1 /*- 2 * Copyright (c) 2004 Pawel Jakub Dawidek <pjd@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/bitstring.h> 41 #include <vm/uma.h> 42 #include <machine/atomic.h> 43 #include <geom/geom.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <geom/raid3/g_raid3.h> 47 48 49 static MALLOC_DEFINE(M_RAID3, "raid3 data", "GEOM_RAID3 Data"); 50 51 SYSCTL_DECL(_kern_geom); 52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); 53 u_int g_raid3_debug = 0; 54 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0, 55 "Debug level"); 56 static u_int g_raid3_timeout = 8; 57 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout, 58 0, "Time to wait on all raid3 components"); 59 static u_int g_raid3_reqs_per_sync = 5; 60 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, reqs_per_sync, CTLFLAG_RW, 61 &g_raid3_reqs_per_sync, 0, 62 "Number of regular I/O requests per synchronization request"); 63 static u_int g_raid3_syncs_per_sec = 100; 64 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, syncs_per_sec, CTLFLAG_RW, 65 &g_raid3_syncs_per_sec, 0, 66 "Number of synchronizations requests per second"); 67 68 static u_int g_raid3_n64k = 50; 69 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k); 70 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0, 71 "Maximum number of 64kB allocations"); 72 static u_int g_raid3_n16k = 200; 73 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k); 74 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0, 75 "Maximum number of 16kB allocations"); 76 static u_int g_raid3_n4k = 1200; 77 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k); 78 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0, 79 "Maximum number of 4kB allocations"); 80 81 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 82 "GEOM_RAID3 statistics"); 83 static u_int g_raid3_parity_mismatch = 0; 84 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 85 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 86 static u_int g_raid3_64k_requested = 0; 87 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 64k_requested, CTLFLAG_RD, 88 &g_raid3_64k_requested, 0, "Number of requested 64kB allocations"); 89 static u_int g_raid3_64k_failed = 0; 90 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 64k_failed, CTLFLAG_RD, 91 &g_raid3_64k_failed, 0, "Number of failed 64kB allocations"); 92 static u_int g_raid3_16k_requested = 0; 93 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 16k_requested, CTLFLAG_RD, 94 &g_raid3_16k_requested, 0, "Number of requested 16kB allocations"); 95 static u_int g_raid3_16k_failed = 0; 96 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 16k_failed, CTLFLAG_RD, 97 &g_raid3_16k_failed, 0, "Number of failed 16kB allocations"); 98 static u_int g_raid3_4k_requested = 0; 99 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 4k_requested, CTLFLAG_RD, 100 &g_raid3_4k_requested, 0, "Number of requested 4kB allocations"); 101 static u_int g_raid3_4k_failed = 0; 102 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 4k_failed, CTLFLAG_RD, 103 &g_raid3_4k_failed, 0, "Number of failed 4kB allocations"); 104 105 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 106 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 107 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 108 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 109 } while (0) 110 111 112 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 113 struct g_geom *gp); 114 static g_taste_t g_raid3_taste; 115 116 struct g_class g_raid3_class = { 117 .name = G_RAID3_CLASS_NAME, 118 .version = G_VERSION, 119 .ctlreq = g_raid3_config, 120 .taste = g_raid3_taste, 121 .destroy_geom = g_raid3_destroy_geom 122 }; 123 124 125 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 126 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 127 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 128 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 129 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 130 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 131 132 133 /* 134 * XXX: it should be placed in subr_disk.c. 135 */ 136 static void 137 bioq_insert_head(struct bio_queue_head *head, struct bio *bp) 138 { 139 140 TAILQ_INSERT_HEAD(&head->queue, bp, bio_queue); 141 } 142 143 static const char * 144 g_raid3_disk_state2str(int state) 145 { 146 147 switch (state) { 148 case G_RAID3_DISK_STATE_NODISK: 149 return ("NODISK"); 150 case G_RAID3_DISK_STATE_NONE: 151 return ("NONE"); 152 case G_RAID3_DISK_STATE_NEW: 153 return ("NEW"); 154 case G_RAID3_DISK_STATE_ACTIVE: 155 return ("ACTIVE"); 156 case G_RAID3_DISK_STATE_STALE: 157 return ("STALE"); 158 case G_RAID3_DISK_STATE_SYNCHRONIZING: 159 return ("SYNCHRONIZING"); 160 case G_RAID3_DISK_STATE_DISCONNECTED: 161 return ("DISCONNECTED"); 162 default: 163 return ("INVALID"); 164 } 165 } 166 167 static const char * 168 g_raid3_device_state2str(int state) 169 { 170 171 switch (state) { 172 case G_RAID3_DEVICE_STATE_STARTING: 173 return ("STARTING"); 174 case G_RAID3_DEVICE_STATE_DEGRADED: 175 return ("DEGRADED"); 176 case G_RAID3_DEVICE_STATE_COMPLETE: 177 return ("COMPLETE"); 178 default: 179 return ("INVALID"); 180 } 181 } 182 183 const char * 184 g_raid3_get_diskname(struct g_raid3_disk *disk) 185 { 186 187 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 188 return ("[unknown]"); 189 return (disk->d_name); 190 } 191 192 #define g_raid3_xor(src1, src2, dst, size) \ 193 _g_raid3_xor((uint64_t *)(src1), (uint64_t *)(src2), \ 194 (uint64_t *)(dst), (size_t)size) 195 static void 196 _g_raid3_xor(uint64_t *src1, uint64_t *src2, uint64_t *dst, size_t size) 197 { 198 199 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 200 for (; size > 0; size -= 128) { 201 *dst++ = (*src1++) ^ (*src2++); 202 *dst++ = (*src1++) ^ (*src2++); 203 *dst++ = (*src1++) ^ (*src2++); 204 *dst++ = (*src1++) ^ (*src2++); 205 *dst++ = (*src1++) ^ (*src2++); 206 *dst++ = (*src1++) ^ (*src2++); 207 *dst++ = (*src1++) ^ (*src2++); 208 *dst++ = (*src1++) ^ (*src2++); 209 *dst++ = (*src1++) ^ (*src2++); 210 *dst++ = (*src1++) ^ (*src2++); 211 *dst++ = (*src1++) ^ (*src2++); 212 *dst++ = (*src1++) ^ (*src2++); 213 *dst++ = (*src1++) ^ (*src2++); 214 *dst++ = (*src1++) ^ (*src2++); 215 *dst++ = (*src1++) ^ (*src2++); 216 *dst++ = (*src1++) ^ (*src2++); 217 } 218 } 219 220 static int 221 g_raid3_is_zero(struct bio *bp) 222 { 223 static const uint64_t zeros[] = { 224 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 225 }; 226 u_char *addr; 227 ssize_t size; 228 229 size = bp->bio_length; 230 addr = (u_char *)bp->bio_data; 231 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 232 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 233 return (0); 234 } 235 return (1); 236 } 237 238 /* 239 * --- Events handling functions --- 240 * Events in geom_raid3 are used to maintain disks and device status 241 * from one thread to simplify locking. 242 */ 243 static void 244 g_raid3_event_free(struct g_raid3_event *ep) 245 { 246 247 free(ep, M_RAID3); 248 } 249 250 int 251 g_raid3_event_send(void *arg, int state, int flags) 252 { 253 struct g_raid3_softc *sc; 254 struct g_raid3_disk *disk; 255 struct g_raid3_event *ep; 256 int error; 257 258 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 259 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 260 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 261 disk = NULL; 262 sc = arg; 263 } else { 264 disk = arg; 265 sc = disk->d_softc; 266 } 267 ep->e_disk = disk; 268 ep->e_state = state; 269 ep->e_flags = flags; 270 ep->e_error = 0; 271 mtx_lock(&sc->sc_events_mtx); 272 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 273 mtx_unlock(&sc->sc_events_mtx); 274 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 275 mtx_lock(&sc->sc_queue_mtx); 276 wakeup(sc); 277 wakeup(&sc->sc_queue); 278 mtx_unlock(&sc->sc_queue_mtx); 279 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 280 return (0); 281 g_topology_assert(); 282 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 283 g_topology_unlock(); 284 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 285 mtx_lock(&sc->sc_events_mtx); 286 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 287 hz * 5); 288 } 289 /* Don't even try to use 'sc' here, because it could be already dead. */ 290 g_topology_lock(); 291 error = ep->e_error; 292 g_raid3_event_free(ep); 293 return (error); 294 } 295 296 static struct g_raid3_event * 297 g_raid3_event_get(struct g_raid3_softc *sc) 298 { 299 struct g_raid3_event *ep; 300 301 mtx_lock(&sc->sc_events_mtx); 302 ep = TAILQ_FIRST(&sc->sc_events); 303 if (ep != NULL) 304 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 305 mtx_unlock(&sc->sc_events_mtx); 306 return (ep); 307 } 308 309 static void 310 g_raid3_event_cancel(struct g_raid3_disk *disk) 311 { 312 struct g_raid3_softc *sc; 313 struct g_raid3_event *ep, *tmpep; 314 315 g_topology_assert(); 316 317 sc = disk->d_softc; 318 mtx_lock(&sc->sc_events_mtx); 319 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 320 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 321 continue; 322 if (ep->e_disk != disk) 323 continue; 324 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 325 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 326 g_raid3_event_free(ep); 327 else { 328 ep->e_error = ECANCELED; 329 wakeup(ep); 330 } 331 } 332 mtx_unlock(&sc->sc_events_mtx); 333 } 334 335 /* 336 * Return the number of disks in the given state. 337 * If state is equal to -1, count all connected disks. 