1 /*- 2 * Copyright (c) 2004 Pawel Jakub Dawidek <pjd@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/eventhandler.h> 41 #include <vm/uma.h> 42 #include <machine/atomic.h> 43 #include <geom/geom.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <geom/raid3/g_raid3.h> 47 48 49 static MALLOC_DEFINE(M_RAID3, "raid3 data", "GEOM_RAID3 Data"); 50 51 SYSCTL_DECL(_kern_geom); 52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); 53 u_int g_raid3_debug = 0; 54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug); 55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0, 56 "Debug level"); 57 static u_int g_raid3_timeout = 4; 58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout); 59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout, 60 0, "Time to wait on all raid3 components"); 61 static u_int g_raid3_idletime = 5; 62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime); 63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW, 64 &g_raid3_idletime, 0, "Mark components as clean when idling"); 65 static u_int g_raid3_reqs_per_sync = 5; 66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, reqs_per_sync, CTLFLAG_RW, 67 &g_raid3_reqs_per_sync, 0, 68 "Number of regular I/O requests per synchronization request"); 69 static u_int g_raid3_syncs_per_sec = 100; 70 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, syncs_per_sec, CTLFLAG_RW, 71 &g_raid3_syncs_per_sec, 0, 72 "Number of synchronizations requests per second"); 73 74 static u_int g_raid3_n64k = 50; 75 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k); 76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0, 77 "Maximum number of 64kB allocations"); 78 static u_int g_raid3_n16k = 200; 79 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k); 80 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0, 81 "Maximum number of 16kB allocations"); 82 static u_int g_raid3_n4k = 1200; 83 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k); 84 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0, 85 "Maximum number of 4kB allocations"); 86 87 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 88 "GEOM_RAID3 statistics"); 89 static u_int g_raid3_parity_mismatch = 0; 90 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 91 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 92 static u_int g_raid3_64k_requested = 0; 93 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 64k_requested, CTLFLAG_RD, 94 &g_raid3_64k_requested, 0, "Number of requested 64kB allocations"); 95 static u_int g_raid3_64k_failed = 0; 96 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 64k_failed, CTLFLAG_RD, 97 &g_raid3_64k_failed, 0, "Number of failed 64kB allocations"); 98 static u_int g_raid3_16k_requested = 0; 99 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 16k_requested, CTLFLAG_RD, 100 &g_raid3_16k_requested, 0, "Number of requested 16kB allocations"); 101 static u_int g_raid3_16k_failed = 0; 102 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 16k_failed, CTLFLAG_RD, 103 &g_raid3_16k_failed, 0, "Number of failed 16kB allocations"); 104 static u_int g_raid3_4k_requested = 0; 105 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 4k_requested, CTLFLAG_RD, 106 &g_raid3_4k_requested, 0, "Number of requested 4kB allocations"); 107 static u_int g_raid3_4k_failed = 0; 108 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 4k_failed, CTLFLAG_RD, 109 &g_raid3_4k_failed, 0, "Number of failed 4kB allocations"); 110 111 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 112 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 113 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 114 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 115 } while (0) 116 117 static eventhandler_tag g_raid3_ehtag = NULL; 118 119 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 120 struct g_geom *gp); 121 static g_taste_t g_raid3_taste; 122 static void g_raid3_init(struct g_class *mp); 123 static void g_raid3_fini(struct g_class *mp); 124 125 struct g_class g_raid3_class = { 126 .name = G_RAID3_CLASS_NAME, 127 .version = G_VERSION, 128 .ctlreq = g_raid3_config, 129 .taste = g_raid3_taste, 130 .destroy_geom = g_raid3_destroy_geom, 131 .init = g_raid3_init, 132 .fini = g_raid3_fini 133 }; 134 135 136 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 137 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 138 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 139 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 140 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 141 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 142 143 144 /* 145 * XXX: it should be placed in subr_disk.c. 146 */ 147 static void 148 bioq_insert_head(struct bio_queue_head *head, struct bio *bp) 149 { 150 151 TAILQ_INSERT_HEAD(&head->queue, bp, bio_queue); 152 } 153 154 static const char * 155 g_raid3_disk_state2str(int state) 156 { 157 158 switch (state) { 159 case G_RAID3_DISK_STATE_NODISK: 160 return ("NODISK"); 161 case G_RAID3_DISK_STATE_NONE: 162 return ("NONE"); 163 case G_RAID3_DISK_STATE_NEW: 164 return ("NEW"); 165 case G_RAID3_DISK_STATE_ACTIVE: 166 return ("ACTIVE"); 167 case G_RAID3_DISK_STATE_STALE: 168 return ("STALE"); 169 case G_RAID3_DISK_STATE_SYNCHRONIZING: 170 return ("SYNCHRONIZING"); 171 case G_RAID3_DISK_STATE_DISCONNECTED: 172 return ("DISCONNECTED"); 173 default: 174 return ("INVALID"); 175 } 176 } 177 178 static const char * 179 g_raid3_device_state2str(int state) 180 { 181 182 switch (state) { 183 case G_RAID3_DEVICE_STATE_STARTING: 184 return ("STARTING"); 185 case G_RAID3_DEVICE_STATE_DEGRADED: 186 return ("DEGRADED"); 187 case G_RAID3_DEVICE_STATE_COMPLETE: 188 return ("COMPLETE"); 189 default: 190 return ("INVALID"); 191 } 192 } 193 194 const char * 195 g_raid3_get_diskname(struct g_raid3_disk *disk) 196 { 197 198 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 199 return ("[unknown]"); 200 return (disk->d_name); 201 } 202 203 #define g_raid3_xor(src1, src2, dst, size) \ 204 _g_raid3_xor((uint64_t *)(src1), (uint64_t *)(src2), \ 205 (uint64_t *)(dst), (size_t)size) 206 static void 207 _g_raid3_xor(uint64_t *src1, uint64_t *src2, uint64_t *dst, size_t size) 208 { 209 210 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 211 for (; size > 0; size -= 128) { 212 *dst++ = (*src1++) ^ (*src2++); 213 *dst++ = (*src1++) ^ (*src2++); 214 *dst++ = (*src1++) ^ (*src2++); 215 *dst++ = (*src1++) ^ (*src2++); 216 *dst++ = (*src1++) ^ (*src2++); 217 *dst++ = (*src1++) ^ (*src2++); 218 *dst++ = (*src1++) ^ (*src2++); 219 *dst++ = (*src1++) ^ (*src2++); 220 *dst++ = (*src1++) ^ (*src2++); 221 *dst++ = (*src1++) ^ (*src2++); 222 *dst++ = (*src1++) ^ (*src2++); 223 *dst++ = (*src1++) ^ (*src2++); 224 *dst++ = (*src1++) ^ (*src2++); 225 *dst++ = (*src1++) ^ (*src2++); 226 *dst++ = (*src1++) ^ (*src2++); 227 *dst++ = (*src1++) ^ (*src2++); 228 } 229 } 230 231 static int 232 g_raid3_is_zero(struct bio *bp) 233 { 234 static const uint64_t zeros[] = { 235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 236 }; 237 u_char *addr; 238 ssize_t size; 239 240 size = bp->bio_length; 241 addr = (u_char *)bp->bio_data; 242 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 243 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 244 return (0); 245 } 246 return (1); 247 } 248 249 /* 250 * --- Events handling functions --- 251 * Events in geom_raid3 are used to maintain disks and device status 252 * from one thread to simplify locking. 253 */ 254 static void 255 g_raid3_event_free(struct g_raid3_event *ep) 256 { 257 258 free(ep, M_RAID3); 259 } 260 261 int 262 g_raid3_event_send(void *arg, int state, int flags) 263 { 264 struct g_raid3_softc *sc; 265 struct g_raid3_disk *disk; 266 struct g_raid3_event *ep; 267 int error; 268 269 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 270 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 271 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 272 disk = NULL; 273 sc = arg; 274 } else { 275 disk = arg; 276 sc = disk->d_softc; 277 } 278 ep->e_disk = disk; 279 ep->e_state = state; 280 ep->e_flags = flags; 281 ep->e_error = 0; 282 mtx_lock(&sc->sc_events_mtx); 283 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 284 mtx_unlock(&sc->sc_events_mtx); 285 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 286 mtx_lock(&sc->sc_queue_mtx); 287 wakeup(sc); 288 wakeup(&sc->sc_queue); 289 mtx_unlock(&sc->sc_queue_mtx); 290 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 291 return (0); 292 g_topology_assert(); 293 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 294 g_topology_unlock(); 295 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 296 mtx_lock(&sc->sc_events_mtx); 297 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 298 hz * 5); 299 } 300 /* Don't even try to use 'sc' here, because it could be already dead. */ 301 g_topology_lock(); 302 error = ep->e_error; 303 g_raid3_event_free(ep); 304 return (error); 305 } 306 307 static struct g_raid3_event * 308 g_raid3_event_get(struct g_raid3_softc *sc) 309 { 310 struct g_raid3_event *ep; 311 312 mtx_lock(&sc->sc_events_mtx); 313 ep = TAILQ_FIRST(&sc->sc_events); 314 if (ep != NULL) 315 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 316 mtx_unlock(&sc->sc_events_mtx); 317 return (ep); 318 } 319 320 static void 321 g_raid3_event_cancel(struct g_raid3_disk *disk) 322 { 323 struct g_raid3_softc *sc; 324 struct g_raid3_event *ep, *tmpep; 325 326 g_topology_assert(); 327 328 sc = disk->d_softc; 329 mtx_lock(&sc->sc_events_mtx); 330 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 331 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 332 continue; 333 if (ep->e_disk != disk) 334 continue; 335 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 336 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 337 g_raid3_event_free(ep); 338 else { 339 ep->e_error = ECANCELED; 340 wakeup(ep); 341 } 342 } 343 mtx_unlock(&sc->sc_events_mtx); 344 } 345 346 /* 347 * Return the number of disks in the given state. 