCHRONIZING flag. 2530 */ 2531 2532 /* 2533 * Find the biggest syncid, number of valid components and 2534 * number of dirty components. 2535 */ 2536 ndirty = ndisks = syncid = 0; 2537 for (n = 0; n < sc->sc_ndisks; n++) { 2538 disk = &sc->sc_disks[n]; 2539 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2540 continue; 2541 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2542 ndirty++; 2543 if (disk->d_sync.ds_syncid > syncid) { 2544 syncid = disk->d_sync.ds_syncid; 2545 ndisks = 0; 2546 } else if (disk->d_sync.ds_syncid < syncid) { 2547 continue; 2548 } 2549 if ((disk->d_flags & 2550 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2551 continue; 2552 } 2553 ndisks++; 2554 } 2555 /* 2556 * Do we have enough valid components? 2557 */ 2558 if (ndisks + 1 < sc->sc_ndisks) { 2559 G_RAID3_DEBUG(0, 2560 "Device %s is broken, too few valid components.", 2561 sc->sc_name); 2562 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2563 return; 2564 } 2565 /* 2566 * If there is one DIRTY component and all disks are present, 2567 * mark it for synchronization. If there is more than one DIRTY 2568 * component, mark parity component for synchronization. 2569 */ 2570 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2571 for (n = 0; n < sc->sc_ndisks; n++) { 2572 disk = &sc->sc_disks[n]; 2573 if ((disk->d_flags & 2574 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2575 continue; 2576 } 2577 disk->d_flags |= 2578 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2579 } 2580 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2581 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2582 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2583 } 2584 2585 sc->sc_syncid = syncid; 2586 if (force) { 2587 /* Remember to bump syncid on first write. */ 2588 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2589 } 2590 if (ndisks == sc->sc_ndisks) 2591 state = G_RAID3_DEVICE_STATE_COMPLETE; 2592 else /* if (ndisks == sc->sc_ndisks - 1) */ 2593 state = G_RAID3_DEVICE_STATE_DEGRADED; 2594 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2595 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2596 g_raid3_device_state2str(state)); 2597 sc->sc_state = state; 2598 for (n = 0; n < sc->sc_ndisks; n++) { 2599 disk = &sc->sc_disks[n]; 2600 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2601 continue; 2602 state = g_raid3_determine_state(disk); 2603 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2604 if (state == G_RAID3_DISK_STATE_STALE) 2605 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2606 } 2607 break; 2608 } 2609 case G_RAID3_DEVICE_STATE_DEGRADED: 2610 /* 2611 * Genid need to be bumped immediately, so do it here. 2612 */ 2613 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2614 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2615 g_raid3_bump_genid(sc); 2616 } 2617 2618 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2619 return; 2620 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2621 sc->sc_ndisks - 1) { 2622 if (sc->sc_provider != NULL) 2623 g_raid3_destroy_provider(sc); 2624 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2625 return; 2626 } 2627 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2628 sc->sc_ndisks) { 2629 state = G_RAID3_DEVICE_STATE_COMPLETE; 2630 G_RAID3_DEBUG(1, 2631 "Device %s state changed from %s to %s.", 2632 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2633 g_raid3_device_state2str(state)); 2634 sc->sc_state = state; 2635 } 2636 if (sc->sc_provider == NULL) 2637 g_raid3_launch_provider(sc); 2638 if (sc->sc_rootmount != NULL) { 2639 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2640 sc->sc_rootmount); 2641 root_mount_rel(sc->sc_rootmount); 2642 sc->sc_rootmount = NULL; 2643 } 2644 break; 2645 case G_RAID3_DEVICE_STATE_COMPLETE: 2646 /* 2647 * Genid need to be bumped immediately, so do it here. 2648 */ 2649 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2650 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2651 g_raid3_bump_genid(sc); 2652 } 2653 2654 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2655 return; 2656 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2657 sc->sc_ndisks - 1, 2658 ("Too few ACTIVE components in COMPLETE state (device %s).", 2659 sc->sc_name)); 2660 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2661 sc->sc_ndisks - 1) { 2662 state = G_RAID3_DEVICE_STATE_DEGRADED; 2663 G_RAID3_DEBUG(1, 2664 "Device %s state changed from %s to %s.", 2665 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2666 g_raid3_device_state2str(state)); 2667 sc->sc_state = state; 2668 } 2669 if (sc->sc_provider == NULL) 2670 g_raid3_launch_provider(sc); 2671 if (sc->sc_rootmount != NULL) { 2672 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2673 sc->sc_rootmount); 2674 root_mount_rel(sc->sc_rootmount); 2675 sc->sc_rootmount = NULL; 2676 } 2677 break; 2678 default: 2679 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2680 g_raid3_device_state2str(sc->sc_state))); 2681 break; 2682 } 2683 } 2684 2685 /* 2686 * Update disk state and device state if needed. 2687 */ 2688 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2689 "Disk %s state changed from %s to %s (device %s).", \ 2690 g_raid3_get_diskname(disk), \ 2691 g_raid3_disk_state2str(disk->d_state), \ 2692 g_raid3_disk_state2str(state), sc->sc_name) 2693 static int 2694 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2695 { 2696 struct g_raid3_softc *sc; 2697 2698 sc = disk->d_softc; 2699 sx_assert(&sc->sc_lock, SX_XLOCKED); 2700 2701 again: 2702 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2703 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2704 g_raid3_disk_state2str(state)); 2705 switch (state) { 2706 case G_RAID3_DISK_STATE_NEW: 2707 /* 2708 * Possible scenarios: 2709 * 1. New disk arrive. 2710 */ 2711 /* Previous state should be NONE. */ 2712 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2713 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2714 g_raid3_disk_state2str(disk->d_state))); 2715 DISK_STATE_CHANGED(); 2716 2717 disk->d_state = state; 2718 G_RAID3_DEBUG(1, "Device %s: provider %s detected.", 2719 sc->sc_name, g_raid3_get_diskname(disk)); 2720 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2721 break; 2722 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2723 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2724 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2725 g_raid3_device_state2str(sc->sc_state), 2726 g_raid3_get_diskname(disk), 2727 g_raid3_disk_state2str(disk->d_state))); 2728 state = g_raid3_determine_state(disk); 2729 if (state != G_RAID3_DISK_STATE_NONE) 2730 goto again; 2731 break; 2732 case G_RAID3_DISK_STATE_ACTIVE: 2733 /* 2734 * Possible scenarios: 2735 * 1. New disk does not need synchronization. 2736 * 2. Synchronization process finished successfully. 2737 */ 2738 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2739 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2740 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2741 g_raid3_device_state2str(sc->sc_state), 2742 g_raid3_get_diskname(disk), 2743 g_raid3_disk_state2str(disk->d_state))); 2744 /* Previous state should be NEW or SYNCHRONIZING. */ 2745 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2746 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2747 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2748 g_raid3_disk_state2str(disk->d_state))); 2749 DISK_STATE_CHANGED(); 2750 2751 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2752 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2753 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2754 g_raid3_sync_stop(sc, 0); 2755 } 2756 disk->d_state = state; 2757 disk->d_sync.ds_offset = 0; 2758 disk->d_sync.ds_offset_done = 0; 2759 g_raid3_update_idle(sc, disk); 2760 g_raid3_update_metadata(disk); 2761 G_RAID3_DEBUG(1, "Device %s: provider %s activated.", 2762 sc->sc_name, g_raid3_get_diskname(disk)); 2763 break; 2764 case G_RAID3_DISK_STATE_STALE: 2765 /* 2766 * Possible scenarios: 2767 * 1. Stale disk was connected. 2768 */ 2769 /* Previous state should be NEW. */ 2770 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2771 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2772 g_raid3_disk_state2str(disk->d_state))); 2773 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2774 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2775 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2776 g_raid3_device_state2str(sc->sc_state), 2777 g_raid3_get_diskname(disk), 2778 g_raid3_disk_state2str(disk->d_state))); 2779 /* 2780 * STALE state is only possible if device is marked 2781 * NOAUTOSYNC. 