1 /*- 2 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/eventhandler.h> 41 #include <vm/uma.h> 42 #include <geom/geom.h> 43 #include <sys/proc.h> 44 #include <sys/kthread.h> 45 #include <sys/sched.h> 46 #include <geom/raid3/g_raid3.h> 47 48 49 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); 50 51 SYSCTL_DECL(_kern_geom); 52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); 53 u_int g_raid3_debug = 0; 54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug); 55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0, 56 "Debug level"); 57 static u_int g_raid3_timeout = 4; 58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout); 59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout, 60 0, "Time to wait on all raid3 components"); 61 static u_int g_raid3_idletime = 5; 62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime); 63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW, 64 &g_raid3_idletime, 0, "Mark components as clean when idling"); 65 static u_int g_raid3_disconnect_on_failure = 1; 66 TUNABLE_INT("kern.geom.raid3.disconnect_on_failure", 67 &g_raid3_disconnect_on_failure); 68 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, 69 &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 70 static u_int g_raid3_syncreqs = 2; 71 TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs); 72 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, 73 &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); 74 static u_int g_raid3_use_malloc = 0; 75 TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc); 76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, 77 &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); 78 79 static u_int g_raid3_n64k = 50; 80 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k); 81 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0, 82 "Maximum number of 64kB allocations"); 83 static u_int g_raid3_n16k = 200; 84 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k); 85 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0, 86 "Maximum number of 16kB allocations"); 87 static u_int g_raid3_n4k = 1200; 88 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k); 89 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0, 90 "Maximum number of 4kB allocations"); 91 92 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 93 "GEOM_RAID3 statistics"); 94 static u_int g_raid3_parity_mismatch = 0; 95 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 96 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 97 98 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 99 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 100 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 101 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 102 } while (0) 103 104 static eventhandler_tag g_raid3_pre_sync = NULL; 105 106 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 107 struct g_geom *gp); 108 static g_taste_t g_raid3_taste; 109 static void g_raid3_init(struct g_class *mp); 110 static void g_raid3_fini(struct g_class *mp); 111 112 struct g_class g_raid3_class = { 113 .name = G_RAID3_CLASS_NAME, 114 .version = G_VERSION, 115 .ctlreq = g_raid3_config, 116 .taste = g_raid3_taste, 117 .destroy_geom = g_raid3_destroy_geom, 118 .init = g_raid3_init, 119 .fini = g_raid3_fini 120 }; 121 122 123 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 124 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 125 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 126 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 127 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 128 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 129 static int g_raid3_register_request(struct bio *pbp); 130 static void g_raid3_sync_release(struct g_raid3_softc *sc); 131 132 133 static const char * 134 g_raid3_disk_state2str(int state) 135 { 136 137 switch (state) { 138 case G_RAID3_DISK_STATE_NODISK: 139 return ("NODISK"); 140 case G_RAID3_DISK_STATE_NONE: 141 return ("NONE"); 142 case G_RAID3_DISK_STATE_NEW: 143 return ("NEW"); 144 case G_RAID3_DISK_STATE_ACTIVE: 145 return ("ACTIVE"); 146 case G_RAID3_DISK_STATE_STALE: 147 return ("STALE"); 148 case G_RAID3_DISK_STATE_SYNCHRONIZING: 149 return ("SYNCHRONIZING"); 150 case G_RAID3_DISK_STATE_DISCONNECTED: 151 return ("DISCONNECTED"); 152 default: 153 return ("INVALID"); 154 } 155 } 156 157 static const char * 158 g_raid3_device_state2str(int state) 159 { 160 161 switch (state) { 162 case G_RAID3_DEVICE_STATE_STARTING: 163 return ("STARTING"); 164 case G_RAID3_DEVICE_STATE_DEGRADED: 165 return ("DEGRADED"); 166 case G_RAID3_DEVICE_STATE_COMPLETE: 167 return ("COMPLETE"); 168 default: 169 return ("INVALID"); 170 } 171 } 172 173 const char * 174 g_raid3_get_diskname(struct g_raid3_disk *disk) 175 { 176 177 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 178 return ("[unknown]"); 179 return (disk->d_name); 180 } 181 182 static void * 183 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) 184 { 185 void *ptr; 186 enum g_raid3_zones zone; 187 188 if (g_raid3_use_malloc || 189 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 190 ptr = malloc(size, M_RAID3, flags); 191 else { 192 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone, 193 &sc->sc_zones[zone], flags); 194 sc->sc_zones[zone].sz_requested++; 195 if (ptr == NULL) 196 sc->sc_zones[zone].sz_failed++; 197 } 198 return (ptr); 199 } 200 201 static void 202 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) 203 { 204 enum g_raid3_zones zone; 205 206 if (g_raid3_use_malloc || 207 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 208 free(ptr, M_RAID3); 209 else { 210 uma_zfree_arg(sc->sc_zones[zone].sz_zone, 211 ptr, &sc->sc_zones[zone]); 212 } 213 } 214 215 static int 216 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) 217 { 218 struct g_raid3_zone *sz = arg; 219 220 if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) 221 return (ENOMEM); 222 sz->sz_inuse++; 223 return (0); 224 } 225 226 static void 227 g_raid3_uma_dtor(void *mem, int size, void *arg) 228 { 229 struct g_raid3_zone *sz = arg; 230 231 sz->sz_inuse--; 232 } 233 234 #define g_raid3_xor(src1, src2, dst, size) \ 235 _g_raid3_xor((uint64_t *)(src1), (uint64_t *)(src2), \ 236 (uint64_t *)(dst), (size_t)size) 237 static void 238 _g_raid3_xor(uint64_t *src1, uint64_t *src2, uint64_t *dst, size_t size) 239 { 240 241 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 242 for (; size > 0; size -= 128) { 243 *dst++ = (*src1++) ^ (*src2++); 244 *dst++ = (*src1++) ^ (*src2++); 245 *dst++ = (*src1++) ^ (*src2++); 246 *dst++ = (*src1++) ^ (*src2++); 247 *dst++ = (*src1++) ^ (*src2++); 248 *dst++ = (*src1++) ^ (*src2++); 249 *dst++ = (*src1++) ^ (*src2++); 250 *dst++ = (*src1++) ^ (*src2++); 251 *dst++ = (*src1++) ^ (*src2++); 252 *dst++ = (*src1++) ^ (*src2++); 253 *dst++ = (*src1++) ^ (*src2++); 254 *dst++ = (*src1++) ^ (*src2++); 255 *dst++ = (*src1++) ^ (*src2++); 256 *dst++ = (*src1++) ^ (*src2++); 257 *dst++ = (*src1++) ^ (*src2++); 258 *dst++ = (*src1++) ^ (*src2++); 259 } 260 } 261 262 static int 263 g_raid3_is_zero(struct bio *bp) 264 { 265 static const uint64_t zeros[] = { 266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 267 }; 268 u_char *addr; 269 ssize_t size; 270 271 size = bp->bio_length; 272 addr = (u_char *)bp->bio_data; 273 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 274 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 275 return (0); 276 } 277 return (1); 278 } 279 280 /* 281 * --- Events handling functions --- 282 * Events in geom_raid3 are used to maintain disks and device status 283 * from one thread to simplify locking. 284 */ 285 static void 286 g_raid3_event_free(struct g_raid3_event *ep) 287 { 288 289 free(ep, M_RAID3); 290 } 291 292 int 293 g_raid3_event_send(void *arg, int state, int flags) 294 { 295 struct g_raid3_softc *sc; 296 struct g_raid3_disk *disk; 297 struct g_raid3_event *ep; 298 int error; 299 300 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 301 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 302 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 303 disk = NULL; 304 sc = arg; 305 } else { 306 disk = arg; 307 sc = disk->d_softc; 308 } 309 ep->e_disk = disk; 310 ep->e_state = state; 311 ep->e_flags = flags; 312 ep->e_error = 0; 313 mtx_lock(&sc->sc_events_mtx); 314 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 315 mtx_unlock(&sc->sc_events_mtx); 316 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 317 mtx_lock(&sc->sc_queue_mtx); 318 wakeup(sc); 319 wakeup(&sc->sc_queue); 320 mtx_unlock(&sc->sc_queue_mtx); 321 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 322 return (0); 323 sx_assert(&sc->sc_lock, SX_XLOCKED); 324 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 325 sx_xunlock(&sc->sc_lock); 326 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 327 mtx_lock(&sc->sc_events_mtx); 328 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 329 hz * 5); 330 } 331 error = ep->e_error; 332 g_raid3_event_free(ep); 333 sx_xlock(&sc->sc_lock); 334 return (error); 335 } 336 337 static struct g_raid3_event * 338 g_raid3_event_get(struct g_raid3_softc *sc) 339 { 340 struct g_raid3_event *ep; 341 342 mtx_lock(&sc->sc_events_mtx); 343 ep = TAILQ_FIRST(&sc->sc_events); 344 mtx_unlock(&sc->sc_events_mtx); 345 return (ep); 346 } 347 348 static void 349 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) 350 { 351 352 mtx_lock(&sc->sc_events_mtx); 353 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 354 mtx_unlock(&sc->sc_events_mtx); 355 } 356 357 static void 358 g_raid3_event_cancel(struct g_raid3_disk *disk) 359 { 360 struct g_raid3_softc *sc; 361 struct g_raid3_event *ep, *tmpep; 362 363 sc = disk->d_softc; 364 sx_assert(&sc->sc_lock, SX_XLOCKED); 365 366 mtx_lock(&sc->sc_events_mtx); 367 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 368 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 369 continue; 370 if (ep->e_disk != disk) 371 continue; 372 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 373 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 374 g_raid3_event_free(ep); 375 else { 376 ep->e_error = ECANCELED; 377 wakeup(ep); 378 } 379 } 380 mtx_unlock(&sc->sc_events_mtx); 381 } 382 383 /* 384 * Return the number of disks in the given state. 385 * If state is equal to -1, count all connected disks. 386 */ 387 u_int 388 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 389 { 390 struct g_raid3_disk *disk; 391 u_int n, ndisks; 392 393 sx_assert(&sc->sc_lock, SX_LOCKED); 394 395 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 396 disk = &sc->sc_disks[n]; 397 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 398 continue; 399 if (state == -1 || disk->d_state == state) 400 ndisks++; 401 } 402 return (ndisks); 403 } 404 405 static u_int 406 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 407 { 408 struct bio *bp; 409 u_int nreqs = 0; 410 411 mtx_lock(&sc->sc_queue_mtx); 412 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 413 if (bp->bio_from == cp) 414 nreqs++; 415 } 416 mtx_unlock(&sc->sc_queue_mtx); 417 return (nreqs); 418 } 419 420 static int 421 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 422 { 423 424 if (cp->index > 0) { 425 G_RAID3_DEBUG(2, 426 "I/O requests for %s exist, can't destroy it now.", 427 cp->provider->name); 428 return (1); 429 } 430 if (g_raid3_nrequests(sc, cp) > 0) { 431 G_RAID3_DEBUG(2, 432 "I/O requests for %s in queue, can't destroy it now.", 433 cp->provider->name); 434 return (1); 435 } 436 return (0); 437 } 438 439 static void 440 g_raid3_destroy_consumer(void *arg, int flags __unused) 441 { 442 struct g_consumer *cp; 443 444 g_topology_assert(); 445 446 cp = arg; 447 G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 448 g_detach(cp); 449 g_destroy_consumer(cp); 450 } 451 452 static void 453 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 454 { 455 struct g_provider *pp; 456 int retaste_wait; 457 458 g_topology_assert(); 459 460 cp->private = NULL; 461 if (g_raid3_is_busy(sc, cp)) 462 return; 463 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 464 pp = cp->provider; 465 retaste_wait = 0; 466 if (cp->acw == 1) { 467 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 468 retaste_wait = 1; 469 } 470 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, 471 -cp->acw, -cp->ace, 0); 472 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 473 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 474 if (retaste_wait) { 475 /* 476 * After retaste event was send (inside g_access()), we can send 477 * event to detach and destroy consumer. 478 * A class, which has consumer to the given provider connected 479 * will not receive retaste event for the provider. 