338 */ 339 u_int 340 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 341 { 342 struct g_raid3_disk *disk; 343 u_int n, ndisks; 344 345 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 346 disk = &sc->sc_disks[n]; 347 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 348 continue; 349 if (state == -1 || disk->d_state == state) 350 ndisks++; 351 } 352 return (ndisks); 353 } 354 355 static u_int 356 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 357 { 358 struct bio *bp; 359 u_int nreqs = 0; 360 361 mtx_lock(&sc->sc_queue_mtx); 362 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 363 if (bp->bio_from == cp) 364 nreqs++; 365 } 366 mtx_unlock(&sc->sc_queue_mtx); 367 return (nreqs); 368 } 369 370 static int 371 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 372 { 373 374 if (cp->nstart != cp->nend) { 375 G_RAID3_DEBUG(2, 376 "I/O requests for %s exist, can't destroy it now.", 377 cp->provider->name); 378 return (1); 379 } 380 if (g_raid3_nrequests(sc, cp) > 0) { 381 G_RAID3_DEBUG(2, 382 "I/O requests for %s in queue, can't destroy it now.", 383 cp->provider->name); 384 return (1); 385 } 386 return (0); 387 } 388 389 static void 390 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 391 { 392 393 g_topology_assert(); 394 395 cp->private = NULL; 396 if (g_raid3_is_busy(sc, cp)) 397 return; 398 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 399 g_detach(cp); 400 g_destroy_consumer(cp); 401 } 402 403 static int 404 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 405 { 406 int error; 407 408 g_topology_assert(); 409 KASSERT(disk->d_consumer == NULL, 410 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 411 412 disk->d_consumer = g_new_consumer(disk->d_softc->sc_geom); 413 disk->d_consumer->private = disk; 414 error = g_attach(disk->d_consumer, pp); 415 if (error != 0) 416 return (error); 417 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 418 return (0); 419 } 420 421 static void 422 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 423 { 424 425 g_topology_assert(); 426 427 if (cp == NULL) 428 return; 429 if (cp->provider != NULL) { 430 G_RAID3_DEBUG(2, "Disk %s disconnected.", cp->provider->name); 431 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) { 432 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", 433 cp->provider->name, -cp->acr, -cp->acw, -cp->ace, 434 0); 435 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 436 } 437 g_raid3_kill_consumer(sc, cp); 438 } else { 439 g_destroy_consumer(cp); 440 } 441 } 442 443 /* 444 * Initialize disk. This means allocate memory, create consumer, attach it 445 * to the provider and open access (r1w1e1) to it. 446 */ 447 static struct g_raid3_disk * 448 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 449 struct g_raid3_metadata *md, int *errorp) 450 { 451 struct g_raid3_disk *disk; 452 int error; 453 454 disk = &sc->sc_disks[md->md_no]; 455 disk->d_softc = sc; 456 error = g_raid3_connect_disk(disk, pp); 457 if (error != 0) 458 goto fail; 459 disk->d_no = md->md_no; 460 disk->d_state = G_RAID3_DISK_STATE_NONE; 461 disk->d_flags = md->md_dflags; 462 if (md->md_provider[0] != '\0') 463 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 464 disk->d_sync.ds_consumer = NULL; 465 disk->d_sync.ds_offset = md->md_sync_offset; 466 disk->d_sync.ds_offset_done = md->md_sync_offset; 467 disk->d_sync.ds_syncid = md->md_syncid; 468 if (errorp != NULL) 469 *errorp = 0; 470 return (disk); 471 fail: 472 if (errorp != NULL) 473 *errorp = error; 474 if (disk != NULL) 475 g_raid3_disconnect_consumer(sc, disk->d_consumer); 476 return (NULL); 477 } 478 479 static void 480 g_raid3_destroy_disk(struct g_raid3_disk *disk) 481 { 482 struct g_raid3_softc *sc; 483 484 g_topology_assert(); 485 486 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 487 return; 488 g_raid3_event_cancel(disk); 489 sc = disk->d_softc; 490 switch (disk->d_state) { 491 case G_RAID3_DISK_STATE_SYNCHRONIZING: 492 if (sc->sc_syncdisk != NULL) 493 g_raid3_sync_stop(sc, 1); 494 /* FALLTHROUGH */ 495 case G_RAID3_DISK_STATE_NEW: 496 case G_RAID3_DISK_STATE_STALE: 497 case G_RAID3_DISK_STATE_ACTIVE: 498 g_raid3_disconnect_consumer(sc, disk->d_consumer); 499 disk->d_consumer = NULL; 500 break; 501 default: 502 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 503 g_raid3_get_diskname(disk), 504 g_raid3_disk_state2str(disk->d_state))); 505 } 506 disk->d_state = G_RAID3_DISK_STATE_NODISK; 507 } 508 509 static void 510 g_raid3_destroy_device(struct g_raid3_softc *sc) 511 { 512 struct g_raid3_event *ep; 513 struct g_geom *gp; 514 struct g_consumer *cp; 515 u_int n; 516 517 g_topology_assert(); 518 519 gp = sc->sc_geom; 520 if (sc->sc_provider != NULL) 521 g_raid3_destroy_provider(sc); 522 for (n = 0; n < sc->sc_ndisks; n++) 523 g_raid3_destroy_disk(&sc->sc_disks[n]); 524 while ((ep = g_raid3_event_get(sc)) != NULL) { 525 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 526 g_raid3_event_free(ep); 527 else { 528 ep->e_error = ECANCELED; 529 ep->e_flags |= G_RAID3_EVENT_DONE; 530 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 531 mtx_lock(&sc->sc_events_mtx); 532 wakeup(ep); 533 mtx_unlock(&sc->sc_events_mtx); 534 } 535 } 536 callout_drain(&sc->sc_callout); 537 gp->softc = NULL; 538 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 539 if (cp != NULL) 540 g_raid3_disconnect_consumer(sc, cp); 541 sc->sc_sync.ds_geom->softc = NULL; 542 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 543 uma_zdestroy(sc->sc_zone_64k); 544 uma_zdestroy(sc->sc_zone_16k); 545 uma_zdestroy(sc->sc_zone_4k); 546 mtx_destroy(&sc->sc_queue_mtx); 547 mtx_destroy(&sc->sc_events_mtx); 548 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 549 g_wither_geom(gp, ENXIO); 550 } 551 552 static void 553 g_raid3_orphan(struct g_consumer *cp) 554 { 555 struct g_raid3_disk *disk; 556 557 g_topology_assert(); 558 559 disk = cp->private; 560 if (disk == NULL) 561 return; 562 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 563 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 564 G_RAID3_EVENT_DONTWAIT); 565 } 566 567 static void 568 g_raid3_spoiled(struct g_consumer *cp) 569 { 570 struct g_raid3_disk *disk; 571 572 g_topology_assert(); 573 574 disk = cp->private; 575 if (disk == NULL) 576 return; 577 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 578 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 579 G_RAID3_EVENT_DONTWAIT); 580 } 581 582 static int 583 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 584 { 585 struct g_raid3_softc *sc; 586 struct g_consumer *cp; 587 off_t offset, length; 588 int close = 0, error = 0; 589 u_char *sector; 590 591 g_topology_assert(); 592 593 sc = disk->d_softc; 594 cp = disk->d_consumer; 595 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 596 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 597 length = cp->provider->sectorsize; 598 offset = cp->provider->mediasize - length; 599 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 600 /* 601 * Open consumer if it wasn't opened and remember to close it. 602 */ 603 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 604 error = g_access(cp, 0, 1, 1); 605 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, 606 0, 1, 1, error); 607 if (error == 0) 608 close = 1; 609 #ifdef INVARIANTS 610 } else { 611 KASSERT(cp->acw > 0 && cp->ace > 0, 612 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 613 cp->acr, cp->acw, cp->ace)); 614 #endif 615 } 616 if (error == 0) { 617 if (md != NULL) 618 raid3_metadata_encode(md, sector); 619 g_topology_unlock(); 620 error = g_write_data(cp, offset, sector, length); 621 g_topology_lock(); 622 } 623 free(sector, M_RAID3); 624 if (close) { 625 g_access(cp, 0, -1, -1); 626 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", 627 cp->provider->name, 0, -1, -1, 0); 628 } 629 if (error != 0) { 630 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 631 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 632 G_RAID3_EVENT_DONTWAIT); 633 } 634 return (error); 635 } 636 637 int 638 g_raid3_clear_metadata(struct g_raid3_disk *disk) 639 { 640 int error; 641 642 g_topology_assert(); 643 error = g_raid3_write_metadata(disk, NULL); 644 if (error == 0) { 645 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 646 g_raid3_get_diskname(disk)); 647 } else { 648 G_RAID3_DEBUG(0, 649 "Cannot clear metadata on disk %s (error=%d).", 650 g_raid3_get_diskname(disk), error); 651 } 652 return (error); 653 } 654 655 void 656 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 657 { 658 struct g_raid3_softc *sc; 659 660 sc = disk->d_softc; 661 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 662 md->md_version = G_RAID3_VERSION; 663 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 664 md->md_id = sc->sc_id; 665 md->md_all = sc->sc_ndisks; 666 md->md_mediasize = sc->sc_mediasize; 667 md->md_sectorsize = sc->sc_sectorsize; 668 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 669 md->md_no = disk->d_no; 670 md->md_syncid = disk->d_sync.ds_syncid; 671 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 672 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) 673 md->md_sync_offset = disk->d_sync.ds_offset_done; 674 else 675 md->md_sync_offset = 0; 676 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && 677 disk->d_consumer != NULL && disk->d_consumer->provider != NULL) { 678 strlcpy(md->md_provider, disk->d_consumer->provider->name, 679 sizeof(md->md_provider)); 680 } else { 681 bzero(md->md_provider, sizeof(md->md_provider)); 682 } 683 } 684 685 void 686 g_raid3_update_metadata(struct g_raid3_disk *disk) 687 { 688 struct g_raid3_metadata md; 689 int error; 690 691 g_topology_assert(); 692 g_raid3_fill_metadata(disk, &md); 693 error = g_raid3_write_metadata(disk, &md); 694 if (error == 0) { 695 G_RAID3_DEBUG(2, "Metadata on %s updated.", 696 g_raid3_get_diskname(disk)); 697 } else { 698 G_RAID3_DEBUG(0, 699 "Cannot update metadata on disk %s (error=%d).", 700 g_raid3_get_diskname(disk), error); 701 } 702 } 703 704 static void 705 g_raid3_bump_syncid(struct g_raid3_softc *sc) 706 { 707 struct g_raid3_disk *disk; 708 u_int n; 709 710 g_topology_assert(); 711 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 712 ("%s called with no active disks (device=%s).", __func__, 713 sc->sc_name)); 714 715 sc->sc_syncid++; 716 for (n = 0; n < sc->sc_ndisks; n++) { 717 disk = &sc->sc_disks[n]; 718 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 719 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 720 disk->d_sync.ds_syncid = sc->sc_syncid; 721 g_raid3_update_metadata(disk); 722 } 723 } 724 } 725 726 /* 727 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 728 * in child bio as pointer to the next element on the list. 729 */ 730 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 731 732 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 733 734 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 735 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 736 (bp) = G_RAID3_NEXT_BIO(bp)) 737 738 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 739 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 740 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 741 (bp) = (tmpbp)) 742 743 static void 744 g_raid3_init_bio(struct bio *pbp) 745 { 746 747 G_RAID3_HEAD_BIO(pbp) = NULL; 748 } 749 750 static void 751 g_raid3_remove_bio(struct bio *cbp) 752 { 753 struct bio *pbp, *bp; 754 755 pbp = cbp->bio_parent; 756 if (G_RAID3_HEAD_BIO(pbp) == cbp) 757 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 758 else { 759 G_RAID3_FOREACH_BIO(pbp, bp) { 760 if (G_RAID3_NEXT_BIO(bp) == cbp) { 761 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 