348 * If state is equal to -1, count all connected disks. 349 */ 350 u_int 351 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 352 { 353 struct g_raid3_disk *disk; 354 u_int n, ndisks; 355 356 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 357 disk = &sc->sc_disks[n]; 358 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 359 continue; 360 if (state == -1 || disk->d_state == state) 361 ndisks++; 362 } 363 return (ndisks); 364 } 365 366 static u_int 367 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 368 { 369 struct bio *bp; 370 u_int nreqs = 0; 371 372 mtx_lock(&sc->sc_queue_mtx); 373 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 374 if (bp->bio_from == cp) 375 nreqs++; 376 } 377 mtx_unlock(&sc->sc_queue_mtx); 378 return (nreqs); 379 } 380 381 static int 382 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 383 { 384 385 if (cp->index > 0) { 386 G_RAID3_DEBUG(2, 387 "I/O requests for %s exist, can't destroy it now.", 388 cp->provider->name); 389 return (1); 390 } 391 if (g_raid3_nrequests(sc, cp) > 0) { 392 G_RAID3_DEBUG(2, 393 "I/O requests for %s in queue, can't destroy it now.", 394 cp->provider->name); 395 return (1); 396 } 397 return (0); 398 } 399 400 static void 401 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 402 { 403 404 g_topology_assert(); 405 406 cp->private = NULL; 407 if (g_raid3_is_busy(sc, cp)) 408 return; 409 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 410 g_detach(cp); 411 g_destroy_consumer(cp); 412 } 413 414 static int 415 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 416 { 417 int error; 418 419 g_topology_assert(); 420 KASSERT(disk->d_consumer == NULL, 421 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 422 423 disk->d_consumer = g_new_consumer(disk->d_softc->sc_geom); 424 disk->d_consumer->private = disk; 425 disk->d_consumer->index = 0; 426 error = g_attach(disk->d_consumer, pp); 427 if (error != 0) 428 return (error); 429 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 430 return (0); 431 } 432 433 static void 434 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 435 { 436 437 g_topology_assert(); 438 439 if (cp == NULL) 440 return; 441 if (cp->provider != NULL) { 442 G_RAID3_DEBUG(2, "Disk %s disconnected.", cp->provider->name); 443 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) { 444 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", 445 cp->provider->name, -cp->acr, -cp->acw, -cp->ace, 446 0); 447 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 448 } 449 g_raid3_kill_consumer(sc, cp); 450 } else { 451 g_destroy_consumer(cp); 452 } 453 } 454 455 /* 456 * Initialize disk. This means allocate memory, create consumer, attach it 457 * to the provider and open access (r1w1e1) to it. 458 */ 459 static struct g_raid3_disk * 460 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 461 struct g_raid3_metadata *md, int *errorp) 462 { 463 struct g_raid3_disk *disk; 464 int error; 465 466 disk = &sc->sc_disks[md->md_no]; 467 disk->d_softc = sc; 468 error = g_raid3_connect_disk(disk, pp); 469 if (error != 0) 470 goto fail; 471 disk->d_no = md->md_no; 472 disk->d_state = G_RAID3_DISK_STATE_NONE; 473 disk->d_flags = md->md_dflags; 474 if (md->md_provider[0] != '\0') 475 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 476 disk->d_sync.ds_consumer = NULL; 477 disk->d_sync.ds_offset = md->md_sync_offset; 478 disk->d_sync.ds_offset_done = md->md_sync_offset; 479 disk->d_sync.ds_resync = -1; 480 disk->d_sync.ds_syncid = md->md_syncid; 481 if (errorp != NULL) 482 *errorp = 0; 483 return (disk); 484 fail: 485 if (errorp != NULL) 486 *errorp = error; 487 if (disk != NULL) 488 g_raid3_disconnect_consumer(sc, disk->d_consumer); 489 return (NULL); 490 } 491 492 static void 493 g_raid3_destroy_disk(struct g_raid3_disk *disk) 494 { 495 struct g_raid3_softc *sc; 496 497 g_topology_assert(); 498 499 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 500 return; 501 g_raid3_event_cancel(disk); 502 sc = disk->d_softc; 503 switch (disk->d_state) { 504 case G_RAID3_DISK_STATE_SYNCHRONIZING: 505 if (sc->sc_syncdisk != NULL) 506 g_raid3_sync_stop(sc, 1); 507 /* FALLTHROUGH */ 508 case G_RAID3_DISK_STATE_NEW: 509 case G_RAID3_DISK_STATE_STALE: 510 case G_RAID3_DISK_STATE_ACTIVE: 511 g_raid3_disconnect_consumer(sc, disk->d_consumer); 512 disk->d_consumer = NULL; 513 break; 514 default: 515 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 516 g_raid3_get_diskname(disk), 517 g_raid3_disk_state2str(disk->d_state))); 518 } 519 disk->d_state = G_RAID3_DISK_STATE_NODISK; 520 } 521 522 static void 523 g_raid3_destroy_device(struct g_raid3_softc *sc) 524 { 525 struct g_raid3_event *ep; 526 struct g_raid3_disk *disk; 527 struct g_geom *gp; 528 struct g_consumer *cp; 529 u_int n; 530 531 g_topology_assert(); 532 533 gp = sc->sc_geom; 534 if (sc->sc_provider != NULL) 535 g_raid3_destroy_provider(sc); 536 for (n = 0; n < sc->sc_ndisks; n++) { 537 disk = &sc->sc_disks[n]; 538 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 539 g_raid3_update_metadata(disk); 540 g_raid3_destroy_disk(disk); 541 } 542 while ((ep = g_raid3_event_get(sc)) != NULL) { 543 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 544 g_raid3_event_free(ep); 545 else { 546 ep->e_error = ECANCELED; 547 ep->e_flags |= G_RAID3_EVENT_DONE; 548 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 549 mtx_lock(&sc->sc_events_mtx); 550 wakeup(ep); 551 mtx_unlock(&sc->sc_events_mtx); 552 } 553 } 554 callout_drain(&sc->sc_callout); 555 gp->softc = NULL; 556 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 557 if (cp != NULL) 558 g_raid3_disconnect_consumer(sc, cp); 559 sc->sc_sync.ds_geom->softc = NULL; 560 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 561 uma_zdestroy(sc->sc_zone_64k); 562 uma_zdestroy(sc->sc_zone_16k); 563 uma_zdestroy(sc->sc_zone_4k); 564 mtx_destroy(&sc->sc_queue_mtx); 565 mtx_destroy(&sc->sc_events_mtx); 566 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 567 g_wither_geom(gp, ENXIO); 568 } 569 570 static void 571 g_raid3_orphan(struct g_consumer *cp) 572 { 573 struct g_raid3_disk *disk; 574 575 g_topology_assert(); 576 577 disk = cp->private; 578 if (disk == NULL) 579 return; 580 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 581 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 582 G_RAID3_EVENT_DONTWAIT); 583 } 584 585 static void 586 g_raid3_spoiled(struct g_consumer *cp) 587 { 588 struct g_raid3_disk *disk; 589 590 g_topology_assert(); 591 592 disk = cp->private; 593 if (disk == NULL) 594 return; 595 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 596 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 597 G_RAID3_EVENT_DONTWAIT); 598 } 599 600 static int 601 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 602 { 603 struct g_raid3_softc *sc; 604 struct g_consumer *cp; 605 off_t offset, length; 606 int close = 0, error = 0; 607 u_char *sector; 608 609 g_topology_assert(); 610 611 sc = disk->d_softc; 612 cp = disk->d_consumer; 613 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 614 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 615 length = cp->provider->sectorsize; 616 offset = cp->provider->mediasize - length; 617 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 618 /* 619 * Open consumer if it wasn't opened and remember to close it. 620 */ 621 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 622 error = g_access(cp, 0, 1, 1); 623 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, 624 0, 1, 1, error); 625 if (error == 0) 626 close = 1; 627 #ifdef INVARIANTS 628 } else { 629 KASSERT(cp->acw > 0 && cp->ace > 0, 630 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 631 cp->acr, cp->acw, cp->ace)); 632 #endif 633 } 634 if (error == 0) { 635 if (md != NULL) 636 raid3_metadata_encode(md, sector); 637 g_topology_unlock(); 638 error = g_write_data(cp, offset, sector, length); 639 g_topology_lock(); 640 } 641 free(sector, M_RAID3); 642 if (close) { 643 g_access(cp, 0, -1, -1); 644 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", 645 cp->provider->name, 0, -1, -1, 0); 646 } 647 if (error != 0) { 648 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 649 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 650 G_RAID3_EVENT_DONTWAIT); 651 } 652 return (error); 653 } 654 655 int 656 g_raid3_clear_metadata(struct g_raid3_disk *disk) 657 { 658 int error; 659 660 g_topology_assert(); 661 error = g_raid3_write_metadata(disk, NULL); 662 if (error == 0) { 663 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 664 g_raid3_get_diskname(disk)); 665 } else { 666 G_RAID3_DEBUG(0, 667 "Cannot clear metadata on disk %s (error=%d).", 668 g_raid3_get_diskname(disk), error); 669 } 670 return (error); 671 } 672 673 void 674 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 675 { 676 struct g_raid3_softc *sc; 677 678 sc = disk->d_softc; 679 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 680 md->md_version = G_RAID3_VERSION; 681 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 682 md->md_id = sc->sc_id; 683 md->md_all = sc->sc_ndisks; 684 md->md_mediasize = sc->sc_mediasize; 685 md->md_sectorsize = sc->sc_sectorsize; 686 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 687 md->md_no = disk->d_no; 688 md->md_syncid = disk->d_sync.ds_syncid; 689 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 690 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) 691 md->md_sync_offset = disk->d_sync.ds_offset_done; 692 else 693 md->md_sync_offset = 0; 694 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && 695 disk->d_consumer != NULL && disk->d_consumer->provider != NULL) { 696 strlcpy(md->md_provider, disk->d_consumer->provider->name, 697 sizeof(md->md_provider)); 698 } else { 699 bzero(md->md_provider, sizeof(md->md_provider)); 700 } 701 } 702 703 void 704 g_raid3_update_metadata(struct g_raid3_disk *disk) 705 { 706 struct g_raid3_metadata md; 707 int error; 708 709 g_topology_assert(); 710 