1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sbuf.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/eventhandler.h> 44 #include <vm/uma.h> 45 #include <geom/geom.h> 46 #include <sys/proc.h> 47 #include <sys/kthread.h> 48 #include <sys/sched.h> 49 #include <geom/raid3/g_raid3.h> 50 51 FEATURE(geom_raid3, "GEOM RAID-3 functionality"); 52 53 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); 54 55 SYSCTL_DECL(_kern_geom); 56 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, 57 "GEOM_RAID3 stuff"); 58 u_int g_raid3_debug = 0; 59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0, 60 "Debug level"); 61 static u_int g_raid3_timeout = 4; 62 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout, 63 0, "Time to wait on all raid3 components"); 64 static u_int g_raid3_idletime = 5; 65 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN, 66 &g_raid3_idletime, 0, "Mark components as clean when idling"); 67 static u_int g_raid3_disconnect_on_failure = 1; 68 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 69 &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 70 static u_int g_raid3_syncreqs = 2; 71 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, 72 &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); 73 static u_int g_raid3_use_malloc = 0; 74 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, 75 &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); 76 77 static u_int g_raid3_n64k = 50; 78 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0, 79 "Maximum number of 64kB allocations"); 80 static u_int g_raid3_n16k = 200; 81 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0, 82 "Maximum number of 16kB allocations"); 83 static u_int g_raid3_n4k = 1200; 84 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0, 85 "Maximum number of 4kB allocations"); 86 87 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 88 "GEOM_RAID3 statistics"); 89 static u_int g_raid3_parity_mismatch = 0; 90 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 91 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 92 93 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 94 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 95 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 96 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 97 } while (0) 98 99 static eventhandler_tag g_raid3_post_sync = NULL; 100 static int g_raid3_shutdown = 0; 101 102 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 103 struct g_geom *gp); 104 static g_taste_t g_raid3_taste; 105 static void g_raid3_init(struct g_class *mp); 106 static void g_raid3_fini(struct g_class *mp); 107 108 struct g_class g_raid3_class = { 109 .name = G_RAID3_CLASS_NAME, 110 .version = G_VERSION, 111 .ctlreq = g_raid3_config, 112 .taste = g_raid3_taste, 113 .destroy_geom = g_raid3_destroy_geom, 114 .init = g_raid3_init, 115 .fini = g_raid3_fini 116 }; 117 118 119 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 120 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 121 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 122 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 123 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 124 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 125 static int g_raid3_register_request(struct bio *pbp); 126 static void g_raid3_sync_release(struct g_raid3_softc *sc); 127 128 129 static const char * 130 g_raid3_disk_state2str(int state) 131 { 132 133 switch (state) { 134 case G_RAID3_DISK_STATE_NODISK: 135 return ("NODISK"); 136 case G_RAID3_DISK_STATE_NONE: 137 return ("NONE"); 138 case G_RAID3_DISK_STATE_NEW: 139 return ("NEW"); 140 case G_RAID3_DISK_STATE_ACTIVE: 141 return ("ACTIVE"); 142 case G_RAID3_DISK_STATE_STALE: 143 return ("STALE"); 144 case G_RAID3_DISK_STATE_SYNCHRONIZING: 145 return ("SYNCHRONIZING"); 146 case G_RAID3_DISK_STATE_DISCONNECTED: 147 return ("DISCONNECTED"); 148 default: 149 return ("INVALID"); 150 } 151 } 152 153 static const char * 154 g_raid3_device_state2str(int state) 155 { 156 157 switch (state) { 158 case G_RAID3_DEVICE_STATE_STARTING: 159 return ("STARTING"); 160 case G_RAID3_DEVICE_STATE_DEGRADED: 161 return ("DEGRADED"); 162 case G_RAID3_DEVICE_STATE_COMPLETE: 163 return ("COMPLETE"); 164 default: 165 return ("INVALID"); 166 } 167 } 168 169 const char * 170 g_raid3_get_diskname(struct g_raid3_disk *disk) 171 { 172 173 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 174 return ("[unknown]"); 175 return (disk->d_name); 176 } 177 178 static void * 179 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) 180 { 181 void *ptr; 182 enum g_raid3_zones zone; 183 184 if (g_raid3_use_malloc || 185 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 186 ptr = malloc(size, M_RAID3, flags); 187 else { 188 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone, 189 &sc->sc_zones[zone], flags); 190 sc->sc_zones[zone].sz_requested++; 191 if (ptr == NULL) 192 sc->sc_zones[zone].sz_failed++; 193 } 194 return (ptr); 195 } 196 197 static void 198 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) 199 { 200 enum g_raid3_zones zone; 201 202 if (g_raid3_use_malloc || 203 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 204 free(ptr, M_RAID3); 205 else { 206 uma_zfree_arg(sc->sc_zones[zone].sz_zone, 207 ptr, &sc->sc_zones[zone]); 208 } 209 } 210 211 static int 212 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) 213 { 214 struct g_raid3_zone *sz = arg; 215 216 if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) 217 return (ENOMEM); 218 sz->sz_inuse++; 219 return (0); 220 } 221 222 static void 223 g_raid3_uma_dtor(void *mem, int size, void *arg) 224 { 225 struct g_raid3_zone *sz = arg; 226 227 sz->sz_inuse--; 228 } 229 230 #define g_raid3_xor(src, dst, size) \ 231 _g_raid3_xor((uint64_t *)(src), \ 232 (uint64_t *)(dst), (size_t)size) 233 static void 234 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size) 235 { 236 237 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 238 for (; size > 0; size -= 128) { 239 *dst++ ^= (*src++); 240 *dst++ ^= (*src++); 241 *dst++ ^= (*src++); 242 *dst++ ^= (*src++); 243 *dst++ ^= (*src++); 244 *dst++ ^= (*src++); 245 *dst++ ^= (*src++); 246 *dst++ ^= (*src++); 247 *dst++ ^= (*src++); 248 *dst++ ^= (*src++); 249 *dst++ ^= (*src++); 250 *dst++ ^= (*src++); 251 *dst++ ^= (*src++); 252 *dst++ ^= (*src++); 253 *dst++ ^= (*src++); 254 *dst++ ^= (*src++); 255 } 256 } 257 258 static int 259 g_raid3_is_zero(struct bio *bp) 260 { 261 static const uint64_t zeros[] = { 262 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 263 }; 264 u_char *addr; 265 ssize_t size; 266 267 size = bp->bio_length; 268 addr = (u_char *)bp->bio_data; 269 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 270 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 271 return (0); 272 } 273 return (1); 274 } 275 276 /* 277 * --- Events handling functions --- 278 * Events in geom_raid3 are used to maintain disks and device status 279 * from one thread to simplify locking. 280 */ 281 static void 282 g_raid3_event_free(struct g_raid3_event *ep) 283 { 284 285 free(ep, M_RAID3); 286 } 287 288 int 289 g_raid3_event_send(void *arg, int state, int flags) 290 { 291 struct g_raid3_softc *sc; 292 struct g_raid3_disk *disk; 293 struct g_raid3_event *ep; 294 int error; 295 296 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 297 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 298 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 299 disk = NULL; 300 sc = arg; 301 } else { 302 disk = arg; 303 sc = disk->d_softc; 304 } 305 ep->e_disk = disk; 306 ep->e_state = state; 307 ep->e_flags = flags; 308 ep->e_error = 0; 309 mtx_lock(&sc->sc_events_mtx); 310 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 311 mtx_unlock(&sc->sc_events_mtx); 312 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 313 mtx_lock(&sc->sc_queue_mtx); 314 wakeup(sc); 315 wakeup(&sc->sc_queue); 316 mtx_unlock(&sc->sc_queue_mtx); 317 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 318 return (0); 319 sx_assert(&sc->sc_lock, SX_XLOCKED); 320 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 321 sx_xunlock(&sc->sc_lock); 322 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 323 mtx_lock(&sc->sc_events_mtx); 324 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 325 hz * 5); 326 } 327 error = ep->e_error; 328 g_raid3_event_free(ep); 329 sx_xlock(&sc->sc_lock); 330 return (error); 331 } 332 333 static struct g_raid3_event * 334 g_raid3_event_get(struct g_raid3_softc *sc) 335 { 336 struct g_raid3_event *ep; 337 338 mtx_lock(&sc->sc_events_mtx); 339 ep = TAILQ_FIRST(&sc->sc_events); 340 mtx_unlock(&sc->sc_events_mtx); 341 return (ep); 342 } 343 344 static void 345 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) 346 { 347 348 mtx_lock(&sc->sc_events_mtx); 349 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 350 mtx_unlock(&sc->sc_events_mtx); 351 } 352 353 static void 354 g_raid3_event_cancel(struct g_raid3_disk *disk) 355 { 356 struct g_raid3_softc *sc; 357 struct g_raid3_event *ep, *tmpep; 358 359 sc = disk->d_softc; 360 sx_assert(&sc->sc_lock, SX_XLOCKED); 361 362 mtx_lock(&sc->sc_events_mtx); 363 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 364 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 365 continue; 366 if (ep->e_disk != disk) 367 continue; 368 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 369 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 370 g_raid3_event_free(ep); 371 else { 372 ep->e_error = ECANCELED; 373 wakeup(ep); 374 } 375 } 376 mtx_unlock(&sc->sc_events_mtx); 377 } 378 379 /* 380 * Return the number of disks in the given state. 381 * If state is equal to -1, count all connected disks. 382 */ 383 u_int 384 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 385 { 386 struct g_raid3_disk *disk; 387 u_int n, ndisks; 388 389 sx_assert(&sc->sc_lock, SX_LOCKED); 390 391 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 392 disk = &sc->sc_disks[n]; 393 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 394 continue; 395 if (state == -1 || disk->d_state == state) 396 ndisks++; 397 } 398 return (ndisks); 399 } 400 401 static u_int 402 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 403 { 404 struct bio *bp; 405 u_int nreqs = 0; 406 407 mtx_lock(&sc->sc_queue_mtx); 408 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 409 if (bp->bio_from == cp) 410 nreqs++; 411 } 412 mtx_unlock(&sc->sc_queue_mtx); 413 return (nreqs); 414 } 415 416 static int 417 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 418 { 419 420 if (cp->index > 0) { 421 G_RAID3_DEBUG(2, 422 "I/O requests for %s exist, can't destroy it now.", 423 cp->provider->name); 424 return (1); 425 } 426 if (g_raid3_nrequests(sc, cp) > 0) { 427 G_RAID3_DEBUG(2, 428 "I/O requests for %s in queue, can't destroy it now.", 429 cp->provider->name); 430 return (1); 431 } 432 return (0); 433 } 434 435 static void 436 g_raid3_destroy_consumer(void *arg, int flags __unused) 437 { 438 struct g_consumer *cp; 439 440 g_topology_assert(); 441 442 cp = arg; 443 G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 444 g_detach(cp); 445 g_destroy_consumer(cp); 446 } 447 448 static void 449 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 450 { 451 struct g_provider *pp; 452 int retaste_wait; 453 454 g_topology_assert(); 455 456 cp->private = NULL; 457 if (g_raid3_is_busy(sc, cp)) 458 return; 459 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 460 pp = cp->provider; 461 retaste_wait = 0; 462 if (cp->acw == 1) { 463 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 464 retaste_wait = 1; 465 } 466 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, 467 -cp->acw, -cp->ace, 0); 468 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 469 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 470 if (retaste_wait) { 471 /* 472 * After retaste event was send (inside g_access()), we can send 473 * event to detach and destroy consumer. 474 * A class, which has consumer to the given provider connected 475 * will not receive retaste event for the provider. 