2782 */ 2783 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2784 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2785 g_raid3_device_state2str(sc->sc_state), 2786 g_raid3_get_diskname(disk), 2787 g_raid3_disk_state2str(disk->d_state))); 2788 DISK_STATE_CHANGED(); 2789 2790 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2791 disk->d_state = state; 2792 g_raid3_update_metadata(disk); 2793 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2794 sc->sc_name, g_raid3_get_diskname(disk)); 2795 break; 2796 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2797 /* 2798 * Possible scenarios: 2799 * 1. Disk which needs synchronization was connected. 2800 */ 2801 /* Previous state should be NEW. */ 2802 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2803 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2804 g_raid3_disk_state2str(disk->d_state))); 2805 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2806 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2807 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2808 g_raid3_device_state2str(sc->sc_state), 2809 g_raid3_get_diskname(disk), 2810 g_raid3_disk_state2str(disk->d_state))); 2811 DISK_STATE_CHANGED(); 2812 2813 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2814 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2815 disk->d_state = state; 2816 if (sc->sc_provider != NULL) { 2817 g_raid3_sync_start(sc); 2818 g_raid3_update_metadata(disk); 2819 } 2820 break; 2821 case G_RAID3_DISK_STATE_DISCONNECTED: 2822 /* 2823 * Possible scenarios: 2824 * 1. Device wasn't running yet, but disk disappear. 2825 * 2. Disk was active and disapppear. 2826 * 3. Disk disappear during synchronization process. 2827 */ 2828 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2829 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2830 /* 2831 * Previous state should be ACTIVE, STALE or 2832 * SYNCHRONIZING. 2833 */ 2834 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2835 disk->d_state == G_RAID3_DISK_STATE_STALE || 2836 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2837 ("Wrong disk state (%s, %s).", 2838 g_raid3_get_diskname(disk), 2839 g_raid3_disk_state2str(disk->d_state))); 2840 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2841 /* Previous state should be NEW. */ 2842 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2843 ("Wrong disk state (%s, %s).", 2844 g_raid3_get_diskname(disk), 2845 g_raid3_disk_state2str(disk->d_state))); 2846 /* 2847 * Reset bumping syncid if disk disappeared in STARTING 2848 * state. 2849 */ 2850 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) 2851 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 2852 #ifdef INVARIANTS 2853 } else { 2854 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2855 sc->sc_name, 2856 g_raid3_device_state2str(sc->sc_state), 2857 g_raid3_get_diskname(disk), 2858 g_raid3_disk_state2str(disk->d_state))); 2859 #endif 2860 } 2861 DISK_STATE_CHANGED(); 2862 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2863 sc->sc_name, g_raid3_get_diskname(disk)); 2864 2865 g_raid3_destroy_disk(disk); 2866 break; 2867 default: 2868 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2869 break; 2870 } 2871 return (0); 2872 } 2873 #undef DISK_STATE_CHANGED 2874 2875 int 2876 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2877 { 2878 struct g_provider *pp; 2879 u_char *buf; 2880 int error; 2881 2882 g_topology_assert(); 2883 2884 error = g_access(cp, 1, 0, 0); 2885 if (error != 0) 2886 return (error); 2887 pp = cp->provider; 2888 g_topology_unlock(); 2889 /* Metadata are stored on last sector. */ 2890 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2891 &error); 2892 g_topology_lock(); 2893 g_access(cp, -1, 0, 0); 2894 if (buf == NULL) { 2895 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", 2896 cp->provider->name, error); 2897 return (error); 2898 } 2899 