g_raid3_fill_metadata(disk, &md); 711 error = g_raid3_write_metadata(disk, &md); 712 if (error == 0) { 713 G_RAID3_DEBUG(2, "Metadata on %s updated.", 714 g_raid3_get_diskname(disk)); 715 } else { 716 G_RAID3_DEBUG(0, 717 "Cannot update metadata on disk %s (error=%d).", 718 g_raid3_get_diskname(disk), error); 719 } 720 } 721 722 static void 723 g_raid3_bump_syncid(struct g_raid3_softc *sc) 724 { 725 struct g_raid3_disk *disk; 726 u_int n; 727 728 g_topology_assert(); 729 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 730 ("%s called with no active disks (device=%s).", __func__, 731 sc->sc_name)); 732 733 sc->sc_syncid++; 734 for (n = 0; n < sc->sc_ndisks; n++) { 735 disk = &sc->sc_disks[n]; 736 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 737 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 738 disk->d_sync.ds_syncid = sc->sc_syncid; 739 g_raid3_update_metadata(disk); 740 } 741 } 742 } 743 744 static void 745 g_raid3_idle(struct g_raid3_softc *sc) 746 { 747 struct g_raid3_disk *disk; 748 u_int i; 749 750 if (sc->sc_provider == NULL || sc->sc_provider->acw == 0) 751 return; 752 sc->sc_idle = 1; 753 g_topology_lock(); 754 for (i = 0; i < sc->sc_ndisks; i++) { 755 disk = &sc->sc_disks[i]; 756 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 757 continue; 758 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 759 g_raid3_get_diskname(disk), sc->sc_name); 760 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 761 g_raid3_update_metadata(disk); 762 } 763 g_topology_unlock(); 764 } 765 766 static void 767 g_raid3_unidle(struct g_raid3_softc *sc) 768 { 769 struct g_raid3_disk *disk; 770 u_int i; 771 772 sc->sc_idle = 0; 773 g_topology_lock(); 774 for (i = 0; i < sc->sc_ndisks; i++) { 775 disk = &sc->sc_disks[i]; 776 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 777 continue; 778 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 779 g_raid3_get_diskname(disk), sc->sc_name); 780 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 781 g_raid3_update_metadata(disk); 782 } 783 g_topology_unlock(); 784 } 785 786 /* 787 * Return 1 if we should check if RAID3 device is idling. 788 */ 789 static int 790 g_raid3_check_idle(struct g_raid3_softc *sc) 791 { 792 struct g_raid3_disk *disk; 793 u_int i; 794 795 if (sc->sc_idle) 796 return (0); 797 if (sc->sc_provider != NULL && sc->sc_provider->acw == 0) 798 return (0); 799 /* 800 * Check if there are no in-flight requests. 801 */ 802 for (i = 0; i < sc->sc_ndisks; i++) { 803 disk = &sc->sc_disks[i]; 804 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 805 continue; 806 if (disk->d_consumer->index > 0) 807 return (0); 808 } 809 return (1); 810 } 811 812 /* 813 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 814 * in child bio as pointer to the next element on the list. 815 */ 816 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 817 818 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 819 820 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 821 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 822 (bp) = G_RAID3_NEXT_BIO(bp)) 823 824 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 825 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 826 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 827 (bp) = (tmpbp)) 828 829 static void 830 g_raid3_init_bio(struct bio *pbp) 831 { 832 833 G_RAID3_HEAD_BIO(pbp) = NULL; 834 } 835 836 static void 837 g_raid3_remove_bio(struct bio *cbp) 838 { 839 struct bio *pbp, *bp; 840 841 pbp = cbp->bio_parent; 842 if (G_RAID3_HEAD_BIO(pbp) == cbp) 843 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 844 else { 845 G_RAID3_FOREACH_BIO(pbp, bp) { 846 if (G_RAID3_NEXT_BIO(bp) == cbp) { 847 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 848 break; 849 } 850 } 851 } 852 G_RAID3_NEXT_BIO(cbp) = NULL; 853 } 854 855 static void 856 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 857 { 858 struct bio *pbp, *bp; 859 860 g_raid3_remove_bio(sbp); 861 pbp = dbp->bio_parent; 862 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 863 if (G_RAID3_HEAD_BIO(pbp) == dbp) 864 G_RAID3_HEAD_BIO(pbp) = sbp; 865 else { 866 G_RAID3_FOREACH_BIO(pbp, bp) { 867 if (G_RAID3_NEXT_BIO(bp) == dbp) { 868 G_RAID3_NEXT_BIO(bp) = sbp; 869 break; 870 } 871 } 872 } 873 G_RAID3_NEXT_BIO(dbp) = NULL; 874 } 875 876 static void 877 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 878 { 879 struct bio *bp, *pbp; 880 size_t size; 881 882 pbp = cbp->bio_parent; 883 pbp->bio_children--; 884 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 885 size = pbp->bio_length / (sc->sc_ndisks - 1); 886 if (size > 16384) 887 uma_zfree(sc->sc_zone_64k, cbp->bio_data); 888 else if (size > 4096) 889 uma_zfree(sc->sc_zone_16k, cbp->bio_data); 890 else 891 uma_zfree(sc->sc_zone_4k, cbp->bio_data); 892 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 893 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 894 G_RAID3_NEXT_BIO(cbp) = NULL; 895 g_destroy_bio(cbp); 896 } else { 897 G_RAID3_FOREACH_BIO(pbp, bp) { 898 if (G_RAID3_NEXT_BIO(bp) == cbp) 899 break; 900 } 901 if (bp != NULL) { 902 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 903 ("NULL bp->bio_driver1")); 904 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 905 G_RAID3_NEXT_BIO(cbp) = NULL; 906 } 907 g_destroy_bio(cbp); 908 } 909 } 910 911 static struct bio * 912 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 913 { 914 struct bio *bp, *cbp; 915 size_t size; 916 917 cbp = g_clone_bio(pbp); 918 if (cbp == NULL) 919 return (NULL); 920 size = pbp->bio_length / (sc->sc_ndisks - 1); 921 if (size > 16384) { 922 cbp->bio_data = uma_zalloc(sc->sc_zone_64k, M_NOWAIT); 923 g_raid3_64k_requested++; 924 } else if (size > 4096) { 925 cbp->bio_data = uma_zalloc(sc->sc_zone_16k, M_NOWAIT); 926 g_raid3_16k_requested++; 927 } else { 928 cbp->bio_data = uma_zalloc(sc->sc_zone_4k, M_NOWAIT); 929 g_raid3_4k_requested++; 930 } 931 if (cbp->bio_data == NULL) { 932 if (size > 16384) 933 g_raid3_64k_failed++; 934 if (size > 4096) 935 g_raid3_16k_failed++; 936 else 937 g_raid3_4k_failed++; 938 pbp->bio_children--; 939 g_destroy_bio(cbp); 940 return (NULL); 941 } 942 G_RAID3_NEXT_BIO(cbp) = NULL; 943 if (G_RAID3_HEAD_BIO(pbp) == NULL) 944 G_RAID3_HEAD_BIO(pbp) = cbp; 945 else { 946 G_RAID3_FOREACH_BIO(pbp, bp) { 947 if (G_RAID3_NEXT_BIO(bp) == NULL) { 948 G_RAID3_NEXT_BIO(bp) = cbp; 949 break; 950 } 951 } 952 } 953 return (cbp); 954 } 955 956 static void 957 g_raid3_scatter(struct bio *pbp) 958 { 959 struct g_raid3_softc *sc; 960 struct g_raid3_disk *disk; 961 struct bio *bp, *cbp; 962 off_t atom, cadd, padd, left; 963 964 sc = pbp->bio_to->geom->softc; 965 bp = NULL; 966 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 967 /* 968 * Find bio for which we should calculate data. 969 */ 970 G_RAID3_FOREACH_BIO(pbp, cbp) { 971 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 972 bp = cbp; 973 break; 974 } 975 } 976 KASSERT(bp != NULL, ("NULL parity bio.")); 977 } 978 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 979 cadd = padd = 0; 980 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 981 G_RAID3_FOREACH_BIO(pbp, cbp) { 982 if (cbp == bp) 983 continue; 984 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 985 padd += atom; 986 } 987 cadd += atom; 988 } 989 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 990 struct bio *tmpbp; 991 992 /* 993 * Calculate parity. 994 */ 995 bzero(bp->bio_data, bp->bio_length); 996 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 997 if (cbp == bp) 998 continue; 999 g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_data, 1000 bp->bio_length); 1001 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1002 g_raid3_destroy_bio(sc, cbp); 1003 } 1004 } 1005 G_RAID3_FOREACH_BIO(pbp, cbp) { 1006 struct g_consumer *cp; 1007 1008 disk = cbp->bio_caller2; 1009 cp = disk->d_consumer; 1010 cbp->bio_to = cp->provider; 1011 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1012 KASSERT(cp->acr > 0 && cp->ace > 0, 1013 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1014 cp->acr, cp->acw, cp->ace)); 1015 cp->index++; 1016 g_io_request(cbp, cp); 1017 } 1018 } 1019 1020 static void 1021 g_raid3_gather(struct bio *pbp) 1022 { 1023 struct g_raid3_softc *sc; 1024 struct g_raid3_disk *disk; 1025 struct bio *xbp, *fbp, *cbp; 1026 off_t atom, cadd, padd, left; 1027 1028 sc = pbp->bio_to->geom->softc; 1029 /* 1030 * Find bio for which we have to calculate data. 1031 * While going through this path, check if all requests 1032 * succeeded, if not, deny whole request. 1033 * If we're in COMPLETE mode, we allow one request to fail, 1034 * so if we find one, we're sending it to the parity consumer. 1035 * If there are more failed requests, we deny whole request. 1036 */ 1037 xbp = fbp = NULL; 1038 G_RAID3_FOREACH_BIO(pbp, cbp) { 1039 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1040 KASSERT(xbp == NULL, ("More than one parity bio.")); 1041 xbp = cbp; 1042 } 1043 if (cbp->bio_error == 0) 1044 continue; 1045 /* 1046 * Found failed request. 1047 */ 1048 G_RAID3_LOGREQ(0, cbp, "Request failed."); 1049 disk = cbp->bio_caller2; 1050 if (disk != NULL) { 1051 /* 1052 * Actually this is pointless to bump syncid, 1053 * because whole device is fucked up. 1054 */ 1055 sc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 1056 g_raid3_event_send(disk, 1057 G_RAID3_DISK_STATE_DISCONNECTED, 1058 G_RAID3_EVENT_DONTWAIT); 1059 } 1060 if (fbp == NULL) { 1061 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1062 /* 1063 * We are already in degraded mode, so we can't 1064 * accept any failures. 1065 */ 1066 if (pbp->bio_error == 0) 1067 pbp->bio_error = fbp->bio_error; 1068 } else { 1069 fbp = cbp; 1070 } 1071 } else { 1072 /* 1073 * Next failed request, that's too many. 1074 */ 1075 if (pbp->bio_error == 0) 1076 pbp->bio_error = fbp->bio_error; 1077 } 1078 } 1079 if (pbp->bio_error != 0) 1080 goto finish; 1081 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1082 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1083 if (xbp != fbp) 1084 g_raid3_replace_bio(xbp, fbp); 1085 g_raid3_destroy_bio(sc, fbp); 1086 } else if (fbp != NULL) { 1087 struct g_consumer *cp; 1088 1089 /* 1090 * One request failed, so send the same request to 1091 * the parity consumer. 