762 break; 763 } 764 } 765 } 766 G_RAID3_NEXT_BIO(cbp) = NULL; 767 } 768 769 static void 770 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 771 { 772 struct bio *pbp, *bp; 773 774 g_raid3_remove_bio(sbp); 775 pbp = dbp->bio_parent; 776 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 777 if (G_RAID3_HEAD_BIO(pbp) == dbp) 778 G_RAID3_HEAD_BIO(pbp) = sbp; 779 else { 780 G_RAID3_FOREACH_BIO(pbp, bp) { 781 if (G_RAID3_NEXT_BIO(bp) == dbp) { 782 G_RAID3_NEXT_BIO(bp) = sbp; 783 break; 784 } 785 } 786 } 787 G_RAID3_NEXT_BIO(dbp) = NULL; 788 } 789 790 static void 791 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 792 { 793 struct bio *bp, *pbp; 794 size_t size; 795 796 pbp = cbp->bio_parent; 797 pbp->bio_children--; 798 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 799 size = pbp->bio_length / (sc->sc_ndisks - 1); 800 if (size > 16384) 801 uma_zfree(sc->sc_zone_64k, cbp->bio_data); 802 else if (size > 4096) 803 uma_zfree(sc->sc_zone_16k, cbp->bio_data); 804 else 805 uma_zfree(sc->sc_zone_4k, cbp->bio_data); 806 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 807 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 808 G_RAID3_NEXT_BIO(cbp) = NULL; 809 g_destroy_bio(cbp); 810 } else { 811 G_RAID3_FOREACH_BIO(pbp, bp) { 812 if (G_RAID3_NEXT_BIO(bp) == cbp) 813 break; 814 } 815 if (bp != NULL) { 816 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 817 ("NULL bp->bio_driver1")); 818 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 819 G_RAID3_NEXT_BIO(cbp) = NULL; 820 } 821 g_destroy_bio(cbp); 822 } 823 } 824 825 static struct bio * 826 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 827 { 828 struct bio *bp, *cbp; 829 size_t size; 830 831 cbp = g_clone_bio(pbp); 832 if (cbp == NULL) 833 return (NULL); 834 size = pbp->bio_length / (sc->sc_ndisks - 1); 835 if (size > 16384) { 836 cbp->bio_data = uma_zalloc(sc->sc_zone_64k, M_NOWAIT); 837 g_raid3_64k_requested++; 838 } else if (size > 4096) { 839 cbp->bio_data = uma_zalloc(sc->sc_zone_16k, M_NOWAIT); 840 g_raid3_16k_requested++; 841 } else { 842 cbp->bio_data = uma_zalloc(sc->sc_zone_4k, M_NOWAIT); 843 g_raid3_4k_requested++; 844 } 845 if (cbp->bio_data == NULL) { 846 if (size > 16384) 847 g_raid3_64k_failed++; 848 if (size > 4096) 849 g_raid3_16k_failed++; 850 else 851 g_raid3_4k_failed++; 852 pbp->bio_children--; 853 g_destroy_bio(cbp); 854 return (NULL); 855 } 856 G_RAID3_NEXT_BIO(cbp) = NULL; 857 if (G_RAID3_HEAD_BIO(pbp) == NULL) 858 G_RAID3_HEAD_BIO(pbp) = cbp; 859 else { 860 G_RAID3_FOREACH_BIO(pbp, bp) { 861 if (G_RAID3_NEXT_BIO(bp) == NULL) { 862 G_RAID3_NEXT_BIO(bp) = cbp; 863 break; 864 } 865 } 866 } 867 return (cbp); 868 } 869 870 static void 871 g_raid3_scatter(struct bio *pbp) 872 { 873 struct g_raid3_softc *sc; 874 struct g_raid3_disk *disk; 875 struct bio *bp, *cbp; 876 off_t atom, cadd, padd, left; 877 878 sc = pbp->bio_to->geom->softc; 879 bp = NULL; 880 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 881 /* 882 * Find bio for which we should calculate data. 883 */ 884 G_RAID3_FOREACH_BIO(pbp, cbp) { 885 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 886 bp = cbp; 887 break; 888 } 889 } 890 KASSERT(bp != NULL, ("NULL parity bio.")); 891 } 892 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 893 cadd = padd = 0; 894 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 895 G_RAID3_FOREACH_BIO(pbp, cbp) { 896 if (cbp == bp) 897 continue; 898 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 899 padd += atom; 900 } 901 cadd += atom; 902 } 903 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 904 struct bio *tmpbp; 905 906 /* 907 * Calculate parity. 908 */ 909 bzero(bp->bio_data, bp->bio_length); 910 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 911 if (cbp == bp) 912 continue; 913 g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_data, 914 bp->bio_length); 915 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 916 g_raid3_destroy_bio(sc, cbp); 917 } 918 } 919 G_RAID3_FOREACH_BIO(pbp, cbp) { 920 struct g_consumer *cp; 921 922 disk = cbp->bio_caller2; 923 cp = disk->d_consumer; 924 cbp->bio_to = cp->provider; 925 G_RAID3_LOGREQ(3, cbp, "Sending request."); 926 KASSERT(cp->acr > 0 && cp->ace > 0, 927 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 928 cp->acr, cp->acw, cp->ace)); 929 g_io_request(cbp, cp); 930 } 931 } 932 933 static void 934 g_raid3_gather(struct bio *pbp) 935 { 936 struct g_raid3_softc *sc; 937 struct g_raid3_disk *disk; 938 struct bio *xbp, *fbp, *cbp; 939 off_t atom, cadd, padd, left; 940 941 sc = pbp->bio_to->geom->softc; 942 /* 943 * Find bio for which we have to calculate data. 944 * While going through this path, check if all requests 945 * succeeded, if not, deny whole request. 946 * If we're in COMPLETE mode, we allow one request to fail, 947 * so if we find one, we're sending it to the parity consumer. 948 * If there are more failed requests, we deny whole request. 949 */ 950 xbp = fbp = NULL; 951 G_RAID3_FOREACH_BIO(pbp, cbp) { 952 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 953 KASSERT(xbp == NULL, ("More than one parity bio.")); 954 xbp = cbp; 955 } 956 if (cbp->bio_error == 0) 957 continue; 958 /* 959 * Found failed request. 960 */ 961 G_RAID3_LOGREQ(0, cbp, "Request failed."); 962 disk = cbp->bio_caller2; 963 if (disk != NULL) { 964 /* 965 * Actually this is pointless to bump syncid, 966 * because whole device is fucked up. 967 */ 968 sc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 969 g_raid3_event_send(disk, 970 G_RAID3_DISK_STATE_DISCONNECTED, 971 G_RAID3_EVENT_DONTWAIT); 972 } 973 if (fbp == NULL) { 974 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 975 /* 976 * We are already in degraded mode, so we can't 977 * accept any failures. 978 */ 979 if (pbp->bio_error == 0) 980 pbp->bio_error = fbp->bio_error; 981 } else { 982 fbp = cbp; 983 } 984 } else { 985 /* 986 * Next failed request, that's too many. 987 */ 988 if (pbp->bio_error == 0) 989 pbp->bio_error = fbp->bio_error; 990 } 991 } 992 if (pbp->bio_error != 0) 993 goto finish; 994 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 995 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 996 if (xbp != fbp) 997 g_raid3_replace_bio(xbp, fbp); 998 g_raid3_destroy_bio(sc, fbp); 999 } else if (fbp != NULL) { 1000 struct g_consumer *cp; 1001 1002 /* 1003 * One request failed, so send the same request to 1004 * the parity consumer. 1005 */ 1006 disk = pbp->bio_driver2; 1007 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1008 pbp->bio_error = fbp->bio_error; 1009 goto finish; 1010 } 1011 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1012 pbp->bio_inbed--; 1013 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1014 if (disk->d_no == sc->sc_ndisks - 1) 1015 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1016 fbp->bio_error = 0; 1017 fbp->bio_completed = 0; 1018 fbp->bio_children = 0; 1019 fbp->bio_inbed = 0; 1020 cp = disk->d_consumer; 1021 fbp->bio_caller2 = disk; 1022 fbp->bio_to = cp->provider; 1023 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1024 KASSERT(cp->acr > 0 && cp->ace > 0, 1025 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1026 cp->acr, cp->acw, cp->ace)); 1027 g_io_request(fbp, cp); 1028 return; 1029 } 1030 if (xbp != NULL) { 1031 /* 1032 * Calculate parity. 1033 */ 1034 G_RAID3_FOREACH_BIO(pbp, cbp) { 1035 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1036 continue; 1037 g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_data, 1038 xbp->bio_length); 1039 } 1040 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1041 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1042 if (!g_raid3_is_zero(xbp)) { 1043 g_raid3_parity_mismatch++; 1044 pbp->bio_error = EIO; 1045 goto finish; 1046 } 1047 g_raid3_destroy_bio(sc, xbp); 1048 } 1049 } 1050 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1051 cadd = padd = 0; 1052 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1053 G_RAID3_FOREACH_BIO(pbp, cbp) { 1054 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1055 pbp->bio_completed += atom; 1056 padd += atom; 1057 } 1058 cadd += atom; 1059 } 1060 finish: 1061 if (pbp->bio_error == 0) 1062 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1063 else { 1064 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1065 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1066 else 1067 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1068 } 1069 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1070 g_io_deliver(pbp, pbp->bio_error); 1071 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1072 g_raid3_destroy_bio(sc, cbp); 1073 } 1074 1075 static void 1076 g_raid3_done(struct bio *bp) 1077 { 1078 struct g_raid3_softc *sc; 1079 1080 sc = bp->bio_from->geom->softc; 1081 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1082 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1083 mtx_lock(&sc->sc_queue_mtx); 1084 bioq_insert_head(&sc->sc_queue, bp); 1085 wakeup(sc); 1086 wakeup(&sc->sc_queue); 1087 mtx_unlock(&sc->sc_queue_mtx); 1088 } 1089 1090 static void 1091 g_raid3_regular_request(struct bio *cbp) 1092 { 1093 struct g_raid3_softc *sc; 1094 struct g_raid3_disk *disk; 1095 struct bio *pbp; 1096 1097 g_topology_assert_not(); 1098 1099 pbp = cbp->bio_parent; 1100 sc = pbp->bio_to->geom->softc; 1101 disk = cbp->bio_from->private; 1102 if (disk == NULL) { 1103 g_topology_lock(); 1104 g_raid3_kill_consumer(sc, cbp->bio_from); 1105 g_topology_unlock(); 1106 } 1107 1108 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1109 pbp->bio_inbed++; 1110 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1111 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1112 pbp->bio_children)); 1113 if (pbp->bio_inbed != pbp->bio_children) 1114 return; 1115 switch (pbp->bio_cmd) { 1116 case BIO_READ: 1117 g_raid3_gather(pbp); 1118 break; 1119 case BIO_WRITE: 1120 case BIO_DELETE: 1121 { 1122 int error = 0; 1123 1124 pbp->bio_completed = pbp->bio_length; 1125 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1126 if (cbp->bio_error != 0) { 1127 disk = cbp->bio_caller2; 1128 if (disk != NULL) { 1129 sc->sc_bump_syncid = 1130 G_RAID3_BUMP_IMMEDIATELY; 1131 g_raid3_event_send(disk, 1132 G_RAID3_DISK_STATE_DISCONNECTED, 1133 G_RAID3_EVENT_DONTWAIT); 1134 } 1135 if (error == 0) 1136 error = cbp->bio_error; 1137 else if (pbp->bio_error == 0) { 1138 /* 1139 * Next failed request, that's too many. 1140 */ 1141 pbp->bio_error = error; 1142 } 1143 } 1144 g_raid3_destroy_bio(sc, cbp); 1145 } 1146 if (pbp->bio_error == 0) 1147 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1148 