480 * This is the way how I ignore retaste events when I close 481 * consumers opened for write: I detach and destroy consumer 482 * after retaste event is sent. 483 */ 484 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); 485 return; 486 } 487 G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); 488 g_detach(cp); 489 g_destroy_consumer(cp); 490 } 491 492 static int 493 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 494 { 495 struct g_consumer *cp; 496 int error; 497 498 g_topology_assert_not(); 499 KASSERT(disk->d_consumer == NULL, 500 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 501 502 g_topology_lock(); 503 cp = g_new_consumer(disk->d_softc->sc_geom); 504 error = g_attach(cp, pp); 505 if (error != 0) { 506 g_destroy_consumer(cp); 507 g_topology_unlock(); 508 return (error); 509 } 510 error = g_access(cp, 1, 1, 1); 511 g_topology_unlock(); 512 if (error != 0) { 513 g_detach(cp); 514 g_destroy_consumer(cp); 515 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", 516 pp->name, error); 517 return (error); 518 } 519 disk->d_consumer = cp; 520 disk->d_consumer->private = disk; 521 disk->d_consumer->index = 0; 522 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 523 return (0); 524 } 525 526 static void 527 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 528 { 529 530 g_topology_assert(); 531 532 if (cp == NULL) 533 return; 534 if (cp->provider != NULL) 535 g_raid3_kill_consumer(sc, cp); 536 else 537 g_destroy_consumer(cp); 538 } 539 540 /* 541 * Initialize disk. This means allocate memory, create consumer, attach it 542 * to the provider and open access (r1w1e1) to it. 543 */ 544 static struct g_raid3_disk * 545 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 546 struct g_raid3_metadata *md, int *errorp) 547 { 548 struct g_raid3_disk *disk; 549 int error; 550 551 disk = &sc->sc_disks[md->md_no]; 552 error = g_raid3_connect_disk(disk, pp); 553 if (error != 0) { 554 if (errorp != NULL) 555 *errorp = error; 556 return (NULL); 557 } 558 disk->d_state = G_RAID3_DISK_STATE_NONE; 559 disk->d_flags = md->md_dflags; 560 if (md->md_provider[0] != '\0') 561 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 562 disk->d_sync.ds_consumer = NULL; 563 disk->d_sync.ds_offset = md->md_sync_offset; 564 disk->d_sync.ds_offset_done = md->md_sync_offset; 565 disk->d_genid = md->md_genid; 566 disk->d_sync.ds_syncid = md->md_syncid; 567 if (errorp != NULL) 568 *errorp = 0; 569 return (disk); 570 } 571 572 static void 573 g_raid3_destroy_disk(struct g_raid3_disk *disk) 574 { 575 struct g_raid3_softc *sc; 576 577 g_topology_assert_not(); 578 sc = disk->d_softc; 579 sx_assert(&sc->sc_lock, SX_XLOCKED); 580 581 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 582 return; 583 g_raid3_event_cancel(disk); 584 switch (disk->d_state) { 585 case G_RAID3_DISK_STATE_SYNCHRONIZING: 586 if (sc->sc_syncdisk != NULL) 587 g_raid3_sync_stop(sc, 1); 588 /* FALLTHROUGH */ 589 case G_RAID3_DISK_STATE_NEW: 590 case G_RAID3_DISK_STATE_STALE: 591 case G_RAID3_DISK_STATE_ACTIVE: 592 g_topology_lock(); 593 g_raid3_disconnect_consumer(sc, disk->d_consumer); 594 g_topology_unlock(); 595 disk->d_consumer = NULL; 596 break; 597 default: 598 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 599 g_raid3_get_diskname(disk), 600 g_raid3_disk_state2str(disk->d_state))); 601 } 602 disk->d_state = G_RAID3_DISK_STATE_NODISK; 603 } 604 605 static void 606 g_raid3_destroy_device(struct g_raid3_softc *sc) 607 { 608 struct g_raid3_event *ep; 609 struct g_raid3_disk *disk; 610 struct g_geom *gp; 611 struct g_consumer *cp; 612 u_int n; 613 614 g_topology_assert_not(); 615 sx_assert(&sc->sc_lock, SX_XLOCKED); 616 617 gp = sc->sc_geom; 618 if (sc->sc_provider != NULL) 619 g_raid3_destroy_provider(sc); 620 for (n = 0; n < sc->sc_ndisks; n++) { 621 disk = &sc->sc_disks[n]; 622 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { 623 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 624 g_raid3_update_metadata(disk); 625 g_raid3_destroy_disk(disk); 626 } 627 } 628 while ((ep = g_raid3_event_get(sc)) != NULL) { 629 g_raid3_event_remove(sc, ep); 630 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 631 g_raid3_event_free(ep); 632 else { 633 ep->e_error = ECANCELED; 634 ep->e_flags |= G_RAID3_EVENT_DONE; 635 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 636 mtx_lock(&sc->sc_events_mtx); 637 wakeup(ep); 638 mtx_unlock(&sc->sc_events_mtx); 639 } 640 } 641 callout_drain(&sc->sc_callout); 642 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 643 g_topology_lock(); 644 if (cp != NULL) 645 g_raid3_disconnect_consumer(sc, cp); 646 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 647 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 648 g_wither_geom(gp, ENXIO); 649 g_topology_unlock(); 650 if (!g_raid3_use_malloc) { 651 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 652 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 653 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 654 } 655 mtx_destroy(&sc->sc_queue_mtx); 656 mtx_destroy(&sc->sc_events_mtx); 657 sx_xunlock(&sc->sc_lock); 658 sx_destroy(&sc->sc_lock); 659 } 660 661 static void 662 g_raid3_orphan(struct g_consumer *cp) 663 { 664 struct g_raid3_disk *disk; 665 666 g_topology_assert(); 667 668 disk = cp->private; 669 if (disk == NULL) 670 return; 671 disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; 672 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 673 G_RAID3_EVENT_DONTWAIT); 674 } 675 676 static int 677 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 678 { 679 struct g_raid3_softc *sc; 680 struct g_consumer *cp; 681 off_t offset, length; 682 u_char *sector; 683 int error = 0; 684 685 g_topology_assert_not(); 686 sc = disk->d_softc; 687 sx_assert(&sc->sc_lock, SX_LOCKED); 688 689 cp = disk->d_consumer; 690 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 691 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 692 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 693 ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, 694 cp->acw, cp->ace)); 695 length = cp->provider->sectorsize; 696 offset = cp->provider->mediasize - length; 697 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 698 if (md != NULL) 699 raid3_metadata_encode(md, sector); 700 error = g_write_data(cp, offset, sector, length); 701 free(sector, M_RAID3); 702 if (error != 0) { 703 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 704 G_RAID3_DEBUG(0, "Cannot write metadata on %s " 705 "(device=%s, error=%d).", 706 g_raid3_get_diskname(disk), sc->sc_name, error); 707 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 708 } else { 709 G_RAID3_DEBUG(1, "Cannot write metadata on %s " 710 "(device=%s, error=%d).", 711 g_raid3_get_diskname(disk), sc->sc_name, error); 712 } 713 if (g_raid3_disconnect_on_failure && 714 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 715 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 716 g_raid3_event_send(disk, 717 G_RAID3_DISK_STATE_DISCONNECTED, 718 G_RAID3_EVENT_DONTWAIT); 719 } 720 } 721 return (error); 722 } 723 724 int 725 g_raid3_clear_metadata(struct g_raid3_disk *disk) 726 { 727 int error; 728 729 g_topology_assert_not(); 730 sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); 731 732 error = g_raid3_write_metadata(disk, NULL); 733 if (error == 0) { 734 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 735 g_raid3_get_diskname(disk)); 736 } else { 737 G_RAID3_DEBUG(0, 738 "Cannot clear metadata on disk %s (error=%d).", 739 g_raid3_get_diskname(disk), error); 740 } 741 return (error); 742 } 743 744 void 745 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 746 { 747 struct g_raid3_softc *sc; 748 struct g_provider *pp; 749 750 sc = disk->d_softc; 751 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 752 md->md_version = G_RAID3_VERSION; 753 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 754 md->md_id = sc->sc_id; 755 md->md_all = sc->sc_ndisks; 756 md->md_genid = sc->sc_genid; 757 md->md_mediasize = sc->sc_mediasize; 758 md->md_sectorsize = sc->sc_sectorsize; 759 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 760 md->md_no = disk->d_no; 761 md->md_syncid = disk->d_sync.ds_syncid; 762 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 763 if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 764 md->md_sync_offset = 0; 765 else { 766 md->md_sync_offset = 767 disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); 768 } 769 if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) 770 pp = disk->d_consumer->provider; 771 else 772 pp = NULL; 773 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) 774 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); 775 else 776 bzero(md->md_provider, sizeof(md->md_provider)); 777 if (pp != NULL) 778 md->md_provsize = pp->mediasize; 779 else 780 md->md_provsize = 0; 781 } 782 783 void 784 g_raid3_update_metadata(struct g_raid3_disk *disk) 785 { 786 struct g_raid3_softc *sc; 787 struct g_raid3_metadata md; 788 int error; 789 790 g_topology_assert_not(); 791 sc = disk->d_softc; 792 sx_assert(&sc->sc_lock, SX_LOCKED); 793 794 g_raid3_fill_metadata(disk, &md); 795 error = g_raid3_write_metadata(disk, &md); 796 if (error == 0) { 797 G_RAID3_DEBUG(2, "Metadata on %s updated.", 798 g_raid3_get_diskname(disk)); 799 } else { 800 G_RAID3_DEBUG(0, 801 "Cannot update metadata on disk %s (error=%d).", 802 g_raid3_get_diskname(disk), error); 803 } 804 } 805 806 static void 807 g_raid3_bump_syncid(struct g_raid3_softc *sc) 808 { 809 struct g_raid3_disk *disk; 810 u_int n; 811 812 g_topology_assert_not(); 813 sx_assert(&sc->sc_lock, SX_XLOCKED); 814 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 815 ("%s called with no active disks (device=%s).", __func__, 816 sc->sc_name)); 817 818 sc->sc_syncid++; 819 G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, 820 sc->sc_syncid); 821 for (n = 0; n < sc->sc_ndisks; n++) { 822 disk = &sc->sc_disks[n]; 823 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 824 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 825 disk->d_sync.ds_syncid = sc->sc_syncid; 826 g_raid3_update_metadata(disk); 827 } 828 } 829 } 830 831 static void 832 g_raid3_bump_genid(struct g_raid3_softc *sc) 833 { 834 struct g_raid3_disk *disk; 835 u_int n; 836 837 g_topology_assert_not(); 838 sx_assert(&sc->sc_lock, SX_XLOCKED); 839 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 840 ("%s called with no active disks (device=%s).", __func__, 841 sc->sc_name)); 842 843 sc->sc_genid++; 844 G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, 845 sc->sc_genid); 846 for (n = 0; n < sc->sc_ndisks; n++) { 847 disk = &sc->sc_disks[n]; 848 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 849 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 850 disk->d_genid = sc->sc_genid; 851 g_raid3_update_metadata(disk); 852 } 853 } 854 } 855 856 static int 857 g_raid3_idle(struct g_raid3_softc *sc, int acw) 858 { 859 struct g_raid3_disk *disk; 860 u_int i; 861 int timeout; 862 863 g_topology_assert_not(); 864 sx_assert(&sc->sc_lock, SX_XLOCKED); 865 866 if (sc->sc_provider == NULL) 867 return (0); 868 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 869 return (0); 870 if (sc->sc_idle) 871 return (0); 872 if (sc->sc_writes > 0) 873 return (0); 874 if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { 875 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); 876 if (timeout > 0) 877 return (timeout); 878 } 879 sc->sc_idle = 1; 880 for (i = 0; i < sc->sc_ndisks; i++) { 881 disk = &sc->sc_disks[i]; 882 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 883 continue; 884 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 885 g_raid3_get_diskname(disk), sc->sc_name); 886 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 887 g_raid3_update_metadata(disk); 888 } 889 return (0); 890 } 891 892 static void 893 g_raid3_unidle(struct g_raid3_softc *sc) 894 { 895 struct g_raid3_disk *disk; 896 u_int i; 897 898 g_topology_assert_not(); 899 sx_assert(&sc->sc_lock, SX_XLOCKED); 900 901 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 902 return; 903 sc->sc_idle = 0; 904 sc->sc_last_write = time_uptime; 905 for (i = 0; i < sc->sc_ndisks; i++) { 906 disk = &sc->sc_disks[i]; 907 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 908 continue; 909 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 910 g_raid3_get_diskname(disk), sc->sc_name); 911 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 912 g_raid3_update_metadata(disk); 913 } 914 } 915 916 /* 917 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 918 * in child bio as pointer to the next element on the list. 919 */ 920 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 921 922 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 923 924 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 925 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 926 (bp) = G_RAID3_NEXT_BIO(bp)) 927 928 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 929 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 930 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 931 (bp) = (tmpbp)) 932 933 static void 934 g_raid3_init_bio(struct bio *pbp) 935 { 936 937 G_RAID3_HEAD_BIO(pbp) = NULL; 938 } 939 940 static void 941 g_raid3_remove_bio(struct bio *cbp) 942 { 943 struct bio *pbp, *bp; 944 945 pbp = cbp->bio_parent; 946 if (G_RAID3_HEAD_BIO(pbp) == cbp) 947 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 948 else { 949 G_RAID3_FOREACH_BIO(pbp, bp) { 950 if (G_RAID3_NEXT_BIO(bp) == cbp) { 951 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 952 break; 953 } 954 } 955 } 956 G_RAID3_NEXT_BIO(cbp) = NULL; 957 } 958 959 static void 960 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 