1092 */ 1093 disk = pbp->bio_driver2; 1094 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1095 pbp->bio_error = fbp->bio_error; 1096 goto finish; 1097 } 1098 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1099 pbp->bio_inbed--; 1100 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1101 if (disk->d_no == sc->sc_ndisks - 1) 1102 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1103 fbp->bio_error = 0; 1104 fbp->bio_completed = 0; 1105 fbp->bio_children = 0; 1106 fbp->bio_inbed = 0; 1107 cp = disk->d_consumer; 1108 fbp->bio_caller2 = disk; 1109 fbp->bio_to = cp->provider; 1110 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1111 KASSERT(cp->acr > 0 && cp->ace > 0, 1112 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1113 cp->acr, cp->acw, cp->ace)); 1114 cp->index++; 1115 g_io_request(fbp, cp); 1116 return; 1117 } 1118 if (xbp != NULL) { 1119 /* 1120 * Calculate parity. 1121 */ 1122 G_RAID3_FOREACH_BIO(pbp, cbp) { 1123 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1124 continue; 1125 g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_data, 1126 xbp->bio_length); 1127 } 1128 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1129 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1130 if (!g_raid3_is_zero(xbp)) { 1131 g_raid3_parity_mismatch++; 1132 pbp->bio_error = EIO; 1133 goto finish; 1134 } 1135 g_raid3_destroy_bio(sc, xbp); 1136 } 1137 } 1138 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1139 cadd = padd = 0; 1140 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1141 G_RAID3_FOREACH_BIO(pbp, cbp) { 1142 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1143 pbp->bio_completed += atom; 1144 padd += atom; 1145 } 1146 cadd += atom; 1147 } 1148 finish: 1149 if (pbp->bio_error == 0) 1150 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1151 else { 1152 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1153 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1154 else 1155 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1156 } 1157 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1158 g_io_deliver(pbp, pbp->bio_error); 1159 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1160 g_raid3_destroy_bio(sc, cbp); 1161 } 1162 1163 static void 1164 g_raid3_done(struct bio *bp) 1165 { 1166 struct g_raid3_softc *sc; 1167 1168 sc = bp->bio_from->geom->softc; 1169 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1170 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1171 mtx_lock(&sc->sc_queue_mtx); 1172 bioq_insert_head(&sc->sc_queue, bp); 1173 wakeup(sc); 1174 wakeup(&sc->sc_queue); 1175 mtx_unlock(&sc->sc_queue_mtx); 1176 } 1177 1178 static void 1179 g_raid3_regular_request(struct bio *cbp) 1180 { 1181 struct g_raid3_softc *sc; 1182 struct g_raid3_disk *disk; 1183 struct bio *pbp; 1184 1185 g_topology_assert_not(); 1186 1187 cbp->bio_from->index--; 1188 pbp = cbp->bio_parent; 1189 sc = pbp->bio_to->geom->softc; 1190 disk = cbp->bio_from->private; 1191 if (disk == NULL) { 1192 g_topology_lock(); 1193 g_raid3_kill_consumer(sc, cbp->bio_from); 1194 g_topology_unlock(); 1195 } 1196 1197 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1198 pbp->bio_inbed++; 1199 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1200 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1201 pbp->bio_children)); 1202 if (pbp->bio_inbed != pbp->bio_children) 1203 return; 1204 switch (pbp->bio_cmd) { 1205 case BIO_READ: 1206 g_raid3_gather(pbp); 1207 break; 1208 case BIO_WRITE: 1209 case BIO_DELETE: 1210 { 1211 int error = 0; 1212 1213 pbp->bio_completed = pbp->bio_length; 1214 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1215 if (cbp->bio_error != 0) { 1216 disk = cbp->bio_caller2; 1217 if (disk != NULL) { 1218 sc->sc_bump_syncid = 1219 G_RAID3_BUMP_IMMEDIATELY; 1220 g_raid3_event_send(disk, 1221 G_RAID3_DISK_STATE_DISCONNECTED, 1222 G_RAID3_EVENT_DONTWAIT); 1223 } 1224 if (error == 0) 1225 error = cbp->bio_error; 1226 else if (pbp->bio_error == 0) { 1227 /* 1228 * Next failed request, that's too many. 1229 */ 1230 pbp->bio_error = error; 1231 } 1232 } 1233 g_raid3_destroy_bio(sc, cbp); 1234 } 1235 if (pbp->bio_error == 0) 1236 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1237 else 1238 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1239 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1240 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1241 g_io_deliver(pbp, pbp->bio_error); 1242 break; 1243 } 1244 } 1245 } 1246 1247 static void 1248 g_raid3_sync_done(struct bio *bp) 1249 { 1250 struct g_raid3_softc *sc; 1251 1252 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1253 sc = bp->bio_from->geom->softc; 1254 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1255 mtx_lock(&sc->sc_queue_mtx); 1256 bioq_insert_head(&sc->sc_queue, bp); 1257 wakeup(sc); 1258 wakeup(&sc->sc_queue); 1259 mtx_unlock(&sc->sc_queue_mtx); 1260 } 1261 1262 static void 1263 g_raid3_start(struct bio *bp) 1264 { 1265 struct g_raid3_softc *sc; 1266 1267 sc = bp->bio_to->geom->softc; 1268 /* 1269 * If sc == NULL or there are no valid disks, provider's error 1270 * should be set and g_raid3_start() should not be called at all. 1271 */ 1272 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1273 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1274 ("Provider's error should be set (error=%d)(device=%s).", 1275 bp->bio_to->error, bp->bio_to->name)); 1276 G_RAID3_LOGREQ(3, bp, "Request received."); 1277 1278 switch (bp->bio_cmd) { 1279 case BIO_READ: 1280 case BIO_WRITE: 1281 case BIO_DELETE: 1282 break; 1283 case BIO_GETATTR: 1284 default: 1285 g_io_deliver(bp, EOPNOTSUPP); 1286 return; 1287 } 1288 mtx_lock(&sc->sc_queue_mtx); 1289 bioq_insert_tail(&sc->sc_queue, bp); 1290 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1291 wakeup(sc); 1292 mtx_unlock(&sc->sc_queue_mtx); 1293 } 1294 1295 /* 1296 * Send one synchronization request. 1297 */ 1298 static void 1299 g_raid3_sync_one(struct g_raid3_softc *sc) 1300 { 1301 struct g_raid3_disk *disk; 1302 struct bio *bp; 1303 1304 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1305 ("Wrong device state (%s, %s).", sc->sc_name, 1306 g_raid3_device_state2str(sc->sc_state))); 1307 disk = sc->sc_syncdisk; 1308 KASSERT(disk != NULL, ("No sync disk (%s).", sc->sc_name)); 1309 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 1310 ("Disk %s is not marked for synchronization.", 1311 g_raid3_get_diskname(disk))); 1312 1313 bp = g_new_bio(); 1314 if (bp == NULL) 1315 return; 1316 bp->bio_parent = NULL; 1317 bp->bio_cmd = BIO_READ; 1318 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 1319 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 1320 bp->bio_cflags = 0; 1321 bp->bio_done = g_raid3_sync_done; 1322 bp->bio_data = disk->d_sync.ds_data; 1323 if (bp->bio_data == NULL) { 1324 g_destroy_bio(bp); 1325 return; 1326 } 1327 bp->bio_cflags = G_RAID3_BIO_CFLAG_REGSYNC; 1328 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1329 bp->bio_to = sc->sc_provider; 1330 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1331 disk->d_sync.ds_consumer->index++; 1332 g_io_request(bp, disk->d_sync.ds_consumer); 1333 } 1334 1335 static void 1336 g_raid3_sync_request(struct bio *bp) 1337 { 1338 struct g_raid3_softc *sc; 1339 struct g_raid3_disk *disk; 1340 1341 bp->bio_from->index--; 1342 sc = bp->bio_from->geom->softc; 1343 disk = bp->bio_from->private; 1344 if (disk == NULL) { 1345 g_topology_lock(); 1346 g_raid3_kill_consumer(sc, bp->bio_from); 1347 g_topology_unlock(); 1348 g_destroy_bio(bp); 1349 return; 1350 } 1351 1352 /* 1353 * Synchronization request. 1354 */ 1355 switch (bp->bio_cmd) { 1356 case BIO_READ: 1357 { 1358 struct g_consumer *cp; 1359 u_char *dst, *src; 1360 off_t left; 1361 u_int atom; 1362 1363 if (bp->bio_error != 0) { 1364 G_RAID3_LOGREQ(0, bp, 1365 "Synchronization request failed (error=%d).", 1366 bp->bio_error); 1367 g_destroy_bio(bp); 1368 return; 1369 } 1370 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1371 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1372 dst = src = bp->bio_data; 1373 if (disk->d_no == sc->sc_ndisks - 1) { 1374 u_int n; 1375 1376 /* Parity component. */ 1377 for (left = bp->bio_length; left > 0; 1378 left -= sc->sc_sectorsize) { 1379 bcopy(src, dst, atom); 1380 src += atom; 1381 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1382 g_raid3_xor(src, dst, dst, atom); 1383 src += atom; 1384 } 1385 dst += atom; 1386 } 1387 } else { 1388 /* Regular component. */ 1389 src += atom * disk->d_no; 1390 for (left = bp->bio_length; left > 0; 1391 left -= sc->sc_sectorsize) { 1392 bcopy(src, dst, atom); 1393 src += sc->sc_sectorsize; 1394 dst += atom; 1395 } 1396 } 1397 bp->bio_offset /= sc->sc_ndisks - 1; 1398 bp->bio_length /= sc->sc_ndisks - 1; 1399 bp->bio_cmd = BIO_WRITE; 1400 bp->bio_cflags = 0; 1401 bp->bio_children = bp->bio_inbed = 0; 1402 cp = disk->d_consumer; 1403 KASSERT(cp->acr == 0 && cp->acw == 1 && cp->ace == 1, 1404 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1405 cp->acr, cp->acw, cp->ace)); 1406 cp->index++; 1407 g_io_request(bp, cp); 1408 return; 1409 } 1410 case BIO_WRITE: 1411 { 1412 struct g_raid3_disk_sync *sync; 1413 1414 if (bp->bio_error != 0) { 1415 G_RAID3_LOGREQ(0, bp, 1416 "Synchronization request failed (error=%d).", 1417 bp->bio_error); 1418 g_destroy_bio(bp); 1419 sc->sc_bump_syncid = G_RAID3_BUMP_IMMEDIATELY; 1420 g_raid3_event_send(disk, 1421 G_RAID3_DISK_STATE_DISCONNECTED, 1422 G_RAID3_EVENT_DONTWAIT); 1423 return; 1424 } 1425 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1426 sync = &disk->d_sync; 1427 sync->ds_offset_done = bp->bio_offset + bp->bio_length; 1428 g_destroy_bio(bp); 1429 if (sync->ds_resync != -1) 1430 return; 1431 if (sync->ds_offset_done == 1432 sc->sc_mediasize / (sc->sc_ndisks - 1)) { 1433 /* 1434 * Disk up-to-date, activate it. 1435 */ 1436 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1437 G_RAID3_EVENT_DONTWAIT); 1438 return; 1439 } else if (sync->ds_offset_done % (MAXPHYS * 100) == 0) { 1440 /* 1441 * Update offset_done on every 100 blocks. 