else 1149 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1150 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1151 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1152 g_io_deliver(pbp, pbp->bio_error); 1153 break; 1154 } 1155 } 1156 } 1157 1158 static void 1159 g_raid3_sync_done(struct bio *bp) 1160 { 1161 struct g_raid3_softc *sc; 1162 1163 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1164 sc = bp->bio_from->geom->softc; 1165 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1166 mtx_lock(&sc->sc_queue_mtx); 1167 bioq_insert_head(&sc->sc_queue, bp); 1168 wakeup(sc); 1169 wakeup(&sc->sc_queue); 1170 mtx_unlock(&sc->sc_queue_mtx); 1171 } 1172 1173 static void 1174 g_raid3_start(struct bio *bp) 1175 { 1176 struct g_raid3_softc *sc; 1177 1178 sc = bp->bio_to->geom->softc; 1179 /* 1180 * If sc == NULL or there are no valid disks, provider's error 1181 * should be set and g_raid3_start() should not be called at all. 1182 */ 1183 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1184 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1185 ("Provider's error should be set (error=%d)(device=%s).", 1186 bp->bio_to->error, bp->bio_to->name)); 1187 G_RAID3_LOGREQ(3, bp, "Request received."); 1188 1189 switch (bp->bio_cmd) { 1190 case BIO_READ: 1191 case BIO_WRITE: 1192 case BIO_DELETE: 1193 break; 1194 case BIO_GETATTR: 1195 default: 1196 g_io_deliver(bp, EOPNOTSUPP); 1197 return; 1198 } 1199 mtx_lock(&sc->sc_queue_mtx); 1200 bioq_insert_tail(&sc->sc_queue, bp); 1201 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1202 wakeup(sc); 1203 mtx_unlock(&sc->sc_queue_mtx); 1204 } 1205 1206 /* 1207 * Send one synchronization request. 1208 */ 1209 static void 1210 g_raid3_sync_one(struct g_raid3_softc *sc) 1211 { 1212 struct g_raid3_disk *disk; 1213 struct bio *bp; 1214 1215 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1216 ("Wrong device state (%s, %s).", sc->sc_name, 1217 g_raid3_device_state2str(sc->sc_state))); 1218 disk = sc->sc_syncdisk; 1219 KASSERT(disk != NULL, ("No sync disk (%s).", sc->sc_name)); 1220 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 1221 ("Disk %s is not marked for synchronization.", 1222 g_raid3_get_diskname(disk))); 1223 1224 bp = g_new_bio(); 1225 if (bp == NULL) 1226 return; 1227 bp->bio_parent = NULL; 1228 bp->bio_cmd = BIO_READ; 1229 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 1230 bp->bio_length = MIN(G_RAID3_MAX_IO_SIZE, 1231 sc->sc_mediasize - bp->bio_offset); 1232 bp->bio_cflags = 0; 1233 bp->bio_done = g_raid3_sync_done; 1234 bp->bio_data = disk->d_sync.ds_data; 1235 if (bp->bio_data == NULL) { 1236 g_destroy_bio(bp); 1237 return; 1238 } 1239 bp->bio_cflags = G_RAID3_BIO_CFLAG_REGSYNC; 1240 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1241 bp->bio_to = sc->sc_provider; 1242 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1243 g_io_request(bp, disk->d_sync.ds_consumer); 1244 } 1245 1246 static void 1247 g_raid3_sync_request(struct bio *bp) 1248 { 1249 struct g_raid3_softc *sc; 1250 struct g_raid3_disk *disk; 1251 1252 sc = bp->bio_from->geom->softc; 1253 disk = bp->bio_from->private; 1254 if (disk == NULL) { 1255 g_topology_lock(); 1256 g_raid3_kill_consumer(sc, bp->bio_from); 1257 g_topology_unlock(); 1258 g_destroy_bio(bp); 1259 return; 1260 } 1261 1262 /* 1263 * Synchronization request. 1264 */ 1265 switch (bp->bio_cmd) { 1266 case BIO_READ: 1267 { 1268 struct g_consumer *cp; 1269 u_char *dst, *src; 1270 off_t left; 1271 u_int atom; 1272 1273 if (bp->bio_error != 0) { 1274 G_RAID3_LOGREQ(0, bp, 1275 "Synchronization request failed (error=%d).", 1276 bp->bio_error); 1277 g_destroy_bio(bp); 1278 return; 1279 } 1280 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1281 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1282 dst = src = bp->bio_data; 1283 if (disk->d_no == sc->sc_ndisks - 1) { 1284 u_int n; 1285 1286 /* Parity component. */ 1287 for (left = bp->bio_length; left > 0; 1288 left -= sc->sc_sectorsize) { 1289 bcopy(src, dst, atom); 1290 src += atom; 1291 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1292 g_raid3_xor(src, dst, dst, atom); 1293 src += atom; 1294 } 1295 dst += atom; 1296 } 1297 } else { 1298 /* Regular component. */ 1299 src += atom * disk->d_no; 1300 for (left = bp->bio_length; left > 0; 1301 left -= sc->sc_sectorsize) { 1302 bcopy(src, dst, atom); 1303 src += sc->sc_sectorsize; 1304 dst += atom; 1305 } 1306 } 1307 bp->bio_offset /= sc->sc_ndisks - 1; 1308 bp->bio_length /= sc->sc_ndisks - 1; 1309 bp->bio_cmd = BIO_WRITE; 1310 bp->bio_cflags = 0; 1311 bp->bio_children = bp->bio_inbed = 0; 1312 cp = disk->d_consumer; 1313 KASSERT(cp->acr == 0 && cp->acw == 1 && cp->ace == 1, 1314 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1315 cp->acr, cp->acw, cp->ace)); 1316 g_io_request(bp, cp); 1317 return; 1318 } 1319 case BIO_WRITE: 1320 if (bp->bio_error != 0) { 1321 G_RAID3_LOGREQ(0, bp, 1322 "Synchronization request failed (error=%d).", 1323 bp->bio_error); 1324 g_destroy_bio(bp); 1325 sc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 1326 g_raid3_event_send(disk, 1327 G_RAID3_DISK_STATE_DISCONNECTED, 1328 G_RAID3_EVENT_DONTWAIT); 1329 return; 1330 } 1331 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1332 disk->d_sync.ds_offset_done = bp->bio_offset + bp->bio_length; 1333 g_destroy_bio(bp); 1334 if (disk->d_sync.ds_offset_done == 1335 sc->sc_mediasize / (sc->sc_ndisks - 1)) { 1336 /* 1337 * Disk up-to-date, activate it. 1338 */ 1339 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1340 G_RAID3_EVENT_DONTWAIT); 1341 return; 1342 } else if ((disk->d_sync.ds_offset_done % 1343 (G_RAID3_MAX_IO_SIZE * 100)) == 0) { 1344 /* 1345 * Update offset_done on every 100 blocks. 1346 * XXX: This should be configurable. 1347 */ 1348 g_topology_lock(); 1349 g_raid3_update_metadata(disk); 1350 g_topology_unlock(); 1351 } 1352 return; 1353 default: 1354 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1355 bp->bio_cmd, sc->sc_name)); 1356 break; 1357 } 1358 } 1359 1360 static int 1361 g_raid3_register_request(struct bio *pbp) 1362 { 1363 struct g_raid3_softc *sc; 1364 struct g_raid3_disk *disk; 1365 struct g_consumer *cp; 1366 struct bio *cbp; 1367 off_t offset, length; 1368 u_int n, ndisks; 1369 int round_robin, verify; 1370 1371 ndisks = 0; 1372 sc = pbp->bio_to->geom->softc; 1373 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1374 sc->sc_syncdisk == NULL) { 1375 g_io_deliver(pbp, EIO); 1376 return (0); 1377 } 1378 g_raid3_init_bio(pbp); 1379 length = pbp->bio_length / (sc->sc_ndisks - 1); 1380 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1381 round_robin = verify = 0; 1382 switch (pbp->bio_cmd) { 1383 case BIO_READ: 1384 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1385 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1386 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1387 verify = 1; 1388 ndisks = sc->sc_ndisks; 1389 } else { 1390 verify = 0; 1391 ndisks = sc->sc_ndisks - 1; 1392 } 1393 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1394 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1395 round_robin = 1; 1396 } else { 1397 round_robin = 0; 1398 } 1399 KASSERT(!round_robin || !verify, 1400 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1401 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1402 break; 1403 case BIO_WRITE: 1404 case BIO_DELETE: 1405 ndisks = sc->sc_ndisks; 1406 break; 1407 } 1408 for (n = 0; n < ndisks; n++) { 1409 disk = &sc->sc_disks[n]; 1410 cbp = g_raid3_clone_bio(sc, pbp); 1411 if (cbp == NULL) { 1412 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1413 g_raid3_destroy_bio(sc, cbp); 1414 return (ENOMEM); 1415 } 1416 cbp->bio_offset = offset; 1417 cbp->bio_length = length; 1418 cbp->bio_done = g_raid3_done; 1419 switch (pbp->bio_cmd) { 1420 case BIO_READ: 1421 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1422 /* 1423 * Replace invalid component with the parity 1424 * component. 1425 */ 1426 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1427 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1428 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1429 } else if (round_robin && 1430 disk->d_no == sc->sc_round_robin) { 1431 /* 1432 * In round-robin mode skip one data component 1433 * and use parity component when reading. 1434 */ 1435 pbp->bio_driver2 = disk; 1436 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1437 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1438 sc->sc_round_robin++; 1439 round_robin = 0; 1440 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1441 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1442 } 1443 break; 1444 case BIO_WRITE: 1445 case BIO_DELETE: 1446 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1447 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1448 if (n == ndisks - 1) { 1449 /* 1450 * Active parity component, mark it as such. 1451 */ 1452 cbp->bio_cflags |= 1453 G_RAID3_BIO_CFLAG_PARITY; 1454 } 1455 } else { 1456 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1457 if (n == ndisks - 1) { 1458 /* 1459 * Parity component is not connected, 1460 * so destroy its request. 1461 */ 1462 pbp->bio_pflags |= 1463 G_RAID3_BIO_PFLAG_NOPARITY; 1464 g_raid3_destroy_bio(sc, cbp); 1465 cbp = NULL; 1466 } else { 1467 cbp->bio_cflags |= 1468 G_RAID3_BIO_CFLAG_NODISK; 1469 disk = NULL; 1470 } 1471 } 1472 break; 1473 } 1474 if (cbp != NULL) 1475 cbp->bio_caller2 = disk; 1476 } 1477 switch (pbp->bio_cmd) { 1478 case BIO_READ: 1479 if (round_robin) { 1480 /* 1481 * If we are in round-robin mode and 'round_robin' is 1482 * still 1, it means, that we skipped parity component 1483 * for this read and must reset sc_round_robin field. 1484 */ 1485 sc->sc_round_robin = 0; 1486 } 1487 G_RAID3_FOREACH_BIO(pbp, cbp) { 1488 disk = cbp->bio_caller2; 1489 cp = disk->d_consumer; 1490 cbp->bio_to = cp->provider; 1491 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1492 KASSERT(cp->acr > 0 && cp->ace > 0, 1493 ("Consumer %s not opened (r%dw%de%d).", 1494 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1495 g_io_request(cbp, cp); 1496 } 1497 break; 1498 case BIO_WRITE: 1499 case BIO_DELETE: 1500 /* 1501 * Bump syncid on first write. 