961 { 962 struct bio *pbp, *bp; 963 964 g_raid3_remove_bio(sbp); 965 pbp = dbp->bio_parent; 966 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 967 if (G_RAID3_HEAD_BIO(pbp) == dbp) 968 G_RAID3_HEAD_BIO(pbp) = sbp; 969 else { 970 G_RAID3_FOREACH_BIO(pbp, bp) { 971 if (G_RAID3_NEXT_BIO(bp) == dbp) { 972 G_RAID3_NEXT_BIO(bp) = sbp; 973 break; 974 } 975 } 976 } 977 G_RAID3_NEXT_BIO(dbp) = NULL; 978 } 979 980 static void 981 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 982 { 983 struct bio *bp, *pbp; 984 size_t size; 985 986 pbp = cbp->bio_parent; 987 pbp->bio_children--; 988 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 989 size = pbp->bio_length / (sc->sc_ndisks - 1); 990 g_raid3_free(sc, cbp->bio_data, size); 991 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 992 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 993 G_RAID3_NEXT_BIO(cbp) = NULL; 994 g_destroy_bio(cbp); 995 } else { 996 G_RAID3_FOREACH_BIO(pbp, bp) { 997 if (G_RAID3_NEXT_BIO(bp) == cbp) 998 break; 999 } 1000 if (bp != NULL) { 1001 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 1002 ("NULL bp->bio_driver1")); 1003 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 1004 G_RAID3_NEXT_BIO(cbp) = NULL; 1005 } 1006 g_destroy_bio(cbp); 1007 } 1008 } 1009 1010 static struct bio * 1011 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 1012 { 1013 struct bio *bp, *cbp; 1014 size_t size; 1015 int memflag; 1016 1017 cbp = g_clone_bio(pbp); 1018 if (cbp == NULL) 1019 return (NULL); 1020 size = pbp->bio_length / (sc->sc_ndisks - 1); 1021 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 1022 memflag = M_WAITOK; 1023 else 1024 memflag = M_NOWAIT; 1025 cbp->bio_data = g_raid3_alloc(sc, size, memflag); 1026 if (cbp->bio_data == NULL) { 1027 pbp->bio_children--; 1028 g_destroy_bio(cbp); 1029 return (NULL); 1030 } 1031 G_RAID3_NEXT_BIO(cbp) = NULL; 1032 if (G_RAID3_HEAD_BIO(pbp) == NULL) 1033 G_RAID3_HEAD_BIO(pbp) = cbp; 1034 else { 1035 G_RAID3_FOREACH_BIO(pbp, bp) { 1036 if (G_RAID3_NEXT_BIO(bp) == NULL) { 1037 G_RAID3_NEXT_BIO(bp) = cbp; 1038 break; 1039 } 1040 } 1041 } 1042 return (cbp); 1043 } 1044 1045 static void 1046 g_raid3_scatter(struct bio *pbp) 1047 { 1048 struct g_raid3_softc *sc; 1049 struct g_raid3_disk *disk; 1050 struct bio *bp, *cbp, *tmpbp; 1051 off_t atom, cadd, padd, left; 1052 1053 sc = pbp->bio_to->geom->softc; 1054 bp = NULL; 1055 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1056 /* 1057 * Find bio for which we should calculate data. 1058 */ 1059 G_RAID3_FOREACH_BIO(pbp, cbp) { 1060 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1061 bp = cbp; 1062 break; 1063 } 1064 } 1065 KASSERT(bp != NULL, ("NULL parity bio.")); 1066 } 1067 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1068 cadd = padd = 0; 1069 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1070 G_RAID3_FOREACH_BIO(pbp, cbp) { 1071 if (cbp == bp) 1072 continue; 1073 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 1074 padd += atom; 1075 } 1076 cadd += atom; 1077 } 1078 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1079 /* 1080 * Calculate parity. 1081 */ 1082 bzero(bp->bio_data, bp->bio_length); 1083 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1084 if (cbp == bp) 1085 continue; 1086 g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_data, 1087 bp->bio_length); 1088 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1089 g_raid3_destroy_bio(sc, cbp); 1090 } 1091 } 1092 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1093 struct g_consumer *cp; 1094 1095 disk = cbp->bio_caller2; 1096 cp = disk->d_consumer; 1097 cbp->bio_to = cp->provider; 1098 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1099 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1100 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1101 cp->acr, cp->acw, cp->ace)); 1102 cp->index++; 1103 sc->sc_writes++; 1104 g_io_request(cbp, cp); 1105 } 1106 } 1107 1108 static void 1109 g_raid3_gather(struct bio *pbp) 1110 { 1111 struct g_raid3_softc *sc; 1112 struct g_raid3_disk *disk; 1113 struct bio *xbp, *fbp, *cbp; 1114 off_t atom, cadd, padd, left; 1115 1116 sc = pbp->bio_to->geom->softc; 1117 /* 1118 * Find bio for which we have to calculate data. 1119 * While going through this path, check if all requests 1120 * succeeded, if not, deny whole request. 1121 * If we're in COMPLETE mode, we allow one request to fail, 1122 * so if we find one, we're sending it to the parity consumer. 1123 * If there are more failed requests, we deny whole request. 1124 */ 1125 xbp = fbp = NULL; 1126 G_RAID3_FOREACH_BIO(pbp, cbp) { 1127 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1128 KASSERT(xbp == NULL, ("More than one parity bio.")); 1129 xbp = cbp; 1130 } 1131 if (cbp->bio_error == 0) 1132 continue; 1133 /* 1134 * Found failed request. 1135 */ 1136 if (fbp == NULL) { 1137 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1138 /* 1139 * We are already in degraded mode, so we can't 1140 * accept any failures. 1141 */ 1142 if (pbp->bio_error == 0) 1143 pbp->bio_error = cbp->bio_error; 1144 } else { 1145 fbp = cbp; 1146 } 1147 } else { 1148 /* 1149 * Next failed request, that's too many. 1150 */ 1151 if (pbp->bio_error == 0) 1152 pbp->bio_error = fbp->bio_error; 1153 } 1154 disk = cbp->bio_caller2; 1155 if (disk == NULL) 1156 continue; 1157 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1158 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1159 G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", 1160 cbp->bio_error); 1161 } else { 1162 G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", 1163 cbp->bio_error); 1164 } 1165 if (g_raid3_disconnect_on_failure && 1166 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1167 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1168 g_raid3_event_send(disk, 1169 G_RAID3_DISK_STATE_DISCONNECTED, 1170 G_RAID3_EVENT_DONTWAIT); 1171 } 1172 } 1173 if (pbp->bio_error != 0) 1174 goto finish; 1175 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1176 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1177 if (xbp != fbp) 1178 g_raid3_replace_bio(xbp, fbp); 1179 g_raid3_destroy_bio(sc, fbp); 1180 } else if (fbp != NULL) { 1181 struct g_consumer *cp; 1182 1183 /* 1184 * One request failed, so send the same request to 1185 * the parity consumer. 1186 */ 1187 disk = pbp->bio_driver2; 1188 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1189 pbp->bio_error = fbp->bio_error; 1190 goto finish; 1191 } 1192 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1193 pbp->bio_inbed--; 1194 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1195 if (disk->d_no == sc->sc_ndisks - 1) 1196 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1197 fbp->bio_error = 0; 1198 fbp->bio_completed = 0; 1199 fbp->bio_children = 0; 1200 fbp->bio_inbed = 0; 1201 cp = disk->d_consumer; 1202 fbp->bio_caller2 = disk; 1203 fbp->bio_to = cp->provider; 1204 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1205 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1206 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1207 cp->acr, cp->acw, cp->ace)); 1208 cp->index++; 1209 g_io_request(fbp, cp); 1210 return; 1211 } 1212 if (xbp != NULL) { 1213 /* 1214 * Calculate parity. 1215 */ 1216 G_RAID3_FOREACH_BIO(pbp, cbp) { 1217 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1218 continue; 1219 g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_data, 1220 xbp->bio_length); 1221 } 1222 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1223 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1224 if (!g_raid3_is_zero(xbp)) { 1225 g_raid3_parity_mismatch++; 1226 pbp->bio_error = EIO; 1227 goto finish; 1228 } 1229 g_raid3_destroy_bio(sc, xbp); 1230 } 1231 } 1232 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1233 cadd = padd = 0; 1234 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1235 G_RAID3_FOREACH_BIO(pbp, cbp) { 1236 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1237 pbp->bio_completed += atom; 1238 padd += atom; 1239 } 1240 cadd += atom; 1241 } 1242 finish: 1243 if (pbp->bio_error == 0) 1244 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1245 else { 1246 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1247 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1248 else 1249 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1250 } 1251 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1252 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1253 g_raid3_destroy_bio(sc, cbp); 1254 g_io_deliver(pbp, pbp->bio_error); 1255 } 1256 1257 static void 1258 g_raid3_done(struct bio *bp) 1259 { 1260 struct g_raid3_softc *sc; 1261 1262 sc = bp->bio_from->geom->softc; 1263 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1264 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1265 mtx_lock(&sc->sc_queue_mtx); 1266 bioq_insert_head(&sc->sc_queue, bp); 1267 wakeup(sc); 1268 wakeup(&sc->sc_queue); 1269 mtx_unlock(&sc->sc_queue_mtx); 1270 } 1271 1272 static void 1273 g_raid3_regular_request(struct bio *cbp) 1274 { 1275 struct g_raid3_softc *sc; 1276 struct g_raid3_disk *disk; 1277 struct bio *pbp; 1278 1279 g_topology_assert_not(); 1280 1281 pbp = cbp->bio_parent; 1282 sc = pbp->bio_to->geom->softc; 1283 cbp->bio_from->index--; 1284 if (cbp->bio_cmd == BIO_WRITE) 1285 sc->sc_writes--; 1286 disk = cbp->bio_from->private; 1287 if (disk == NULL) { 1288 g_topology_lock(); 1289 g_raid3_kill_consumer(sc, cbp->bio_from); 1290 g_topology_unlock(); 1291 } 1292 1293 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1294 pbp->bio_inbed++; 1295 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1296 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1297 pbp->bio_children)); 1298 if (pbp->bio_inbed != pbp->bio_children) 1299 return; 1300 switch (pbp->bio_cmd) { 1301 case BIO_READ: 1302 g_raid3_gather(pbp); 1303 break; 1304 case BIO_WRITE: 1305 case BIO_DELETE: 1306 { 1307 int error = 0; 1308 1309 pbp->bio_completed = pbp->bio_length; 1310 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1311 if (cbp->bio_error == 0) { 1312 g_raid3_destroy_bio(sc, cbp); 1313 continue; 1314 } 1315 1316 if (error == 0) 1317 error = cbp->bio_error; 1318 else if (pbp->bio_error == 0) { 1319 /* 1320 * Next failed request, that's too many. 1321 */ 1322 pbp->bio_error = error; 1323 } 1324 1325 disk = cbp->bio_caller2; 1326 if (disk == NULL) { 1327 g_raid3_destroy_bio(sc, cbp); 1328 continue; 1329 } 1330 1331 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1332 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1333 G_RAID3_LOGREQ(0, cbp, 1334 "Request failed (error=%d).", 1335 cbp->bio_error); 1336 } else { 1337 G_RAID3_LOGREQ(1, cbp, 1338 "Request failed (error=%d).", 1339 cbp->bio_error); 1340 } 1341 if (g_raid3_disconnect_on_failure && 1342 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1343 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1344 g_raid3_event_send(disk, 1345 G_RAID3_DISK_STATE_DISCONNECTED, 1346 G_RAID3_EVENT_DONTWAIT); 1347 } 1348 g_raid3_destroy_bio(sc, cbp); 1349 } 1350 if (pbp->bio_error == 0) 1351 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1352 else 1353 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1354 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1355 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1356 bioq_remove(&sc->sc_inflight, pbp); 1357 /* Release delayed sync requests if possible. */ 1358 g_raid3_sync_release(sc); 1359 g_io_deliver(pbp, pbp->bio_error); 1360 break; 1361 } 1362 } 1363 } 1364 1365 static void 1366 g_raid3_sync_done(struct bio *bp) 1367 { 1368 struct g_raid3_softc *sc; 1369 1370 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1371 sc = bp->bio_from->geom->softc; 1372 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1373 mtx_lock(&sc->sc_queue_mtx); 1374 bioq_insert_head(&sc->sc_queue, bp); 1375 wakeup(sc); 1376 wakeup(&sc->sc_queue); 1377 mtx_unlock(&sc->sc_queue_mtx); 1378 } 1379 1380 static void 1381 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp) 1382 { 1383 struct bio_queue_head queue; 1384 struct g_raid3_disk *disk; 1385 struct g_consumer *cp; 1386 struct bio *cbp; 1387 u_int i; 1388 1389 bioq_init(&queue); 1390 for (i = 0; i < sc->sc_ndisks; i++) { 1391 disk = &sc->sc_disks[i]; 1392 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 1393 continue; 1394 cbp = g_clone_bio(bp); 1395 if (cbp == NULL) { 1396 for (cbp = bioq_first(&queue); cbp != NULL; 1397 cbp = bioq_first(&queue)) { 1398 bioq_remove(&queue, cbp); 1399 g_destroy_bio(cbp); 1400 } 1401 if (bp->bio_error == 0) 1402 bp->bio_error = ENOMEM; 1403 g_io_deliver(bp, bp->bio_error); 1404 return; 1405 } 1406 bioq_insert_tail(&queue, cbp); 1407 cbp->bio_done = g_std_done; 1408 cbp->bio_caller1 = disk; 1409 cbp->bio_to = disk->d_consumer->provider; 1410 } 1411 for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { 1412 bioq_remove(&queue, cbp); 1413 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1414 disk = cbp->bio_caller1; 1415 cbp->bio_caller1 = NULL; 1416 cp = disk->d_consumer; 1417 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1418 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1419 cp->acr, cp->acw, cp->ace)); 1420 g_io_request(cbp, disk->d_consumer); 1421 } 1422 } 1423 1424 static void 1425 g_raid3_start(struct bio *bp) 1426 { 1427 struct g_raid3_softc *sc; 1428 1429 sc = bp->bio_to->geom->softc; 1430 /* 1431 * If sc == NULL or there are no valid disks, provider's error 1432 * should be set and g_raid3_start() should not be called at all. 1433 */ 1434 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1435 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1436 ("Provider's error should be set (error=%d)(device=%s).", 1437 bp->bio_to->error, bp->bio_to->name)); 1438 G_RAID3_LOGREQ(3, bp, "Request received."); 1439 1440 switch (bp->bio_cmd) { 1441 case BIO_READ: 1442 case BIO_WRITE: 1443 case BIO_DELETE: 1444 break; 1445 case BIO_FLUSH: 1446 g_raid3_flush(sc, bp); 1447 return; 1448 case BIO_GETATTR: 1449 default: 1450 g_io_deliver(bp, EOPNOTSUPP); 1451 return; 1452 } 1453 mtx_lock(&sc->sc_queue_mtx); 1454 bioq_insert_tail(&sc->sc_queue, bp); 1455 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1456 wakeup(sc); 1457 mtx_unlock(&sc->sc_queue_mtx); 1458 } 1459 1460 /* 1461 * Return TRUE if the given request is colliding with a in-progress 1462 * synchronization request. 