1442 * XXX: This should be configurable. 1443 */ 1444 g_topology_lock(); 1445 g_raid3_update_metadata(disk); 1446 g_topology_unlock(); 1447 } 1448 return; 1449 } 1450 default: 1451 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1452 bp->bio_cmd, sc->sc_name)); 1453 break; 1454 } 1455 } 1456 1457 static int 1458 g_raid3_register_request(struct bio *pbp) 1459 { 1460 struct g_raid3_softc *sc; 1461 struct g_raid3_disk *disk; 1462 struct g_consumer *cp; 1463 struct bio *cbp; 1464 off_t offset, length; 1465 u_int n, ndisks; 1466 int round_robin, verify; 1467 1468 ndisks = 0; 1469 sc = pbp->bio_to->geom->softc; 1470 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1471 sc->sc_syncdisk == NULL) { 1472 g_io_deliver(pbp, EIO); 1473 return (0); 1474 } 1475 g_raid3_init_bio(pbp); 1476 length = pbp->bio_length / (sc->sc_ndisks - 1); 1477 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1478 round_robin = verify = 0; 1479 switch (pbp->bio_cmd) { 1480 case BIO_READ: 1481 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1482 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1483 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1484 verify = 1; 1485 ndisks = sc->sc_ndisks; 1486 } else { 1487 verify = 0; 1488 ndisks = sc->sc_ndisks - 1; 1489 } 1490 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1491 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1492 round_robin = 1; 1493 } else { 1494 round_robin = 0; 1495 } 1496 KASSERT(!round_robin || !verify, 1497 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1498 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1499 break; 1500 case BIO_WRITE: 1501 case BIO_DELETE: 1502 { 1503 struct g_raid3_disk_sync *sync; 1504 1505 if (sc->sc_idle) 1506 g_raid3_unidle(sc); 1507 1508 ndisks = sc->sc_ndisks; 1509 1510 if (sc->sc_syncdisk == NULL) 1511 break; 1512 sync = &sc->sc_syncdisk->d_sync; 1513 if (offset >= sync->ds_offset) 1514 break; 1515 if (offset + length <= sync->ds_offset_done) 1516 break; 1517 if (offset >= sync->ds_resync && sync->ds_resync != -1) 1518 break; 1519 sync->ds_resync = offset - (offset % MAXPHYS); 1520 break; 1521 } 1522 } 1523 for (n = 0; n < ndisks; n++) { 1524 disk = &sc->sc_disks[n]; 1525 cbp = g_raid3_clone_bio(sc, pbp); 1526 if (cbp == NULL) { 1527 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1528 g_raid3_destroy_bio(sc, cbp); 1529 return (ENOMEM); 1530 } 1531 cbp->bio_offset = offset; 1532 cbp->bio_length = length; 1533 cbp->bio_done = g_raid3_done; 1534 switch (pbp->bio_cmd) { 1535 case BIO_READ: 1536 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1537 /* 1538 * Replace invalid component with the parity 1539 * component. 1540 */ 1541 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1542 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1543 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1544 } else if (round_robin && 1545 disk->d_no == sc->sc_round_robin) { 1546 /* 1547 * In round-robin mode skip one data component 1548 * and use parity component when reading. 1549 */ 1550 pbp->bio_driver2 = disk; 1551 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1552 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1553 sc->sc_round_robin++; 1554 round_robin = 0; 1555 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1556 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1557 } 1558 break; 1559 case BIO_WRITE: 1560 case BIO_DELETE: 1561 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1562 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1563 if (n == ndisks - 1) { 1564 /* 1565 * Active parity component, mark it as such. 1566 */ 1567 cbp->bio_cflags |= 1568 G_RAID3_BIO_CFLAG_PARITY; 1569 } 1570 } else { 1571 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1572 if (n == ndisks - 1) { 1573 /* 1574 * Parity component is not connected, 1575 * so destroy its request. 1576 */ 1577 pbp->bio_pflags |= 1578 G_RAID3_BIO_PFLAG_NOPARITY; 1579 g_raid3_destroy_bio(sc, cbp); 1580 cbp = NULL; 1581 } else { 1582 cbp->bio_cflags |= 1583 G_RAID3_BIO_CFLAG_NODISK; 1584 disk = NULL; 1585 } 1586 } 1587 break; 1588 } 1589 if (cbp != NULL) 1590 cbp->bio_caller2 = disk; 1591 } 1592 switch (pbp->bio_cmd) { 1593 case BIO_READ: 1594 if (round_robin) { 1595 /* 1596 * If we are in round-robin mode and 'round_robin' is 1597 * still 1, it means, that we skipped parity component 1598 * for this read and must reset sc_round_robin field. 1599 */ 1600 sc->sc_round_robin = 0; 1601 } 1602 G_RAID3_FOREACH_BIO(pbp, cbp) { 1603 disk = cbp->bio_caller2; 1604 cp = disk->d_consumer; 1605 cbp->bio_to = cp->provider; 1606 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1607 KASSERT(cp->acr > 0 && cp->ace > 0, 1608 ("Consumer %s not opened (r%dw%de%d).", 1609 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1610 cp->index++; 1611 g_io_request(cbp, cp); 1612 } 1613 break; 1614 case BIO_WRITE: 1615 case BIO_DELETE: 1616 /* 1617 * Bump syncid on first write. 1618 */ 1619 if (sc->sc_bump_syncid == G_RAID3_BUMP_ON_FIRST_WRITE) { 1620 sc->sc_bump_syncid = 0; 1621 g_topology_lock(); 1622 g_raid3_bump_syncid(sc); 1623 g_topology_unlock(); 1624 } 1625 g_raid3_scatter(pbp); 1626 break; 1627 } 1628 return (0); 1629 } 1630 1631 static int 1632 g_raid3_can_destroy(struct g_raid3_softc *sc) 1633 { 1634 struct g_geom *gp; 1635 struct g_consumer *cp; 1636 1637 g_topology_assert(); 1638 gp = sc->sc_geom; 1639 LIST_FOREACH(cp, &gp->consumer, consumer) { 1640 if (g_raid3_is_busy(sc, cp)) 1641 return (0); 1642 } 1643 gp = sc->sc_sync.ds_geom; 1644 LIST_FOREACH(cp, &gp->consumer, consumer) { 1645 if (g_raid3_is_busy(sc, cp)) 1646 return (0); 1647 } 1648 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1649 sc->sc_name); 1650 return (1); 1651 } 1652 1653 static int 1654 g_raid3_try_destroy(struct g_raid3_softc *sc) 1655 { 1656 1657 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 1658 g_topology_lock(); 1659 if (!g_raid3_can_destroy(sc)) { 1660 g_topology_unlock(); 1661 return (0); 1662 } 1663 g_topology_unlock(); 1664 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1665 &sc->sc_worker); 1666 wakeup(&sc->sc_worker); 1667 sc->sc_worker = NULL; 1668 } else { 1669 g_topology_lock(); 1670 if (!g_raid3_can_destroy(sc)) { 1671 g_topology_unlock(); 1672 return (0); 1673 } 1674 g_raid3_destroy_device(sc); 1675 g_topology_unlock(); 1676 free(sc->sc_disks, M_RAID3); 1677 free(sc, M_RAID3); 1678 } 1679 return (1); 1680 } 1681 1682 /* 1683 * Worker thread. 1684 */ 1685 static void 1686 g_raid3_worker(void *arg) 1687 { 1688 struct g_raid3_softc *sc; 1689 struct g_raid3_disk *disk; 1690 struct g_raid3_disk_sync *sync; 1691 struct g_raid3_event *ep; 1692 struct bio *bp; 1693 u_int nreqs; 1694 1695 sc = arg; 1696 curthread->td_base_pri = PRIBIO; 1697 1698 nreqs = 0; 1699 for (;;) { 1700 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 1701 /* 1702 * First take a look at events. 1703 * This is important to handle events before any I/O requests. 1704 */ 1705 ep = g_raid3_event_get(sc); 1706 if (ep != NULL) { 1707 g_topology_lock(); 1708 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 1709 /* Update only device status. */ 1710 G_RAID3_DEBUG(3, 1711 "Running event for device %s.", 1712 sc->sc_name); 1713 ep->e_error = 0; 1714 g_raid3_update_device(sc, 1); 1715 } else { 1716 /* Update disk status. */ 1717 G_RAID3_DEBUG(3, "Running event for disk %s.", 1718 g_raid3_get_diskname(ep->e_disk)); 1719 ep->e_error = g_raid3_update_disk(ep->e_disk, 1720 ep->e_state); 1721 if (ep->e_error == 0) 1722 g_raid3_update_device(sc, 0); 1723 } 1724 g_topology_unlock(); 1725 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 1726 KASSERT(ep->e_error == 0, 1727 ("Error cannot be handled.")); 1728 g_raid3_event_free(ep); 1729 } else { 1730 ep->e_flags |= G_RAID3_EVENT_DONE; 1731 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1732 ep); 1733 mtx_lock(&sc->sc_events_mtx); 1734 wakeup(ep); 1735 mtx_unlock(&sc->sc_events_mtx); 1736 } 1737 if ((sc->sc_flags & 1738 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1739 if (g_raid3_try_destroy(sc)) 1740 kthread_exit(0); 1741 } 1742 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 1743 continue; 1744 } 1745 /* 1746 * Now I/O requests. 1747 */ 1748 /* Get first request from the queue. */ 1749 mtx_lock(&sc->sc_queue_mtx); 1750 bp = bioq_first(&sc->sc_queue); 1751 if (bp == NULL) { 1752 if ((sc->sc_flags & 1753 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1754 mtx_unlock(&sc->sc_queue_mtx); 1755 if (g_raid3_try_destroy(sc)) 1756 kthread_exit(0); 1757 mtx_lock(&sc->sc_queue_mtx); 1758 } 1759 } 1760 if (sc->sc_syncdisk != NULL && 1761 (bp == NULL || nreqs > g_raid3_reqs_per_sync)) { 1762 mtx_unlock(&sc->sc_queue_mtx); 1763 /* 1764 * It is time for synchronization... 1765 */ 1766 nreqs = 0; 1767 disk = sc->sc_syncdisk; 1768 sync = &disk->d_sync; 1769 if (sync->ds_offset < 1770 sc->sc_mediasize / (sc->sc_ndisks - 1) && 1771 sync->ds_offset == sync->ds_offset_done) { 1772 if (sync->ds_resync != -1) { 1773 sync->ds_offset = sync->ds_resync; 1774 sync->ds_offset_done = sync->ds_resync; 1775 sync->ds_resync = -1; 1776 } 1777 g_raid3_sync_one(sc); 1778 } 1779 G_RAID3_DEBUG(5, "%s: I'm here 2.", __func__); 1780 goto sleep; 1781 } 1782 if (bp == NULL) { 1783 if (g_raid3_check_idle(sc)) { 1784 u_int idletime; 1785 1786 idletime = g_raid3_idletime; 1787 if (idletime == 0) 1788 idletime = 1; 1789 idletime *= hz; 1790 if (msleep(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, 1791 "r3:w1", idletime) == EWOULDBLOCK) { 1792 G_RAID3_DEBUG(5, "%s: I'm here 3.", 1793 __func__); 1794 /* 1795 * No I/O requests in 'idletime' 1796 * seconds, so mark components as clean. 