476 * This is the way how I ignore retaste events when I close 477 * consumers opened for write: I detach and destroy consumer 478 * after retaste event is sent. 479 */ 480 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); 481 return; 482 } 483 G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); 484 g_detach(cp); 485 g_destroy_consumer(cp); 486 } 487 488 static int 489 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 490 { 491 struct g_consumer *cp; 492 int error; 493 494 g_topology_assert_not(); 495 KASSERT(disk->d_consumer == NULL, 496 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 497 498 g_topology_lock(); 499 cp = g_new_consumer(disk->d_softc->sc_geom); 500 error = g_attach(cp, pp); 501 if (error != 0) { 502 g_destroy_consumer(cp); 503 g_topology_unlock(); 504 return (error); 505 } 506 error = g_access(cp, 1, 1, 1); 507 g_topology_unlock(); 508 if (error != 0) { 509 g_detach(cp); 510 g_destroy_consumer(cp); 511 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", 512 pp->name, error); 513 return (error); 514 } 515 disk->d_consumer = cp; 516 disk->d_consumer->private = disk; 517 disk->d_consumer->index = 0; 518 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 519 return (0); 520 } 521 522 static void 523 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 524 { 525 526 g_topology_assert(); 527 528 if (cp == NULL) 529 return; 530 if (cp->provider != NULL) 531 g_raid3_kill_consumer(sc, cp); 532 else 533 g_destroy_consumer(cp); 534 } 535 536 /* 537 * Initialize disk. This means allocate memory, create consumer, attach it 538 * to the provider and open access (r1w1e1) to it. 539 */ 540 static struct g_raid3_disk * 541 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 542 struct g_raid3_metadata *md, int *errorp) 543 { 544 struct g_raid3_disk *disk; 545 int error; 546 547 disk = &sc->sc_disks[md->md_no]; 548 error = g_raid3_connect_disk(disk, pp); 549 if (error != 0) { 550 if (errorp != NULL) 551 *errorp = error; 552 return (NULL); 553 } 554 disk->d_state = G_RAID3_DISK_STATE_NONE; 555 disk->d_flags = md->md_dflags; 556 if (md->md_provider[0] != '\0') 557 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 558 disk->d_sync.ds_consumer = NULL; 559 disk->d_sync.ds_offset = md->md_sync_offset; 560 disk->d_sync.ds_offset_done = md->md_sync_offset; 561 disk->d_genid = md->md_genid; 562 disk->d_sync.ds_syncid = md->md_syncid; 563 if (errorp != NULL) 564 *errorp = 0; 565 return (disk); 566 } 567 568 static void 569 g_raid3_destroy_disk(struct g_raid3_disk *disk) 570 { 571 struct g_raid3_softc *sc; 572 573 g_topology_assert_not(); 574 sc = disk->d_softc; 575 sx_assert(&sc->sc_lock, SX_XLOCKED); 576 577 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 578 return; 579 g_raid3_event_cancel(disk); 580 switch (disk->d_state) { 581 case G_RAID3_DISK_STATE_SYNCHRONIZING: 582 if (sc->sc_syncdisk != NULL) 583 g_raid3_sync_stop(sc, 1); 584 /* FALLTHROUGH */ 585 case G_RAID3_DISK_STATE_NEW: 586 case G_RAID3_DISK_STATE_STALE: 587 case G_RAID3_DISK_STATE_ACTIVE: 588 g_topology_lock(); 589 g_raid3_disconnect_consumer(sc, disk->d_consumer); 590 g_topology_unlock(); 591 disk->d_consumer = NULL; 592 break; 593 default: 594 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 595 g_raid3_get_diskname(disk), 596 g_raid3_disk_state2str(disk->d_state))); 597 } 598 disk->d_state = G_RAID3_DISK_STATE_NODISK; 599 } 600 601 static void 602 g_raid3_destroy_device(struct g_raid3_softc *sc) 603 { 604 struct g_raid3_event *ep; 605 struct g_raid3_disk *disk; 606 struct g_geom *gp; 607 struct g_consumer *cp; 608 u_int n; 609 610 g_topology_assert_not(); 611 sx_assert(&sc->sc_lock, SX_XLOCKED); 612 613 gp = sc->sc_geom; 614 if (sc->sc_provider != NULL) 615 g_raid3_destroy_provider(sc); 616 for (n = 0; n < sc->sc_ndisks; n++) { 617 disk = &sc->sc_disks[n]; 618 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { 619 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 620 g_raid3_update_metadata(disk); 621 g_raid3_destroy_disk(disk); 622 } 623 } 624 while ((ep = g_raid3_event_get(sc)) != NULL) { 625 g_raid3_event_remove(sc, ep); 626 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 627 g_raid3_event_free(ep); 628 else { 629 ep->e_error = ECANCELED; 630 ep->e_flags |= G_RAID3_EVENT_DONE; 631 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 632 mtx_lock(&sc->sc_events_mtx); 633 wakeup(ep); 634 mtx_unlock(&sc->sc_events_mtx); 635 } 636 } 637 callout_drain(&sc->sc_callout); 638 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 639 g_topology_lock(); 640 if (cp != NULL) 641 g_raid3_disconnect_consumer(sc, cp); 642 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 643 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 644 g_wither_geom(gp, ENXIO); 645 g_topology_unlock(); 646 if (!g_raid3_use_malloc) { 647 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 648 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 649 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 650 } 651 mtx_destroy(&sc->sc_queue_mtx); 652 mtx_destroy(&sc->sc_events_mtx); 653 sx_xunlock(&sc->sc_lock); 654 sx_destroy(&sc->sc_lock); 655 } 656 657 static void 658 g_raid3_orphan(struct g_consumer *cp) 659 { 660 struct g_raid3_disk *disk; 661 662 g_topology_assert(); 663 664 disk = cp->private; 665 if (disk == NULL) 666 return; 667 disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; 668 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 669 G_RAID3_EVENT_DONTWAIT); 670 } 671 672 static int 673 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 674 { 675 struct g_raid3_softc *sc; 676 struct g_consumer *cp; 677 off_t offset, length; 678 u_char *sector; 679 int error = 0; 680 681 g_topology_assert_not(); 682 sc = disk->d_softc; 683 sx_assert(&sc->sc_lock, SX_LOCKED); 684 685 cp = disk->d_consumer; 686 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 687 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 688 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 689 ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, 690 cp->acw, cp->ace)); 691 length = cp->provider->sectorsize; 692 offset = cp->provider->mediasize - length; 693 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 694 if (md != NULL) 695 raid3_metadata_encode(md, sector); 696 error = g_write_data(cp, offset, sector, length); 697 free(sector, M_RAID3); 698 if (error != 0) { 699 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 700 G_RAID3_DEBUG(0, "Cannot write metadata on %s " 701 "(device=%s, error=%d).", 702 g_raid3_get_diskname(disk), sc->sc_name, error); 703 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 704 } else { 705 G_RAID3_DEBUG(1, "Cannot write metadata on %s " 706 "(device=%s, error=%d).", 707 g_raid3_get_diskname(disk), sc->sc_name, error); 708 } 709 if (g_raid3_disconnect_on_failure && 710 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 711 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 712 g_raid3_event_send(disk, 713 G_RAID3_DISK_STATE_DISCONNECTED, 714 G_RAID3_EVENT_DONTWAIT); 715 } 716 } 717 return (error); 718 } 719 720 int 721 g_raid3_clear_metadata(struct g_raid3_disk *disk) 722 { 723 int error; 724 725 g_topology_assert_not(); 726 sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); 727 728 error = g_raid3_write_metadata(disk, NULL); 729 if (error == 0) { 730 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 731 g_raid3_get_diskname(disk)); 732 } else { 733 G_RAID3_DEBUG(0, 734 "Cannot clear metadata on disk %s (error=%d).", 735 g_raid3_get_diskname(disk), error); 736 } 737 return (error); 738 } 739 740 void 741 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 742 { 743 struct g_raid3_softc *sc; 744 struct g_provider *pp; 745 746 sc = disk->d_softc; 747 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 748 md->md_version = G_RAID3_VERSION; 749 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 750 md->md_id = sc->sc_id; 751 md->md_all = sc->sc_ndisks; 752 md->md_genid = sc->sc_genid; 753 md->md_mediasize = sc->sc_mediasize; 754 md->md_sectorsize = sc->sc_sectorsize; 755 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 756 md->md_no = disk->d_no; 757 md->md_syncid = disk->d_sync.ds_syncid; 758 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 759 if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 760 md->md_sync_offset = 0; 761 else { 762 md->md_sync_offset = 763 disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); 764 } 765 if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) 766 pp = disk->d_consumer->provider; 767 else 768 pp = NULL; 769 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) 770 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); 771 else 772 bzero(md->md_provider, sizeof(md->md_provider)); 773 if (pp != NULL) 774 md->md_provsize = pp->mediasize; 775 else 776 md->md_provsize = 0; 777 } 778 779 void 780 g_raid3_update_metadata(struct g_raid3_disk *disk) 781 { 782 struct g_raid3_softc *sc; 783 struct g_raid3_metadata md; 784 int error; 785 786 g_topology_assert_not(); 787 sc = disk->d_softc; 788 sx_assert(&sc->sc_lock, SX_LOCKED); 789 790 g_raid3_fill_metadata(disk, &md); 791 error = g_raid3_write_metadata(disk, &md); 792 if (error == 0) { 793 G_RAID3_DEBUG(2, "Metadata on %s updated.", 794 g_raid3_get_diskname(disk)); 795 } else { 796 G_RAID3_DEBUG(0, 797 "Cannot update metadata on disk %s (error=%d).", 798 g_raid3_get_diskname(disk), error); 799 } 800 } 801 802 static void 803 g_raid3_bump_syncid(struct g_raid3_softc *sc) 804 { 805 struct g_raid3_disk *disk; 806 u_int n; 807 808 g_topology_assert_not(); 809 sx_assert(&sc->sc_lock, SX_XLOCKED); 810 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 811 ("%s called with no active disks (device=%s).", __func__, 812 sc->sc_name)); 813 814 sc->sc_syncid++; 815 G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, 816 sc->sc_syncid); 817 for (n = 0; n < sc->sc_ndisks; n++) { 818 disk = &sc->sc_disks[n]; 819 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 820 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 821 disk->d_sync.ds_syncid = sc->sc_syncid; 822 g_raid3_update_metadata(disk); 823 } 824 } 825 } 826 827 static void 828 g_raid3_bump_genid(struct g_raid3_softc *sc) 829 { 830 struct g_raid3_disk *disk; 831 u_int n; 832 833 g_topology_assert_not(); 834 sx_assert(&sc->sc_lock, SX_XLOCKED); 835 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 836 ("%s called with no active disks (device=%s).", __func__, 837 sc->sc_name)); 838 839 sc->sc_genid++; 840 G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, 841 sc->sc_genid); 842 for (n = 0; n < sc->sc_ndisks; n++) { 843 disk = &sc->sc_disks[n]; 844 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 845 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 846 disk->d_genid = sc->sc_genid; 847 g_raid3_update_metadata(disk); 848 } 849 } 850 } 851 852 static int 853 g_raid3_idle(struct g_raid3_softc *sc, int acw) 854 { 855 struct g_raid3_disk *disk; 856 u_int i; 857 int timeout; 858 859 g_topology_assert_not(); 860 sx_assert(&sc->sc_lock, SX_XLOCKED); 861 862 if (sc->sc_provider == NULL) 863 return (0); 864 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 865 return (0); 866 if (sc->sc_idle) 867 return (0); 868 if (sc->sc_writes > 0) 869 return (0); 870 if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { 871 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); 872 if (!g_raid3_shutdown && timeout > 0) 873 return (timeout); 874 } 875 sc->sc_idle = 1; 876 for (i = 0; i < sc->sc_ndisks; i++) { 877 disk = &sc->sc_disks[i]; 878 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 879 continue; 880 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 881 g_raid3_get_diskname(disk), sc->sc_name); 882 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 883 g_raid3_update_metadata(disk); 884 } 885 return (0); 886 } 887 888 static void 889 g_raid3_unidle(struct g_raid3_softc *sc) 890 { 891 struct g_raid3_disk *disk; 892 u_int i; 893 894 g_topology_assert_not(); 895 sx_assert(&sc->sc_lock, SX_XLOCKED); 896 897 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 898 return; 899 sc->sc_idle = 0; 900 sc->sc_last_write = time_uptime; 901 for (i = 0; i < sc->sc_ndisks; i++) { 902 disk = &sc->sc_disks[i]; 903 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 904 continue; 905 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 906 g_raid3_get_diskname(disk), sc->sc_name); 907 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 908 g_raid3_update_metadata(disk); 909 } 910 } 911 912 /* 913 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 914 * in child bio as pointer to the next element on the list. 915 */ 916 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 917 918 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 919 920 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 921 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 922 (bp) = G_RAID3_NEXT_BIO(bp)) 923 924 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 925 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 926 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 927 (bp) = (tmpbp)) 928 929 static void 930 g_raid3_init_bio(struct bio *pbp) 931 { 932 933 G_RAID3_HEAD_BIO(pbp) = NULL; 934 } 935 936 static void 937 g_raid3_remove_bio(struct bio *cbp) 938 { 939 struct bio *pbp, *bp; 940 941 pbp = cbp->bio_parent; 942 if (G_RAID3_HEAD_BIO(pbp) == cbp) 943 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 944 else { 945 G_RAID3_FOREACH_BIO(pbp, bp) { 946 if (G_RAID3_NEXT_BIO(bp) == cbp) { 947 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 948 break; 949 } 950 } 951 } 952 G_RAID3_NEXT_BIO(cbp) = NULL; 953 } 954 955 static void 956 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 957 { 958 struct bio *pbp, *bp; 959 960 g_raid3_remove_bio(sbp); 961 pbp = dbp->bio_parent; 962 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 963 if (G_RAID3_HEAD_BIO(pbp) == dbp) 964 G_RAID3_HEAD_BIO(pbp) = sbp; 965 else { 966 G_RAID3_FOREACH_BIO(pbp, bp) { 967 if (G_RAID3_NEXT_BIO(bp) == dbp) { 968 G_RAID3_NEXT_BIO(bp) = sbp; 969 break; 970 } 971 } 972 } 973 G_RAID3_NEXT_BIO(dbp) = NULL; 974 } 975 976 static void 977 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 978 { 979 struct bio *bp, *pbp; 980 size_t