1463 */ 1464 static int 1465 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) 1466 { 1467 struct g_raid3_disk *disk; 1468 struct bio *sbp; 1469 off_t rstart, rend, sstart, send; 1470 int i; 1471 1472 disk = sc->sc_syncdisk; 1473 if (disk == NULL) 1474 return (0); 1475 rstart = bp->bio_offset; 1476 rend = bp->bio_offset + bp->bio_length; 1477 for (i = 0; i < g_raid3_syncreqs; i++) { 1478 sbp = disk->d_sync.ds_bios[i]; 1479 if (sbp == NULL) 1480 continue; 1481 sstart = sbp->bio_offset; 1482 send = sbp->bio_length; 1483 if (sbp->bio_cmd == BIO_WRITE) { 1484 sstart *= sc->sc_ndisks - 1; 1485 send *= sc->sc_ndisks - 1; 1486 } 1487 send += sstart; 1488 if (rend > sstart && rstart < send) 1489 return (1); 1490 } 1491 return (0); 1492 } 1493 1494 /* 1495 * Return TRUE if the given sync request is colliding with a in-progress regular 1496 * request. 1497 */ 1498 static int 1499 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) 1500 { 1501 off_t rstart, rend, sstart, send; 1502 struct bio *bp; 1503 1504 if (sc->sc_syncdisk == NULL) 1505 return (0); 1506 sstart = sbp->bio_offset; 1507 send = sstart + sbp->bio_length; 1508 TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { 1509 rstart = bp->bio_offset; 1510 rend = bp->bio_offset + bp->bio_length; 1511 if (rend > sstart && rstart < send) 1512 return (1); 1513 } 1514 return (0); 1515 } 1516 1517 /* 1518 * Puts request onto delayed queue. 1519 */ 1520 static void 1521 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) 1522 { 1523 1524 G_RAID3_LOGREQ(2, bp, "Delaying request."); 1525 bioq_insert_head(&sc->sc_regular_delayed, bp); 1526 } 1527 1528 /* 1529 * Puts synchronization request onto delayed queue. 1530 */ 1531 static void 1532 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) 1533 { 1534 1535 G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); 1536 bioq_insert_tail(&sc->sc_sync_delayed, bp); 1537 } 1538 1539 /* 1540 * Releases delayed regular requests which don't collide anymore with sync 1541 * requests. 1542 */ 1543 static void 1544 g_raid3_regular_release(struct g_raid3_softc *sc) 1545 { 1546 struct bio *bp, *bp2; 1547 1548 TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { 1549 if (g_raid3_sync_collision(sc, bp)) 1550 continue; 1551 bioq_remove(&sc->sc_regular_delayed, bp); 1552 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); 1553 mtx_lock(&sc->sc_queue_mtx); 1554 bioq_insert_head(&sc->sc_queue, bp); 1555 #if 0 1556 /* 1557 * wakeup() is not needed, because this function is called from 1558 * the worker thread. 1559 */ 1560 wakeup(&sc->sc_queue); 1561 #endif 1562 mtx_unlock(&sc->sc_queue_mtx); 1563 } 1564 } 1565 1566 /* 1567 * Releases delayed sync requests which don't collide anymore with regular 1568 * requests. 1569 */ 1570 static void 1571 g_raid3_sync_release(struct g_raid3_softc *sc) 1572 { 1573 struct bio *bp, *bp2; 1574 1575 TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { 1576 if (g_raid3_regular_collision(sc, bp)) 1577 continue; 1578 bioq_remove(&sc->sc_sync_delayed, bp); 1579 G_RAID3_LOGREQ(2, bp, 1580 "Releasing delayed synchronization request."); 1581 g_io_request(bp, bp->bio_from); 1582 } 1583 } 1584 1585 /* 1586 * Handle synchronization requests. 1587 * Every synchronization request is two-steps process: first, READ request is 1588 * send to active provider and then WRITE request (with read data) to the provider 1589 * beeing synchronized. When WRITE is finished, new synchronization request is 1590 * send. 1591 */ 1592 static void 1593 g_raid3_sync_request(struct bio *bp) 1594 { 1595 struct g_raid3_softc *sc; 1596 struct g_raid3_disk *disk; 1597 1598 bp->bio_from->index--; 1599 sc = bp->bio_from->geom->softc; 1600 disk = bp->bio_from->private; 1601 if (disk == NULL) { 1602 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 1603 g_topology_lock(); 1604 g_raid3_kill_consumer(sc, bp->bio_from); 1605 g_topology_unlock(); 1606 free(bp->bio_data, M_RAID3); 1607 g_destroy_bio(bp); 1608 sx_xlock(&sc->sc_lock); 1609 return; 1610 } 1611 1612 /* 1613 * Synchronization request. 1614 */ 1615 switch (bp->bio_cmd) { 1616 case BIO_READ: 1617 { 1618 struct g_consumer *cp; 1619 u_char *dst, *src; 1620 off_t left; 1621 u_int atom; 1622 1623 if (bp->bio_error != 0) { 1624 G_RAID3_LOGREQ(0, bp, 1625 "Synchronization request failed (error=%d).", 1626 bp->bio_error); 1627 g_destroy_bio(bp); 1628 return; 1629 } 1630 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1631 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1632 dst = src = bp->bio_data; 1633 if (disk->d_no == sc->sc_ndisks - 1) { 1634 u_int n; 1635 1636 /* Parity component. */ 1637 for (left = bp->bio_length; left > 0; 1638 left -= sc->sc_sectorsize) { 1639 bcopy(src, dst, atom); 1640 src += atom; 1641 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1642 g_raid3_xor(src, dst, dst, atom); 1643 src += atom; 1644 } 1645 dst += atom; 1646 } 1647 } else { 1648 /* Regular component. */ 1649 src += atom * disk->d_no; 1650 for (left = bp->bio_length; left > 0; 1651 left -= sc->sc_sectorsize) { 1652 bcopy(src, dst, atom); 1653 src += sc->sc_sectorsize; 1654 dst += atom; 1655 } 1656 } 1657 bp->bio_driver1 = bp->bio_driver2 = NULL; 1658 bp->bio_pflags = 0; 1659 bp->bio_offset /= sc->sc_ndisks - 1; 1660 bp->bio_length /= sc->sc_ndisks - 1; 1661 bp->bio_cmd = BIO_WRITE; 1662 bp->bio_cflags = 0; 1663 bp->bio_children = bp->bio_inbed = 0; 1664 cp = disk->d_consumer; 1665 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1666 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1667 cp->acr, cp->acw, cp->ace)); 1668 cp->index++; 1669 g_io_request(bp, cp); 1670 return; 1671 } 1672 case BIO_WRITE: 1673 { 1674 struct g_raid3_disk_sync *sync; 1675 off_t boffset, moffset; 1676 void *data; 1677 int i; 1678 1679 if (bp->bio_error != 0) { 1680 G_RAID3_LOGREQ(0, bp, 1681 "Synchronization request failed (error=%d).", 1682 bp->bio_error); 1683 g_destroy_bio(bp); 1684 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1685 g_raid3_event_send(disk, 1686 G_RAID3_DISK_STATE_DISCONNECTED, 1687 G_RAID3_EVENT_DONTWAIT); 1688 return; 1689 } 1690 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1691 sync = &disk->d_sync; 1692 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || 1693 sync->ds_consumer == NULL || 1694 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1695 /* Don't send more synchronization requests. */ 1696 sync->ds_inflight--; 1697 if (sync->ds_bios != NULL) { 1698 i = (int)(uintptr_t)bp->bio_caller1; 1699 sync->ds_bios[i] = NULL; 1700 } 1701 free(bp->bio_data, M_RAID3); 1702 g_destroy_bio(bp); 1703 if (sync->ds_inflight > 0) 1704 return; 1705 if (sync->ds_consumer == NULL || 1706 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1707 return; 1708 } 1709 /* 1710 * Disk up-to-date, activate it. 1711 */ 1712 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1713 G_RAID3_EVENT_DONTWAIT); 1714 return; 1715 } 1716 1717 /* Send next synchronization request. */ 1718 data = bp->bio_data; 1719 bzero(bp, sizeof(*bp)); 1720 bp->bio_cmd = BIO_READ; 1721 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); 1722 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 1723 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1724 bp->bio_done = g_raid3_sync_done; 1725 bp->bio_data = data; 1726 bp->bio_from = sync->ds_consumer; 1727 bp->bio_to = sc->sc_provider; 1728 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1729 sync->ds_consumer->index++; 1730 /* 1731 * Delay the request if it is colliding with a regular request. 1732 */ 1733 if (g_raid3_regular_collision(sc, bp)) 1734 g_raid3_sync_delay(sc, bp); 1735 else 1736 g_io_request(bp, sync->ds_consumer); 1737 1738 /* Release delayed requests if possible. */ 1739 g_raid3_regular_release(sc); 1740 1741 /* Find the smallest offset. */ 1742 moffset = sc->sc_mediasize; 1743 for (i = 0; i < g_raid3_syncreqs; i++) { 1744 bp = sync->ds_bios[i]; 1745 boffset = bp->bio_offset; 1746 if (bp->bio_cmd == BIO_WRITE) 1747 boffset *= sc->sc_ndisks - 1; 1748 if (boffset < moffset) 1749 moffset = boffset; 1750 } 1751 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) { 1752 /* Update offset_done on every 100 blocks. */ 1753 sync->ds_offset_done = moffset; 1754 g_raid3_update_metadata(disk); 1755 } 1756 return; 1757 } 1758 default: 1759 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1760 bp->bio_cmd, sc->sc_name)); 1761 break; 1762 } 1763 } 1764 1765 static int 1766 g_raid3_register_request(struct bio *pbp) 1767 { 1768 struct g_raid3_softc *sc; 1769 struct g_raid3_disk *disk; 1770 struct g_consumer *cp; 1771 struct bio *cbp, *tmpbp; 1772 off_t offset, length; 1773 u_int n, ndisks; 1774 int round_robin, verify; 1775 1776 ndisks = 0; 1777 sc = pbp->bio_to->geom->softc; 1778 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1779 sc->sc_syncdisk == NULL) { 1780 g_io_deliver(pbp, EIO); 1781 return (0); 1782 } 1783 g_raid3_init_bio(pbp); 1784 length = pbp->bio_length / (sc->sc_ndisks - 1); 1785 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1786 round_robin = verify = 0; 1787 switch (pbp->bio_cmd) { 1788 case BIO_READ: 1789 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1790 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1791 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1792 verify = 1; 1793 ndisks = sc->sc_ndisks; 1794 } else { 1795 verify = 0; 1796 ndisks = sc->sc_ndisks - 1; 1797 } 1798 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1799 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1800 round_robin = 1; 1801 } else { 1802 round_robin = 0; 1803 } 1804 KASSERT(!round_robin || !verify, 1805 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1806 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1807 break; 1808 case BIO_WRITE: 1809 case BIO_DELETE: 1810 /* 1811 * Delay the request if it is colliding with a synchronization 1812 * request. 1813 */ 1814 if (g_raid3_sync_collision(sc, pbp)) { 1815 g_raid3_regular_delay(sc, pbp); 1816 return (0); 1817 } 1818 1819 if (sc->sc_idle) 1820 g_raid3_unidle(sc); 1821 else 1822 sc->sc_last_write = time_uptime; 1823 1824 ndisks = sc->sc_ndisks; 1825 break; 1826 } 1827 for (n = 0; n < ndisks; n++) { 1828 disk = &sc->sc_disks[n]; 1829 cbp = g_raid3_clone_bio(sc, pbp); 1830 if (cbp == NULL) { 1831 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1832 g_raid3_destroy_bio(sc, cbp); 1833 /* 1834 * To prevent deadlock, we must run back up 1835 * with the ENOMEM for failed requests of any 1836 * of our consumers. Our own sync requests 1837 * can stick around, as they are finite. 1838 */ 1839 if ((pbp->bio_cflags & 1840 G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1841 g_io_deliver(pbp, ENOMEM); 1842 return (0); 1843 } 1844 return (ENOMEM); 1845 } 1846 cbp->bio_offset = offset; 1847 cbp->bio_length = length; 1848 cbp->bio_done = g_raid3_done; 1849 switch (pbp->bio_cmd) { 1850 case BIO_READ: 1851 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1852 /* 1853 * Replace invalid component with the parity 1854 * component. 1855 */ 1856 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1857 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1858 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1859 } else if (round_robin && 1860 disk->d_no == sc->sc_round_robin) { 1861 /* 1862 * In round-robin mode skip one data component 1863 * and use parity component when reading. 1864 */ 1865 pbp->bio_driver2 = disk; 1866 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1867 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1868 sc->sc_round_robin++; 1869 round_robin = 0; 1870 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1871 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1872 } 1873 break; 1874 case BIO_WRITE: 1875 case BIO_DELETE: 1876 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1877 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1878 if (n == ndisks - 1) { 1879 /* 1880 * Active parity component, mark it as such. 1881 */ 1882 cbp->bio_cflags |= 1883 G_RAID3_BIO_CFLAG_PARITY; 1884 } 1885 } else { 1886 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1887 if (n == ndisks - 1) { 1888 /* 1889 * Parity component is not connected, 1890 * so destroy its request. 