1797 */ 1798 g_raid3_idle(sc); 1799 } 1800 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 1801 } else { 1802 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, 1803 "r3:w2", 0); 1804 G_RAID3_DEBUG(5, "%s: I'm here 5.", __func__); 1805 } 1806 continue; 1807 } 1808 nreqs++; 1809 bioq_remove(&sc->sc_queue, bp); 1810 mtx_unlock(&sc->sc_queue_mtx); 1811 1812 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1813 g_raid3_regular_request(bp); 1814 } else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 1815 u_int timeout, sps; 1816 1817 g_raid3_sync_request(bp); 1818 sleep: 1819 sps = atomic_load_acq_int(&g_raid3_syncs_per_sec); 1820 if (sps == 0) { 1821 G_RAID3_DEBUG(5, "%s: I'm here 5.", __func__); 1822 continue; 1823 } 1824 mtx_lock(&sc->sc_queue_mtx); 1825 if (bioq_first(&sc->sc_queue) != NULL) { 1826 mtx_unlock(&sc->sc_queue_mtx); 1827 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 1828 continue; 1829 } 1830 timeout = hz / sps; 1831 if (timeout == 0) 1832 timeout = 1; 1833 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w2", 1834 timeout); 1835 } else { 1836 if (g_raid3_register_request(bp) != 0) { 1837 mtx_lock(&sc->sc_queue_mtx); 1838 bioq_insert_tail(&sc->sc_queue, bp); 1839 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, 1840 PRIBIO | PDROP, "r3:lowmem", hz / 10); 1841 } 1842 } 1843 G_RAID3_DEBUG(5, "%s: I'm here 6.", __func__); 1844 } 1845 } 1846 1847 /* 1848 * Open disk's consumer if needed. 1849 */ 1850 static void 1851 g_raid3_update_access(struct g_raid3_disk *disk) 1852 { 1853 struct g_provider *pp; 1854 struct g_consumer *cp; 1855 int acr, acw, ace, cpw, error; 1856 1857 g_topology_assert(); 1858 1859 cp = disk->d_consumer; 1860 pp = disk->d_softc->sc_provider; 1861 if (pp == NULL) { 1862 acr = -cp->acr; 1863 acw = -cp->acw; 1864 ace = -cp->ace; 1865 } else { 1866 acr = pp->acr - cp->acr; 1867 acw = pp->acw - cp->acw; 1868 ace = pp->ace - cp->ace; 1869 /* Grab an extra "exclusive" bit. */ 1870 if (pp->acr > 0 || pp->acw > 0 || pp->ace > 0) 1871 ace++; 1872 } 1873 if (acr == 0 && acw == 0 && ace == 0) 1874 return; 1875 cpw = cp->acw; 1876 error = g_access(cp, acr, acw, ace); 1877 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, acr, 1878 acw, ace, error); 1879 if (error != 0) { 1880 disk->d_softc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 1881 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 1882 G_RAID3_EVENT_DONTWAIT); 1883 return; 1884 } 1885 if (cpw == 0 && cp->acw > 0) { 1886 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 1887 g_raid3_get_diskname(disk), disk->d_softc->sc_name); 1888 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 1889 } else if (cpw > 0 && cp->acw == 0) { 1890 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 1891 g_raid3_get_diskname(disk), disk->d_softc->sc_name); 1892 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 1893 } 1894 } 1895 1896 static void 1897 g_raid3_sync_start(struct g_raid3_softc *sc) 1898 { 1899 struct g_raid3_disk *disk; 1900 struct g_consumer *cp; 1901 int error; 1902 u_int n; 1903 1904 g_topology_assert(); 1905 1906 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1907 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 1908 sc->sc_state)); 1909 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 1910 sc->sc_name, sc->sc_state)); 1911 disk = NULL; 1912 for (n = 0; n < sc->sc_ndisks; n++) { 1913 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 1914 continue; 1915 disk = &sc->sc_disks[n]; 1916 break; 1917 } 1918 if (disk == NULL) 1919 return; 1920 cp = disk->d_consumer; 1921 KASSERT(cp->acr == 0 && cp->acw == 0 && cp->ace == 0, 1922 ("Consumer %s already opened.", cp->provider->name)); 1923 1924 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 1925 g_raid3_get_diskname(disk)); 1926 error = g_access(cp, 0, 1, 1); 1927 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, 0, 1, 1928 1, error); 1929 if (error != 0) { 1930 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 1931 G_RAID3_EVENT_DONTWAIT); 1932 return; 1933 } 1934 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 1935 KASSERT(disk->d_sync.ds_consumer == NULL, 1936 ("Sync consumer already exists (device=%s, disk=%s).", 1937 sc->sc_name, g_raid3_get_diskname(disk))); 1938 disk->d_sync.ds_consumer = g_new_consumer(sc->sc_sync.ds_geom); 1939 disk->d_sync.ds_consumer->private = disk; 1940 disk->d_sync.ds_consumer->index = 0; 1941 error = g_attach(disk->d_sync.ds_consumer, disk->d_softc->sc_provider); 1942 KASSERT(error == 0, ("Cannot attach to %s (error=%d).", 1943 disk->d_softc->sc_name, error)); 1944 error = g_access(disk->d_sync.ds_consumer, 1, 0, 0); 1945 KASSERT(error == 0, ("Cannot open %s (error=%d).", 1946 disk->d_softc->sc_name, error)); 1947 disk->d_sync.ds_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); 1948 sc->sc_syncdisk = disk; 1949 } 1950 1951 /* 1952 * Stop synchronization process. 1953 * type: 0 - synchronization finished 1954 * 1 - synchronization stopped 1955 */ 1956 static void 1957 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 1958 { 1959 struct g_raid3_disk *disk; 1960 struct g_consumer *cp; 1961 1962 g_topology_assert(); 1963 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1964 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 1965 sc->sc_state)); 1966 disk = sc->sc_syncdisk; 1967 sc->sc_syncdisk = NULL; 1968 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 1969 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 1970 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 1971 g_raid3_disk_state2str(disk->d_state))); 1972 if (disk->d_sync.ds_consumer == NULL) 1973 return; 1974 1975 if (type == 0) { 1976 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 1977 disk->d_softc->sc_name, g_raid3_get_diskname(disk)); 1978 } else /* if (type == 1) */ { 1979 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 1980 disk->d_softc->sc_name, g_raid3_get_diskname(disk)); 1981 } 1982 cp = disk->d_sync.ds_consumer; 1983 g_access(cp, -1, 0, 0); 1984 g_raid3_kill_consumer(disk->d_softc, cp); 1985 free(disk->d_sync.ds_data, M_RAID3); 1986 disk->d_sync.ds_consumer = NULL; 1987 cp = disk->d_consumer; 1988 KASSERT(cp->acr == 0 && cp->acw == 1 && cp->ace == 1, 1989 ("Consumer %s not opened.", cp->provider->name)); 1990 g_access(cp, 0, -1, -1); 1991 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", cp->provider->name, 0, -1, 1992 -1, 0); 1993 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 1994 } 1995 1996 static void 1997 g_raid3_launch_provider(struct g_raid3_softc *sc) 1998 { 1999 struct g_provider *pp; 2000 2001 g_topology_assert(); 2002 2003 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2004 pp->mediasize = sc->sc_mediasize; 2005 pp->sectorsize = sc->sc_sectorsize; 2006 sc->sc_provider = pp; 2007 g_error_provider(pp, 0); 2008 G_RAID3_DEBUG(0, "Device %s: provider %s launched.", sc->sc_name, 2009 pp->name); 2010 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2011 g_raid3_sync_start(sc); 2012 } 2013 2014 static void 2015 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2016 { 2017 struct bio *bp; 2018 2019 g_topology_assert(); 2020 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2021 sc->sc_name)); 2022 2023 g_error_provider(sc->sc_provider, ENXIO); 2024 mtx_lock(&sc->sc_queue_mtx); 2025 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2026 bioq_remove(&sc->sc_queue, bp); 2027 g_io_deliver(bp, ENXIO); 2028 } 2029 mtx_unlock(&sc->sc_queue_mtx); 2030 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2031 sc->sc_provider->name); 2032 sc->sc_provider->flags |= G_PF_WITHER; 2033 g_orphan_provider(sc->sc_provider, ENXIO); 2034 sc->sc_provider = NULL; 2035 if (sc->sc_syncdisk != NULL) 2036 g_raid3_sync_stop(sc, 1); 2037 } 2038 2039 static void 2040 g_raid3_go(void *arg) 2041 { 2042 struct g_raid3_softc *sc; 2043 2044 sc = arg; 2045 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2046 g_raid3_event_send(sc, 0, 2047 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2048 } 2049 2050 static u_int 2051 g_raid3_determine_state(struct g_raid3_disk *disk) 2052 { 2053 struct g_raid3_softc *sc; 2054 u_int state; 2055 2056 sc = disk->d_softc; 2057 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2058 if ((disk->d_flags & 2059 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2060 /* Disk does not need synchronization. */ 2061 state = G_RAID3_DISK_STATE_ACTIVE; 2062 } else { 2063 if ((sc->sc_flags & 2064 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2065 (disk->d_flags & 2066 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2067 /* 2068 * We can start synchronization from 2069 * the stored offset. 2070 */ 2071 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2072 } else { 2073 state = G_RAID3_DISK_STATE_STALE; 2074 } 2075 } 2076 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2077 /* 2078 * Reset all synchronization data for this disk, 2079 * because if it even was synchronized, it was 2080 * synchronized to disks with different syncid. 2081 */ 2082 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2083 disk->d_sync.ds_offset = 0; 2084 disk->d_sync.ds_offset_done = 0; 2085 disk->d_sync.ds_syncid = sc->sc_syncid; 2086 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2087 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2088 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2089 } else { 2090 state = G_RAID3_DISK_STATE_STALE; 2091 } 2092 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2093 /* 2094 * Not good, NOT GOOD! 2095 * It means that device was started on stale disks 2096 * and more fresh disk just arrive. 2097 * If there were writes, device is fucked up, sorry. 2098 * I think the best choice here is don't touch 2099 * this disk and inform the user laudly. 