size; 981 982 pbp = cbp->bio_parent; 983 pbp->bio_children--; 984 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 985 size = pbp->bio_length / (sc->sc_ndisks - 1); 986 g_raid3_free(sc, cbp->bio_data, size); 987 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 988 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 989 G_RAID3_NEXT_BIO(cbp) = NULL; 990 g_destroy_bio(cbp); 991 } else { 992 G_RAID3_FOREACH_BIO(pbp, bp) { 993 if (G_RAID3_NEXT_BIO(bp) == cbp) 994 break; 995 } 996 if (bp != NULL) { 997 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 998 ("NULL bp->bio_driver1")); 999 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 1000 G_RAID3_NEXT_BIO(cbp) = NULL; 1001 } 1002 g_destroy_bio(cbp); 1003 } 1004 } 1005 1006 static struct bio * 1007 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 1008 { 1009 struct bio *bp, *cbp; 1010 size_t size; 1011 int memflag; 1012 1013 cbp = g_clone_bio(pbp); 1014 if (cbp == NULL) 1015 return (NULL); 1016 size = pbp->bio_length / (sc->sc_ndisks - 1); 1017 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 1018 memflag = M_WAITOK; 1019 else 1020 memflag = M_NOWAIT; 1021 cbp->bio_data = g_raid3_alloc(sc, size, memflag); 1022 if (cbp->bio_data == NULL) { 1023 pbp->bio_children--; 1024 g_destroy_bio(cbp); 1025 return (NULL); 1026 } 1027 G_RAID3_NEXT_BIO(cbp) = NULL; 1028 if (G_RAID3_HEAD_BIO(pbp) == NULL) 1029 G_RAID3_HEAD_BIO(pbp) = cbp; 1030 else { 1031 G_RAID3_FOREACH_BIO(pbp, bp) { 1032 if (G_RAID3_NEXT_BIO(bp) == NULL) { 1033 G_RAID3_NEXT_BIO(bp) = cbp; 1034 break; 1035 } 1036 } 1037 } 1038 return (cbp); 1039 } 1040 1041 static void 1042 g_raid3_scatter(struct bio *pbp) 1043 { 1044 struct g_raid3_softc *sc; 1045 struct g_raid3_disk *disk; 1046 struct bio *bp, *cbp, *tmpbp; 1047 off_t atom, cadd, padd, left; 1048 int first; 1049 1050 sc = pbp->bio_to->geom->softc; 1051 bp = NULL; 1052 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1053 /* 1054 * Find bio for which we should calculate data. 1055 */ 1056 G_RAID3_FOREACH_BIO(pbp, cbp) { 1057 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1058 bp = cbp; 1059 break; 1060 } 1061 } 1062 KASSERT(bp != NULL, ("NULL parity bio.")); 1063 } 1064 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1065 cadd = padd = 0; 1066 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1067 G_RAID3_FOREACH_BIO(pbp, cbp) { 1068 if (cbp == bp) 1069 continue; 1070 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 1071 padd += atom; 1072 } 1073 cadd += atom; 1074 } 1075 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1076 /* 1077 * Calculate parity. 1078 */ 1079 first = 1; 1080 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1081 if (cbp == bp) 1082 continue; 1083 if (first) { 1084 bcopy(cbp->bio_data, bp->bio_data, 1085 bp->bio_length); 1086 first = 0; 1087 } else { 1088 g_raid3_xor(cbp->bio_data, bp->bio_data, 1089 bp->bio_length); 1090 } 1091 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1092 g_raid3_destroy_bio(sc, cbp); 1093 } 1094 } 1095 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1096 struct g_consumer *cp; 1097 1098 disk = cbp->bio_caller2; 1099 cp = disk->d_consumer; 1100 cbp->bio_to = cp->provider; 1101 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1102 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1103 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1104 cp->acr, cp->acw, cp->ace)); 1105 cp->index++; 1106 sc->sc_writes++; 1107 g_io_request(cbp, cp); 1108 } 1109 } 1110 1111 static void 1112 g_raid3_gather(struct bio *pbp) 1113 { 1114 struct g_raid3_softc *sc; 1115 struct g_raid3_disk *disk; 1116 struct bio *xbp, *fbp, *cbp; 1117 off_t atom, cadd, padd, left; 1118 1119 sc = pbp->bio_to->geom->softc; 1120 /* 1121 * Find bio for which we have to calculate data. 1122 * While going through this path, check if all requests 1123 * succeeded, if not, deny whole request. 1124 * If we're in COMPLETE mode, we allow one request to fail, 1125 * so if we find one, we're sending it to the parity consumer. 1126 * If there are more failed requests, we deny whole request. 1127 */ 1128 xbp = fbp = NULL; 1129 G_RAID3_FOREACH_BIO(pbp, cbp) { 1130 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1131 KASSERT(xbp == NULL, ("More than one parity bio.")); 1132 xbp = cbp; 1133 } 1134 if (cbp->bio_error == 0) 1135 continue; 1136 /* 1137 * Found failed request. 1138 */ 1139 if (fbp == NULL) { 1140 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1141 /* 1142 * We are already in degraded mode, so we can't 1143 * accept any failures. 1144 */ 1145 if (pbp->bio_error == 0) 1146 pbp->bio_error = cbp->bio_error; 1147 } else { 1148 fbp = cbp; 1149 } 1150 } else { 1151 /* 1152 * Next failed request, that's too many. 1153 */ 1154 if (pbp->bio_error == 0) 1155 pbp->bio_error = fbp->bio_error; 1156 } 1157 disk = cbp->bio_caller2; 1158 if (disk == NULL) 1159 continue; 1160 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1161 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1162 G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", 1163 cbp->bio_error); 1164 } else { 1165 G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", 1166 cbp->bio_error); 1167 } 1168 if (g_raid3_disconnect_on_failure && 1169 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1170 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1171 g_raid3_event_send(disk, 1172 G_RAID3_DISK_STATE_DISCONNECTED, 1173 G_RAID3_EVENT_DONTWAIT); 1174 } 1175 } 1176 if (pbp->bio_error != 0) 1177 goto finish; 1178 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1179 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1180 if (xbp != fbp) 1181 g_raid3_replace_bio(xbp, fbp); 1182 g_raid3_destroy_bio(sc, fbp); 1183 } else if (fbp != NULL) { 1184 struct g_consumer *cp; 1185 1186 /* 1187 * One request failed, so send the same request to 1188 * the parity consumer. 1189 */ 1190 disk = pbp->bio_driver2; 1191 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1192 pbp->bio_error = fbp->bio_error; 1193 goto finish; 1194 } 1195 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1196 pbp->bio_inbed--; 1197 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1198 if (disk->d_no == sc->sc_ndisks - 1) 1199 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1200 fbp->bio_error = 0; 1201 fbp->bio_completed = 0; 1202 fbp->bio_children = 0; 1203 fbp->bio_inbed = 0; 1204 cp = disk->d_consumer; 1205 fbp->bio_caller2 = disk; 1206 fbp->bio_to = cp->provider; 1207 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1208 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1209 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1210 cp->acr, cp->acw, cp->ace)); 1211 cp->index++; 1212 g_io_request(fbp, cp); 1213 return; 1214 } 1215 if (xbp != NULL) { 1216 /* 1217 * Calculate parity. 1218 */ 1219 G_RAID3_FOREACH_BIO(pbp, cbp) { 1220 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1221 continue; 1222 g_raid3_xor(cbp->bio_data, xbp->bio_data, 1223 xbp->bio_length); 1224 } 1225 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1226 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1227 if (!g_raid3_is_zero(xbp)) { 1228 g_raid3_parity_mismatch++; 1229 pbp->bio_error = EIO; 1230 goto finish; 1231 } 1232 g_raid3_destroy_bio(sc, xbp); 1233 } 1234 } 1235 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1236 cadd = padd = 0; 1237 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1238 G_RAID3_FOREACH_BIO(pbp, cbp) { 1239 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1240 pbp->bio_completed += atom; 1241 padd += atom; 1242 } 1243 cadd += atom; 1244 } 1245 finish: 1246 if (pbp->bio_error == 0) 1247 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1248 else { 1249 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1250 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1251 else 1252 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1253 } 1254 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1255 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1256 g_raid3_destroy_bio(sc, cbp); 1257 g_io_deliver(pbp, pbp->bio_error); 1258 } 1259 1260 static void 1261 g_raid3_done(struct bio *bp) 1262 { 1263 struct g_raid3_softc *sc; 1264 1265 sc = bp->bio_from->geom->softc; 1266 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1267 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1268 mtx_lock(&sc->sc_queue_mtx); 1269 bioq_insert_head(&sc->sc_queue, bp); 1270 mtx_unlock(&sc->sc_queue_mtx); 1271 wakeup(sc); 1272 wakeup(&sc->sc_queue); 1273 } 1274 1275 static void 1276 g_raid3_regular_request(struct bio *cbp) 1277 { 1278 struct g_raid3_softc *sc; 1279 struct g_raid3_disk *disk; 1280 struct bio *pbp; 1281 1282 g_topology_assert_not(); 1283 1284 pbp = cbp->bio_parent; 1285 sc = pbp->bio_to->geom->softc; 1286 cbp->bio_from->index--; 1287 if (cbp->bio_cmd == BIO_WRITE) 1288 sc->sc_writes--; 1289 disk = cbp->bio_from->private; 1290 if (disk == NULL) { 1291 g_topology_lock(); 1292 g_raid3_kill_consumer(sc, cbp->bio_from); 1293 g_topology_unlock(); 1294 } 1295 1296 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1297 pbp->bio_inbed++; 1298 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1299 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1300 pbp->bio_children)); 1301 if (pbp->bio_inbed != pbp->bio_children) 1302 return; 1303 switch (pbp->bio_cmd) { 1304 case BIO_READ: 1305 g_raid3_gather(pbp); 1306 break; 1307 case BIO_WRITE: 1308 case BIO_DELETE: 1309 { 1310 int error = 0; 1311 1312 pbp->bio_completed = pbp->bio_length; 1313 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1314 if (cbp->bio_error == 0) { 1315 g_raid3_destroy_bio(sc, cbp); 1316 continue; 1317 } 1318 1319 if (error == 0) 1320 error = cbp->bio_error; 1321 else if (pbp->bio_error == 0) { 1322 /* 1323 * Next failed request, that's too many. 1324 */ 1325 pbp->bio_error = error; 1326 } 1327 1328 disk = cbp->bio_caller2; 1329 if (disk == NULL) { 1330 g_raid3_destroy_bio(sc, cbp); 1331 continue; 1332 } 1333 1334 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1335 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1336 G_RAID3_LOGREQ(0, cbp, 1337 "Request failed (error=%d).", 1338 cbp->bio_error); 1339 } else { 1340 G_RAID3_LOGREQ(1, cbp, 1341 "Request failed (error=%d).", 1342 cbp->bio_error); 1343 } 1344 if (g_raid3_disconnect_on_failure && 1345 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1346 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1347 g_raid3_event_send(disk, 1348 G_RAID3_DISK_STATE_DISCONNECTED, 1349 G_RAID3_EVENT_DONTWAIT); 1350 } 1351 g_raid3_destroy_bio(sc, cbp); 1352 } 1353 if (pbp->bio_error == 0) 1354 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1355 else 1356 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1357 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1358 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1359 bioq_remove(&sc->sc_inflight, pbp); 1360 /* Release delayed sync requests if possible. */ 1361 g_raid3_sync_release(sc); 1362 g_io_deliver(pbp, pbp->bio_error); 1363 break; 1364 } 1365 } 1366 } 1367 1368 static void 1369 g_raid3_sync_done(struct bio *bp) 1370 { 1371 struct g_raid3_softc *sc; 1372 1373 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1374 sc = bp->bio_from->geom->softc; 1375 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1376 mtx_lock(&sc->sc_queue_mtx); 1377 bioq_insert_head(&sc->sc_queue, bp); 1378 mtx_unlock(&sc->sc_queue_mtx); 1379 wakeup(sc); 1380 wakeup(&sc->sc_queue); 1381 } 1382 1383 static void 1384 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp) 1385 { 1386 struct bio_queue_head queue; 1387 struct g_raid3_disk *disk; 1388 struct g_consumer *cp; 1389 struct bio *cbp; 1390 u_int i; 1391 1392 bioq_init(&queue); 1393 for (i = 0; i < sc->sc_ndisks; i++) { 1394 disk = &sc->sc_disks[i]; 1395 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 1396 continue; 1397 cbp = g_clone_bio(bp); 1398 if (cbp == NULL) { 1399 for (cbp = bioq_first(&queue); cbp != NULL; 1400 cbp = bioq_first(&queue)) { 1401 bioq_remove(&queue, cbp); 1402 g_destroy_bio(cbp); 1403 } 1404 if (bp->bio_error == 0) 1405 bp->bio_error = ENOMEM; 1406 g_io_deliver(bp, bp->bio_error); 1407 return; 1408 } 1409 bioq_insert_tail(&queue, cbp); 1410 cbp->bio_done = g_std_done; 1411 cbp->bio_caller1 = disk; 1412 cbp->bio_to = disk->d_consumer->provider; 1413 } 1414 for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { 1415 bioq_remove(&queue, cbp); 1416 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1417 disk = cbp->bio_caller1; 1418 cbp->bio_caller1 = NULL; 1419 cp = disk->d_consumer; 1420 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1421 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1422 cp->acr, cp->acw, cp->ace)); 1423 g_io_request(cbp, disk->d_consumer); 1424 } 1425 } 1426 1427 static void 1428 g_raid3_start(struct bio *bp) 1429 { 1430 struct g_raid3_softc *sc; 1431 1432 sc = bp->bio_to->geom->softc; 1433 /* 1434 * If sc == NULL or there are no valid disks, provider's error 1435 * should be set and g_raid3_start() should not be called at all. 1436 */ 1437 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1438 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1439 ("Provider's error should be set (error=%d)(device=%s).", 1440 bp->bio_to->error, bp->bio_to->name)); 1441 G_RAID3_LOGREQ(3, bp, "Request received."); 1442 1443 switch (bp->bio_cmd) { 1444 case BIO_READ: 1445 case BIO_WRITE: 1446 case BIO_DELETE: 1447 break; 1448 case BIO_FLUSH: 1449 g_raid3_flush(sc, bp); 1450 return; 1451 case BIO_GETATTR: 1452 default: 1453 g_io_deliver(bp, EOPNOTSUPP); 1454 return; 1455 } 1456 mtx_lock(&sc->sc_queue_mtx); 1457 bioq_insert_tail(&sc->sc_queue, bp); 1458 mtx_unlock(&sc->sc_queue_mtx); 1459 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1460 wakeup(sc); 1461 } 1462 1463 /* 1464 * Return TRUE if the given request is colliding with a in-progress 1465 * synchronization request. 