1891 */ 1892 pbp->bio_pflags |= 1893 G_RAID3_BIO_PFLAG_NOPARITY; 1894 g_raid3_destroy_bio(sc, cbp); 1895 cbp = NULL; 1896 } else { 1897 cbp->bio_cflags |= 1898 G_RAID3_BIO_CFLAG_NODISK; 1899 disk = NULL; 1900 } 1901 } 1902 break; 1903 } 1904 if (cbp != NULL) 1905 cbp->bio_caller2 = disk; 1906 } 1907 switch (pbp->bio_cmd) { 1908 case BIO_READ: 1909 if (round_robin) { 1910 /* 1911 * If we are in round-robin mode and 'round_robin' is 1912 * still 1, it means, that we skipped parity component 1913 * for this read and must reset sc_round_robin field. 1914 */ 1915 sc->sc_round_robin = 0; 1916 } 1917 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1918 disk = cbp->bio_caller2; 1919 cp = disk->d_consumer; 1920 cbp->bio_to = cp->provider; 1921 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1922 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1923 ("Consumer %s not opened (r%dw%de%d).", 1924 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1925 cp->index++; 1926 g_io_request(cbp, cp); 1927 } 1928 break; 1929 case BIO_WRITE: 1930 case BIO_DELETE: 1931 /* 1932 * Put request onto inflight queue, so we can check if new 1933 * synchronization requests don't collide with it. 1934 */ 1935 bioq_insert_tail(&sc->sc_inflight, pbp); 1936 1937 /* 1938 * Bump syncid on first write. 1939 */ 1940 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { 1941 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 1942 g_raid3_bump_syncid(sc); 1943 } 1944 g_raid3_scatter(pbp); 1945 break; 1946 } 1947 return (0); 1948 } 1949 1950 static int 1951 g_raid3_can_destroy(struct g_raid3_softc *sc) 1952 { 1953 struct g_geom *gp; 1954 struct g_consumer *cp; 1955 1956 g_topology_assert(); 1957 gp = sc->sc_geom; 1958 if (gp->softc == NULL) 1959 return (1); 1960 LIST_FOREACH(cp, &gp->consumer, consumer) { 1961 if (g_raid3_is_busy(sc, cp)) 1962 return (0); 1963 } 1964 gp = sc->sc_sync.ds_geom; 1965 LIST_FOREACH(cp, &gp->consumer, consumer) { 1966 if (g_raid3_is_busy(sc, cp)) 1967 return (0); 1968 } 1969 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1970 sc->sc_name); 1971 return (1); 1972 } 1973 1974 static int 1975 g_raid3_try_destroy(struct g_raid3_softc *sc) 1976 { 1977 1978 g_topology_assert_not(); 1979 sx_assert(&sc->sc_lock, SX_XLOCKED); 1980 1981 if (sc->sc_rootmount != NULL) { 1982 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 1983 sc->sc_rootmount); 1984 root_mount_rel(sc->sc_rootmount); 1985 sc->sc_rootmount = NULL; 1986 } 1987 1988 g_topology_lock(); 1989 if (!g_raid3_can_destroy(sc)) { 1990 g_topology_unlock(); 1991 return (0); 1992 } 1993 sc->sc_geom->softc = NULL; 1994 sc->sc_sync.ds_geom->softc = NULL; 1995 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 1996 g_topology_unlock(); 1997 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1998 &sc->sc_worker); 1999 /* Unlock sc_lock here, as it can be destroyed after wakeup. */ 2000 sx_xunlock(&sc->sc_lock); 2001 wakeup(&sc->sc_worker); 2002 sc->sc_worker = NULL; 2003 } else { 2004 g_topology_unlock(); 2005 g_raid3_destroy_device(sc); 2006 free(sc->sc_disks, M_RAID3); 2007 free(sc, M_RAID3); 2008 } 2009 return (1); 2010 } 2011 2012 /* 2013 * Worker thread. 2014 */ 2015 static void 2016 g_raid3_worker(void *arg) 2017 { 2018 struct g_raid3_softc *sc; 2019 struct g_raid3_event *ep; 2020 struct bio *bp; 2021 int timeout; 2022 2023 sc = arg; 2024 thread_lock(curthread); 2025 sched_prio(curthread, PRIBIO); 2026 thread_unlock(curthread); 2027 2028 sx_xlock(&sc->sc_lock); 2029 for (;;) { 2030 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 2031 /* 2032 * First take a look at events. 2033 * This is important to handle events before any I/O requests. 2034 */ 2035 ep = g_raid3_event_get(sc); 2036 if (ep != NULL) { 2037 g_raid3_event_remove(sc, ep); 2038 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 2039 /* Update only device status. */ 2040 G_RAID3_DEBUG(3, 2041 "Running event for device %s.", 2042 sc->sc_name); 2043 ep->e_error = 0; 2044 g_raid3_update_device(sc, 1); 2045 } else { 2046 /* Update disk status. */ 2047 G_RAID3_DEBUG(3, "Running event for disk %s.", 2048 g_raid3_get_diskname(ep->e_disk)); 2049 ep->e_error = g_raid3_update_disk(ep->e_disk, 2050 ep->e_state); 2051 if (ep->e_error == 0) 2052 g_raid3_update_device(sc, 0); 2053 } 2054 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 2055 KASSERT(ep->e_error == 0, 2056 ("Error cannot be handled.")); 2057 g_raid3_event_free(ep); 2058 } else { 2059 ep->e_flags |= G_RAID3_EVENT_DONE; 2060 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2061 ep); 2062 mtx_lock(&sc->sc_events_mtx); 2063 wakeup(ep); 2064 mtx_unlock(&sc->sc_events_mtx); 2065 } 2066 if ((sc->sc_flags & 2067 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2068 if (g_raid3_try_destroy(sc)) { 2069 curthread->td_pflags &= ~TDP_GEOM; 2070 G_RAID3_DEBUG(1, "Thread exiting."); 2071 kproc_exit(0); 2072 } 2073 } 2074 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 2075 continue; 2076 } 2077 /* 2078 * Check if we can mark array as CLEAN and if we can't take 2079 * how much seconds should we wait. 2080 */ 2081 timeout = g_raid3_idle(sc, -1); 2082 /* 2083 * Now I/O requests. 2084 */ 2085 /* Get first request from the queue. */ 2086 mtx_lock(&sc->sc_queue_mtx); 2087 bp = bioq_first(&sc->sc_queue); 2088 if (bp == NULL) { 2089 if ((sc->sc_flags & 2090 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2091 mtx_unlock(&sc->sc_queue_mtx); 2092 if (g_raid3_try_destroy(sc)) { 2093 curthread->td_pflags &= ~TDP_GEOM; 2094 G_RAID3_DEBUG(1, "Thread exiting."); 2095 kproc_exit(0); 2096 } 2097 mtx_lock(&sc->sc_queue_mtx); 2098 } 2099 sx_xunlock(&sc->sc_lock); 2100 /* 2101 * XXX: We can miss an event here, because an event 2102 * can be added without sx-device-lock and without 2103 * mtx-queue-lock. Maybe I should just stop using 2104 * dedicated mutex for events synchronization and 2105 * stick with the queue lock? 2106 * The event will hang here until next I/O request 2107 * or next event is received. 2108 */ 2109 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", 2110 timeout * hz); 2111 sx_xlock(&sc->sc_lock); 2112 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 2113 continue; 2114 } 2115 process: 2116 bioq_remove(&sc->sc_queue, bp); 2117 mtx_unlock(&sc->sc_queue_mtx); 2118 2119 if (bp->bio_from->geom == sc->sc_sync.ds_geom && 2120 (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 2121 g_raid3_sync_request(bp); /* READ */ 2122 } else if (bp->bio_to != sc->sc_provider) { 2123 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 2124 g_raid3_regular_request(bp); 2125 else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) 2126 g_raid3_sync_request(bp); /* WRITE */ 2127 else { 2128 KASSERT(0, 2129 ("Invalid request cflags=0x%hhx to=%s.", 2130 bp->bio_cflags, bp->bio_to->name)); 2131 } 2132 } else if (g_raid3_register_request(bp) != 0) { 2133 mtx_lock(&sc->sc_queue_mtx); 2134 bioq_insert_head(&sc->sc_queue, bp); 2135 /* 2136 * We are short in memory, let see if there are finished 2137 * request we can free. 2138 */ 2139 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2140 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) 2141 goto process; 2142 } 2143 /* 2144 * No finished regular request, so at least keep 2145 * synchronization running. 2146 */ 2147 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2148 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) 2149 goto process; 2150 } 2151 sx_xunlock(&sc->sc_lock); 2152 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, 2153 "r3:lowmem", hz / 10); 2154 sx_xlock(&sc->sc_lock); 2155 } 2156 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); 2157 } 2158 } 2159 2160 static void 2161 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) 2162 { 2163 2164 sx_assert(&sc->sc_lock, SX_LOCKED); 2165 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 2166 return; 2167 if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 2168 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 2169 g_raid3_get_diskname(disk), sc->sc_name); 2170 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2171 } else if (sc->sc_idle && 2172 (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { 2173 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 2174 g_raid3_get_diskname(disk), sc->sc_name); 2175 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2176 } 2177 } 2178 2179 static void 2180 g_raid3_sync_start(struct g_raid3_softc *sc) 2181 { 2182 struct g_raid3_disk *disk; 2183 struct g_consumer *cp; 2184 struct bio *bp; 2185 int error; 2186 u_int n; 2187 2188 g_topology_assert_not(); 2189 sx_assert(&sc->sc_lock, SX_XLOCKED); 2190 2191 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2192 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2193 sc->sc_state)); 2194 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 2195 sc->sc_name, sc->sc_state)); 2196 disk = NULL; 2197 for (n = 0; n < sc->sc_ndisks; n++) { 2198 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 2199 continue; 2200 disk = &sc->sc_disks[n]; 2201 break; 2202 } 2203 if (disk == NULL) 2204 return; 2205 2206 sx_xunlock(&sc->sc_lock); 2207 g_topology_lock(); 2208 cp = g_new_consumer(sc->sc_sync.ds_geom); 2209 error = g_attach(cp, sc->sc_provider); 2210 KASSERT(error == 0, 2211 ("Cannot attach to %s (error=%d).", sc->sc_name, error)); 2212 error = g_access(cp, 1, 0, 0); 2213 KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); 2214 g_topology_unlock(); 2215 sx_xlock(&sc->sc_lock); 2216 2217 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 2218 g_raid3_get_diskname(disk)); 2219 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0) 2220 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2221 KASSERT(disk->d_sync.ds_consumer == NULL, 2222 ("Sync consumer already exists (device=%s, disk=%s).", 2223 sc->sc_name, g_raid3_get_diskname(disk))); 2224 2225 disk->d_sync.ds_consumer = cp; 2226 disk->d_sync.ds_consumer->private = disk; 2227 disk->d_sync.ds_consumer->index = 0; 2228 sc->sc_syncdisk = disk; 2229 2230 /* 2231 * Allocate memory for synchronization bios and initialize them. 2232 */ 2233 disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, 2234 M_RAID3, M_WAITOK); 2235 for (n = 0; n < g_raid3_syncreqs; n++) { 2236 bp = g_alloc_bio(); 2237 disk->d_sync.ds_bios[n] = bp; 2238 bp->bio_parent = NULL; 2239 bp->bio_cmd = BIO_READ; 2240 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); 2241 bp->bio_cflags = 0; 2242 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 2243 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 2244 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 2245 bp->bio_done = g_raid3_sync_done; 2246 bp->bio_from = disk->d_sync.ds_consumer; 2247 bp->bio_to = sc->sc_provider; 2248 bp->bio_caller1 = (void *)(uintptr_t)n; 2249 } 2250 2251 /* Set the number of in-flight synchronization requests. */ 2252 disk->d_sync.ds_inflight = g_raid3_syncreqs; 2253 2254 /* 2255 * Fire off first synchronization requests. 2256 */ 2257 for (n = 0; n < g_raid3_syncreqs; n++) { 2258 bp = disk->d_sync.ds_bios[n]; 2259 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 2260 disk->d_sync.ds_consumer->index++; 2261 /* 2262 * Delay the request if it is colliding with a regular request. 2263 */ 2264 if (g_raid3_regular_collision(sc, bp)) 2265 g_raid3_sync_delay(sc, bp); 2266 else 2267 g_io_request(bp, disk->d_sync.ds_consumer); 2268 } 2269 } 2270 2271 /* 2272 * Stop synchronization process. 