2900 /* Decode metadata. */ 2901 error = raid3_metadata_decode(buf, md); 2902 g_free(buf); 2903 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2904 return (EINVAL); 2905 if (md->md_version > G_RAID3_VERSION) { 2906 G_RAID3_DEBUG(0, 2907 "Kernel module is too old to handle metadata from %s.", 2908 cp->provider->name); 2909 return (EINVAL); 2910 } 2911 if (error != 0) { 2912 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2913 cp->provider->name); 2914 return (error); 2915 } 2916 2917 return (0); 2918 } 2919 2920 static int 2921 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2922 struct g_raid3_metadata *md) 2923 { 2924 2925 if (md->md_no >= sc->sc_ndisks) { 2926 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2927 pp->name, md->md_no); 2928 return (EINVAL); 2929 } 2930 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2931 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2932 pp->name, md->md_no); 2933 return (EEXIST); 2934 } 2935 if (md->md_all != sc->sc_ndisks) { 2936 G_RAID3_DEBUG(1, 2937 "Invalid '%s' field on disk %s (device %s), skipping.", 2938 "md_all", pp->name, sc->sc_name); 2939 return (EINVAL); 2940 } 2941 if ((md->md_mediasize % md->md_sectorsize) != 0) { 2942 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != " 2943 "0) on disk %s (device %s), skipping.", pp->name, 2944 sc->sc_name); 2945 return (EINVAL); 2946 } 2947 if (md->md_mediasize != sc->sc_mediasize) { 2948 G_RAID3_DEBUG(1, 2949 "Invalid '%s' field on disk %s (device %s), skipping.", 2950 "md_mediasize", pp->name, sc->sc_name); 2951 return (EINVAL); 2952 } 2953 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2954 G_RAID3_DEBUG(1, 2955 "Invalid '%s' field on disk %s (device %s), skipping.", 2956 "md_mediasize", pp->name, sc->sc_name); 2957 return (EINVAL); 2958 } 2959 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2960 G_RAID3_DEBUG(1, 2961 "Invalid size of disk %s (device %s), skipping.", pp->name, 2962 sc->sc_name); 2963 return (EINVAL); 2964 } 2965 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2966 G_RAID3_DEBUG(1, 2967 "Invalid '%s' field on disk %s (device %s), skipping.", 2968 "md_sectorsize", pp->name, sc->sc_name); 2969 return (EINVAL); 2970 } 2971 if (md->md_sectorsize != sc->sc_sectorsize) { 2972 G_RAID3_DEBUG(1, 2973 "Invalid '%s' field on disk %s (device %s), skipping.", 2974 "md_sectorsize", pp->name, sc->sc_name); 2975 return (EINVAL); 2976 } 2977 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2978 G_RAID3_DEBUG(1, 2979 "Invalid sector size of disk %s (device %s), skipping.", 2980 pp->name, sc->sc_name); 2981 return (EINVAL); 2982 } 2983 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2984 G_RAID3_DEBUG(1, 2985 "Invalid device flags on disk %s (device %s), skipping.", 2986 pp->name, sc->sc_name); 2987 return (EINVAL); 2988 } 2989 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2990 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2991 /* 2992 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2993 */ 2994 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2995 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2996 return (EINVAL); 2997 } 2998 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 2999 G_RAID3_DEBUG(1, 3000 "Invalid disk flags on disk %s (device %s), skipping.", 3001 pp->name, sc->sc_name); 3002 return (EINVAL); 3003 } 3004 return (0); 3005 } 3006 3007 int 3008 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 3009 struct g_raid3_metadata *md) 3010 { 3011 struct g_raid3_disk *disk; 3012 int error; 3013 3014 g_topology_assert_not(); 3015 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 3016 3017 error = g_raid3_check_metadata(sc, pp, md); 3018 if (error != 0) 3019 return (error); 3020 if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && 3021 md->md_genid < sc->sc_genid) { 3022 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", 3023 pp->name, sc->sc_name); 3024 return (EINVAL); 3025 } 3026 disk = g_raid3_init_disk(sc, pp, md, &error); 3027 if (disk == NULL) 3028 return (error); 3029 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 3030 G_RAID3_EVENT_WAIT); 3031 if (error != 0) 3032 return (error); 3033 if (md->md_version < G_RAID3_VERSION) { 3034 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", 3035 pp->name, md->md_version, G_RAID3_VERSION); 3036 g_raid3_update_metadata(disk); 3037 } 3038 return (0); 3039 } 3040 3041 static void 3042 g_raid3_destroy_delayed(void *arg, int flag) 3043 { 3044 struct g_raid3_softc *sc; 3045 int error; 3046 3047 if (flag == EV_CANCEL) { 3048 G_RAID3_DEBUG(1, "Destroying canceled."); 3049 return; 3050 } 3051 sc = arg; 3052 g_topology_unlock(); 3053 sx_xlock(&sc->sc_lock); 3054 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, 3055 ("DESTROY flag set on %s.", sc->sc_name)); 3056 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, 3057 ("DESTROYING flag not set on %s.", sc->sc_name)); 3058 G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); 3059 error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); 3060 if (error != 0) { 3061 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); 3062 sx_xunlock(&sc->sc_lock); 3063 } 3064 g_topology_lock(); 3065 } 3066 3067 static int 3068 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 3069 { 3070 struct g_raid3_softc *sc; 3071 int dcr, dcw, dce, error = 0; 3072 3073 g_topology_assert(); 3074 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 3075 acw, ace); 3076 3077 sc = pp->geom->softc; 3078 if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0) 3079 return (0); 3080 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 3081 3082 dcr = pp->acr + acr; 3083 dcw = pp->acw + acw; 3084 dce = pp->ace + ace; 3085 3086 g_topology_unlock(); 3087 sx_xlock(&sc->sc_lock); 3088 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || 3089 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { 3090 if (acr > 0 || acw > 0 || ace > 0) 3091 error = ENXIO; 3092 goto end; 3093 } 3094 if (dcw == 0 && !sc->sc_idle) 3095 g_raid3_idle(sc, dcw); 3096 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { 3097 if (acr > 0 || acw > 0 || ace > 0) { 3098 error = ENXIO; 3099 goto end; 3100 } 3101 if (dcr == 0 && dcw == 0 && dce == 0) { 3102 g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, 3103 sc, NULL); 3104 } 3105 } 3106 end: 3107 sx_xunlock(&sc->sc_lock); 3108 g_topology_lock(); 3109 return (error); 3110 } 3111 3112 static struct g_geom * 3113 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 3114 { 3115 struct g_raid3_softc *sc; 3116 struct g_geom *gp; 3117 int error, timeout; 3118 u_int n; 3119 3120 g_topology_assert(); 3121 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 3122 3123 /* One disk is minimum. */ 3124 if (md->md_all < 1) 3125 return (NULL); 3126 /* 3127 * Action geom. 3128 */ 3129 gp = g_new_geomf(mp, "%s", md->md_name); 3130 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 3131 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 3132 M_WAITOK | M_ZERO); 3133 gp->start = g_raid3_start; 3134 gp->orphan = g_raid3_orphan; 3135 gp->access = g_raid3_access; 3136 gp->dumpconf = g_raid3_dumpconf; 3137 3138 sc->sc_id = md->md_id; 3139 sc->sc_mediasize = md->md_mediasize; 3140 sc->sc_sectorsize = md->md_sectorsize; 3141 sc->sc_ndisks = md->md_all; 3142 sc->sc_round_robin = 0; 3143 sc->sc_flags = md->md_mflags; 3144 sc->sc_bump_id = 0; 3145 sc->sc_idle = 1; 3146 sc->sc_last_write = time_uptime; 3147 sc->sc_writes = 0; 3148 for (n = 0; n < sc->sc_ndisks; n++) { 3149 sc->sc_disks[n].d_softc = sc; 3150 sc->sc_disks[n].d_no = n; 3151 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 3152 } 3153 sx_init(&sc->sc_lock, "graid3:lock"); 3154 bioq_init(&sc->sc_queue); 3155 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 3156 bioq_init(&sc->sc_regular_delayed); 3157 bioq_init(&sc->sc_inflight); 3158 bioq_init(&sc->sc_sync_delayed); 3159 TAILQ_INIT(&sc->sc_events); 3160 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 3161 callout_init(&sc->sc_callout, CALLOUT_MPSAFE); 3162 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 3163 gp->softc = sc; 3164 sc->sc_geom = gp; 3165 sc->sc_provider = NULL; 3166 /* 3167 * Synchronization geom. 3168 */ 3169 gp = g_new_geomf(mp, "%s.sync", md->md_name); 3170 gp->softc = sc; 3171 gp->orphan = g_raid3_orphan; 3172 sc->sc_sync.ds_geom = gp; 3173 3174 if (!g_raid3_use_malloc) { 