1466 */ 1467 static int 1468 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) 1469 { 1470 struct g_raid3_disk *disk; 1471 struct bio *sbp; 1472 off_t rstart, rend, sstart, send; 1473 int i; 1474 1475 disk = sc->sc_syncdisk; 1476 if (disk == NULL) 1477 return (0); 1478 rstart = bp->bio_offset; 1479 rend = bp->bio_offset + bp->bio_length; 1480 for (i = 0; i < g_raid3_syncreqs; i++) { 1481 sbp = disk->d_sync.ds_bios[i]; 1482 if (sbp == NULL) 1483 continue; 1484 sstart = sbp->bio_offset; 1485 send = sbp->bio_length; 1486 if (sbp->bio_cmd == BIO_WRITE) { 1487 sstart *= sc->sc_ndisks - 1; 1488 send *= sc->sc_ndisks - 1; 1489 } 1490 send += sstart; 1491 if (rend > sstart && rstart < send) 1492 return (1); 1493 } 1494 return (0); 1495 } 1496 1497 /* 1498 * Return TRUE if the given sync request is colliding with a in-progress regular 1499 * request. 1500 */ 1501 static int 1502 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) 1503 { 1504 off_t rstart, rend, sstart, send; 1505 struct bio *bp; 1506 1507 if (sc->sc_syncdisk == NULL) 1508 return (0); 1509 sstart = sbp->bio_offset; 1510 send = sstart + sbp->bio_length; 1511 TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { 1512 rstart = bp->bio_offset; 1513 rend = bp->bio_offset + bp->bio_length; 1514 if (rend > sstart && rstart < send) 1515 return (1); 1516 } 1517 return (0); 1518 } 1519 1520 /* 1521 * Puts request onto delayed queue. 1522 */ 1523 static void 1524 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) 1525 { 1526 1527 G_RAID3_LOGREQ(2, bp, "Delaying request."); 1528 bioq_insert_head(&sc->sc_regular_delayed, bp); 1529 } 1530 1531 /* 1532 * Puts synchronization request onto delayed queue. 1533 */ 1534 static void 1535 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) 1536 { 1537 1538 G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); 1539 bioq_insert_tail(&sc->sc_sync_delayed, bp); 1540 } 1541 1542 /* 1543 * Releases delayed regular requests which don't collide anymore with sync 1544 * requests. 1545 */ 1546 static void 1547 g_raid3_regular_release(struct g_raid3_softc *sc) 1548 { 1549 struct bio *bp, *bp2; 1550 1551 TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { 1552 if (g_raid3_sync_collision(sc, bp)) 1553 continue; 1554 bioq_remove(&sc->sc_regular_delayed, bp); 1555 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); 1556 mtx_lock(&sc->sc_queue_mtx); 1557 bioq_insert_head(&sc->sc_queue, bp); 1558 #if 0 1559 /* 1560 * wakeup() is not needed, because this function is called from 1561 * the worker thread. 1562 */ 1563 wakeup(&sc->sc_queue); 1564 #endif 1565 mtx_unlock(&sc->sc_queue_mtx); 1566 } 1567 } 1568 1569 /* 1570 * Releases delayed sync requests which don't collide anymore with regular 1571 * requests. 1572 */ 1573 static void 1574 g_raid3_sync_release(struct g_raid3_softc *sc) 1575 { 1576 struct bio *bp, *bp2; 1577 1578 TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { 1579 if (g_raid3_regular_collision(sc, bp)) 1580 continue; 1581 bioq_remove(&sc->sc_sync_delayed, bp); 1582 G_RAID3_LOGREQ(2, bp, 1583 "Releasing delayed synchronization request."); 1584 g_io_request(bp, bp->bio_from); 1585 } 1586 } 1587 1588 /* 1589 * Handle synchronization requests. 1590 * Every synchronization request is two-steps process: first, READ request is 1591 * send to active provider and then WRITE request (with read data) to the provider 1592 * being synchronized. When WRITE is finished, new synchronization request is 1593 * send. 1594 */ 1595 static void 1596 g_raid3_sync_request(struct bio *bp) 1597 { 1598 struct g_raid3_softc *sc; 1599 struct g_raid3_disk *disk; 1600 1601 bp->bio_from->index--; 1602 sc = bp->bio_from->geom->softc; 1603 disk = bp->bio_from->private; 1604 if (disk == NULL) { 1605 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 1606 g_topology_lock(); 1607 g_raid3_kill_consumer(sc, bp->bio_from); 1608 g_topology_unlock(); 1609 free(bp->bio_data, M_RAID3); 1610 g_destroy_bio(bp); 1611 sx_xlock(&sc->sc_lock); 1612 return; 1613 } 1614 1615 /* 1616 * Synchronization request. 1617 */ 1618 switch (bp->bio_cmd) { 1619 case BIO_READ: 1620 { 1621 struct g_consumer *cp; 1622 u_char *dst, *src; 1623 off_t left; 1624 u_int atom; 1625 1626 if (bp->bio_error != 0) { 1627 G_RAID3_LOGREQ(0, bp, 1628 "Synchronization request failed (error=%d).", 1629 bp->bio_error); 1630 g_destroy_bio(bp); 1631 return; 1632 } 1633 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1634 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1635 dst = src = bp->bio_data; 1636 if (disk->d_no == sc->sc_ndisks - 1) { 1637 u_int n; 1638 1639 /* Parity component. */ 1640 for (left = bp->bio_length; left > 0; 1641 left -= sc->sc_sectorsize) { 1642 bcopy(src, dst, atom); 1643 src += atom; 1644 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1645 g_raid3_xor(src, dst, atom); 1646 src += atom; 1647 } 1648 dst += atom; 1649 } 1650 } else { 1651 /* Regular component. */ 1652 src += atom * disk->d_no; 1653 for (left = bp->bio_length; left > 0; 1654 left -= sc->sc_sectorsize) { 1655 bcopy(src, dst, atom); 1656 src += sc->sc_sectorsize; 1657 dst += atom; 1658 } 1659 } 1660 bp->bio_driver1 = bp->bio_driver2 = NULL; 1661 bp->bio_pflags = 0; 1662 bp->bio_offset /= sc->sc_ndisks - 1; 1663 bp->bio_length /= sc->sc_ndisks - 1; 1664 bp->bio_cmd = BIO_WRITE; 1665 bp->bio_cflags = 0; 1666 bp->bio_children = bp->bio_inbed = 0; 1667 cp = disk->d_consumer; 1668 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1669 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1670 cp->acr, cp->acw, cp->ace)); 1671 cp->index++; 1672 g_io_request(bp, cp); 1673 return; 1674 } 1675 case BIO_WRITE: 1676 { 1677 struct g_raid3_disk_sync *sync; 1678 off_t boffset, moffset; 1679 void *data; 1680 int i; 1681 1682 if (bp->bio_error != 0) { 1683 G_RAID3_LOGREQ(0, bp, 1684 "Synchronization request failed (error=%d).", 1685 bp->bio_error); 1686 g_destroy_bio(bp); 1687 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1688 g_raid3_event_send(disk, 1689 G_RAID3_DISK_STATE_DISCONNECTED, 1690 G_RAID3_EVENT_DONTWAIT); 1691 return; 1692 } 1693 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1694 sync = &disk->d_sync; 1695 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || 1696 sync->ds_consumer == NULL || 1697 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1698 /* Don't send more synchronization requests. */ 1699 sync->ds_inflight--; 1700 if (sync->ds_bios != NULL) { 1701 i = (int)(uintptr_t)bp->bio_caller1; 1702 sync->ds_bios[i] = NULL; 1703 } 1704 free(bp->bio_data, M_RAID3); 1705 g_destroy_bio(bp); 1706 if (sync->ds_inflight > 0) 1707 return; 1708 if (sync->ds_consumer == NULL || 1709 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1710 return; 1711 } 1712 /* 1713 * Disk up-to-date, activate it. 1714 */ 1715 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1716 G_RAID3_EVENT_DONTWAIT); 1717 return; 1718 } 1719 1720 /* Send next synchronization request. */ 1721 data = bp->bio_data; 1722 g_reset_bio(bp); 1723 bp->bio_cmd = BIO_READ; 1724 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); 1725 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 1726 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1727 bp->bio_done = g_raid3_sync_done; 1728 bp->bio_data = data; 1729 bp->bio_from = sync->ds_consumer; 1730 bp->bio_to = sc->sc_provider; 1731 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1732 sync->ds_consumer->index++; 1733 /* 1734 * Delay the request if it is colliding with a regular request. 1735 */ 1736 if (g_raid3_regular_collision(sc, bp)) 1737 g_raid3_sync_delay(sc, bp); 1738 else 1739 g_io_request(bp, sync->ds_consumer); 1740 1741 /* Release delayed requests if possible. */ 1742 g_raid3_regular_release(sc); 1743 1744 /* Find the smallest offset. */ 1745 moffset = sc->sc_mediasize; 1746 for (i = 0; i < g_raid3_syncreqs; i++) { 1747 bp = sync->ds_bios[i]; 1748 boffset = bp->bio_offset; 1749 if (bp->bio_cmd == BIO_WRITE) 1750 boffset *= sc->sc_ndisks - 1; 1751 if (boffset < moffset) 1752 moffset = boffset; 1753 } 1754 if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) { 1755 /* Update offset_done on every 100 blocks. */ 1756 sync->ds_offset_done = moffset; 1757 g_raid3_update_metadata(disk); 1758 } 1759 return; 1760 } 1761 default: 1762 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1763 bp->bio_cmd, sc->sc_name)); 1764 break; 1765 } 1766 } 1767 1768 static int 1769 g_raid3_register_request(struct bio *pbp) 1770 { 1771 struct g_raid3_softc *sc; 1772 struct g_raid3_disk *disk; 1773 struct g_consumer *cp; 1774 struct bio *cbp, *tmpbp; 1775 off_t offset, length; 1776 u_int n, ndisks; 1777 int round_robin, verify; 1778 1779 ndisks = 0; 1780 sc = pbp->bio_to->geom->softc; 1781 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1782 sc->sc_syncdisk == NULL) { 1783 g_io_deliver(pbp, EIO); 1784 return (0); 1785 } 1786 g_raid3_init_bio(pbp); 1787 length = pbp->bio_length / (sc->sc_ndisks - 1); 1788 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1789 round_robin = verify = 0; 1790 switch (pbp->bio_cmd) { 1791 case BIO_READ: 1792 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1793 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1794 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1795 verify = 1; 1796 ndisks = sc->sc_ndisks; 1797 } else { 1798 verify = 0; 1799 ndisks = sc->sc_ndisks - 1; 1800 } 1801 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1802 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1803 round_robin = 1; 1804 } else { 1805 round_robin = 0; 1806 } 1807 KASSERT(!round_robin || !verify, 1808 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1809 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1810 break; 1811 case BIO_WRITE: 1812 case BIO_DELETE: 1813 /* 1814 * Delay the request if it is colliding with a synchronization 1815 * request. 1816 */ 1817 if (g_raid3_sync_collision(sc, pbp)) { 1818 g_raid3_regular_delay(sc, pbp); 1819 return (0); 1820 } 1821 1822 if (sc->sc_idle) 1823 g_raid3_unidle(sc); 1824 else 1825 sc->sc_last_write = time_uptime; 1826 1827 ndisks = sc->sc_ndisks; 1828 break; 1829 } 1830 for (n = 0; n < ndisks; n++) { 1831 disk = &sc->sc_disks[n]; 1832 cbp = g_raid3_clone_bio(sc, pbp); 1833 if (cbp == NULL) { 1834 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1835 g_raid3_destroy_bio(sc, cbp); 1836 /* 1837 * To prevent deadlock, we must run back up 1838 * with the ENOMEM for failed requests of any 1839 * of our consumers. Our own sync requests 1840 * can stick around, as they are finite. 1841 */ 1842 if ((pbp->bio_cflags & 1843 G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1844 g_io_deliver(pbp, ENOMEM); 1845 return (0); 1846 } 1847 return (ENOMEM); 1848 } 1849 cbp->bio_offset = offset; 1850 cbp->bio_length = length; 1851 cbp->bio_done = g_raid3_done; 1852 switch (pbp->bio_cmd) { 1853 case BIO_READ: 1854 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1855 /* 1856 * Replace invalid component with the parity 1857 * component. 1858 */ 1859 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1860 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1861 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1862 } else if (round_robin && 1863 disk->d_no == sc->sc_round_robin) { 1864 /* 1865 * In round-robin mode skip one data component 1866 * and use parity component when reading. 1867 */ 1868 pbp->bio_driver2 = disk; 1869 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1870 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1871 sc->sc_round_robin++; 1872 round_robin = 0; 1873 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1874 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1875 } 1876 break; 1877 case BIO_WRITE: 1878 case BIO_DELETE: 1879 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1880 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1881 if (n == ndisks - 1) { 1882 /* 1883 * Active parity component, mark it as such. 1884 */ 1885 cbp->bio_cflags |= 1886 G_RAID3_BIO_CFLAG_PARITY; 1887 } 1888 } else { 1889 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1890 if (n == ndisks - 1) { 1891 /* 1892 * Parity component is not connected, 1893 * so destroy its request. 