2100 */ 2101 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2102 "disk (%s) arrives!! It will not be connected to the " 2103 "running device.", sc->sc_name, 2104 g_raid3_get_diskname(disk)); 2105 g_raid3_destroy_disk(disk); 2106 state = G_RAID3_DISK_STATE_NONE; 2107 /* Return immediately, because disk was destroyed. */ 2108 return (state); 2109 } 2110 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2111 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2112 return (state); 2113 } 2114 2115 /* 2116 * Update device state. 2117 */ 2118 static void 2119 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2120 { 2121 struct g_raid3_disk *disk; 2122 u_int state; 2123 2124 g_topology_assert(); 2125 2126 switch (sc->sc_state) { 2127 case G_RAID3_DEVICE_STATE_STARTING: 2128 { 2129 u_int n, ndirty, ndisks, syncid; 2130 2131 KASSERT(sc->sc_provider == NULL, 2132 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2133 /* 2134 * Are we ready? We are, if all disks are connected or 2135 * one disk is missing and 'force' is true. 2136 */ 2137 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2138 if (!force) 2139 callout_drain(&sc->sc_callout); 2140 } else { 2141 if (force) { 2142 /* 2143 * Timeout expired, so destroy device. 2144 */ 2145 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2146 } 2147 return; 2148 } 2149 2150 /* 2151 * There must be at least 'sc->sc_ndisks - 1' components 2152 * with the same syncid and without SYNCHRONIZING flag. 2153 */ 2154 2155 /* 2156 * Find the biggest syncid, number of valid components and 2157 * number of dirty components. 2158 */ 2159 ndirty = ndisks = syncid = 0; 2160 for (n = 0; n < sc->sc_ndisks; n++) { 2161 disk = &sc->sc_disks[n]; 2162 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2163 continue; 2164 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2165 ndirty++; 2166 if (disk->d_sync.ds_syncid > syncid) { 2167 syncid = disk->d_sync.ds_syncid; 2168 ndisks = 0; 2169 } else if (disk->d_sync.ds_syncid < syncid) { 2170 continue; 2171 } 2172 if ((disk->d_flags & 2173 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2174 continue; 2175 } 2176 ndisks++; 2177 } 2178 /* 2179 * Do we have enough valid components? 2180 */ 2181 if (ndisks + 1 < sc->sc_ndisks) { 2182 G_RAID3_DEBUG(0, 2183 "Device %s is broken, too few valid components.", 2184 sc->sc_name); 2185 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2186 return; 2187 } 2188 /* 2189 * If there is one DIRTY component and all disks are present, 2190 * mark it for synchronization. If there is more than one DIRTY 2191 * component, mark parity component for synchronization. 2192 */ 2193 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2194 for (n = 0; n < sc->sc_ndisks; n++) { 2195 disk = &sc->sc_disks[n]; 2196 if ((disk->d_flags & 2197 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2198 continue; 2199 } 2200 disk->d_flags |= 2201 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2202 } 2203 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2204 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2205 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2206 } 2207 2208 sc->sc_syncid = syncid; 2209 if (force) { 2210 /* Remember to bump syncid on first write. */ 2211 sc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 2212 } 2213 if (ndisks == sc->sc_ndisks) 2214 state = G_RAID3_DEVICE_STATE_COMPLETE; 2215 else /* if (ndisks == sc->sc_ndisks - 1) */ 2216 state = G_RAID3_DEVICE_STATE_DEGRADED; 2217 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2218 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2219 g_raid3_device_state2str(state)); 2220 sc->sc_state = state; 2221 for (n = 0; n < sc->sc_ndisks; n++) { 2222 disk = &sc->sc_disks[n]; 2223 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2224 continue; 2225 state = g_raid3_determine_state(disk); 2226 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2227 if (state == G_RAID3_DISK_STATE_STALE) { 2228 sc->sc_bump_syncid = 2229 G_RAID3_BUMP_ON_FIRST_WRITE; 2230 } 2231 } 2232 break; 2233 } 2234 case G_RAID3_DEVICE_STATE_DEGRADED: 2235 /* 2236 * Bump syncid here, if we need to do it immediately. 2237 */ 2238 if (sc->sc_bump_syncid == G_RAID3_BUMP_IMMEDIATELY) { 2239 sc->sc_bump_syncid = 0; 2240 g_raid3_bump_syncid(sc); 2241 } 2242 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2243 return; 2244 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2245 sc->sc_ndisks - 1) { 2246 if (sc->sc_provider != NULL) 2247 g_raid3_destroy_provider(sc); 2248 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2249 return; 2250 } 2251 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2252 sc->sc_ndisks) { 2253 state = G_RAID3_DEVICE_STATE_COMPLETE; 2254 G_RAID3_DEBUG(1, 2255 "Device %s state changed from %s to %s.", 2256 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2257 g_raid3_device_state2str(state)); 2258 sc->sc_state = state; 2259 } 2260 if (sc->sc_provider == NULL) 2261 g_raid3_launch_provider(sc); 2262 break; 2263 case G_RAID3_DEVICE_STATE_COMPLETE: 2264 /* 2265 * Bump syncid here, if we need to do it immediately. 2266 */ 2267 if (sc->sc_bump_syncid == G_RAID3_BUMP_IMMEDIATELY) { 2268 sc->sc_bump_syncid = 0; 2269 g_raid3_bump_syncid(sc); 2270 } 2271 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2272 return; 2273 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2274 sc->sc_ndisks - 1, 2275 ("Too few ACTIVE components in COMPLETE state (device %s).", 2276 sc->sc_name)); 2277 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2278 sc->sc_ndisks - 1) { 2279 state = G_RAID3_DEVICE_STATE_DEGRADED; 2280 G_RAID3_DEBUG(1, 2281 "Device %s state changed from %s to %s.", 2282 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2283 g_raid3_device_state2str(state)); 2284 sc->sc_state = state; 2285 } 2286 if (sc->sc_provider == NULL) 2287 g_raid3_launch_provider(sc); 2288 break; 2289 default: 2290 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2291 g_raid3_device_state2str(sc->sc_state))); 2292 break; 2293 } 2294 } 2295 2296 /* 2297 * Update disk state and device state if needed. 2298 */ 2299 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2300 "Disk %s state changed from %s to %s (device %s).", \ 2301 g_raid3_get_diskname(disk), \ 2302 g_raid3_disk_state2str(disk->d_state), \ 2303 g_raid3_disk_state2str(state), sc->sc_name) 2304 static int 2305 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2306 { 2307 struct g_raid3_softc *sc; 2308 2309 g_topology_assert(); 2310 2311 sc = disk->d_softc; 2312 again: 2313 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2314 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2315 g_raid3_disk_state2str(state)); 2316 switch (state) { 2317 case G_RAID3_DISK_STATE_NEW: 2318 /* 2319 * Possible scenarios: 2320 * 1. New disk arrive. 2321 */ 2322 /* Previous state should be NONE. */ 2323 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2324 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2325 g_raid3_disk_state2str(disk->d_state))); 2326 DISK_STATE_CHANGED(); 2327 2328 disk->d_state = state; 2329 G_RAID3_DEBUG(0, "Device %s: provider %s detected.", 2330 sc->sc_name, g_raid3_get_diskname(disk)); 2331 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2332 break; 2333 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2334 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2335 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2336 g_raid3_device_state2str(sc->sc_state), 2337 g_raid3_get_diskname(disk), 2338 g_raid3_disk_state2str(disk->d_state))); 2339 state = g_raid3_determine_state(disk); 2340 if (state != G_RAID3_DISK_STATE_NONE) 2341 goto again; 2342 break; 2343 case G_RAID3_DISK_STATE_ACTIVE: 2344 /* 2345 * Possible scenarios: 2346 * 1. New disk does not need synchronization. 2347 * 2. Synchronization process finished successfully. 2348 */ 2349 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2350 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2351 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2352 g_raid3_device_state2str(sc->sc_state), 2353 g_raid3_get_diskname(disk), 2354 g_raid3_disk_state2str(disk->d_state))); 2355 /* Previous state should be NEW or SYNCHRONIZING. */ 2356 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2357 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2358 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2359 g_raid3_disk_state2str(disk->d_state))); 2360 DISK_STATE_CHANGED(); 2361 2362 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2363 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2364 else if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2365 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2366 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2367 g_raid3_sync_stop(sc, 0); 2368 } 2369 disk->d_state = state; 2370 disk->d_sync.ds_offset = 0; 2371 disk->d_sync.ds_offset_done = 0; 2372 g_raid3_update_access(disk); 2373 g_raid3_update_metadata(disk); 2374 G_RAID3_DEBUG(0, "Device %s: provider %s activated.", 2375 sc->sc_name, g_raid3_get_diskname(disk)); 2376 break; 2377 case G_RAID3_DISK_STATE_STALE: 2378 /* 2379 * Possible scenarios: 2380 * 1. Stale disk was connected. 2381 */ 2382 /* Previous state should be NEW. */ 2383 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2384 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2385 g_raid3_disk_state2str(disk->d_state))); 2386 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2387 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2388 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2389 g_raid3_device_state2str(sc->sc_state), 2390 g_raid3_get_diskname(disk), 2391 g_raid3_disk_state2str(disk->d_state))); 2392 /* 2393 * STALE state is only possible if device is marked 2394 * NOAUTOSYNC. 2395 */ 2396 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2397 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2398 g_raid3_device_state2str(sc->sc_state), 2399 g_raid3_get_diskname(disk), 2400 g_raid3_disk_state2str(disk->d_state))); 2401 DISK_STATE_CHANGED(); 2402 2403 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2404 disk->d_state = state; 2405 g_raid3_update_metadata(disk); 2406 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2407 sc->sc_name, g_raid3_get_diskname(disk)); 2408 break; 2409 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2410 /* 2411 * Possible scenarios: 2412 * 1. Disk which needs synchronization was connected. 