3175 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 3176 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3177 UMA_ALIGN_PTR, 0); 3178 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; 3179 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; 3180 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = 3181 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; 3182 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 3183 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3184 UMA_ALIGN_PTR, 0); 3185 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; 3186 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; 3187 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = 3188 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; 3189 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 3190 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3191 UMA_ALIGN_PTR, 0); 3192 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; 3193 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; 3194 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = 3195 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; 3196 } 3197 3198 error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 3199 "g_raid3 %s", md->md_name); 3200 if (error != 0) { 3201 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 3202 sc->sc_name); 3203 if (!g_raid3_use_malloc) { 3204 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 3205 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 3206 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 3207 } 3208 g_destroy_geom(sc->sc_sync.ds_geom); 3209 mtx_destroy(&sc->sc_events_mtx); 3210 mtx_destroy(&sc->sc_queue_mtx); 3211 sx_destroy(&sc->sc_lock); 3212 g_destroy_geom(sc->sc_geom); 3213 free(sc->sc_disks, M_RAID3); 3214 free(sc, M_RAID3); 3215 return (NULL); 3216 } 3217 3218 G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).", 3219 sc->sc_name, sc->sc_ndisks, sc->sc_id); 3220 3221 sc->sc_rootmount = root_mount_hold("GRAID3"); 3222 G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); 3223 3224 /* 3225 * Run timeout. 3226 */ 3227 timeout = atomic_load_acq_int(&g_raid3_timeout); 3228 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 3229 return (sc->sc_geom); 3230 } 3231 3232 int 3233 g_raid3_destroy(struct g_raid3_softc *sc, int how) 3234 { 3235 struct g_provider *pp; 3236 3237 g_topology_assert_not(); 3238 if (sc == NULL) 3239 return (ENXIO); 3240 sx_assert(&sc->sc_lock, SX_XLOCKED); 3241 3242 pp = sc->sc_provider; 3243 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 3244 switch (how) { 3245 case G_RAID3_DESTROY_SOFT: 3246 G_RAID3_DEBUG(1, 3247 "Device %s is still open (r%dw%de%d).", pp->name, 3248 pp->acr, pp->acw, pp->ace); 3249 return (EBUSY); 3250 case G_RAID3_DESTROY_DELAYED: 3251 G_RAID3_DEBUG(1, 3252 "Device %s will be destroyed on last close.", 3253 pp->name); 3254 if (sc->sc_syncdisk != NULL) 3255 g_raid3_sync_stop(sc, 1); 3256 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; 3257 return (EBUSY); 3258 case G_RAID3_DESTROY_HARD: 3259 G_RAID3_DEBUG(1, "Device %s is still open, so it " 3260 "can't be definitely removed.", pp->name); 3261 break; 3262 } 3263 } 3264 3265 g_topology_lock(); 3266 if (sc->sc_geom->softc == NULL) { 3267 g_topology_unlock(); 3268 return (0); 3269 } 3270 sc->sc_geom->softc = NULL; 3271 sc->sc_sync.ds_geom->softc = NULL; 3272 g_topology_unlock(); 3273 3274 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 3275 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 3276 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 3277 sx_xunlock(&sc->sc_lock); 3278 mtx_lock(&sc->sc_queue_mtx); 3279 wakeup(sc); 3280 wakeup(&sc->sc_queue); 3281 mtx_unlock(&sc->sc_queue_mtx); 3282 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 3283 while (sc->sc_worker != NULL) 3284 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 3285 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 3286 sx_xlock(&sc->sc_lock); 3287 g_raid3_destroy_device(sc); 3288 free(sc->sc_disks, M_RAID3); 3289 free(sc, M_RAID3); 3290 return (0); 3291 } 3292 3293 static void 3294 g_raid3_taste_orphan(struct g_consumer *cp) 3295 { 3296 3297 