1894 */ 1895 pbp->bio_pflags |= 1896 G_RAID3_BIO_PFLAG_NOPARITY; 1897 g_raid3_destroy_bio(sc, cbp); 1898 cbp = NULL; 1899 } else { 1900 cbp->bio_cflags |= 1901 G_RAID3_BIO_CFLAG_NODISK; 1902 disk = NULL; 1903 } 1904 } 1905 break; 1906 } 1907 if (cbp != NULL) 1908 cbp->bio_caller2 = disk; 1909 } 1910 switch (pbp->bio_cmd) { 1911 case BIO_READ: 1912 if (round_robin) { 1913 /* 1914 * If we are in round-robin mode and 'round_robin' is 1915 * still 1, it means, that we skipped parity component 1916 * for this read and must reset sc_round_robin field. 1917 */ 1918 sc->sc_round_robin = 0; 1919 } 1920 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1921 disk = cbp->bio_caller2; 1922 cp = disk->d_consumer; 1923 cbp->bio_to = cp->provider; 1924 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1925 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1926 ("Consumer %s not opened (r%dw%de%d).", 1927 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1928 cp->index++; 1929 g_io_request(cbp, cp); 1930 } 1931 break; 1932 case BIO_WRITE: 1933 case BIO_DELETE: 1934 /* 1935 * Put request onto inflight queue, so we can check if new 1936 * synchronization requests don't collide with it. 1937 */ 1938 bioq_insert_tail(&sc->sc_inflight, pbp); 1939 1940 /* 1941 * Bump syncid on first write. 1942 */ 1943 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { 1944 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 1945 g_raid3_bump_syncid(sc); 1946 } 1947 g_raid3_scatter(pbp); 1948 break; 1949 } 1950 return (0); 1951 } 1952 1953 static int 1954 g_raid3_can_destroy(struct g_raid3_softc *sc) 1955 { 1956 struct g_geom *gp; 1957 struct g_consumer *cp; 1958 1959 g_topology_assert(); 1960 gp = sc->sc_geom; 1961 if (gp->softc == NULL) 1962 return (1); 1963 LIST_FOREACH(cp, &gp->consumer, consumer) { 1964 if (g_raid3_is_busy(sc, cp)) 1965 return (0); 1966 } 1967 gp = sc->sc_sync.ds_geom; 1968 LIST_FOREACH(cp, &gp->consumer, consumer) { 1969 if (g_raid3_is_busy(sc, cp)) 1970 return (0); 1971 } 1972 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1973 sc->sc_name); 1974 return (1); 1975 } 1976 1977 static int 1978 g_raid3_try_destroy(struct g_raid3_softc *sc) 1979 { 1980 1981 g_topology_assert_not(); 1982 sx_assert(&sc->sc_lock, SX_XLOCKED); 1983 1984 if (sc->sc_rootmount != NULL) { 1985 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 1986 sc->sc_rootmount); 1987 root_mount_rel(sc->sc_rootmount); 1988 sc->sc_rootmount = NULL; 1989 } 1990 1991 g_topology_lock(); 1992 if (!g_raid3_can_destroy(sc)) { 1993 g_topology_unlock(); 1994 return (0); 1995 } 1996 sc->sc_geom->softc = NULL; 1997 sc->sc_sync.ds_geom->softc = NULL; 1998 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 1999 g_topology_unlock(); 2000 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2001 &sc->sc_worker); 2002 /* Unlock sc_lock here, as it can be destroyed after wakeup. */ 2003 sx_xunlock(&sc->sc_lock); 2004 wakeup(&sc->sc_worker); 2005 sc->sc_worker = NULL; 2006 } else { 2007 g_topology_unlock(); 2008 g_raid3_destroy_device(sc); 2009 free(sc->sc_disks, M_RAID3); 2010 free(sc, M_RAID3); 2011 } 2012 return (1); 2013 } 2014 2015 /* 2016 * Worker thread. 2017 */ 2018 static void 2019 g_raid3_worker(void *arg) 2020 { 2021 struct g_raid3_softc *sc; 2022 struct g_raid3_event *ep; 2023 struct bio *bp; 2024 int timeout; 2025 2026 sc = arg; 2027 thread_lock(curthread); 2028 sched_prio(curthread, PRIBIO); 2029 thread_unlock(curthread); 2030 2031 sx_xlock(&sc->sc_lock); 2032 for (;;) { 2033 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 2034 /* 2035 * First take a look at events. 2036 * This is important to handle events before any I/O requests. 2037 */ 2038 ep = g_raid3_event_get(sc); 2039 if (ep != NULL) { 2040 g_raid3_event_remove(sc, ep); 2041 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 2042 /* Update only device status. */ 2043 G_RAID3_DEBUG(3, 2044 "Running event for device %s.", 2045 sc->sc_name); 2046 ep->e_error = 0; 2047 g_raid3_update_device(sc, 1); 2048 } else { 2049 /* Update disk status. */ 2050 G_RAID3_DEBUG(3, "Running event for disk %s.", 2051 g_raid3_get_diskname(ep->e_disk)); 2052 ep->e_error = g_raid3_update_disk(ep->e_disk, 2053 ep->e_state); 2054 if (ep->e_error == 0) 2055 g_raid3_update_device(sc, 0); 2056 } 2057 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 2058 KASSERT(ep->e_error == 0, 2059 ("Error cannot be handled.")); 2060 g_raid3_event_free(ep); 2061 } else { 2062 ep->e_flags |= G_RAID3_EVENT_DONE; 2063 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2064 ep); 2065 mtx_lock(&sc->sc_events_mtx); 2066 wakeup(ep); 2067 mtx_unlock(&sc->sc_events_mtx); 2068 } 2069 if ((sc->sc_flags & 2070 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2071 if (g_raid3_try_destroy(sc)) { 2072 curthread->td_pflags &= ~TDP_GEOM; 2073 G_RAID3_DEBUG(1, "Thread exiting."); 2074 kproc_exit(0); 2075 } 2076 } 2077 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 2078 continue; 2079 } 2080 /* 2081 * Check if we can mark array as CLEAN and if we can't take 2082 * how much seconds should we wait. 2083 */ 2084 timeout = g_raid3_idle(sc, -1); 2085 /* 2086 * Now I/O requests. 2087 */ 2088 /* Get first request from the queue. */ 2089 mtx_lock(&sc->sc_queue_mtx); 2090 bp = bioq_first(&sc->sc_queue); 2091 if (bp == NULL) { 2092 if ((sc->sc_flags & 2093 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2094 mtx_unlock(&sc->sc_queue_mtx); 2095 if (g_raid3_try_destroy(sc)) { 2096 curthread->td_pflags &= ~TDP_GEOM; 2097 G_RAID3_DEBUG(1, "Thread exiting."); 2098 kproc_exit(0); 2099 } 2100 mtx_lock(&sc->sc_queue_mtx); 2101 } 2102 sx_xunlock(&sc->sc_lock); 2103 /* 2104 * XXX: We can miss an event here, because an event 2105 * can be added without sx-device-lock and without 2106 * mtx-queue-lock. Maybe I should just stop using 2107 * dedicated mutex for events synchronization and 2108 * stick with the queue lock? 2109 * The event will hang here until next I/O request 2110 * or next event is received. 2111 */ 2112 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", 2113 timeout * hz); 2114 sx_xlock(&sc->sc_lock); 2115 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 2116 continue; 2117 } 2118 process: 2119 bioq_remove(&sc->sc_queue, bp); 2120 mtx_unlock(&sc->sc_queue_mtx); 2121 2122 if (bp->bio_from->geom == sc->sc_sync.ds_geom && 2123 (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 2124 g_raid3_sync_request(bp); /* READ */ 2125 } else if (bp->bio_to != sc->sc_provider) { 2126 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 2127 g_raid3_regular_request(bp); 2128 else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) 2129 g_raid3_sync_request(bp); /* WRITE */ 2130 else { 2131 KASSERT(0, 2132 ("Invalid request cflags=0x%hx to=%s.", 2133 bp->bio_cflags, bp->bio_to->name)); 2134 } 2135 } else if (g_raid3_register_request(bp) != 0) { 2136 mtx_lock(&sc->sc_queue_mtx); 2137 bioq_insert_head(&sc->sc_queue, bp); 2138 /* 2139 * We are short in memory, let see if there are finished 2140 * request we can free. 2141 */ 2142 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2143 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) 2144 goto process; 2145 } 2146 /* 2147 * No finished regular request, so at least keep 2148 * synchronization running. 2149 */ 2150 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2151 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) 2152 goto process; 2153 } 2154 sx_xunlock(&sc->sc_lock); 2155 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, 2156 "r3:lowmem", hz / 10); 2157 sx_xlock(&sc->sc_lock); 2158 } 2159 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); 2160 } 2161 } 2162 2163 static void 2164 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) 2165 { 2166 2167 sx_assert(&sc->sc_lock, SX_LOCKED); 2168 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 2169 return; 2170 if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 2171 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 2172 g_raid3_get_diskname(disk), sc->sc_name); 2173 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2174 } else if (sc->sc_idle && 2175 (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { 2176 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 2177 g_raid3_get_diskname(disk), sc->sc_name); 2178 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2179 } 2180 } 2181 2182 static void 2183 g_raid3_sync_start(struct g_raid3_softc *sc) 2184 { 2185 struct g_raid3_disk *disk; 2186 struct g_consumer *cp; 2187 struct bio *bp; 2188 int error; 2189 u_int n; 2190 2191 g_topology_assert_not(); 2192 sx_assert(&sc->sc_lock, SX_XLOCKED); 2193 2194 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2195 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2196 sc->sc_state)); 2197 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 2198 sc->sc_name, sc->sc_state)); 2199 disk = NULL; 2200 for (n = 0; n < sc->sc_ndisks; n++) { 2201 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 2202 continue; 2203 disk = &sc->sc_disks[n]; 2204 break; 2205 } 2206 if (disk == NULL) 2207 return; 2208 2209 sx_xunlock(&sc->sc_lock); 2210 g_topology_lock(); 2211 cp = g_new_consumer(sc->sc_sync.ds_geom); 2212 error = g_attach(cp, sc->sc_provider); 2213 KASSERT(error == 0, 2214 ("Cannot attach to %s (error=%d).", sc->sc_name, error)); 2215 error = g_access(cp, 1, 0, 0); 2216 KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); 2217 g_topology_unlock(); 2218 sx_xlock(&sc->sc_lock); 2219 2220 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 2221 g_raid3_get_diskname(disk)); 2222 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0) 2223 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2224 KASSERT(disk->d_sync.ds_consumer == NULL, 2225 ("Sync consumer already exists (device=%s, disk=%s).", 2226 sc->sc_name, g_raid3_get_diskname(disk))); 2227 2228 disk->d_sync.ds_consumer = cp; 2229 disk->d_sync.ds_consumer->private = disk; 2230 disk->d_sync.ds_consumer->index = 0; 2231 sc->sc_syncdisk = disk; 2232 2233 /* 2234 * Allocate memory for synchronization bios and initialize them. 2235 */ 2236 disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, 2237 M_RAID3, M_WAITOK); 2238 for (n = 0; n < g_raid3_syncreqs; n++) { 2239 bp = g_alloc_bio(); 2240 disk->d_sync.ds_bios[n] = bp; 2241 bp->bio_parent = NULL; 2242 bp->bio_cmd = BIO_READ; 2243 bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); 2244 bp->bio_cflags = 0; 2245 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 2246 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 2247 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 2248 bp->bio_done = g_raid3_sync_done; 2249 bp->bio_from = disk->d_sync.ds_consumer; 2250 bp->bio_to = sc->sc_provider; 2251 bp->bio_caller1 = (void *)(uintptr_t)n; 2252 } 2253 2254 /* Set the number of in-flight synchronization requests. */ 2255 disk->d_sync.ds_inflight = g_raid3_syncreqs; 2256 2257 /* 2258 * Fire off first synchronization requests. 2259 */ 2260 for (n = 0; n < g_raid3_syncreqs; n++) { 2261 bp = disk->d_sync.ds_bios[n]; 2262 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 2263 disk->d_sync.ds_consumer->index++; 2264 /* 2265 * Delay the request if it is colliding with a regular request. 2266 */ 2267 if (g_raid3_regular_collision(sc, bp)) 2268 g_raid3_sync_delay(sc, bp); 2269 else 2270 g_io_request(bp, disk->d_sync.ds_consumer); 2271 } 2272 } 2273 2274 /* 2275 * Stop synchronization process. 2276 * type: 0 - synchronization finished 2277 * 1 - synchronization stopped 2278 */ 2279 static void 2280 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 2281 { 2282 struct g_raid3_disk *disk; 2283 struct g_consumer *cp; 2284 2285 g_topology_assert_not(); 2286 sx_assert(&sc->sc_lock, SX_LOCKED); 2287 2288 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2289 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2290 sc->sc_state)); 2291 disk = sc->sc_syncdisk; 2292 sc->sc_syncdisk = NULL; 2293 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 2294 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2295 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2296 g_raid3_disk_state2str(disk->d_state))); 2297 if (disk->d_sync.ds_consumer == NULL) 2298 return; 2299 2300 if (type == 0) { 2301 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 2302 sc->sc_name, g_raid3_get_diskname(disk)); 2303 } else /* if (type == 1) */ { 2304 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 2305 sc->sc_name, g_raid3_get_diskname(disk)); 2306 } 2307 free(disk->d_sync.ds_bios, M_RAID3); 2308 disk->d_sync.ds_bios = NULL; 2309 cp = disk->d_sync.ds_consumer; 2310 disk->d_sync.ds_consumer = NULL; 2311 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2312 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 2313 g_topology_lock(); 2314 g_raid3_kill_consumer(sc, cp); 2315 g_topology_unlock(); 2316 sx_xlock(&sc->sc_lock); 2317 } 2318 2319 static void 2320 g_raid3_launch_provider(struct g_raid3_softc *sc) 2321 { 2322 struct g_provider *pp; 2323 struct g_raid3_disk *disk; 2324 int n; 2325 2326 sx_assert(&sc->sc_lock, SX_LOCKED); 2327 2328 g_topology_lock(); 2329 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2330 pp->mediasize = sc->sc_mediasize; 2331 pp->sectorsize = sc->sc_sectorsize; 2332 pp->stripesize = 0; 2333 pp->stripeoffset = 0; 2334 for (n = 0; n < sc->sc_ndisks; n++) { 2335 disk = &sc->sc_disks[n]; 2336 if (disk->d_consumer && disk->d_consumer->provider && 2337 disk->d_consumer->provider->stripesize > pp->stripesize) { 2338 pp->stripesize = disk->d_consumer->provider->stripesize; 2339 pp->stripeoffset = disk->d_consumer->provider->stripeoffset; 2340 } 2341 } 2342 pp->stripesize *= sc->sc_ndisks - 1; 2343 pp->stripeoffset *= sc->sc_ndisks - 1; 2344 sc->sc_provider = pp; 2345 g_error_provider(pp, 0); 2346 g_topology_unlock(); 2347 G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name, 2348 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks); 2349 2350 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2351 g_raid3_sync_start(sc); 2352 } 2353 2354 static void 2355 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2356 { 2357 struct bio *bp; 2358 2359 g_topology_assert_not(); 2360 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2361 sc->sc_name)); 2362 2363 g_topology_lock(); 2364 g_error_provider(sc->sc_provider, ENXIO); 2365 mtx_lock(&sc->sc_queue_mtx); 2366 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2367 bioq_remove(&sc->sc_queue, bp); 2368 g_io_deliver(bp, ENXIO); 2369 } 2370 mtx_unlock(&sc->sc_queue_mtx); 2371 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2372 sc->sc_provider->name); 2373 g_wither_provider(sc->sc_provider, ENXIO); 2374 g_topology_unlock(); 2375 sc->sc_provider = NULL; 2376 if (sc->sc_syncdisk != NULL) 2377 g_raid3_sync_stop(sc, 1); 2378 } 2379 2380 static void 2381 g_raid3_go(void *arg) 2382 { 2383 struct g_raid3_softc *sc; 2384 2385 sc = arg; 2386 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2387 g_raid3_event_send(sc, 0, 2388 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2389 } 2390 2391 static u_int 2392 g_raid3_determine_state(struct g_raid3_disk *disk) 2393 { 2394 struct g_raid3_softc *sc; 2395 u_int state; 2396 2397 sc = disk->d_softc; 2398 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2399 if ((disk->d_flags & 2400 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2401 /* Disk does not need synchronization. */ 2402 state = G_RAID3_DISK_STATE_ACTIVE; 2403 } else { 2404 if ((sc->sc_flags & 2405 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2406 (disk->d_flags & 2407 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2408 /* 2409 * We can start synchronization from 2410 * the stored offset. 2411 */ 2412 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2413 } else { 2414 state = G_RAID3_DISK_STATE_STALE; 2415 } 2416 } 2417 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2418 /* 2419 * Reset all synchronization data for this disk, 2420 * because if it even was synchronized, it was 2421 * synchronized to disks with different syncid. 2422 */ 2423 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2424 disk->d_sync.ds_offset = 0; 2425 disk->d_sync.ds_offset_done = 0; 2426 disk->d_sync.ds_syncid = sc->sc_syncid; 2427 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2428 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2429 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2430 } else { 2431 state = G_RAID3_DISK_STATE_STALE; 2432 } 2433 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2434 /* 2435 * Not good, NOT GOOD! 2436 * It means that device was started on stale disks 2437 * and more fresh disk just arrive. 2438 * If there were writes, device is broken, sorry. 2439 * I think the best choice here is don't touch 2440 * this disk and inform the user loudly. 2441 */ 2442 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2443 "disk (%s) arrives!! It will not be connected to the " 2444 "running device.", sc->sc_name, 2445 g_raid3_get_diskname(disk)); 2446 g_raid3_destroy_disk(disk); 2447 state = G_RAID3_DISK_STATE_NONE; 2448 /* Return immediately, because disk was destroyed. */ 2449 return (state); 2450 } 2451 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2452 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2453 return (state); 2454 } 2455 2456 /* 2457 * Update device state. 2458 */ 2459 static void 2460 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2461 { 2462 struct g_raid3_disk *disk; 2463 u_int state; 2464 2465 sx_assert(&sc->sc_lock, SX_XLOCKED); 2466 2467 switch (sc->sc_state) { 2468 case G_RAID3_DEVICE_STATE_STARTING: 2469 { 2470 u_int n, ndirty, ndisks, genid, syncid; 2471 2472 KASSERT(sc->sc_provider == NULL, 2473 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2474 /* 2475 * Are we ready? We are, if all disks are connected or 2476 * one disk is missing and 'force' is true. 2477 */ 2478 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2479 if (!force) 2480 callout_drain(&sc->sc_callout); 2481 } else { 2482 if (force) { 2483 /* 2484 * Timeout expired, so destroy device. 2485 */ 2486 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2487 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", 2488 __LINE__, sc->sc_rootmount); 2489 root_mount_rel(sc->sc_rootmount); 2490 sc->sc_rootmount = NULL; 2491 } 2492 return; 2493 } 2494 2495 /* 2496 * Find the biggest genid. 2497 */ 2498 genid = 0; 2499 for (n = 0; n < sc->sc_ndisks; n++) { 2500 disk = &sc->sc_disks[n]; 2501 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2502 continue; 2503 if (disk->d_genid > genid) 2504 genid = disk->d_genid; 2505 } 2506 sc->sc_genid = genid; 2507 /* 2508 * Remove all disks without the biggest genid. 2509 */ 2510 for (n = 0; n < sc->sc_ndisks; n++) { 2511 disk = &sc->sc_disks[n]; 2512 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2513 continue; 2514 if (disk->d_genid < genid) { 2515 G_RAID3_DEBUG(0, 2516 "Component %s (device %s) broken, skipping.", 2517 g_raid3_get_diskname(disk), sc->sc_name); 2518 g_raid3_destroy_disk(disk); 2519 } 2520 } 2521 2522 /* 2523 * There must be at least 'sc->sc_ndisks - 1' components 2524 * with the same syncid and without SYNCHRONIZING flag. 2525 */ 2526 2527 /* 2528 * Find the biggest syncid, number of valid components and 2529 * number of dirty components. 2530 */ 2531 ndirty = ndisks = syncid = 0; 2532 for (n = 0; n < sc->sc_ndisks; n++) { 2533 disk = &sc->sc_disks[n]; 2534 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2535 continue; 2536 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2537 ndirty++; 2538 if (disk->d_sync.ds_syncid > syncid) { 2539 syncid = disk->d_sync.ds_syncid; 2540 ndisks = 0; 2541 } else if (disk->d_sync.ds_syncid < syncid) { 2542 continue; 2543 } 2544 if ((disk->d_flags & 2545 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2546 continue; 2547 } 2548 ndisks++; 2549 } 2550 /* 2551 * Do we have enough valid components? 2552 */ 2553 if (ndisks + 1 < sc->sc_ndisks) { 2554 G_RAID3_DEBUG(0, 2555 "Device %s is broken, too few valid components.", 2556 sc->sc_name); 2557 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2558 return; 2559 } 2560 /* 2561 * If there is one DIRTY component and all disks are present, 2562 * mark it for synchronization. If there is more than one DIRTY 2563 * component, mark parity component for synchronization. 2564 */ 2565 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2566 for (n = 0; n < sc->sc_ndisks; n++) { 2567 disk = &sc->sc_disks[n]; 2568 if ((disk->d_flags & 2569 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2570 continue; 2571 } 2572 disk->d_flags |= 2573 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2574 } 2575 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2576 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2577 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2578 } 2579 2580 sc->sc_syncid = syncid; 2581 if (force) { 2582 /* Remember to bump syncid on first write. */ 2583 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2584 } 2585 if (ndisks == sc->sc_ndisks) 2586 state = G_RAID3_DEVICE_STATE_COMPLETE; 2587 else /* if (ndisks == sc->sc_ndisks - 1) */ 2588 state = G_RAID3_DEVICE_STATE_DEGRADED; 2589 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2590 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2591 g_raid3_device_state2str(state)); 2592 sc->sc_state = state; 2593 for (n = 0; n < sc->sc_ndisks; n++) { 2594 disk = &sc->sc_disks[n]; 2595 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2596 continue; 2597 state = g_raid3_determine_state(disk); 2598 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2599 if (state == G_RAID3_DISK_STATE_STALE) 2600 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2601 } 2602 break; 2603 } 2604 case G_RAID3_DEVICE_STATE_DEGRADED: 2605 /* 2606 * Genid need to be bumped immediately, so do it here. 2607 */ 2608 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2609 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2610 g_raid3_bump_genid(sc); 2611 } 2612 2613 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2614 return; 2615 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2616 sc->sc_ndisks - 1) { 2617 if (sc->sc_provider != NULL) 2618 g_raid3_destroy_provider(sc); 2619 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2620 return; 2621 } 2622 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2623 sc->sc_ndisks) { 2624 state = G_RAID3_DEVICE_STATE_COMPLETE; 2625 G_RAID3_DEBUG(1, 2626 "Device %s state changed from %s to %s.", 2627 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2628 g_raid3_device_state2str(state)); 2629 sc->sc_state = state; 2630 } 2631 if (sc->sc_provider == NULL) 2632 g_raid3_launch_provider(sc); 2633 if (sc->sc_rootmount != NULL) { 2634 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2635 sc->sc_rootmount); 2636 root_mount_rel(sc->sc_rootmount); 2637 sc->sc_rootmount = NULL; 2638 } 2639 break; 2640 case G_RAID3_DEVICE_STATE_COMPLETE: 2641 /* 2642 * Genid need to be bumped immediately, so do it here. 2643 */ 2644 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2645 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2646 g_raid3_bump_genid(sc); 2647 } 2648 2649 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2650 return; 2651 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2652 sc->sc_ndisks - 1, 2653 ("Too few ACTIVE components in COMPLETE state (device %s).", 2654 sc->sc_name)); 2655 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2656 sc->sc_ndisks - 1) { 2657 state = G_RAID3_DEVICE_STATE_DEGRADED; 2658 G_RAID3_DEBUG(1, 2659 "Device %s state changed from %s to %s.", 2660 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2661 g_raid3_device_state2str(state)); 2662 sc->sc_state = state; 2663 } 2664 if (sc->sc_provider == NULL) 2665 g_raid3_launch_provider(sc); 2666 if (sc->sc_rootmount != NULL) { 2667 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2668 sc->sc_rootmount); 2669 root_mount_rel(sc->sc_rootmount); 2670 sc->sc_rootmount = NULL; 2671 } 2672 break; 2673 default: 2674 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2675 g_raid3_device_state2str(sc->sc_state))); 2676 break; 2677 } 2678 } 2679 2680 /* 2681 * Update disk state and device state if needed. 2682 */ 2683 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2684 "Disk %s state changed from %s to %s (device %s).", \ 2685 g_raid3_get_diskname(disk), \ 2686 g_raid3_disk_state2str(disk->d_state), \ 2687 g_raid3_disk_state2str(state), sc->sc_name) 2688 static int 2689 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2690 { 2691 struct g_raid3_softc *sc; 2692 2693 sc = disk->d_softc; 2694 sx_assert(&sc->sc_lock, SX_XLOCKED); 2695 2696 again: 2697 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2698 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2699 g_raid3_disk_state2str(state)); 2700 switch (state) { 2701 case G_RAID3_DISK_STATE_NEW: 2702 /* 2703 * Possible scenarios: 2704 * 1. New disk arrive. 2705 */ 2706 /* Previous state should be NONE. */ 2707 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2708 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2709 g_raid3_disk_state2str(disk->d_state))); 2710 DISK_STATE_CHANGED(); 2711 2712 disk->d_state = state; 2713 G_RAID3_DEBUG(1, "Device %s: provider %s detected.", 2714 sc->sc_name, g_raid3_get_diskname(disk)); 2715 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2716 break; 2717 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2718 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2719 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2720 g_raid3_device_state2str(sc->sc_state), 2721 g_raid3_get_diskname(disk), 2722 g_raid3_disk_state2str(disk->d_state))); 2723 state = g_raid3_determine_state(disk); 2724 if (state != G_RAID3_DISK_STATE_NONE) 2725 goto again; 2726 break; 2727 case G_RAID3_DISK_STATE_ACTIVE: 2728 /* 2729 * Possible scenarios: 2730 * 1. New disk does not need synchronization. 2731 * 2. Synchronization process finished successfully. 