1502 */ 1503 if (sc->sc_bump_syncid == G_RAID3_BUMP_ON_FIRST_WRITE) { 1504 sc->sc_bump_syncid = 0; 1505 g_topology_lock(); 1506 g_raid3_bump_syncid(sc); 1507 g_topology_unlock(); 1508 } 1509 g_raid3_scatter(pbp); 1510 break; 1511 } 1512 return (0); 1513 } 1514 1515 static int 1516 g_raid3_can_destroy(struct g_raid3_softc *sc) 1517 { 1518 struct g_geom *gp; 1519 struct g_consumer *cp; 1520 1521 g_topology_assert(); 1522 gp = sc->sc_geom; 1523 LIST_FOREACH(cp, &gp->consumer, consumer) { 1524 if (g_raid3_is_busy(sc, cp)) 1525 return (0); 1526 } 1527 gp = sc->sc_sync.ds_geom; 1528 LIST_FOREACH(cp, &gp->consumer, consumer) { 1529 if (g_raid3_is_busy(sc, cp)) 1530 return (0); 1531 } 1532 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1533 sc->sc_name); 1534 return (1); 1535 } 1536 1537 static int 1538 g_raid3_try_destroy(struct g_raid3_softc *sc) 1539 { 1540 1541 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 1542 g_topology_lock(); 1543 if (!g_raid3_can_destroy(sc)) { 1544 g_topology_unlock(); 1545 return (0); 1546 } 1547 g_topology_unlock(); 1548 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1549 &sc->sc_worker); 1550 wakeup(&sc->sc_worker); 1551 sc->sc_worker = NULL; 1552 } else { 1553 g_topology_lock(); 1554 if (!g_raid3_can_destroy(sc)) { 1555 g_topology_unlock(); 1556 return (0); 1557 } 1558 g_raid3_destroy_device(sc); 1559 g_topology_unlock(); 1560 free(sc->sc_disks, M_RAID3); 1561 free(sc, M_RAID3); 1562 } 1563 return (1); 1564 } 1565 1566 /* 1567 * Worker thread. 1568 */ 1569 static void 1570 g_raid3_worker(void *arg) 1571 { 1572 struct g_raid3_softc *sc; 1573 struct g_raid3_disk *disk; 1574 struct g_raid3_event *ep; 1575 struct bio *bp; 1576 u_int nreqs; 1577 1578 sc = arg; 1579 curthread->td_base_pri = PRIBIO; 1580 1581 nreqs = 0; 1582 for (;;) { 1583 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 1584 /* 1585 * First take a look at events. 1586 * This is important to handle events before any I/O requests. 1587 */ 1588 ep = g_raid3_event_get(sc); 1589 if (ep != NULL) { 1590 g_topology_lock(); 1591 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 1592 /* Update only device status. */ 1593 G_RAID3_DEBUG(3, 1594 "Running event for device %s.", 1595 sc->sc_name); 1596 ep->e_error = 0; 1597 g_raid3_update_device(sc, 1); 1598 } else { 1599 /* Update disk status. */ 1600 G_RAID3_DEBUG(3, "Running event for disk %s.", 1601 g_raid3_get_diskname(ep->e_disk)); 1602 ep->e_error = g_raid3_update_disk(ep->e_disk, 1603 ep->e_state); 1604 if (ep->e_error == 0) 1605 g_raid3_update_device(sc, 0); 1606 } 1607 g_topology_unlock(); 1608 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 1609 KASSERT(ep->e_error == 0, 1610 ("Error cannot be handled.")); 1611 g_raid3_event_free(ep); 1612 } else { 1613 ep->e_flags |= G_RAID3_EVENT_DONE; 1614 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1615 ep); 1616 mtx_lock(&sc->sc_events_mtx); 1617 wakeup(ep); 1618 mtx_unlock(&sc->sc_events_mtx); 1619 } 1620 if ((sc->sc_flags & 1621 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1622 if (g_raid3_try_destroy(sc)) 1623 kthread_exit(0); 1624 } 1625 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 1626 continue; 1627 } 1628 /* 1629 * Now I/O requests. 1630 */ 1631 /* Get first request from the queue. */ 1632 mtx_lock(&sc->sc_queue_mtx); 1633 bp = bioq_first(&sc->sc_queue); 1634 if (bp == NULL) { 1635 if ((sc->sc_flags & 1636 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1637 mtx_unlock(&sc->sc_queue_mtx); 1638 if (g_raid3_try_destroy(sc)) 1639 kthread_exit(0); 1640 mtx_lock(&sc->sc_queue_mtx); 1641 } 1642 } 1643 if (sc->sc_syncdisk != NULL && 1644 (bp == NULL || nreqs > g_raid3_reqs_per_sync)) { 1645 mtx_unlock(&sc->sc_queue_mtx); 1646 /* 1647 * It is time for synchronization... 1648 */ 1649 nreqs = 0; 1650 disk = sc->sc_syncdisk; 1651 if (disk->d_sync.ds_offset < 1652 sc->sc_mediasize / (sc->sc_ndisks - 1) && 1653 disk->d_sync.ds_offset == 1654 disk->d_sync.ds_offset_done) { 1655 g_raid3_sync_one(sc); 1656 } 1657 G_RAID3_DEBUG(5, "%s: I'm here 2.", __func__); 1658 goto sleep; 1659 } 1660 if (bp == NULL) { 1661 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", 0); 1662 G_RAID3_DEBUG(5, "%s: I'm here 3.", __func__); 1663 continue; 1664 } 1665 nreqs++; 1666 bioq_remove(&sc->sc_queue, bp); 1667 mtx_unlock(&sc->sc_queue_mtx); 1668 1669 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1670 g_raid3_regular_request(bp); 1671 } else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 1672 u_int timeout, sps; 1673 1674 g_raid3_sync_request(bp); 1675 sleep: 1676 sps = atomic_load_acq_int(&g_raid3_syncs_per_sec); 1677 if (sps == 0) { 1678 G_RAID3_DEBUG(5, "%s: I'm here 5.", __func__); 1679 continue; 1680 } 1681 mtx_lock(&sc->sc_queue_mtx); 1682 if (bioq_first(&sc->sc_queue) != NULL) { 1683 mtx_unlock(&sc->sc_queue_mtx); 1684 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 1685 continue; 1686 } 1687 timeout = hz / sps; 1688 if (timeout == 0) 1689 timeout = 1; 1690 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w2", 1691 timeout); 1692 } else { 1693 if (g_raid3_register_request(bp) != 0) { 1694 mtx_lock(&sc->sc_queue_mtx); 1695 bioq_insert_tail(&sc->sc_queue, bp); 1696 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, 1697 PRIBIO | PDROP, "r3:lowmem", hz / 10); 1698 } 1699 } 1700 G_RAID3_DEBUG(5, "%s: I'm here 6.", __func__); 1701 } 1702 } 1703 1704 /* 1705 * Open disk's consumer if needed. 1706 */ 1707 static void 1708 g_raid3_update_access(struct g_raid3_disk *disk) 1709 { 1710 struct g_provider *pp; 1711 struct g_consumer *cp; 1712 int acr, acw, ace, cpw, error; 1713 1714 g_topology_assert(); 1715 1716 cp = disk->d_consumer; 1717 pp = disk->d_softc->sc_provider; 1718 if (pp == NULL) { 1719 acr = -cp->acr; 1720 acw = -cp->acw; 1721 ace = -cp->ace; 1722 } else { 1723 acr = pp->acr - cp->acr; 1724 acw = pp->acw - cp->acw; 1725 ace = pp->ace - cp->ace; 1726 /* Grab an extra "exclusive" bit. */ 1727 if (pp->acr > 0 || pp->acw > 0 || pp->ace > 0) 1728 ace++; 1729 } 1730 if (acr == 0 && acw == 0 && ace == 0) 1731 return; 1732 cpw = cp->acw; 1733 error = g_access(cp, acr, acw, ace); 1734 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, acr, 1735 acw, ace, error); 1736 if (error != 0) { 1737 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 1738 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 1739 G_RAID3_EVENT_DONTWAIT); 1740 return; 1741 } 1742 if (cpw == 0 && cp->acw > 0) { 1743 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 1744 g_raid3_get_diskname(disk), disk->d_softc->sc_name); 1745 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 1746 } else if (cpw > 0 && cp->acw == 0) { 1747 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 1748 g_raid3_get_diskname(disk), disk->d_softc->sc_name); 1749 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 1750 } 1751 } 1752 1753 static void 1754 g_raid3_sync_start(struct g_raid3_softc *sc) 1755 { 1756 struct g_raid3_disk *disk; 1757 struct g_consumer *cp; 1758 int error; 1759 u_int n; 1760 1761 g_topology_assert(); 1762 1763 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1764 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 1765 sc->sc_state)); 1766 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 1767 sc->sc_name, sc->sc_state)); 1768 disk = NULL; 1769 for (n = 0; n < sc->sc_ndisks; n++) { 1770 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 1771 continue; 1772 disk = &sc->sc_disks[n]; 1773 break; 1774 } 1775 if (disk == NULL) 1776 return; 1777 cp = disk->d_consumer; 1778 KASSERT(cp->acr == 0 && cp->acw == 0 && cp->ace == 0, 1779 ("Consumer %s already opened.", cp->provider->name)); 1780 1781 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 1782 g_raid3_get_diskname(disk)); 1783 error = g_access(cp, 0, 1, 1); 1784 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, 0, 1, 1785 1, error); 1786 if (error != 0) { 1787 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 1788 G_RAID3_EVENT_DONTWAIT); 1789 return; 1790 } 1791 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 1792 KASSERT(disk->d_sync.ds_consumer == NULL, 1793 ("Sync consumer already exists (device=%s, disk=%s).", 1794 sc->sc_name, g_raid3_get_diskname(disk))); 1795 disk->d_sync.ds_consumer = g_new_consumer(sc->sc_sync.ds_geom); 1796 disk->d_sync.ds_consumer->private = disk; 1797 error = g_attach(disk->d_sync.ds_consumer, disk->d_softc->sc_provider); 1798 KASSERT(error == 0, ("Cannot attach to %s (error=%d).", 1799 disk->d_softc->sc_name, error)); 1800 error = g_access(disk->d_sync.ds_consumer, 1, 0, 0); 1801 KASSERT(error == 0, ("Cannot open %s (error=%d).", 1802 disk->d_softc->sc_name, error)); 1803 disk->d_sync.ds_data = malloc(G_RAID3_MAX_IO_SIZE, M_RAID3, M_WAITOK); 1804 sc->sc_syncdisk = disk; 1805 } 1806 1807 /* 1808 * Stop synchronization process. 1809 * type: 0 - synchronization finished 1810 * 1 - synchronization stopped 1811 */ 1812 static void 1813 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 1814 { 1815 struct g_raid3_disk *disk; 1816 struct g_consumer *cp; 1817 1818 g_topology_assert(); 1819 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1820 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 1821 sc->sc_state)); 1822 disk = sc->sc_syncdisk; 1823 sc->sc_syncdisk = NULL; 1824 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 1825 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 1826 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 1827 g_raid3_disk_state2str(disk->d_state))); 1828 if (disk->d_sync.ds_consumer == NULL) 1829 return; 1830 1831 if (type == 0) { 1832 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 1833 disk->d_softc->sc_name, g_raid3_get_diskname(disk)); 1834 } else /* if (type == 1) */ { 1835 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 1836 disk->d_softc->sc_name, g_raid3_get_diskname(disk)); 1837 } 1838 cp = disk->d_sync.ds_consumer; 1839 g_access(cp, -1, 0, 0); 1840 g_raid3_kill_consumer(disk->d_softc, cp); 1841 free(disk->d_sync.ds_data, M_RAID3); 1842 disk->d_sync.ds_consumer = NULL; 1843 cp = disk->d_consumer; 1844 KASSERT(cp->acr == 0 && cp->acw == 1 && cp->ace == 1, 1845 ("Consumer %s not opened.", cp->provider->name)); 1846 g_access(cp, 0, -1, -1); 1847 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, 0, -1, 1848 -1, 0); 1849 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 1850 } 1851 1852 static void 1853 g_raid3_launch_provider(struct g_raid3_softc *sc) 1854 { 1855 struct g_provider *pp; 1856 1857 g_topology_assert(); 1858 1859 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 1860 pp->mediasize = sc->sc_mediasize; 1861 pp->sectorsize = sc->sc_sectorsize; 1862 sc->sc_provider = pp; 1863 g_error_provider(pp, 0); 1864 G_RAID3_DEBUG(0, "Device %s: provider %s launched.", sc->sc_name, 1865 pp->name); 1866 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 1867 g_raid3_sync_start(sc); 1868 } 1869 1870 static void 1871 g_raid3_destroy_provider(struct g_raid3_softc *sc) 1872 { 1873 struct bio *bp; 1874 1875 g_topology_assert(); 1876 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 1877 sc->sc_name)); 1878 1879 g_error_provider(sc->sc_provider, ENXIO); 1880 mtx_lock(&sc->sc_queue_mtx); 1881 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 1882 bioq_remove(&sc->sc_queue, bp); 1883 g_io_deliver(bp, ENXIO); 1884 } 1885 mtx_unlock(&sc->sc_queue_mtx); 1886 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 1887 sc->sc_provider->name); 1888 sc->sc_provider->flags |= G_PF_WITHER; 1889 g_orphan_provider(sc->sc_provider, ENXIO); 1890 sc->sc_provider = NULL; 1891 if (sc->sc_syncdisk != NULL) 1892 g_raid3_sync_stop(sc, 1); 1893 } 1894 1895 static void 1896 g_raid3_go(void *arg) 1897 { 1898 struct g_raid3_softc *sc; 1899 1900 sc = arg; 1901 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 1902 g_raid3_event_send(sc, 0, 1903 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 1904 } 1905 1906 static u_int 1907 g_raid3_determine_state(struct g_raid3_disk *disk) 1908 { 1909 struct g_raid3_softc *sc; 1910 u_int state; 1911 1912 sc = disk->d_softc; 1913 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 1914 if ((disk->d_flags & 1915 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 1916 /* Disk does not need synchronization. */ 1917 state = G_RAID3_DISK_STATE_ACTIVE; 1918 } else { 1919 if ((sc->sc_flags & 1920 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 1921 (disk->d_flags & 1922 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 1923 /* 1924 * We can start synchronization from 1925 * the stored offset. 