2273 * type: 0 - synchronization finished 2274 * 1 - synchronization stopped 2275 */ 2276 static void 2277 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 2278 { 2279 struct g_raid3_disk *disk; 2280 struct g_consumer *cp; 2281 2282 g_topology_assert_not(); 2283 sx_assert(&sc->sc_lock, SX_LOCKED); 2284 2285 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2286 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2287 sc->sc_state)); 2288 disk = sc->sc_syncdisk; 2289 sc->sc_syncdisk = NULL; 2290 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 2291 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2292 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2293 g_raid3_disk_state2str(disk->d_state))); 2294 if (disk->d_sync.ds_consumer == NULL) 2295 return; 2296 2297 if (type == 0) { 2298 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 2299 sc->sc_name, g_raid3_get_diskname(disk)); 2300 } else /* if (type == 1) */ { 2301 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 2302 sc->sc_name, g_raid3_get_diskname(disk)); 2303 } 2304 free(disk->d_sync.ds_bios, M_RAID3); 2305 disk->d_sync.ds_bios = NULL; 2306 cp = disk->d_sync.ds_consumer; 2307 disk->d_sync.ds_consumer = NULL; 2308 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2309 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 2310 g_topology_lock(); 2311 g_raid3_kill_consumer(sc, cp); 2312 g_topology_unlock(); 2313 sx_xlock(&sc->sc_lock); 2314 } 2315 2316 static void 2317 g_raid3_launch_provider(struct g_raid3_softc *sc) 2318 { 2319 struct g_provider *pp; 2320 struct g_raid3_disk *disk; 2321 int n; 2322 2323 sx_assert(&sc->sc_lock, SX_LOCKED); 2324 2325 g_topology_lock(); 2326 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2327 pp->mediasize = sc->sc_mediasize; 2328 pp->sectorsize = sc->sc_sectorsize; 2329 pp->stripesize = 0; 2330 pp->stripeoffset = 0; 2331 for (n = 0; n < sc->sc_ndisks; n++) { 2332 disk = &sc->sc_disks[n]; 2333 if (disk->d_consumer && disk->d_consumer->provider && 2334 disk->d_consumer->provider->stripesize > pp->stripesize) { 2335 pp->stripesize = disk->d_consumer->provider->stripesize; 2336 pp->stripeoffset = disk->d_consumer->provider->stripeoffset; 2337 } 2338 } 2339 pp->stripesize *= sc->sc_ndisks - 1; 2340 pp->stripeoffset *= sc->sc_ndisks - 1; 2341 sc->sc_provider = pp; 2342 g_error_provider(pp, 0); 2343 g_topology_unlock(); 2344 G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name, 2345 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks); 2346 2347 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2348 g_raid3_sync_start(sc); 2349 } 2350 2351 static void 2352 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2353 { 2354 struct bio *bp; 2355 2356 g_topology_assert_not(); 2357 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2358 sc->sc_name)); 2359 2360 g_topology_lock(); 2361 g_error_provider(sc->sc_provider, ENXIO); 2362 mtx_lock(&sc->sc_queue_mtx); 2363 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2364 bioq_remove(&sc->sc_queue, bp); 2365 g_io_deliver(bp, ENXIO); 2366 } 2367 mtx_unlock(&sc->sc_queue_mtx); 2368 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2369 sc->sc_provider->name); 2370 sc->sc_provider->flags |= G_PF_WITHER; 2371 g_orphan_provider(sc->sc_provider, ENXIO); 2372 g_topology_unlock(); 2373 sc->sc_provider = NULL; 2374 if (sc->sc_syncdisk != NULL) 2375 g_raid3_sync_stop(sc, 1); 2376 } 2377 2378 static void 2379 g_raid3_go(void *arg) 2380 { 2381 struct g_raid3_softc *sc; 2382 2383 sc = arg; 2384 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2385 g_raid3_event_send(sc, 0, 2386 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2387 } 2388 2389 static u_int 2390 g_raid3_determine_state(struct g_raid3_disk *disk) 2391 { 2392 struct g_raid3_softc *sc; 2393 u_int state; 2394 2395 sc = disk->d_softc; 2396 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2397 if ((disk->d_flags & 2398 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2399 /* Disk does not need synchronization. */ 2400 state = G_RAID3_DISK_STATE_ACTIVE; 2401 } else { 2402 if ((sc->sc_flags & 2403 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2404 (disk->d_flags & 2405 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2406 /* 2407 * We can start synchronization from 2408 * the stored offset. 2409 */ 2410 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2411 } else { 2412 state = G_RAID3_DISK_STATE_STALE; 2413 } 2414 } 2415 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2416 /* 2417 * Reset all synchronization data for this disk, 2418 * because if it even was synchronized, it was 2419 * synchronized to disks with different syncid. 2420 */ 2421 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2422 disk->d_sync.ds_offset = 0; 2423 disk->d_sync.ds_offset_done = 0; 2424 disk->d_sync.ds_syncid = sc->sc_syncid; 2425 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2426 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2427 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2428 } else { 2429 state = G_RAID3_DISK_STATE_STALE; 2430 } 2431 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2432 /* 2433 * Not good, NOT GOOD! 2434 * It means that device was started on stale disks 2435 * and more fresh disk just arrive. 2436 * If there were writes, device is broken, sorry. 2437 * I think the best choice here is don't touch 2438 * this disk and inform the user loudly. 2439 */ 2440 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2441 "disk (%s) arrives!! It will not be connected to the " 2442 "running device.", sc->sc_name, 2443 g_raid3_get_diskname(disk)); 2444 g_raid3_destroy_disk(disk); 2445 state = G_RAID3_DISK_STATE_NONE; 2446 /* Return immediately, because disk was destroyed. */ 2447 return (state); 2448 } 2449 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2450 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2451 return (state); 2452 } 2453 2454 /* 2455 * Update device state. 2456 */ 2457 static void 2458 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2459 { 2460 struct g_raid3_disk *disk; 2461 u_int state; 2462 2463 sx_assert(&sc->sc_lock, SX_XLOCKED); 2464 2465 switch (sc->sc_state) { 2466 case G_RAID3_DEVICE_STATE_STARTING: 2467 { 2468 u_int n, ndirty, ndisks, genid, syncid; 2469 2470 KASSERT(sc->sc_provider == NULL, 2471 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2472 /* 2473 * Are we ready? We are, if all disks are connected or 2474 * one disk is missing and 'force' is true. 2475 */ 2476 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2477 if (!force) 2478 callout_drain(&sc->sc_callout); 2479 } else { 2480 if (force) { 2481 /* 2482 * Timeout expired, so destroy device. 2483 */ 2484 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2485 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", 2486 __LINE__, sc->sc_rootmount); 2487 root_mount_rel(sc->sc_rootmount); 2488 sc->sc_rootmount = NULL; 2489 } 2490 return; 2491 } 2492 2493 /* 2494 * Find the biggest genid. 2495 */ 2496 genid = 0; 2497 for (n = 0; n < sc->sc_ndisks; n++) { 2498 disk = &sc->sc_disks[n]; 2499 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2500 continue; 2501 if (disk->d_genid > genid) 2502 genid = disk->d_genid; 2503 } 2504 sc->sc_genid = genid; 2505 /* 2506 * Remove all disks without the biggest genid. 2507 */ 2508 for (n = 0; n < sc->sc_ndisks; n++) { 2509 disk = &sc->sc_disks[n]; 2510 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2511 continue; 2512 if (disk->d_genid < genid) { 2513 G_RAID3_DEBUG(0, 2514 "Component %s (device %s) broken, skipping.", 2515 g_raid3_get_diskname(disk), sc->sc_name); 2516 g_raid3_destroy_disk(disk); 2517 } 2518 } 2519 2520 /* 2521 * There must be at least 'sc->sc_ndisks - 1' components 2522 * with the same syncid and without SYNCHRONIZING flag. 2523 */ 2524 2525 /* 2526 * Find the biggest syncid, number of valid components and 2527 * number of dirty components. 2528 */ 2529 ndirty = ndisks = syncid = 0; 2530 for (n = 0; n < sc->sc_ndisks; n++) { 2531 disk = &sc->sc_disks[n]; 2532 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2533 continue; 2534 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2535 ndirty++; 2536 if (disk->d_sync.ds_syncid > syncid) { 2537 syncid = disk->d_sync.ds_syncid; 2538 ndisks = 0; 2539 } else if (disk->d_sync.ds_syncid < syncid) { 2540 continue; 2541 } 2542 if ((disk->d_flags & 2543 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2544 continue; 2545 } 2546 ndisks++; 2547 } 2548 /* 2549 * Do we have enough valid components? 2550 */ 2551 if (ndisks + 1 < sc->sc_ndisks) { 2552 G_RAID3_DEBUG(0, 2553 "Device %s is broken, too few valid components.", 2554 sc->sc_name); 2555 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2556 return; 2557 } 2558 /* 2559 * If there is one DIRTY component and all disks are present, 2560 * mark it for synchronization. If there is more than one DIRTY 2561 * component, mark parity component for synchronization. 2562 */ 2563 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2564 for (n = 0; n < sc->sc_ndisks; n++) { 2565 disk = &sc->sc_disks[n]; 2566 if ((disk->d_flags & 2567 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2568 continue; 2569 } 2570 disk->d_flags |= 2571 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2572 } 2573 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2574 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2575 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2576 } 2577 2578 sc->sc_syncid = syncid; 2579 if (force) { 2580 /* Remember to bump syncid on first write. */ 2581 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2582 } 2583 if (ndisks == sc->sc_ndisks) 2584 state = G_RAID3_DEVICE_STATE_COMPLETE; 2585 else /* if (ndisks == sc->sc_ndisks - 1) */ 2586 state = G_RAID3_DEVICE_STATE_DEGRADED; 2587 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2588 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2589 g_raid3_device_state2str(state)); 2590 sc->sc_state = state; 2591 for (n = 0; n < sc->sc_ndisks; n++) { 2592 disk = &sc->sc_disks[n]; 2593 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2594 continue; 2595 state = g_raid3_determine_state(disk); 2596 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2597 if (state == G_RAID3_DISK_STATE_STALE) 2598 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2599 } 2600 break; 2601 } 2602 case G_RAID3_DEVICE_STATE_DEGRADED: 2603 /* 2604 * Genid need to be bumped immediately, so do it here. 2605 */ 2606 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2607 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2608 g_raid3_bump_genid(sc); 2609 } 2610 2611 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2612 return; 2613 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2614 sc->sc_ndisks - 1) { 2615 if (sc->sc_provider != NULL) 2616 g_raid3_destroy_provider(sc); 2617 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2618 return; 2619 } 2620 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2621 sc->sc_ndisks) { 2622 state = G_RAID3_DEVICE_STATE_COMPLETE; 2623 G_RAID3_DEBUG(1, 2624 "Device %s state changed from %s to %s.", 2625 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2626 g_raid3_device_state2str(state)); 2627 sc->sc_state = state; 2628 } 2629 if (sc->sc_provider == NULL) 2630 g_raid3_launch_provider(sc); 2631 if (sc->sc_rootmount != NULL) { 2632 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2633 sc->sc_rootmount); 2634 root_mount_rel(sc->sc_rootmount); 2635 sc->sc_rootmount = NULL; 2636 } 2637 break; 2638 case G_RAID3_DEVICE_STATE_COMPLETE: 2639 /* 2640 * Genid need to be bumped immediately, so do it here. 2641 */ 2642 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2643 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2644 g_raid3_bump_genid(sc); 2645 } 2646 2647 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2648 return; 2649 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2650 sc->sc_ndisks - 1, 2651 ("Too few ACTIVE components in COMPLETE state (device %s).", 2652 sc->sc_name)); 2653 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2654 sc->sc_ndisks - 1) { 2655 state = G_RAID3_DEVICE_STATE_DEGRADED; 2656 G_RAID3_DEBUG(1, 2657 "Device %s state changed from %s to %s.", 2658 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2659 g_raid3_device_state2str(state)); 2660 sc->sc_state = state; 2661 } 2662 if (sc->sc_provider == NULL) 2663 g_raid3_launch_provider(sc); 2664 if (sc->sc_rootmount != NULL) { 2665 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2666 sc->sc_rootmount); 2667 root_mount_rel(sc->sc_rootmount); 2668 sc->sc_rootmount = NULL; 2669 } 2670 break; 2671 default: 2672 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2673 g_raid3_device_state2str(sc->sc_state))); 2674 break; 2675 } 2676 } 2677 2678 /* 2679 * Update disk state and device state if needed. 2680 */ 2681 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2682 "Disk %s state changed from %s to %s (device %s).", \ 2683 g_raid3_get_diskname(disk), \ 2684 g_raid3_disk_state2str(disk->d_state), \ 2685 g_raid3_disk_state2str(state), sc->sc_name) 2686 static int 2687 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2688 { 2689 struct g_raid3_softc *sc; 2690 2691 sc = disk->d_softc; 2692 sx_assert(&sc->sc_lock, SX_XLOCKED); 2693 2694 again: 2695 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2696 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2697 g_raid3_disk_state2str(state)); 2698 switch (state) { 2699 case G_RAID3_DISK_STATE_NEW: 2700 /* 2701 * Possible scenarios: 2702 * 1. New disk arrive. 2703 */ 2704 /* Previous state should be NONE. */ 2705 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2706 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2707 g_raid3_disk_state2str(disk->d_state))); 2708 DISK_STATE_CHANGED(); 2709 2710 disk->d_state = state; 2711 G_RAID3_DEBUG(1, "Device %s: provider %s detected.", 2712 sc->sc_name, g_raid3_get_diskname(disk)); 2713 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2714 break; 2715 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2716 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2717 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2718 g_raid3_device_state2str(sc->sc_state), 2719 g_raid3_get_diskname(disk), 2720 g_raid3_disk_state2str(disk->d_state))); 2721 state = g_raid3_determine_state(disk); 2722 if (state != G_RAID3_DISK_STATE_NONE) 2723 goto again; 2724 break; 2725 case G_RAID3_DISK_STATE_ACTIVE: 2726 /* 2727 * Possible scenarios: 2728 * 1. New disk does not need synchronization. 2729 * 2. Synchronization process finished successfully. 