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 3298 cp->provider->name)); 3299 } 3300 3301 static struct g_geom * 3302 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 3303 { 3304 struct g_raid3_metadata md; 3305 struct g_raid3_softc *sc; 3306 struct g_consumer *cp; 3307 struct g_geom *gp; 3308 int error; 3309 3310 g_topology_assert(); 3311 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 3312 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 3313 3314 gp = g_new_geomf(mp, "raid3:taste"); 3315 /* This orphan function should be never called. */ 3316 gp->orphan = g_raid3_taste_orphan; 3317 cp = g_new_consumer(gp); 3318 g_attach(cp, pp); 3319 error = g_raid3_read_metadata(cp, &md); 3320 g_detach(cp); 3321 g_destroy_consumer(cp); 3322 g_destroy_geom(gp); 3323 if (error != 0) 3324 return (NULL); 3325 gp = NULL; 3326 3327 if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0) 3328 return (NULL); 3329 if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) 3330 return (NULL); 3331 if (g_raid3_debug >= 2) 3332 raid3_metadata_dump(&md); 3333 3334 /* 3335 * Let's check if device already exists. 3336 */ 3337 sc = NULL; 3338 LIST_FOREACH(gp, &mp->geom, geom) { 3339 sc = gp->softc; 3340 if (sc == NULL) 3341 continue; 3342 if (sc->sc_sync.ds_geom == gp) 3343 continue; 3344 if (strcmp(md.md_name, sc->sc_name) != 0) 3345 continue; 3346 if (md.md_id != sc->sc_id) { 3347 G_RAID3_DEBUG(0, "Device %s already configured.", 3348 sc->sc_name); 3349 return (NULL); 3350 } 3351 break; 3352 } 3353 if (gp == NULL) { 3354 gp = g_raid3_create(mp, &md); 3355 if (gp == NULL) { 3356 G_RAID3_DEBUG(0, "Cannot create device %s.", 3357 md.md_name); 3358 return (NULL); 3359 } 3360 sc = gp->softc; 3361 } 3362 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 3363 g_topology_unlock(); 3364 sx_xlock(&sc->sc_lock); 3365 error = g_raid3_add_disk(sc, pp, &md); 3366 if (error != 0) { 3367 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 3368 pp->name, gp->name, error); 3369 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 3370 sc->sc_ndisks) { 3371 g_cancel_event(sc); 3372 g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); 3373 g_topology_lock(); 3374 return (NULL); 3375 } 3376 gp = NULL; 3377 } 3378 sx_xunlock(&sc->sc_lock); 3379 g_topology_lock(); 3380 return (gp); 3381 } 3382 3383 static int 3384 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 3385 struct g_geom *gp) 3386 { 3387 struct g_raid3_softc *sc; 3388 int error; 3389 3390 g_topology_unlock(); 3391 sc = gp->softc; 3392 sx_xlock(&sc->sc_lock); 3393 g_cancel_event(sc); 3394 error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); 3395 if (error != 0) 3396 sx_xunlock(&sc->sc_lock); 3397 g_topology_lock(); 3398 return (error); 3399 } 3400 3401 static void 3402 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 3403 struct g_consumer *cp, struct g_provider *pp) 3404 { 3405 struct g_raid3_softc *sc; 3406 3407 g_topology_assert(); 3408 3409 sc = gp->softc; 3410 if (sc == NULL) 3411 return; 3412 /* Skip synchronization geom. */ 3413 if (gp == sc->sc_sync.ds_geom) 3414 return; 3415 if (pp != NULL) { 3416 /* Nothing here. */ 3417 } else if (cp != NULL) { 3418 struct g_raid3_disk *disk; 3419 3420 disk = cp->private; 3421 if (disk == NULL) 3422 return; 3423 g_topology_unlock(); 3424 sx_xlock(&sc->sc_lock); 3425 sbuf_printf(sb, "%s<Type>", indent); 3426 if (disk->d_no == sc->sc_ndisks - 1) 3427 sbuf_printf(sb, "PARITY"); 3428 else 3429 sbuf_printf(sb, "DATA"); 3430 sbuf_printf(sb, "</Type>\n"); 3431 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 3432 (u_int)disk->d_no); 3433 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 3434 sbuf_printf(sb, "%s<Synchronized>", indent); 3435 if (disk->d_sync.ds_offset == 0) 3436 sbuf_printf(sb, "0%%"); 3437 else { 3438 sbuf_printf(sb, "%u%%", 3439 (u_int)((disk->d_sync.ds_offset * 100) / 3440 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 3441 } 3442 sbuf_printf(sb, "</Synchronized>\n"); 3443 } 3444 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 3445 disk->d_sync.ds_syncid); 3446 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); 3447 sbuf_printf(sb, "%s<Flags>", indent); 3448 if (disk->d_flags == 