1926 */ 1927 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 1928 } else { 1929 state = G_RAID3_DISK_STATE_STALE; 1930 } 1931 } 1932 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 1933 /* 1934 * Reset all synchronization data for this disk, 1935 * because if it even was synchronized, it was 1936 * synchronized to disks with different syncid. 1937 */ 1938 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 1939 disk->d_sync.ds_offset = 0; 1940 disk->d_sync.ds_offset_done = 0; 1941 disk->d_sync.ds_syncid = sc->sc_syncid; 1942 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 1943 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 1944 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 1945 } else { 1946 state = G_RAID3_DISK_STATE_STALE; 1947 } 1948 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 1949 /* 1950 * Not good, NOT GOOD! 1951 * It means that device was started on stale disks 1952 * and more fresh disk just arrive. 1953 * If there were writes, device is fucked up, sorry. 1954 * I think the best choice here is don't touch 1955 * this disk and inform the user laudly. 1956 */ 1957 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 1958 "disk (%s) arrives!! It will not be connected to the " 1959 "running device.", sc->sc_name, 1960 g_raid3_get_diskname(disk)); 1961 g_raid3_destroy_disk(disk); 1962 state = G_RAID3_DISK_STATE_NONE; 1963 /* Return immediately, because disk was destroyed. */ 1964 return (state); 1965 } 1966 G_RAID3_DEBUG(3, "State for %s disk: %s.", 1967 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 1968 return (state); 1969 } 1970 1971 /* 1972 * Update device state. 1973 */ 1974 static void 1975 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 1976 { 1977 struct g_raid3_disk *disk; 1978 u_int state; 1979 1980 g_topology_assert(); 1981 1982 switch (sc->sc_state) { 1983 case G_RAID3_DEVICE_STATE_STARTING: 1984 { 1985 u_int n, ndirty, ndisks, syncid; 1986 1987 KASSERT(sc->sc_provider == NULL, 1988 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 1989 /* 1990 * Are we ready? We are, if all disks are connected or 1991 * one disk is missing and 'force' is true. 1992 */ 1993 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 1994 if (!force) 1995 callout_drain(&sc->sc_callout); 1996 } else { 1997 if (force) { 1998 /* 1999 * Timeout expired, so destroy device. 2000 */ 2001 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2002 } 2003 return; 2004 } 2005 2006 /* 2007 * There must be at least 'sc->sc_ndisks - 1' components 2008 * with the same syncid and without SYNCHRONIZING flag. 2009 */ 2010 2011 /* 2012 * Find the biggest syncid, number of valid components and 2013 * number of dirty components. 2014 */ 2015 ndirty = ndisks = syncid = 0; 2016 for (n = 0; n < sc->sc_ndisks; n++) { 2017 disk = &sc->sc_disks[n]; 2018 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2019 continue; 2020 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2021 ndirty++; 2022 if (disk->d_sync.ds_syncid > syncid) { 2023 syncid = disk->d_sync.ds_syncid; 2024 ndisks = 0; 2025 } else if (disk->d_sync.ds_syncid < syncid) { 2026 continue; 2027 } 2028 if ((disk->d_flags & 2029 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2030 continue; 2031 } 2032 ndisks++; 2033 } 2034 /* 2035 * Do we have enough valid components? 2036 */ 2037 if (ndisks + 1 < sc->sc_ndisks) { 2038 G_RAID3_DEBUG(0, 2039 "Device %s is broken, too few valid components.", 2040 sc->sc_name); 2041 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2042 return; 2043 } 2044 /* 2045 * If there is one DIRTY component and all disks are present, 2046 * mark it for synchronization. If there is more than one DIRTY 2047 * component, mark parity component for synchronization. 2048 */ 2049 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2050 for (n = 0; n < sc->sc_ndisks; n++) { 2051 disk = &sc->sc_disks[n]; 2052 if ((disk->d_flags & 2053 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2054 continue; 2055 } 2056 disk->d_flags |= 2057 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2058 } 2059 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2060 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2061 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2062 } 2063 2064 sc->sc_syncid = syncid; 2065 if (force) { 2066 /* Remember to bump syncid on first write. */ 2067 sc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 2068 } 2069 if (ndisks == sc->sc_ndisks) 2070 state = G_RAID3_DEVICE_STATE_COMPLETE; 2071 else /* if (ndisks == sc->sc_ndisks - 1) */ 2072 state = G_RAID3_DEVICE_STATE_DEGRADED; 2073 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2074 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2075 g_raid3_device_state2str(state)); 2076 sc->sc_state = state; 2077 for (n = 0; n < sc->sc_ndisks; n++) { 2078 disk = &sc->sc_disks[n]; 2079 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2080 continue; 2081 state = g_raid3_determine_state(disk); 2082 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2083 if (state == G_RAID3_DISK_STATE_STALE) { 2084 sc->sc_bump_syncid = 2085 G_RAID3_BUMP_ON_FIRST_WRITE; 2086 } 2087 } 2088 break; 2089 } 2090 case G_RAID3_DEVICE_STATE_DEGRADED: 2091 /* 2092 * Bump syncid here, if we need to do it immediately. 2093 */ 2094 if (sc->sc_bump_syncid == G_RAID3_BUMP_IMMEDIATELY) { 2095 sc->sc_bump_syncid = 0; 2096 g_raid3_bump_syncid(sc); 2097 } 2098 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2099 return; 2100 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2101 sc->sc_ndisks - 1) { 2102 if (sc->sc_provider != NULL) 2103 g_raid3_destroy_provider(sc); 2104 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2105 return; 2106 } 2107 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2108 sc->sc_ndisks) { 2109 state = G_RAID3_DEVICE_STATE_COMPLETE; 2110 G_RAID3_DEBUG(1, 2111 "Device %s state changed from %s to %s.", 2112 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2113 g_raid3_device_state2str(state)); 2114 sc->sc_state = state; 2115 } 2116 if (sc->sc_provider == NULL) 2117 g_raid3_launch_provider(sc); 2118 break; 2119 case G_RAID3_DEVICE_STATE_COMPLETE: 2120 /* 2121 * Bump syncid here, if we need to do it immediately. 2122 */ 2123 if (sc->sc_bump_syncid == G_RAID3_BUMP_IMMEDIATELY) { 2124 sc->sc_bump_syncid = 0; 2125 g_raid3_bump_syncid(sc); 2126 } 2127 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2128 return; 2129 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2130 sc->sc_ndisks - 1, 2131 ("Too few ACTIVE components in COMPLETE state (device %s).", 2132 sc->sc_name)); 2133 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2134 sc->sc_ndisks - 1) { 2135 state = G_RAID3_DEVICE_STATE_DEGRADED; 2136 G_RAID3_DEBUG(1, 2137 "Device %s state changed from %s to %s.", 2138 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2139 g_raid3_device_state2str(state)); 2140 sc->sc_state = state; 2141 } 2142 if (sc->sc_provider == NULL) 2143 g_raid3_launch_provider(sc); 2144 break; 2145 default: 2146 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2147 g_raid3_device_state2str(sc->sc_state))); 2148 break; 2149 } 2150 } 2151 2152 /* 2153 * Update disk state and device state if needed. 2154 */ 2155 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2156 "Disk %s state changed from %s to %s (device %s).", \ 2157 g_raid3_get_diskname(disk), \ 2158 g_raid3_disk_state2str(disk->d_state), \ 2159 g_raid3_disk_state2str(state), sc->sc_name) 2160 static int 2161 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2162 { 2163 struct g_raid3_softc *sc; 2164 2165 g_topology_assert(); 2166 2167 sc = disk->d_softc; 2168 again: 2169 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2170 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2171 g_raid3_disk_state2str(state)); 2172 switch (state) { 2173 case G_RAID3_DISK_STATE_NEW: 2174 /* 2175 * Possible scenarios: 2176 * 1. New disk arrive. 2177 */ 2178 /* Previous state should be NONE. */ 2179 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2180 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2181 g_raid3_disk_state2str(disk->d_state))); 2182 DISK_STATE_CHANGED(); 2183 2184 disk->d_state = state; 2185 G_RAID3_DEBUG(0, "Device %s: provider %s detected.", 2186 sc->sc_name, g_raid3_get_diskname(disk)); 2187 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2188 break; 2189 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2190 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2191 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2192 g_raid3_device_state2str(sc->sc_state), 2193 g_raid3_get_diskname(disk), 2194 g_raid3_disk_state2str(disk->d_state))); 2195 state = g_raid3_determine_state(disk); 2196 if (state != G_RAID3_DISK_STATE_NONE) 2197 goto again; 2198 break; 2199 case G_RAID3_DISK_STATE_ACTIVE: 2200 /* 2201 * Possible scenarios: 2202 * 1. New disk does not need synchronization. 2203 * 2. Synchronization process finished successfully. 