2732 */ 2733 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2734 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2735 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2736 g_raid3_device_state2str(sc->sc_state), 2737 g_raid3_get_diskname(disk), 2738 g_raid3_disk_state2str(disk->d_state))); 2739 /* Previous state should be NEW or SYNCHRONIZING. */ 2740 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2741 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2742 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2743 g_raid3_disk_state2str(disk->d_state))); 2744 DISK_STATE_CHANGED(); 2745 2746 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2747 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2748 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2749 g_raid3_sync_stop(sc, 0); 2750 } 2751 disk->d_state = state; 2752 disk->d_sync.ds_offset = 0; 2753 disk->d_sync.ds_offset_done = 0; 2754 g_raid3_update_idle(sc, disk); 2755 g_raid3_update_metadata(disk); 2756 G_RAID3_DEBUG(1, "Device %s: provider %s activated.", 2757 sc->sc_name, g_raid3_get_diskname(disk)); 2758 break; 2759 case G_RAID3_DISK_STATE_STALE: 2760 /* 2761 * Possible scenarios: 2762 * 1. Stale disk was connected. 2763 */ 2764 /* Previous state should be NEW. */ 2765 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2766 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2767 g_raid3_disk_state2str(disk->d_state))); 2768 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2769 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2770 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2771 g_raid3_device_state2str(sc->sc_state), 2772 g_raid3_get_diskname(disk), 2773 g_raid3_disk_state2str(disk->d_state))); 2774 /* 2775 * STALE state is only possible if device is marked 2776 * NOAUTOSYNC. 2777 */ 2778 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2779 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2780 g_raid3_device_state2str(sc->sc_state), 2781 g_raid3_get_diskname(disk), 2782 g_raid3_disk_state2str(disk->d_state))); 2783 DISK_STATE_CHANGED(); 2784 2785 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2786 disk->d_state = state; 2787 g_raid3_update_metadata(disk); 2788 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2789 sc->sc_name, g_raid3_get_diskname(disk)); 2790 break; 2791 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2792 /* 2793 * Possible scenarios: 2794 * 1. Disk which needs synchronization was connected. 2795 */ 2796 /* Previous state should be NEW. */ 2797 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2798 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2799 g_raid3_disk_state2str(disk->d_state))); 2800 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2801 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2802 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2803 g_raid3_device_state2str(sc->sc_state), 2804 g_raid3_get_diskname(disk), 2805 g_raid3_disk_state2str(disk->d_state))); 2806 DISK_STATE_CHANGED(); 2807 2808 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2809 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2810 disk->d_state = state; 2811 if (sc->sc_provider != NULL) { 2812 g_raid3_sync_start(sc); 2813 g_raid3_update_metadata(disk); 2814 } 2815 break; 2816 case G_RAID3_DISK_STATE_DISCONNECTED: 2817 /* 2818 * Possible scenarios: 2819 * 1. Device wasn't running yet, but disk disappear. 2820 * 2. Disk was active and disapppear. 2821 * 3. Disk disappear during synchronization process. 2822 */ 2823 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2824 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2825 /* 2826 * Previous state should be ACTIVE, STALE or 2827 * SYNCHRONIZING. 2828 */ 2829 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2830 disk->d_state == G_RAID3_DISK_STATE_STALE || 2831 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2832 ("Wrong disk state (%s, %s).", 2833 g_raid3_get_diskname(disk), 2834 g_raid3_disk_state2str(disk->d_state))); 2835 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2836 /* Previous state should be NEW. */ 2837 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2838 ("Wrong disk state (%s, %s).", 2839 g_raid3_get_diskname(disk), 2840 g_raid3_disk_state2str(disk->d_state))); 2841 /* 2842 * Reset bumping syncid if disk disappeared in STARTING 2843 * state. 2844 */ 2845 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) 2846 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 2847 #ifdef INVARIANTS 2848 } else { 2849 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2850 sc->sc_name, 2851 g_raid3_device_state2str(sc->sc_state), 2852 g_raid3_get_diskname(disk), 2853 g_raid3_disk_state2str(disk->d_state))); 2854 #endif 2855 } 2856 DISK_STATE_CHANGED(); 2857 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2858 sc->sc_name, g_raid3_get_diskname(disk)); 2859 2860 g_raid3_destroy_disk(disk); 2861 break; 2862 default: 2863 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2864 break; 2865 } 2866 return (0); 2867 } 2868 #undef DISK_STATE_CHANGED 2869 2870 int 2871 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2872 { 2873 struct g_provider *pp; 2874 u_char *buf; 2875 int error; 2876 2877 g_topology_assert(); 2878 2879 error = g_access(cp, 1, 0, 0); 2880 if (error != 0) 2881 return (error); 2882 pp = cp->provider; 2883 g_topology_unlock(); 2884 /* Metadata are stored on last sector. */ 2885 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2886 &error); 2887 g_topology_lock(); 2888 g_access(cp, -1, 0, 0); 2889 if (buf == NULL) { 2890 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", 2891 cp->provider->name, error); 2892 return (error); 2893 } 2894 2895 /* Decode metadata. */ 2896 error = raid3_metadata_decode(buf, md); 2897 g_free(buf); 2898 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2899 return (EINVAL); 2900 if (md->md_version > G_RAID3_VERSION) { 2901 G_RAID3_DEBUG(0, 2902 "Kernel module is too old to handle metadata from %s.", 2903 cp->provider->name); 2904 return (EINVAL); 2905 } 2906 if (error != 0) { 2907 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2908 cp->provider->name); 2909 return (error); 2910 } 2911 if (md->md_sectorsize > MAXPHYS) { 2912 G_RAID3_DEBUG(0, "The blocksize is too big."); 2913 return (EINVAL); 2914 } 2915 2916 return (0); 2917 } 2918 2919 static int 2920 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2921 struct g_raid3_metadata *md) 2922 { 2923 2924 if (md->md_no >= sc->sc_ndisks) { 2925 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2926 pp->name, md->md_no); 2927 return (EINVAL); 2928 } 2929 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2930 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2931 pp->name, md->md_no); 2932 return (EEXIST); 2933 } 2934 if (md->md_all != sc->sc_ndisks) { 2935 G_RAID3_DEBUG(1, 2936 "Invalid '%s' field on disk %s (device %s), skipping.", 2937 "md_all", pp->name, sc->sc_name); 2938 return (EINVAL); 2939 } 2940 if ((md->md_mediasize % md->md_sectorsize) != 0) { 2941 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != " 2942 "0) on disk %s (device %s), skipping.", pp->name, 2943 sc->sc_name); 2944 return (EINVAL); 2945 } 2946 if (md->md_mediasize != sc->sc_mediasize) { 2947 G_RAID3_DEBUG(1, 2948 "Invalid '%s' field on disk %s (device %s), skipping.", 2949 "md_mediasize", pp->name, sc->sc_name); 2950 return (EINVAL); 2951 } 2952 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2953 G_RAID3_DEBUG(1, 2954 "Invalid '%s' field on disk %s (device %s), skipping.", 2955 "md_mediasize", pp->name, sc->sc_name); 2956 return (EINVAL); 2957 } 2958 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2959 G_RAID3_DEBUG(1, 2960 "Invalid size of disk %s (device %s), skipping.", pp->name, 2961 sc->sc_name); 2962 return (EINVAL); 2963 } 2964 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2965 G_RAID3_DEBUG(1, 2966 "Invalid '%s' field on disk %s (device %s), skipping.", 2967 "md_sectorsize", pp->name, sc->sc_name); 2968 return (EINVAL); 2969 } 2970 if (md->md_sectorsize != sc->sc_sectorsize) { 2971 G_RAID3_DEBUG(1, 2972 "Invalid '%s' field on disk %s (device %s), skipping.", 2973 "md_sectorsize", pp->name, sc->sc_name); 2974 return (EINVAL); 2975 } 2976 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2977 G_RAID3_DEBUG(1, 2978 "Invalid sector size of disk %s (device %s), skipping.", 2979 pp->name, sc->sc_name); 2980 return (EINVAL); 2981 } 2982 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2983 G_RAID3_DEBUG(1, 2984 "Invalid device flags on disk %s (device %s), skipping.", 2985 pp->name, sc->sc_name); 2986 return (EINVAL); 2987 } 2988 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2989 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2990 /* 2991 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2992 */ 2993 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2994 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2995 return (EINVAL); 2996 } 2997 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 2998 G_RAID3_DEBUG(1, 2999 "Invalid disk flags on disk %s (device %s), skipping.", 3000 pp->name, sc->sc_name); 3001 return (EINVAL); 3002 } 3003 return (0); 3004 } 3005 3006 int 3007 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 3008 struct g_raid3_metadata *md) 3009 { 3010 struct g_raid3_disk *disk; 3011 int error; 3012 3013 g_topology_assert_not(); 3014 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 3015 3016 error = g_raid3_check_metadata(sc, pp, md); 3017 if (error != 0) 3018 return (error); 3019 if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && 3020 md->md_genid < sc->sc_genid) { 3021 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", 3022 pp->name, sc->sc_name); 3023 return (EINVAL); 3024 } 3025 disk = g_raid3_init_disk(sc, pp, md, &error); 3026 if (disk == NULL) 3027 return (error); 3028 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 3029 G_RAID3_EVENT_WAIT); 3030 if (error != 0) 3031 return (error); 3032 if (md->md_version < G_RAID3_VERSION) { 3033 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", 3034 pp->name, md->md_version, G_RAID3_VERSION); 3035 g_raid3_update_metadata(disk); 3036 } 3037 return (0); 3038 } 3039 3040 static void 3041 g_raid3_destroy_delayed(void *arg, int flag) 3042 { 3043 struct g_raid3_softc *sc; 3044 int error; 3045 3046 if (flag == EV_CANCEL) { 3047 G_RAID3_DEBUG(1, "Destroying canceled."); 3048 return; 3049 } 3050 sc = arg; 3051 g_topology_unlock(); 3052 sx_xlock(&sc->sc_lock); 3053 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, 3054 ("DESTROY flag set on %s.", sc->sc_name)); 3055 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, 3056 ("DESTROYING flag not set on %s.", sc->sc_name)); 3057 G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); 3058 error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); 3059 if (error != 0) { 3060 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); 3061 sx_xunlock(&sc->sc_lock); 3062 } 3063 g_topology_lock(); 3064 } 3065 3066 static int 3067 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 3068 { 3069 struct g_raid3_softc *sc; 3070 int dcr, dcw, dce, error = 0; 3071 3072 g_topology_assert(); 3073 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 3074 acw, ace); 3075 3076 sc = pp->geom->softc; 3077 if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0) 3078 return (0); 3079 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 3080 3081 dcr = pp->acr + acr; 3082 dcw = pp->acw + acw; 3083 dce = pp->ace + ace; 3084 3085 g_topology_unlock(); 3086 sx_xlock(&sc->sc_lock); 3087 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || 3088 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { 3089 if (acr > 0 || acw > 0 || ace > 0) 3090 error = ENXIO; 3091 goto end; 3092 } 3093 if (dcw == 0) 3094 g_raid3_idle(sc, dcw); 3095 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { 3096 if (acr > 0 || acw > 0 || ace > 0) { 3097 error = ENXIO; 3098 goto end; 3099 } 3100 if (dcr == 0 && dcw == 0 && dce == 0) { 3101 g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, 3102 sc, NULL); 3103 } 3104 } 3105 end: 3106 sx_xunlock(&sc->sc_lock); 3107 g_topology_lock(); 3108 return (error); 3109 } 3110 3111 static struct g_geom * 3112 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 3113 { 3114 struct g_raid3_softc *sc; 3115 struct g_geom *gp; 3116 int error, timeout; 3117 u_int n; 3118 3119 g_topology_assert(); 3120 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 3121 3122 /* One disk is minimum. */ 3123 if (md->md_all < 1) 3124 return (NULL); 3125 /* 3126 * Action geom. 3127 */ 3128 gp = g_new_geomf(mp, "%s", md->md_name); 3129 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 3130 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 3131 M_WAITOK | M_ZERO); 3132 gp->start = g_raid3_start; 3133 gp->orphan = g_raid3_orphan; 3134 gp->access = g_raid3_access; 3135 gp->dumpconf = g_raid3_dumpconf; 3136 3137 sc->sc_id = md->md_id; 3138 sc->sc_mediasize = md->md_mediasize; 3139 sc->sc_sectorsize = md->md_sectorsize; 3140 sc->sc_ndisks = md->md_all; 3141 sc->sc_round_robin = 0; 3142 sc->sc_flags = md->md_mflags; 3143 sc->sc_bump_id = 0; 3144 sc->sc_idle = 1; 3145 sc->sc_last_write = time_uptime; 3146 sc->sc_writes = 0; 3147 for (n = 0; n < sc->sc_ndisks; n++) { 3148 sc->sc_disks[n].d_softc = sc; 3149 sc->sc_disks[n].d_no = n; 3150 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 3151 } 3152 sx_init(&sc->sc_lock, "graid3:lock"); 3153 bioq_init(&sc->sc_queue); 3154 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 3155 bioq_init(&sc->sc_regular_delayed); 3156 bioq_init(&sc->sc_inflight); 3157 bioq_init(&sc->sc_sync_delayed); 3158 TAILQ_INIT(&sc->sc_events); 3159 