0) 3449 sbuf_printf(sb, "NONE"); 3450 else { 3451 int first = 1; 3452 3453 #define ADD_FLAG(flag, name) do { \ 3454 if ((disk->d_flags & (flag)) != 0) { \ 3455 if (!first) \ 3456 sbuf_printf(sb, ", "); \ 3457 else \ 3458 first = 0; \ 3459 sbuf_printf(sb, name); \ 3460 } \ 3461 } while (0) 3462 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 3463 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 3464 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 3465 "SYNCHRONIZING"); 3466 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 3467 ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); 3468 #undef ADD_FLAG 3469 } 3470 sbuf_printf(sb, "</Flags>\n"); 3471 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3472 g_raid3_disk_state2str(disk->d_state)); 3473 sx_xunlock(&sc->sc_lock); 3474 g_topology_lock(); 3475 } else { 3476 g_topology_unlock(); 3477 sx_xlock(&sc->sc_lock); 3478 if (!g_raid3_use_malloc) { 3479 sbuf_printf(sb, 3480 "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent, 3481 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); 3482 sbuf_printf(sb, 3483 "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent, 3484 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); 3485 sbuf_printf(sb, 3486 "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent, 3487 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); 3488 sbuf_printf(sb, 3489 "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent, 3490 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); 3491 sbuf_printf(sb, 3492 "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent, 3493 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); 3494 sbuf_printf(sb, 3495 "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent, 3496 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); 3497 } 3498 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 3499 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 3500 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); 3501 sbuf_printf(sb, "%s<Flags>", indent); 3502 if (sc->sc_flags == 0) 3503 sbuf_printf(sb, "NONE"); 3504 else { 3505 int first = 1; 3506 3507 #define ADD_FLAG(flag, name) do { \ 3508 if ((sc->sc_flags & (flag)) != 0) { \ 3509 if (!first) \ 3510 sbuf_printf(sb, ", "); \ 3511 else \ 3512 first = 0; \ 3513 sbuf_printf(sb, name); \ 3514 } \ 3515 } while (0) 3516 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); 3517 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3518 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3519 "ROUND-ROBIN"); 3520 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3521 #undef ADD_FLAG 3522 } 3523 sbuf_printf(sb, "</Flags>\n"); 3524 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3525 sc->sc_ndisks); 3526 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3527 g_raid3_device_state2str(sc->sc_state)); 3528 sx_xunlock(&sc->sc_lock); 3529 g_topology_lock(); 3530 } 3531 } 3532 3533 static void 3534 g_raid3_shutdown_pre_sync(void *arg, int howto) 3535 { 3536 struct g_class *mp; 3537 struct g_geom *gp, *gp2; 3538 struct g_raid3_softc *sc; 3539 int error; 3540 3541 mp = arg; 3542 DROP_GIANT(); 3543 g_topology_lock(); 3544 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3545 if ((sc = gp->softc) == NULL) 3546 continue; 3547 /* Skip synchronization geom. */ 3548 if (gp == sc->sc_sync.ds_geom) 3549 continue; 3550 g_topology_unlock(); 3551 sx_xlock(&sc->sc_lock); 3552 g_cancel_event(sc); 3553 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); 3554 if (error != 0) 3555 sx_xunlock(&sc->sc_lock); 3556 g_topology_lock(); 3557 } 3558 g_topology_unlock(); 3559 PICKUP_GIANT(); 3560 } 3561 3562 static void 3563 g_raid3_init(struct g_class *mp) 3564 { 3565 3566 g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, 3567 g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); 3568 if (g_raid3_pre_sync == NULL) 3569 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3570 } 3571 3572 static void 3573 g_raid3_fini(struct g_class *mp) 3574 { 3575 3576 if (g_raid3_pre_sync != NULL) 3577 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync); 3578 } 3579 3580 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3581