2204 */ 2205 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2206 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2207 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2208 g_raid3_device_state2str(sc->sc_state), 2209 g_raid3_get_diskname(disk), 2210 g_raid3_disk_state2str(disk->d_state))); 2211 /* Previous state should be NEW or SYNCHRONIZING. */ 2212 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2213 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2214 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2215 g_raid3_disk_state2str(disk->d_state))); 2216 DISK_STATE_CHANGED(); 2217 2218 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2219 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2220 else if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2221 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2222 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2223 g_raid3_sync_stop(sc, 0); 2224 } 2225 disk->d_state = state; 2226 disk->d_sync.ds_offset = 0; 2227 disk->d_sync.ds_offset_done = 0; 2228 g_raid3_update_access(disk); 2229 g_raid3_update_metadata(disk); 2230 G_RAID3_DEBUG(0, "Device %s: provider %s activated.", 2231 sc->sc_name, g_raid3_get_diskname(disk)); 2232 break; 2233 case G_RAID3_DISK_STATE_STALE: 2234 /* 2235 * Possible scenarios: 2236 * 1. Stale disk was connected. 2237 */ 2238 /* Previous state should be NEW. */ 2239 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2240 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2241 g_raid3_disk_state2str(disk->d_state))); 2242 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2243 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2244 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2245 g_raid3_device_state2str(sc->sc_state), 2246 g_raid3_get_diskname(disk), 2247 g_raid3_disk_state2str(disk->d_state))); 2248 /* 2249 * STALE state is only possible if device is marked 2250 * NOAUTOSYNC. 2251 */ 2252 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2253 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2254 g_raid3_device_state2str(sc->sc_state), 2255 g_raid3_get_diskname(disk), 2256 g_raid3_disk_state2str(disk->d_state))); 2257 DISK_STATE_CHANGED(); 2258 2259 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2260 disk->d_state = state; 2261 g_raid3_update_metadata(disk); 2262 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2263 sc->sc_name, g_raid3_get_diskname(disk)); 2264 break; 2265 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2266 /* 2267 * Possible scenarios: 2268 * 1. Disk which needs synchronization was connected. 2269 */ 2270 /* Previous state should be NEW. */ 2271 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2272 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2273 g_raid3_disk_state2str(disk->d_state))); 2274 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2275 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2276 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2277 g_raid3_device_state2str(sc->sc_state), 2278 g_raid3_get_diskname(disk), 2279 g_raid3_disk_state2str(disk->d_state))); 2280 DISK_STATE_CHANGED(); 2281 2282 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2283 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2284 disk->d_state = state; 2285 if (sc->sc_provider != NULL) { 2286 g_raid3_sync_start(sc); 2287 g_raid3_update_metadata(disk); 2288 } 2289 break; 2290 case G_RAID3_DISK_STATE_DISCONNECTED: 2291 /* 2292 * Possible scenarios: 2293 * 1. Device wasn't running yet, but disk disappear. 2294 * 2. Disk was active and disapppear. 2295 * 3. Disk disappear during synchronization process. 2296 */ 2297 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2298 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2299 /* 2300 * Previous state should be ACTIVE, STALE or 2301 * SYNCHRONIZING. 2302 */ 2303 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2304 disk->d_state == G_RAID3_DISK_STATE_STALE || 2305 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2306 ("Wrong disk state (%s, %s).", 2307 g_raid3_get_diskname(disk), 2308 g_raid3_disk_state2str(disk->d_state))); 2309 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2310 /* Previous state should be NEW. */ 2311 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2312 ("Wrong disk state (%s, %s).", 2313 g_raid3_get_diskname(disk), 2314 g_raid3_disk_state2str(disk->d_state))); 2315 /* 2316 * Reset bumping syncid if disk disappeared in STARTING 2317 * state. 2318 */ 2319 if (sc->sc_bump_syncid == G_RAID3_BUMP_ON_FIRST_WRITE) 2320 sc->sc_bump_syncid = 0; 2321 #ifdef INVARIANTS 2322 } else { 2323 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2324 sc->sc_name, 2325 g_raid3_device_state2str(sc->sc_state), 2326 g_raid3_get_diskname(disk), 2327 g_raid3_disk_state2str(disk->d_state))); 2328 #endif 2329 } 2330 DISK_STATE_CHANGED(); 2331 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2332 sc->sc_name, g_raid3_get_diskname(disk)); 2333 2334 g_raid3_destroy_disk(disk); 2335 break; 2336 default: 2337 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2338 break; 2339 } 2340 return (0); 2341 } 2342 #undef DISK_STATE_CHANGED 2343 2344 static int 2345 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2346 { 2347 struct g_provider *pp; 2348 u_char *buf; 2349 int error; 2350 2351 g_topology_assert(); 2352 2353 error = g_access(cp, 1, 0, 0); 2354 if (error != 0) 2355 return (error); 2356 pp = cp->provider; 2357 g_topology_unlock(); 2358 /* Metadata are stored on last sector. */ 2359 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2360 &error); 2361 g_topology_lock(); 2362 if (buf == NULL) { 2363 g_access(cp, -1, 0, 0); 2364 return (error); 2365 } 2366 if (error != 0) { 2367 g_access(cp, -1, 0, 0); 2368 g_free(buf); 2369 return (error); 2370 } 2371 error = g_access(cp, -1, 0, 0); 2372 KASSERT(error == 0, ("Cannot decrease access count for %s.", pp->name)); 2373 2374 /* Decode metadata. */ 2375 error = raid3_metadata_decode(buf, md); 2376 g_free(buf); 2377 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2378 return (EINVAL); 2379 if (error != 0) { 2380 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2381 cp->provider->name); 2382 return (error); 2383 } 2384 2385 return (0); 2386 } 2387 2388 static int 2389 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2390 struct g_raid3_metadata *md) 2391 { 2392 2393 if (md->md_no >= sc->sc_ndisks) { 2394 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2395 pp->name, md->md_no); 2396 return (EINVAL); 2397 } 2398 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2399 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2400 pp->name, md->md_no); 2401 return (EEXIST); 2402 } 2403 if (md->md_all != sc->sc_ndisks) { 2404 G_RAID3_DEBUG(1, 2405 "Invalid '%s' field on disk %s (device %s), skipping.", 2406 "md_all", pp->name, sc->sc_name); 2407 return (EINVAL); 2408 } 2409 if (md->md_mediasize != sc->sc_mediasize) { 2410 G_RAID3_DEBUG(1, 2411 "Invalid '%s' field on disk %s (device %s), skipping.", 2412 "md_mediasize", pp->name, sc->sc_name); 2413 return (EINVAL); 2414 } 2415 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2416 G_RAID3_DEBUG(1, 2417 "Invalid '%s' field on disk %s (device %s), skipping.", 2418 "md_mediasize", pp->name, sc->sc_name); 2419 return (EINVAL); 2420 } 2421 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2422 G_RAID3_DEBUG(1, 2423 "Invalid size of disk %s (device %s), skipping.", pp->name, 2424 sc->sc_name); 2425 return (EINVAL); 2426 } 2427 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2428 G_RAID3_DEBUG(1, 2429 "Invalid '%s' field on disk %s (device %s), skipping.", 2430 "md_sectorsize", pp->name, sc->sc_name); 2431 return (EINVAL); 2432 } 2433 if (md->md_sectorsize != sc->sc_sectorsize) { 2434 G_RAID3_DEBUG(1, 2435 "Invalid '%s' field on disk %s (device %s), skipping.", 2436 "md_sectorsize", pp->name, sc->sc_name); 2437 return (EINVAL); 2438 } 2439 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2440 G_RAID3_DEBUG(1, 2441 "Invalid sector size of disk %s (device %s), skipping.", 2442 pp->name, sc->sc_name); 2443 return (EINVAL); 2444 } 2445 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2446 G_RAID3_DEBUG(1, 2447 "Invalid device flags on disk %s (device %s), skipping.", 2448 pp->name, sc->sc_name); 2449 return (EINVAL); 2450 } 2451 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2452 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2453 /* 2454 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2455 */ 2456 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2457 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2458 return (EINVAL); 2459 } 2460 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 2461 G_RAID3_DEBUG(1, 2462 "Invalid disk flags on disk %s (device %s), skipping.", 2463 pp->name, sc->sc_name); 2464 return (EINVAL); 2465 } 2466 return (0); 2467 } 2468 2469 static int 2470 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 2471 struct g_raid3_metadata *md) 2472 { 2473 struct g_raid3_disk *disk; 2474 int error; 2475 2476 g_topology_assert(); 2477 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 2478 2479 error = g_raid3_check_metadata(sc, pp, md); 2480 if (error != 0) 2481 return (error); 2482 disk = g_raid3_init_disk(sc, pp, md, &error); 2483 if (disk == NULL) 2484 return (error); 2485 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 2486 G_RAID3_EVENT_WAIT); 2487 return (error); 2488 } 2489 2490 static int 2491 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 2492 { 2493 struct g_raid3_softc *sc; 2494 struct g_raid3_disk *disk; 2495 int dcr, dcw, dce, err, error; 2496 u_int n; 2497 2498 g_topology_assert(); 2499 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 2500 acw, ace); 2501 2502 dcr = pp->acr + acr; 2503 dcw = pp->acw + acw; 2504 dce = pp->ace + ace; 2505 2506 /* On first open, grab an extra "exclusive" bit */ 2507 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) 2508 ace++; 2509 /* ... and let go of it on last close */ 2510 if (dcr == 0 && dcw == 0 && dce == 0) 2511 ace--; 2512 2513 sc = pp->geom->softc; 2514 if (sc == NULL || 2515 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { 2516 if (acr <= 0 && acw <= 0 && ace <= 0) 2517 return (0); 2518 else 2519 return (ENXIO); 2520 } 2521 error = ENXIO; 2522 for (n = 0; n < sc->sc_ndisks; n++) { 2523 disk = &sc->sc_disks[n]; 2524 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 2525 continue; 2526 err = g_access(disk->d_consumer, acr, acw, ace); 2527 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", 2528 g_raid3_get_diskname(disk), acr, acw, ace, err); 2529 if (err == 0) { 2530 /* 2531 * Mark disk as dirty on open and unmark on close. 