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 3160 callout_init(&sc->sc_callout, 1); 3161 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 3162 gp->softc = sc; 3163 sc->sc_geom = gp; 3164 sc->sc_provider = NULL; 3165 /* 3166 * Synchronization geom. 3167 */ 3168 gp = g_new_geomf(mp, "%s.sync", md->md_name); 3169 gp->softc = sc; 3170 gp->orphan = g_raid3_orphan; 3171 sc->sc_sync.ds_geom = gp; 3172 3173 if (!g_raid3_use_malloc) { 3174 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 3175 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3176 UMA_ALIGN_PTR, 0); 3177 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; 3178 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; 3179 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = 3180 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; 3181 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 3182 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3183 UMA_ALIGN_PTR, 0); 3184 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; 3185 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; 3186 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = 3187 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; 3188 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 3189 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3190 UMA_ALIGN_PTR, 0); 3191 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; 3192 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; 3193 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = 3194 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; 3195 } 3196 3197 error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 3198 "g_raid3 %s", md->md_name); 3199 if (error != 0) { 3200 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 3201 sc->sc_name); 3202 if (!g_raid3_use_malloc) { 3203 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 3204 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 3205 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 3206 } 3207 g_destroy_geom(sc->sc_sync.ds_geom); 3208 mtx_destroy(&sc->sc_events_mtx); 3209 mtx_destroy(&sc->sc_queue_mtx); 3210 sx_destroy(&sc->sc_lock); 3211 g_destroy_geom(sc->sc_geom); 3212 free(sc->sc_disks, M_RAID3); 3213 free(sc, M_RAID3); 3214 return (NULL); 3215 } 3216 3217 G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).", 3218 sc->sc_name, sc->sc_ndisks, sc->sc_id); 3219 3220 sc->sc_rootmount = root_mount_hold("GRAID3"); 3221 G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); 3222 3223 /* 3224 * Run timeout. 3225 */ 3226 timeout = atomic_load_acq_int(&g_raid3_timeout); 3227 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 3228 return (sc->sc_geom); 3229 } 3230 3231 int 3232 g_raid3_destroy(struct g_raid3_softc *sc, int how) 3233 { 3234 struct g_provider *pp; 3235 3236 g_topology_assert_not(); 3237 if (sc == NULL) 3238 return (ENXIO); 3239 sx_assert(&sc->sc_lock, SX_XLOCKED); 3240 3241 pp = sc->sc_provider; 3242 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 3243 switch (how) { 3244 case G_RAID3_DESTROY_SOFT: 3245 G_RAID3_DEBUG(1, 3246 "Device %s is still open (r%dw%de%d).", pp->name, 3247 pp->acr, pp->acw, pp->ace); 3248 return (EBUSY); 3249 case G_RAID3_DESTROY_DELAYED: 3250 G_RAID3_DEBUG(1, 3251 "Device %s will be destroyed on last close.", 3252 pp->name); 3253 if (sc->sc_syncdisk != NULL) 3254 g_raid3_sync_stop(sc, 1); 3255 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; 3256 return (EBUSY); 3257 case G_RAID3_DESTROY_HARD: 3258 G_RAID3_DEBUG(1, "Device %s is still open, so it " 3259 "can't be definitely removed.", pp->name); 3260 break; 3261 } 3262 } 3263 3264 g_topology_lock(); 3265 if (sc->sc_geom->softc == NULL) { 3266 g_topology_unlock(); 3267 return (0); 3268 } 3269 sc->sc_geom->softc = NULL; 3270 sc->sc_sync.ds_geom->softc = NULL; 3271 g_topology_unlock(); 3272 3273 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 3274 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 3275 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 3276 sx_xunlock(&sc->sc_lock); 3277 mtx_lock(&sc->sc_queue_mtx); 3278 wakeup(sc); 3279 wakeup(&sc->sc_queue); 3280 mtx_unlock(&sc->sc_queue_mtx); 3281 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 3282 while (sc->sc_worker != NULL) 3283 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 3284 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 3285 sx_xlock(&sc->sc_lock); 3286 g_raid3_destroy_device(sc); 3287 free(sc->sc_disks, M_RAID3); 3288 free(sc, M_RAID3); 3289 return (0); 3290 } 3291 3292 static void 3293 g_raid3_taste_orphan(struct g_consumer *cp) 3294 { 3295 3296 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 3297 cp->provider->name)); 3298 } 3299 3300 static struct g_geom * 3301 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 3302 { 3303 struct g_raid3_metadata md; 3304 struct g_raid3_softc *sc; 3305 struct g_consumer *cp; 3306 struct g_geom *gp; 3307 int error; 3308 3309 g_topology_assert(); 3310 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 3311 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 3312 3313 gp = g_new_geomf(mp, "raid3:taste"); 3314 /* This orphan function should be never called. */ 3315 gp->orphan = g_raid3_taste_orphan; 3316 cp = g_new_consumer(gp); 3317 g_attach(cp, pp); 3318 error = g_raid3_read_metadata(cp, &md); 3319 g_detach(cp); 3320 g_destroy_consumer(cp); 3321 g_destroy_geom(gp); 3322 if (error != 0) 3323 return (NULL); 3324 gp = NULL; 3325 3326 if (md.md_provider[0] != '\0' && 3327 !g_compare_names(md.md_provider, pp->name)) 3328 return (NULL); 3329 if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) 3330 return (NULL); 3331 if (g_raid3_debug >= 2) 3332 raid3_metadata_dump(&md); 3333 3334 /* 3335 * Let's check if device already exists. 3336 */ 3337 sc = NULL; 3338 LIST_FOREACH(gp, &mp->geom, geom) { 3339 sc = gp->softc; 3340 if (sc == NULL) 3341 continue; 3342 if (sc->sc_sync.ds_geom == gp) 3343 continue; 3344 if (strcmp(md.md_name, sc->sc_name) != 0) 3345 continue; 3346 if (md.md_id != sc->sc_id) { 3347 G_RAID3_DEBUG(0, "Device %s already configured.", 3348 sc->sc_name); 3349 return (NULL); 3350 } 3351 break; 3352 } 3353 if (gp == NULL) { 3354 gp = g_raid3_create(mp, &md); 3355 if (gp == NULL) { 3356 G_RAID3_DEBUG(0, "Cannot create device %s.", 3357 md.md_name); 3358 return (NULL); 3359 } 3360 sc = gp->softc; 3361 } 3362 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 3363 g_topology_unlock(); 3364 sx_xlock(&sc->sc_lock); 3365 error = g_raid3_add_disk(sc, pp, &md); 3366 if (error != 0) { 3367 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 3368 pp->name, gp->name, error); 3369 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 3370 sc->sc_ndisks) { 3371 g_cancel_event(sc); 3372 g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); 3373 g_topology_lock(); 3374 return (NULL); 3375 } 3376 gp = NULL; 3377 } 3378 sx_xunlock(&sc->sc_lock); 3379 g_topology_lock(); 3380 return (gp); 3381 } 3382 3383 static int 3384 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 3385 struct g_geom *gp) 3386 { 3387 struct g_raid3_softc *sc; 3388 int error; 3389 3390 g_topology_unlock(); 3391 sc = gp->softc; 3392 sx_xlock(&sc->sc_lock); 3393 g_cancel_event(sc); 3394 error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); 3395 if (error != 0) 3396 sx_xunlock(&sc->sc_lock); 3397 g_topology_lock(); 3398 return (error); 3399 } 3400 3401 static void 3402 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 3403 struct g_consumer *cp, struct g_provider *pp) 3404 { 3405 struct g_raid3_softc *sc; 3406 3407 g_topology_assert(); 3408 3409 sc = gp->softc; 3410 if (sc == NULL) 3411 return; 3412 /* Skip synchronization geom. */ 3413 if (gp == sc->sc_sync.ds_geom) 3414 return; 3415 if (pp != NULL) { 3416 /* Nothing here. */ 3417 } else if (cp != NULL) { 3418 struct g_raid3_disk *disk; 3419 3420 disk = cp->private; 3421 if (disk == NULL) 3422 return; 3423 g_topology_unlock(); 3424 sx_xlock(&sc->sc_lock); 3425 sbuf_printf(sb, "%s<Type>", indent); 3426 if (disk->d_no == sc->sc_ndisks - 1) 3427 sbuf_printf(sb, "PARITY"); 3428 else 3429 sbuf_printf(sb, "DATA"); 3430 sbuf_printf(sb, "</Type>\n"); 3431 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 3432 (u_int)disk->d_no); 3433 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 3434 sbuf_printf(sb, "%s<Synchronized>", indent); 3435 if (disk->d_sync.ds_offset == 0) 3436 sbuf_printf(sb, "0%%"); 3437 else { 3438 sbuf_printf(sb, "%u%%", 3439 (u_int)((disk->d_sync.ds_offset * 100) / 3440 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 3441 } 3442 sbuf_printf(sb, "</Synchronized>\n"); 3443 if (disk->d_sync.ds_offset > 0) { 3444 sbuf_printf(sb, "%s<BytesSynced>%jd" 3445 "</BytesSynced>\n", indent, 3446 (intmax_t)disk->d_sync.ds_offset); 3447 } 3448 } 3449 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 3450 disk->d_sync.ds_syncid); 3451 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); 3452 sbuf_printf(sb, "%s<Flags>", indent); 3453 if (disk->d_flags == 0) 3454 sbuf_printf(sb, "NONE"); 3455 else { 3456 int first = 1; 3457 3458 #define ADD_FLAG(flag, name) do { \ 3459 if ((disk->d_flags & (flag)) != 0) { \ 3460 if (!first) \ 3461 sbuf_printf(sb, ", "); \ 3462 else \ 3463 first = 0; \ 3464 sbuf_printf(sb, name); \ 3465 } \ 3466 } while (0) 3467 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 3468 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 3469 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 3470 "SYNCHRONIZING"); 3471 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 3472 ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); 3473 #undef ADD_FLAG 3474 } 3475 sbuf_printf(sb, "</Flags>\n"); 3476 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3477 g_raid3_disk_state2str(disk->d_state)); 3478 sx_xunlock(&sc->sc_lock); 3479 g_topology_lock(); 3480 } else { 3481 g_topology_unlock(); 3482 sx_xlock(&sc->sc_lock); 3483 if (!g_raid3_use_malloc) { 3484 sbuf_printf(sb, 3485 "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent, 3486 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); 3487 sbuf_printf(sb, 3488 "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent, 3489 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); 3490 sbuf_printf(sb, 3491 "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent, 3492 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); 3493 sbuf_printf(sb, 3494 "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent, 3495 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); 3496 sbuf_printf(sb, 3497 "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent, 3498 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); 3499 sbuf_printf(sb, 3500 "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent, 3501 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); 3502 } 3503 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 3504 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 3505 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); 3506 sbuf_printf(sb, "%s<Flags>", indent); 3507 if (sc->sc_flags == 0) 3508 sbuf_printf(sb, "NONE"); 3509 else { 3510 int first = 1; 3511 3512 #define ADD_FLAG(flag, name) do { \ 3513 if ((sc->sc_flags & (flag)) != 0) { \ 3514 if (!first) \ 3515 sbuf_printf(sb, ", "); \ 3516 else \ 3517 first = 0; \ 3518 sbuf_printf(sb, name); \ 3519 } \ 3520 } while (0) 3521 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); 3522 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3523 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3524 "ROUND-ROBIN"); 3525 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3526 #undef ADD_FLAG 3527 } 3528 sbuf_printf(sb, "</Flags>\n"); 3529 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3530 sc->sc_ndisks); 3531 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3532 g_raid3_device_state2str(sc->sc_state)); 3533 sx_xunlock(&sc->sc_lock); 3534 g_topology_lock(); 3535 } 3536 } 3537 3538 static void 3539 g_raid3_shutdown_post_sync(void *arg, int howto) 3540 { 3541 struct g_class *mp; 3542 struct g_geom *gp, *gp2; 3543 struct g_raid3_softc *sc; 3544 int error; 3545 3546 mp = arg; 3547 g_topology_lock(); 3548 g_raid3_shutdown = 1; 3549 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3550 if ((sc = gp->softc) == NULL) 3551 continue; 3552 /* Skip synchronization geom. */ 3553 if (gp == sc->sc_sync.ds_geom) 3554 continue; 3555 g_topology_unlock(); 3556 sx_xlock(&sc->sc_lock); 3557 g_raid3_idle(sc, -1); 3558 g_cancel_event(sc); 3559 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); 3560 if (error != 0) 3561 sx_xunlock(&sc->sc_lock); 3562 g_topology_lock(); 3563 } 3564 g_topology_unlock(); 3565 } 3566 3567 static void 3568 g_raid3_init(struct g_class *mp) 3569 { 3570 3571 g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 3572 g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 3573 if (g_raid3_post_sync == NULL) 3574 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3575 } 3576 3577 static void 3578 g_raid3_fini(struct g_class *mp) 3579 { 3580 3581 if (g_raid3_post_sync != NULL) 3582 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync); 3583 } 3584 3585 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3586