2730 */ 2731 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2732 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2733 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2734 g_raid3_device_state2str(sc->sc_state), 2735 g_raid3_get_diskname(disk), 2736 g_raid3_disk_state2str(disk->d_state))); 2737 /* Previous state should be NEW or SYNCHRONIZING. */ 2738 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2739 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2740 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2741 g_raid3_disk_state2str(disk->d_state))); 2742 DISK_STATE_CHANGED(); 2743 2744 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2745 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2746 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2747 g_raid3_sync_stop(sc, 0); 2748 } 2749 disk->d_state = state; 2750 disk->d_sync.ds_offset = 0; 2751 disk->d_sync.ds_offset_done = 0; 2752 g_raid3_update_idle(sc, disk); 2753 g_raid3_update_metadata(disk); 2754 G_RAID3_DEBUG(1, "Device %s: provider %s activated.", 2755 sc->sc_name, g_raid3_get_diskname(disk)); 2756 break; 2757 case G_RAID3_DISK_STATE_STALE: 2758 /* 2759 * Possible scenarios: 2760 * 1. Stale disk was connected. 2761 */ 2762 /* Previous state should be NEW. */ 2763 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2764 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2765 g_raid3_disk_state2str(disk->d_state))); 2766 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2767 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2768 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2769 g_raid3_device_state2str(sc->sc_state), 2770 g_raid3_get_diskname(disk), 2771 g_raid3_disk_state2str(disk->d_state))); 2772 /* 2773 * STALE state is only possible if device is marked 2774 * NOAUTOSYNC. 2775 */ 2776 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2777 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2778 g_raid3_device_state2str(sc->sc_state), 2779 g_raid3_get_diskname(disk), 2780 g_raid3_disk_state2str(disk->d_state))); 2781 DISK_STATE_CHANGED(); 2782 2783 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2784 disk->d_state = state; 2785 g_raid3_update_metadata(disk); 2786 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2787 sc->sc_name, g_raid3_get_diskname(disk)); 2788 break; 2789 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2790 /* 2791 * Possible scenarios: 2792 * 1. Disk which needs synchronization was connected. 2793 */ 2794 /* Previous state should be NEW. */ 2795 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2796 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2797 g_raid3_disk_state2str(disk->d_state))); 2798 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2799 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2800 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2801 g_raid3_device_state2str(sc->sc_state), 2802 g_raid3_get_diskname(disk), 2803 g_raid3_disk_state2str(disk->d_state))); 2804 DISK_STATE_CHANGED(); 2805 2806 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2807 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2808 disk->d_state = state; 2809 if (sc->sc_provider != NULL) { 2810 g_raid3_sync_start(sc); 2811 g_raid3_update_metadata(disk); 2812 } 2813 break; 2814 case G_RAID3_DISK_STATE_DISCONNECTED: 2815 /* 2816 * Possible scenarios: 2817 * 1. Device wasn't running yet, but disk disappear. 2818 * 2. Disk was active and disapppear. 2819 * 3. Disk disappear during synchronization process. 2820 */ 2821 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2822 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2823 /* 2824 * Previous state should be ACTIVE, STALE or 2825 * SYNCHRONIZING. 2826 */ 2827 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2828 disk->d_state == G_RAID3_DISK_STATE_STALE || 2829 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2830 ("Wrong disk state (%s, %s).", 2831 g_raid3_get_diskname(disk), 2832 g_raid3_disk_state2str(disk->d_state))); 2833 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2834 /* Previous state should be NEW. */ 2835 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2836 ("Wrong disk state (%s, %s).", 2837 g_raid3_get_diskname(disk), 2838 g_raid3_disk_state2str(disk->d_state))); 2839 /* 2840 * Reset bumping syncid if disk disappeared in STARTING 2841 * state. 2842 */ 2843 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) 2844 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 2845 #ifdef INVARIANTS 2846 } else { 2847 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2848 sc->sc_name, 2849 g_raid3_device_state2str(sc->sc_state), 2850 g_raid3_get_diskname(disk), 2851 g_raid3_disk_state2str(disk->d_state))); 2852 #endif 2853 } 2854 DISK_STATE_CHANGED(); 2855 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2856 sc->sc_name, g_raid3_get_diskname(disk)); 2857 2858 g_raid3_destroy_disk(disk); 2859 break; 2860 default: 2861 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2862 break; 2863 } 2864 return (0); 2865 } 2866 #undef DISK_STATE_CHANGED 2867 2868 int 2869 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2870 { 2871 struct g_provider *pp; 2872 u_char *buf; 2873 int error; 2874 2875 g_topology_assert(); 2876 2877 error = g_access(cp, 1, 0, 0); 2878 if (error != 0) 2879 return (error); 2880 pp = cp->provider; 2881 g_topology_unlock(); 2882 /* Metadata are stored on last sector. */ 2883 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2884 &error); 2885 g_topology_lock(); 2886 g_access(cp, -1, 0, 0); 2887 if (buf == NULL) { 2888 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", 2889 cp->provider->name, error); 2890 return (error); 2891 } 2892 2893 /* Decode metadata. */ 2894 error = raid3_metadata_decode(buf, md); 2895 g_free(buf); 2896 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2897 return (EINVAL); 2898 if (md->md_version > G_RAID3_VERSION) { 2899 G_RAID3_DEBUG(0, 2900 "Kernel module is too old to handle metadata from %s.", 2901 cp->provider->name); 2902 return (EINVAL); 2903 } 2904 if (error != 0) { 2905 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2906 cp->provider->name); 2907 return (error); 2908 } 2909 2910 return (0); 2911 } 2912 2913 static int 2914 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2915 struct g_raid3_metadata *md) 2916 { 2917 2918 if (md->md_no >= sc->sc_ndisks) { 2919 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2920 pp->name, md->md_no); 2921 return (EINVAL); 2922 } 2923 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2924 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2925 pp->name, md->md_no); 2926 return (EEXIST); 2927 } 2928 if (md->md_all != sc->sc_ndisks) { 2929 G_RAID3_DEBUG(1, 2930 "Invalid '%s' field on disk %s (device %s), skipping.", 2931 "md_all", pp->name, sc->sc_name); 2932 return (EINVAL); 2933 } 2934 if ((md->md_mediasize % md->md_sectorsize) != 0) { 2935 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != " 2936 "0) on disk %s (device %s), skipping.", pp->name, 2937 sc->sc_name); 2938 return (EINVAL); 2939 } 2940 if (md->md_mediasize != sc->sc_mediasize) { 2941 G_RAID3_DEBUG(1, 2942 "Invalid '%s' field on disk %s (device %s), skipping.", 2943 "md_mediasize", pp->name, sc->sc_name); 2944 return (EINVAL); 2945 } 2946 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2947 G_RAID3_DEBUG(1, 2948 "Invalid '%s' field on disk %s (device %s), skipping.", 2949 "md_mediasize", pp->name, sc->sc_name); 2950 return (EINVAL); 2951 } 2952 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2953 G_RAID3_DEBUG(1, 2954 "Invalid size of disk %s (device %s), skipping.", pp->name, 2955 sc->sc_name); 2956 return (EINVAL); 2957 } 2958 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2959 G_RAID3_DEBUG(1, 2960 "Invalid '%s' field on disk %s (device %s), skipping.", 2961 "md_sectorsize", pp->name, sc->sc_name); 2962 return (EINVAL); 2963 } 2964 if (md->md_sectorsize != sc->sc_sectorsize) { 2965 G_RAID3_DEBUG(1, 2966 "Invalid '%s' field on disk %s (device %s), skipping.", 2967 "md_sectorsize", pp->name, sc->sc_name); 2968 return (EINVAL); 2969 } 2970 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2971 G_RAID3_DEBUG(1, 2972 "Invalid sector size of disk %s (device %s), skipping.", 2973 pp->name, sc->sc_name); 2974 return (EINVAL); 2975 } 2976 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2977 G_RAID3_DEBUG(1, 2978 "Invalid device flags on disk %s (device %s), skipping.", 2979 pp->name, sc->sc_name); 2980 return (EINVAL); 2981 } 2982 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2983 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2984 /* 2985 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2986 */ 2987 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2988 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2989 return (EINVAL); 2990 } 2991 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 2992 G_RAID3_DEBUG(1, 2993 "Invalid disk flags on disk %s (device %s), skipping.", 2994 pp->name, sc->sc_name); 2995 return (EINVAL); 2996 } 2997 return (0); 2998 } 2999 3000 int 3001 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 3002 struct g_raid3_metadata *md) 3003 { 3004 struct g_raid3_disk *disk; 3005 int error; 3006 3007 g_topology_assert_not(); 3008 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 3009 3010 error = g_raid3_check_metadata(sc, pp, md); 3011 if (error != 0) 3012 return (error); 3013 if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && 3014 md->md_genid < sc->sc_genid) { 3015 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", 3016 pp->name, sc->sc_name); 3017 return (EINVAL); 3018 } 3019 disk = g_raid3_init_disk(sc, pp, md, &error); 3020 if (disk == NULL) 3021 return (error); 3022 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 3023 G_RAID3_EVENT_WAIT); 3024 if (error != 0) 3025 return (error); 3026 if (md->md_version < G_RAID3_VERSION) { 3027 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", 3028 pp->name, md->md_version, G_RAID3_VERSION); 3029 g_raid3_update_metadata(disk); 3030 } 3031 return (0); 3032 } 3033 3034 static void 3035 g_raid3_destroy_delayed(void *arg, int flag) 3036 { 3037 struct g_raid3_softc *sc; 3038 int error; 3039 3040 if (flag == EV_CANCEL) { 3041 G_RAID3_DEBUG(1, "Destroying canceled."); 3042 return; 3043 } 3044 sc = arg; 3045 g_topology_unlock(); 3046 sx_xlock(&sc->sc_lock); 3047 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, 3048 ("DESTROY flag set on %s.", sc->sc_name)); 3049 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, 3050 ("DESTROYING flag not set on %s.", sc->sc_name)); 3051 G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); 3052 error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); 3053 if (error != 0) { 3054 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); 3055 sx_xunlock(&sc->sc_lock); 3056 } 3057 g_topology_lock(); 3058 } 3059 3060 static int 3061 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 3062 { 3063 struct g_raid3_softc *sc; 3064 int dcr, dcw, dce, error = 0; 3065 3066 g_topology_assert(); 3067 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 3068 acw, ace); 3069 3070 sc = pp->geom->softc; 3071 if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0) 3072 return (0); 3073 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 3074 3075 dcr = pp->acr + acr; 3076 dcw = pp->acw + acw; 3077 dce = pp->ace + ace; 3078 3079 g_topology_unlock(); 3080 sx_xlock(&sc->sc_lock); 3081 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || 3082 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { 3083 if (acr > 0 || acw > 0 || ace > 0) 3084 error = ENXIO; 3085 goto end; 3086 } 3087 if (dcw == 0 && !sc->sc_idle) 3088 g_raid3_idle(sc, dcw); 3089 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { 3090 if (acr > 0 || acw > 0 || ace > 0) { 3091 error = ENXIO; 3092 goto end; 3093 } 3094 if (dcr == 0 && dcw == 0 && dce == 0) { 3095 g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, 3096 sc, NULL); 3097 } 3098 } 3099 end: 3100 sx_xunlock(&sc->sc_lock); 3101 g_topology_lock(); 3102 return (error); 3103 } 3104 3105 static struct g_geom * 3106 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 3107 { 3108 struct g_raid3_softc *sc; 3109 struct g_geom *gp; 3110 int error, timeout; 3111 u_int n; 3112 3113 g_topology_assert(); 3114 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 3115 3116 /* One disk is minimum. */ 3117 if (md->md_all < 1) 3118 return (NULL); 3119 /* 3120 * Action geom. 3121 */ 3122 gp = g_new_geomf(mp, "%s", md->md_name); 3123 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 3124 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 3125 M_WAITOK | M_ZERO); 3126 gp->start = g_raid3_start; 3127 gp->orphan = g_raid3_orphan; 3128 gp->access = g_raid3_access; 3129 gp->dumpconf = g_raid3_dumpconf; 3130 3131 sc->sc_id = md->md_id; 3132 sc->sc_mediasize = md->md_mediasize; 3133 sc->sc_sectorsize = md->md_sectorsize; 3134 sc->sc_ndisks = md->md_all; 3135 sc->sc_round_robin = 0; 3136 sc->sc_flags = md->md_mflags; 3137 sc->sc_bump_id = 0; 3138 sc->sc_idle = 1; 3139 sc->sc_last_write = time_uptime; 3140 sc->sc_writes = 0; 3141 for (n = 0; n < sc->sc_ndisks; n++) { 3142 sc->sc_disks[n].d_softc = sc; 3143 sc->sc_disks[n].d_no = n; 3144 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 3145 } 3146 sx_init(&sc->sc_lock, "graid3:lock"); 3147 bioq_init(&sc->sc_queue); 3148 