2532 */ 2533 if (pp->acw == 0 && dcw > 0) { 2534 G_RAID3_DEBUG(1, 2535 "Disk %s (device %s) marked as dirty.", 2536 g_raid3_get_diskname(disk), sc->sc_name); 2537 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2538 g_raid3_update_metadata(disk); 2539 } else if (pp->acw > 0 && dcw == 0) { 2540 G_RAID3_DEBUG(1, 2541 "Disk %s (device %s) marked as clean.", 2542 g_raid3_get_diskname(disk), sc->sc_name); 2543 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2544 g_raid3_update_metadata(disk); 2545 } 2546 error = 0; 2547 } else { 2548 sc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 2549 g_raid3_event_send(disk, 2550 G_RAID3_DISK_STATE_DISCONNECTED, 2551 G_RAID3_EVENT_DONTWAIT); 2552 } 2553 } 2554 return (error); 2555 } 2556 2557 static struct g_geom * 2558 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 2559 { 2560 struct g_raid3_softc *sc; 2561 struct g_geom *gp; 2562 int error, timeout; 2563 u_int n; 2564 2565 g_topology_assert(); 2566 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 2567 2568 /* One disk is minimum. */ 2569 if (md->md_all < 1) 2570 return (NULL); 2571 /* 2572 * Action geom. 2573 */ 2574 gp = g_new_geomf(mp, "%s", md->md_name); 2575 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 2576 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 2577 M_WAITOK | M_ZERO); 2578 gp->start = g_raid3_start; 2579 gp->spoiled = g_raid3_spoiled; 2580 gp->orphan = g_raid3_orphan; 2581 gp->access = g_raid3_access; 2582 gp->dumpconf = g_raid3_dumpconf; 2583 2584 sc->sc_id = md->md_id; 2585 sc->sc_mediasize = md->md_mediasize; 2586 sc->sc_sectorsize = md->md_sectorsize; 2587 sc->sc_ndisks = md->md_all; 2588 sc->sc_round_robin = 0; 2589 sc->sc_flags = md->md_mflags; 2590 sc->sc_bump_syncid = 0; 2591 for (n = 0; n < sc->sc_ndisks; n++) 2592 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 2593 bioq_init(&sc->sc_queue); 2594 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 2595 TAILQ_INIT(&sc->sc_events); 2596 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 2597 callout_init(&sc->sc_callout, CALLOUT_MPSAFE); 2598 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 2599 gp->softc = sc; 2600 sc->sc_geom = gp; 2601 sc->sc_provider = NULL; 2602 /* 2603 * Synchronization geom. 2604 */ 2605 gp = g_new_geomf(mp, "%s.sync", md->md_name); 2606 gp->softc = sc; 2607 gp->orphan = g_raid3_orphan; 2608 sc->sc_sync.ds_geom = gp; 2609 sc->sc_zone_64k = uma_zcreate("gr3:64k", 65536, NULL, NULL, NULL, NULL, 2610 UMA_ALIGN_PTR, 0); 2611 uma_zone_set_max(sc->sc_zone_64k, g_raid3_n64k); 2612 sc->sc_zone_16k = uma_zcreate("gr3:16k", 16384, NULL, NULL, NULL, NULL, 2613 UMA_ALIGN_PTR, 0); 2614 uma_zone_set_max(sc->sc_zone_64k, g_raid3_n16k); 2615 sc->sc_zone_4k = uma_zcreate("gr3:4k", 4096, NULL, NULL, NULL, NULL, 2616 UMA_ALIGN_PTR, 0); 2617 uma_zone_set_max(sc->sc_zone_4k, g_raid3_n4k); 2618 error = kthread_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 2619 "g_raid3 %s", md->md_name); 2620 if (error != 0) { 2621 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 2622 sc->sc_name); 2623 uma_zdestroy(sc->sc_zone_64k); 2624 uma_zdestroy(sc->sc_zone_16k); 2625 uma_zdestroy(sc->sc_zone_4k); 2626 g_destroy_geom(sc->sc_sync.ds_geom); 2627 mtx_destroy(&sc->sc_events_mtx); 2628 mtx_destroy(&sc->sc_queue_mtx); 2629 g_destroy_geom(sc->sc_geom); 2630 free(sc->sc_disks, M_RAID3); 2631 free(sc, M_RAID3); 2632 return (NULL); 2633 } 2634 2635 G_RAID3_DEBUG(0, "Device %s created (id=%u).", sc->sc_name, sc->sc_id); 2636 2637 /* 2638 * Run timeout. 2639 */ 2640 timeout = atomic_load_acq_int(&g_raid3_timeout); 2641 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 2642 return (sc->sc_geom); 2643 } 2644 2645 int 2646 g_raid3_destroy(struct g_raid3_softc *sc, boolean_t force) 2647 { 2648 struct g_provider *pp; 2649 2650 g_topology_assert(); 2651 2652 if (sc == NULL) 2653 return (ENXIO); 2654 pp = sc->sc_provider; 2655 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 2656 if (force) { 2657 G_RAID3_DEBUG(0, "Device %s is still open, so it " 2658 "can't be definitely removed.", pp->name); 2659 } else { 2660 G_RAID3_DEBUG(1, 2661 "Device %s is still open (r%dw%de%d).", pp->name, 2662 pp->acr, pp->acw, pp->ace); 2663 return (EBUSY); 2664 } 2665 } 2666 2667 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2668 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 2669 g_topology_unlock(); 2670 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 2671 mtx_lock(&sc->sc_queue_mtx); 2672 wakeup(sc); 2673 wakeup(&sc->sc_queue); 2674 mtx_unlock(&sc->sc_queue_mtx); 2675 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 2676 while (sc->sc_worker != NULL) 2677 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 2678 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 2679 g_topology_lock(); 2680 g_raid3_destroy_device(sc); 2681 free(sc->sc_disks, M_RAID3); 2682 free(sc, M_RAID3); 2683 return (0); 2684 } 2685 2686 static void 2687 g_raid3_taste_orphan(struct g_consumer *cp) 2688 { 2689 2690 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2691 cp->provider->name)); 2692 } 2693 2694 static struct g_geom * 2695 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2696 { 2697 struct g_raid3_metadata md; 2698 struct g_raid3_softc *sc; 2699 struct g_consumer *cp; 2700 struct g_geom *gp; 2701 int error; 2702 2703 g_topology_assert(); 2704 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2705 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 2706 /* Skip providers with 0 sectorsize. */ 2707 if (pp->sectorsize == 0) 2708 return (NULL); 2709 2710 gp = g_new_geomf(mp, "raid3:taste"); 2711 /* This orphan function should be never called. */ 2712 gp->orphan = g_raid3_taste_orphan; 2713 cp = g_new_consumer(gp); 2714 g_attach(cp, pp); 2715 error = g_raid3_read_metadata(cp, &md); 2716 g_detach(cp); 2717 g_destroy_consumer(cp); 2718 g_destroy_geom(gp); 2719 if (error != 0) 2720 return (NULL); 2721 gp = NULL; 2722 2723 if (md.md_version > G_RAID3_VERSION) { 2724 printf("geom_raid3.ko module is too old to handle %s.\n", 2725 pp->name); 2726 return (NULL); 2727 } 2728 if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0) 2729 return (NULL); 2730 if (g_raid3_debug >= 2) 2731 raid3_metadata_dump(&md); 2732 2733 /* 2734 * Let's check if device already exists. 2735 */ 2736 sc = NULL; 2737 LIST_FOREACH(gp, &mp->geom, geom) { 2738 sc = gp->softc; 2739 if (sc == NULL) 2740 continue; 2741 if (sc->sc_sync.ds_geom == gp) 2742 continue; 2743 if (strcmp(md.md_name, sc->sc_name) != 0) 2744 continue; 2745 if (md.md_id != sc->sc_id) { 2746 G_RAID3_DEBUG(0, "Device %s already configured.", 2747 sc->sc_name); 2748 return (NULL); 2749 } 2750 break; 2751 } 2752 if (gp == NULL) { 2753 gp = g_raid3_create(mp, &md); 2754 if (gp == NULL) { 2755 G_RAID3_DEBUG(0, "Cannot create device %s.", 2756 md.md_name); 2757 return (NULL); 2758 } 2759 sc = gp->softc; 2760 } 2761 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 2762 error = g_raid3_add_disk(sc, pp, &md); 2763 if (error != 0) { 2764 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 2765 pp->name, gp->name, error); 2766 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 2767 sc->sc_ndisks) { 2768 g_raid3_destroy(sc, 1); 2769 } 2770 return (NULL); 2771 } 2772 return (gp); 2773 } 2774 2775 static int 2776 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 2777 struct g_geom *gp) 2778 { 2779 2780 return (g_raid3_destroy(gp->softc, 0)); 2781 } 2782 2783 static void 2784 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2785 struct g_consumer *cp, struct g_provider *pp) 2786 { 2787 struct g_raid3_softc *sc; 2788 2789 g_topology_assert(); 2790 2791 sc = gp->softc; 2792 if (sc == NULL) 2793 return; 2794 /* Skip synchronization geom. */ 2795 if (gp == sc->sc_sync.ds_geom) 2796 return; 2797 if (pp != NULL) { 2798 /* Nothing here. */ 2799 } else if (cp != NULL) { 2800 struct g_raid3_disk *disk; 2801 2802 disk = cp->private; 2803 if (disk == NULL) 2804 return; 2805 sbuf_printf(sb, "%s<Type>", indent); 2806 if (disk->d_no == sc->sc_ndisks - 1) 2807 sbuf_printf(sb, "PARITY"); 2808 else 2809 sbuf_printf(sb, "DATA"); 2810 sbuf_printf(sb, "</Type>\n"); 2811 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 2812 (u_int)disk->d_no); 2813 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2814 sbuf_printf(sb, "%s<Synchronized>", indent); 2815 if (disk->d_sync.ds_offset_done == 0) 2816 sbuf_printf(sb, "0%%"); 2817 else { 2818 sbuf_printf(sb, "%u%%", 2819 (u_int)((disk->d_sync.ds_offset_done * 100) / 2820 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 2821 } 2822 sbuf_printf(sb, "</Synchronized>\n"); 2823 } 2824 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 2825 disk->d_sync.ds_syncid); 2826 sbuf_printf(sb, "%s<Flags>", indent); 2827 if (disk->d_flags == 0) 2828 sbuf_printf(sb, "NONE"); 2829 else { 2830 int first = 1; 2831 2832 #define ADD_FLAG(flag, name) do { \ 2833 if ((disk->d_flags & (flag)) != 0) { \ 2834 if (!first) \ 2835 sbuf_printf(sb, ", "); \ 2836 else \ 2837 first = 0; \ 2838 sbuf_printf(sb, name); \ 2839 } \ 2840 } while (0) 2841 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 2842 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 2843 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 2844 "SYNCHRONIZING"); 2845 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 2846 #undef ADD_FLAG 2847 } 2848 sbuf_printf(sb, "</Flags>\n"); 2849 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2850 g_raid3_disk_state2str(disk->d_state)); 2851 } else { 2852 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 2853 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 2854 sbuf_printf(sb, "%s<Flags>", indent); 2855 if (sc->sc_flags == 0) 2856 sbuf_printf(sb, "NONE"); 2857 else { 2858 int first = 1; 2859 2860 #define ADD_FLAG(flag, name) do { \ 2861 if ((sc->sc_flags & (flag)) != 0) { \ 2862 if (!first) \ 2863 sbuf_printf(sb, ", "); \ 2864 else \ 2865 first = 0; \ 2866 sbuf_printf(sb, name); \ 2867 } \ 2868 } while (0) 2869 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 2870 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 2871 "ROUND-ROBIN"); 2872 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 2873 #undef ADD_FLAG 2874 } 2875 sbuf_printf(sb, "</Flags>\n"); 2876 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2877 sc->sc_ndisks); 2878 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2879 g_raid3_device_state2str(sc->sc_state)); 2880 } 2881 } 2882 2883 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 2884