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 3149 bioq_init(&sc->sc_regular_delayed); 3150 bioq_init(&sc->sc_inflight); 3151 bioq_init(&sc->sc_sync_delayed); 3152 TAILQ_INIT(&sc->sc_events); 3153 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 3154 callout_init(&sc->sc_callout, CALLOUT_MPSAFE); 3155 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 3156 gp->softc = sc; 3157 sc->sc_geom = gp; 3158 sc->sc_provider = NULL; 3159 /* 3160 * Synchronization geom. 3161 */ 3162 gp = g_new_geomf(mp, "%s.sync", md->md_name); 3163 gp->softc = sc; 3164 gp->orphan = g_raid3_orphan; 3165 sc->sc_sync.ds_geom = gp; 3166 3167 if (!g_raid3_use_malloc) { 3168 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 3169 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3170 UMA_ALIGN_PTR, 0); 3171 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; 3172 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; 3173 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = 3174 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; 3175 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 3176 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3177 UMA_ALIGN_PTR, 0); 3178 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; 3179 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; 3180 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = 3181 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; 3182 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 3183 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3184 UMA_ALIGN_PTR, 0); 3185 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; 3186 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; 3187 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = 3188 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; 3189 } 3190 3191 error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 3192 "g_raid3 %s", md->md_name); 3193 if (error != 0) { 3194 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 3195 sc->sc_name); 3196 if (!g_raid3_use_malloc) { 3197 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 3198 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 3199 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 3200 } 3201 g_destroy_geom(sc->sc_sync.ds_geom); 3202 mtx_destroy(&sc->sc_events_mtx); 3203 mtx_destroy(&sc->sc_queue_mtx); 3204 sx_destroy(&sc->sc_lock); 3205 g_destroy_geom(sc->sc_geom); 3206 free(sc->sc_disks, M_RAID3); 3207 free(sc, M_RAID3); 3208 return (NULL); 3209 } 3210 3211 G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).", 3212 sc->sc_name, sc->sc_ndisks, sc->sc_id); 3213 3214 sc->sc_rootmount = root_mount_hold("GRAID3"); 3215 G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); 3216 3217 /* 3218 * Run timeout. 3219 */ 3220 timeout = atomic_load_acq_int(&g_raid3_timeout); 3221 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 3222 return (sc->sc_geom); 3223 } 3224 3225 int 3226 g_raid3_destroy(struct g_raid3_softc *sc, int how) 3227 { 3228 struct g_provider *pp; 3229 3230 g_topology_assert_not(); 3231 if (sc == NULL) 3232 return (ENXIO); 3233 sx_assert(&sc->sc_lock, SX_XLOCKED); 3234 3235 pp = sc->sc_provider; 3236 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 3237 switch (how) { 3238 case G_RAID3_DESTROY_SOFT: 3239 G_RAID3_DEBUG(1, 3240 "Device %s is still open (r%dw%de%d).", pp->name, 3241 pp->acr, pp->acw, pp->ace); 3242 return (EBUSY); 3243 case G_RAID3_DESTROY_DELAYED: 3244 G_RAID3_DEBUG(1, 3245 "Device %s will be destroyed on last close.", 3246 pp->name); 3247 if (sc->sc_syncdisk != NULL) 3248 g_raid3_sync_stop(sc, 1); 3249 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; 3250 return (EBUSY); 3251 case G_RAID3_DESTROY_HARD: 3252 G_RAID3_DEBUG(1, "Device %s is still open, so it " 3253 "can't be definitely removed.", pp->name); 3254 break; 3255 } 3256 } 3257 3258 g_topology_lock(); 3259 if (sc->sc_geom->softc == NULL) { 3260 g_topology_unlock(); 3261 return (0); 3262 } 3263 sc->sc_geom->softc = NULL; 3264 sc->sc_sync.ds_geom->softc = NULL; 3265 g_topology_unlock(); 3266 3267 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 3268 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 3269 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 3270 sx_xunlock(&sc->sc_lock); 3271 mtx_lock(&sc->sc_queue_mtx); 3272 wakeup(sc); 3273 wakeup(&sc->sc_queue); 3274 mtx_unlock(&sc->sc_queue_mtx); 3275 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 3276 while (sc->sc_worker != NULL) 3277 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 3278 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 3279 sx_xlock(&sc->sc_lock); 3280 g_raid3_destroy_device(sc); 3281 free(sc->sc_disks, M_RAID3); 3282 free(sc, M_RAID3); 3283 return (0); 3284 } 3285 3286 static void 3287 g_raid3_taste_orphan(struct g_consumer *cp) 3288 { 3289 3290 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 3291 cp->provider->name)); 3292 } 3293 3294 static struct g_geom * 3295 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 3296 { 3297 struct g_raid3_metadata md; 3298 struct g_raid3_softc *sc; 3299 struct g_consumer *cp; 3300 struct g_geom *gp; 3301 int error; 3302 3303 g_topology_assert(); 3304 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 3305 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 3306 3307 gp = g_new_geomf(mp, "raid3:taste"); 3308 /* This orphan function should be never called. */ 3309 gp->orphan = g_raid3_taste_orphan; 3310 cp = g_new_consumer(gp); 3311 g_attach(cp, pp); 3312 error = g_raid3_read_metadata(cp, &md); 3313 g_detach(cp); 3314 g_destroy_consumer(cp); 3315 g_destroy_geom(gp); 3316 if (error != 0) 3317 return (NULL); 3318 gp = NULL; 3319 3320 if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0) 3321 return (NULL); 3322 if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) 3323 return (NULL); 3324 if (g_raid3_debug >= 2) 3325 raid3_metadata_dump(&md); 3326 3327 /* 3328 * Let's check if device already exists. 3329 */ 3330 sc = NULL; 3331 LIST_FOREACH(gp, &mp->geom, geom) { 3332 sc = gp->softc; 3333 if (sc == NULL) 3334 continue; 3335 if (sc->sc_sync.ds_geom == gp) 3336 continue; 3337 if (strcmp(md.md_name, sc->sc_name) != 0) 3338 continue; 3339 if (md.md_id != sc->sc_id) { 3340 G_RAID3_DEBUG(0, "Device %s already configured.", 3341 sc->sc_name); 3342 return (NULL); 3343 } 3344 break; 3345 } 3346 if (gp == NULL) { 3347 gp = g_raid3_create(mp, &md); 3348 if (gp == NULL) { 3349 G_RAID3_DEBUG(0, "Cannot create device %s.", 3350 md.md_name); 3351 return (NULL); 3352 } 3353 sc = gp->softc; 3354 } 3355 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 3356 g_topology_unlock(); 3357 sx_xlock(&sc->sc_lock); 3358 error = g_raid3_add_disk(sc, pp, &md); 3359 if (error != 0) { 3360 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 3361 pp->name, gp->name, error); 3362 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 3363 sc->sc_ndisks) { 3364 g_cancel_event(sc); 3365 g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); 3366 g_topology_lock(); 3367 return (NULL); 3368 } 3369 gp = NULL; 3370 } 3371 sx_xunlock(&sc->sc_lock); 3372 g_topology_lock(); 3373 return (gp); 3374 } 3375 3376 static int 3377 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 3378 struct g_geom *gp) 3379 { 3380 struct g_raid3_softc *sc; 3381 int error; 3382 3383 g_topology_unlock(); 3384 sc = gp->softc; 3385 sx_xlock(&sc->sc_lock); 3386 g_cancel_event(sc); 3387 error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); 3388 if (error != 0) 3389 sx_xunlock(&sc->sc_lock); 3390 g_topology_lock(); 3391 return (error); 3392 } 3393 3394 static void 3395 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 3396 struct g_consumer *cp, struct g_provider *pp) 3397 { 3398 struct g_raid3_softc *sc; 3399 3400 g_topology_assert(); 3401 3402 sc = gp->softc; 3403 if (sc == NULL) 3404 return; 3405 /* Skip synchronization geom. */ 3406 if (gp == sc->sc_sync.ds_geom) 3407 return; 3408 if (pp != NULL) { 3409 /* Nothing here. */ 3410 } else if (cp != NULL) { 3411 struct g_raid3_disk *disk; 3412 3413 disk = cp->private; 3414 if (disk == NULL) 3415 return; 3416 g_topology_unlock(); 3417 sx_xlock(&sc->sc_lock); 3418 sbuf_printf(sb, "%s<Type>", indent); 3419 if (disk->d_no == sc->sc_ndisks - 1) 3420 sbuf_printf(sb, "PARITY"); 3421 else 3422 sbuf_printf(sb, "DATA"); 3423 sbuf_printf(sb, "</Type>\n"); 3424 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 3425 (u_int)disk->d_no); 3426 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 3427 sbuf_printf(sb, "%s<Synchronized>", indent); 3428 if (disk->d_sync.ds_offset == 0) 3429 sbuf_printf(sb, "0%%"); 3430 else { 3431 sbuf_printf(sb, "%u%%", 3432 (u_int)((disk->d_sync.ds_offset * 100) / 3433 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 3434 } 3435 sbuf_printf(sb, "</Synchronized>\n"); 3436 } 3437 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 3438 disk->d_sync.ds_syncid); 3439 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); 3440 sbuf_printf(sb, "%s<Flags>", indent); 3441 if (disk->d_flags == 0) 3442 sbuf_printf(sb, "NONE"); 3443 else { 3444 int first = 1; 3445 3446 #define ADD_FLAG(flag, name) do { \ 3447 if ((disk->d_flags & (flag)) != 0) { \ 3448 if (!first) \ 3449 sbuf_printf(sb, ", "); \ 3450 else \ 3451 first = 0; \ 3452 sbuf_printf(sb, name); \ 3453 } \ 3454 } while (0) 3455 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 3456 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 3457 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 3458 "SYNCHRONIZING"); 3459 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 3460 ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); 3461 #undef ADD_FLAG 3462 } 3463 sbuf_printf(sb, "</Flags>\n"); 3464 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3465 g_raid3_disk_state2str(disk->d_state)); 3466 sx_xunlock(&sc->sc_lock); 3467 g_topology_lock(); 3468 } else { 3469 g_topology_unlock(); 3470 sx_xlock(&sc->sc_lock); 3471 if (!g_raid3_use_malloc) { 3472 sbuf_printf(sb, 3473 "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent, 3474 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); 3475 sbuf_printf(sb, 3476 "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent, 3477 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); 3478 sbuf_printf(sb, 3479 "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent, 3480 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); 3481 sbuf_printf(sb, 3482 "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent, 3483 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); 3484 sbuf_printf(sb, 3485 "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent, 3486 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); 3487 sbuf_printf(sb, 3488 "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent, 3489 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); 3490 } 3491 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 3492 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 3493 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); 3494 sbuf_printf(sb, "%s<Flags>", indent); 3495 if (sc->sc_flags == 0) 3496 sbuf_printf(sb, "NONE"); 3497 else { 3498 int first = 1; 3499 3500 #define ADD_FLAG(flag, name) do { \ 3501 if ((sc->sc_flags & (flag)) != 0) { \ 3502 if (!first) \ 3503 sbuf_printf(sb, ", "); \ 3504 else \ 3505 first = 0; \ 3506 sbuf_printf(sb, name); \ 3507 } \ 3508 } while (0) 3509 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); 3510 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3511 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3512 "ROUND-ROBIN"); 3513 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3514 #undef ADD_FLAG 3515 } 3516 sbuf_printf(sb, "</Flags>\n"); 3517 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3518 sc->sc_ndisks); 3519 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3520 g_raid3_device_state2str(sc->sc_state)); 3521 sx_xunlock(&sc->sc_lock); 3522 g_topology_lock(); 3523 } 3524 } 3525 3526 static void 3527 g_raid3_shutdown_pre_sync(void *arg, int howto) 3528 { 3529 struct g_class *mp; 3530 struct g_geom *gp, *gp2; 3531 struct g_raid3_softc *sc; 3532 int error; 3533 3534 mp = arg; 3535 DROP_GIANT(); 3536 g_topology_lock(); 3537 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3538 if ((sc = gp->softc) == NULL) 3539 continue; 3540 /* Skip synchronization geom. */ 3541 if (gp == sc->sc_sync.ds_geom) 3542 continue; 3543 g_topology_unlock(); 3544 sx_xlock(&sc->sc_lock); 3545 g_cancel_event(sc); 3546 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); 3547 if (error != 0) 3548 sx_xunlock(&sc->sc_lock); 3549 g_topology_lock(); 3550 } 3551 g_topology_unlock(); 3552 PICKUP_GIANT(); 3553 } 3554 3555 static void 3556 g_raid3_init(struct g_class *mp) 3557 { 3558 3559 g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, 3560 g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); 3561 if (g_raid3_pre_sync == NULL) 3562 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3563 } 3564 3565 static void 3566 g_raid3_fini(struct g_class *mp) 3567 { 3568 3569 if (g_raid3_pre_sync != NULL) 3570 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync); 3571 } 3572 3573 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3574