2413 */ 2414 /* Previous state should be NEW. */ 2415 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2416 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2417 g_raid3_disk_state2str(disk->d_state))); 2418 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2419 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2420 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2421 g_raid3_device_state2str(sc->sc_state), 2422 g_raid3_get_diskname(disk), 2423 g_raid3_disk_state2str(disk->d_state))); 2424 DISK_STATE_CHANGED(); 2425 2426 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2427 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2428 disk->d_state = state; 2429 if (sc->sc_provider != NULL) { 2430 g_raid3_sync_start(sc); 2431 g_raid3_update_metadata(disk); 2432 } 2433 break; 2434 case G_RAID3_DISK_STATE_DISCONNECTED: 2435 /* 2436 * Possible scenarios: 2437 * 1. Device wasn't running yet, but disk disappear. 2438 * 2. Disk was active and disapppear. 2439 * 3. Disk disappear during synchronization process. 2440 */ 2441 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2442 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2443 /* 2444 * Previous state should be ACTIVE, STALE or 2445 * SYNCHRONIZING. 2446 */ 2447 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2448 disk->d_state == G_RAID3_DISK_STATE_STALE || 2449 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2450 ("Wrong disk state (%s, %s).", 2451 g_raid3_get_diskname(disk), 2452 g_raid3_disk_state2str(disk->d_state))); 2453 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2454 /* Previous state should be NEW. */ 2455 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2456 ("Wrong disk state (%s, %s).", 2457 g_raid3_get_diskname(disk), 2458 g_raid3_disk_state2str(disk->d_state))); 2459 /* 2460 * Reset bumping syncid if disk disappeared in STARTING 2461 * state. 2462 */ 2463 if (sc->sc_bump_syncid == G_RAID3_BUMP_ON_FIRST_WRITE) 2464 sc->sc_bump_syncid = 0; 2465 #ifdef INVARIANTS 2466 } else { 2467 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2468 sc->sc_name, 2469 g_raid3_device_state2str(sc->sc_state), 2470 g_raid3_get_diskname(disk), 2471 g_raid3_disk_state2str(disk->d_state))); 2472 #endif 2473 } 2474 DISK_STATE_CHANGED(); 2475 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2476 sc->sc_name, g_raid3_get_diskname(disk)); 2477 2478 g_raid3_destroy_disk(disk); 2479 break; 2480 default: 2481 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2482 break; 2483 } 2484 return (0); 2485 } 2486 #undef DISK_STATE_CHANGED 2487 2488 static int 2489 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2490 { 2491 struct g_provider *pp; 2492 u_char *buf; 2493 int error; 2494 2495 g_topology_assert(); 2496 2497 error = g_access(cp, 1, 0, 0); 2498 if (error != 0) 2499 return (error); 2500 pp = cp->provider; 2501 g_topology_unlock(); 2502 /* Metadata are stored on last sector. */ 2503 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2504 &error); 2505 g_topology_lock(); 2506 if (buf == NULL) { 2507 g_access(cp, -1, 0, 0); 2508 return (error); 2509 } 2510 if (error != 0) { 2511 g_access(cp, -1, 0, 0); 2512 g_free(buf); 2513 return (error); 2514 } 2515 error = g_access(cp, -1, 0, 0); 2516 KASSERT(error == 0, ("Cannot decrease access count for %s.", pp->name)); 2517 2518 /* Decode metadata. */ 2519 error = raid3_metadata_decode(buf, md); 2520 g_free(buf); 2521 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2522 return (EINVAL); 2523 if (error != 0) { 2524 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2525 cp->provider->name); 2526 return (error); 2527 } 2528 2529 return (0); 2530 } 2531 2532 static int 2533 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2534 struct g_raid3_metadata *md) 2535 { 2536 2537 if (md->md_no >= sc->sc_ndisks) { 2538 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2539 pp->name, md->md_no); 2540 return (EINVAL); 2541 } 2542 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2543 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2544 pp->name, md->md_no); 2545 return (EEXIST); 2546 } 2547 if (md->md_all != sc->sc_ndisks) { 2548 G_RAID3_DEBUG(1, 2549 "Invalid '%s' field on disk %s (device %s), skipping.", 2550 "md_all", pp->name, sc->sc_name); 2551 return (EINVAL); 2552 } 2553 if (md->md_mediasize != sc->sc_mediasize) { 2554 G_RAID3_DEBUG(1, 2555 "Invalid '%s' field on disk %s (device %s), skipping.", 2556 "md_mediasize", pp->name, sc->sc_name); 2557 return (EINVAL); 2558 } 2559 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2560 G_RAID3_DEBUG(1, 2561 "Invalid '%s' field on disk %s (device %s), skipping.", 2562 "md_mediasize", pp->name, sc->sc_name); 2563 return (EINVAL); 2564 } 2565 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2566 G_RAID3_DEBUG(1, 2567 "Invalid size of disk %s (device %s), skipping.", pp->name, 2568 sc->sc_name); 2569 return (EINVAL); 2570 } 2571 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2572 G_RAID3_DEBUG(1, 2573 "Invalid '%s' field on disk %s (device %s), skipping.", 2574 "md_sectorsize", pp->name, sc->sc_name); 2575 return (EINVAL); 2576 } 2577 if (md->md_sectorsize != sc->sc_sectorsize) { 2578 G_RAID3_DEBUG(1, 2579 "Invalid '%s' field on disk %s (device %s), skipping.", 2580 "md_sectorsize", pp->name, sc->sc_name); 2581 return (EINVAL); 2582 } 2583 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2584 G_RAID3_DEBUG(1, 2585 "Invalid sector size of disk %s (device %s), skipping.", 2586 pp->name, sc->sc_name); 2587 return (EINVAL); 2588 } 2589 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2590 G_RAID3_DEBUG(1, 2591 "Invalid device flags on disk %s (device %s), skipping.", 2592 pp->name, sc->sc_name); 2593 return (EINVAL); 2594 } 2595 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2596 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2597 /* 2598 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2599 */ 2600 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2601 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2602 return (EINVAL); 2603 } 2604 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 2605 G_RAID3_DEBUG(1, 2606 "Invalid disk flags on disk %s (device %s), skipping.", 2607 pp->name, sc->sc_name); 2608 return (EINVAL); 2609 } 2610 return (0); 2611 } 2612 2613 static int 2614 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 2615 struct g_raid3_metadata *md) 2616 { 2617 struct g_raid3_disk *disk; 2618 int error; 2619 2620 g_topology_assert(); 2621 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 2622 2623 error = g_raid3_check_metadata(sc, pp, md); 2624 if (error != 0) 2625 return (error); 2626 disk = g_raid3_init_disk(sc, pp, md, &error); 2627 if (disk == NULL) 2628 return (error); 2629 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 2630 G_RAID3_EVENT_WAIT); 2631 return (error); 2632 } 2633 2634 static int 2635 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 2636 { 2637 struct g_raid3_softc *sc; 2638 struct g_raid3_disk *disk; 2639 int dcr, dcw, dce, err, error; 2640 u_int n; 2641 2642 g_topology_assert(); 2643 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 2644 acw, ace); 2645 2646 dcr = pp->acr + acr; 2647 dcw = pp->acw + acw; 2648 dce = pp->ace + ace; 2649 2650 /* On first open, grab an extra "exclusive" bit */ 2651 if (pp->acr == 0 && pp->acw == 0 && pp->ace == 0) 2652 ace++; 2653 /* ... and let go of it on last close */ 2654 if (dcr == 0 && dcw == 0 && dce == 0) 2655 ace--; 2656 2657 sc = pp->geom->softc; 2658 if (sc == NULL || 2659 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1 || 2660 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2661 if (acr <= 0 && acw <= 0 && ace <= 0) 2662 return (0); 2663 else 2664 return (ENXIO); 2665 } 2666 error = ENXIO; 2667 for (n = 0; n < sc->sc_ndisks; n++) { 2668 disk = &sc->sc_disks[n]; 2669 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 2670 continue; 2671 err = g_access(disk->d_consumer, acr, acw, ace); 2672 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", 2673 g_raid3_get_diskname(disk), acr, acw, ace, err); 2674 if (err == 0) { 2675 /* 2676 * Mark disk as dirty on open and unmark on close. 2677 */ 2678 if (pp->acw == 0 && dcw > 0) { 2679 G_RAID3_DEBUG(1, 2680 "Disk %s (device %s) marked as dirty.", 2681 g_raid3_get_diskname(disk), sc->sc_name); 2682 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2683 g_raid3_update_metadata(disk); 2684 } else if (pp->acw > 0 && dcw == 0) { 2685 G_RAID3_DEBUG(1, 2686 "Disk %s (device %s) marked as clean.", 2687 g_raid3_get_diskname(disk), sc->sc_name); 2688 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2689 g_raid3_update_metadata(disk); 2690 } 2691 error = 0; 2692 } else { 2693 sc->sc_bump_syncid = G_RAID3_BUMP_ON_FIRST_WRITE; 2694 g_raid3_event_send(disk, 2695 G_RAID3_DISK_STATE_DISCONNECTED, 2696 G_RAID3_EVENT_DONTWAIT); 2697 } 2698 } 2699 return (error); 2700 } 2701 2702 static struct g_geom * 2703 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 2704 { 2705 struct g_raid3_softc *sc; 2706 struct g_geom *gp; 2707 int error, timeout; 2708 u_int n; 2709 2710 g_topology_assert(); 2711 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 2712 2713 /* One disk is minimum. */ 2714 if (md->md_all < 1) 2715 return (NULL); 2716 /* 2717 * Action geom. 2718 */ 2719 gp = g_new_geomf(mp, "%s", md->md_name); 2720 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 2721 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 2722 M_WAITOK | M_ZERO); 2723 gp->start = g_raid3_start; 2724 gp->spoiled = g_raid3_spoiled; 2725 gp->orphan = g_raid3_orphan; 2726 gp->access = g_raid3_access; 2727 gp->dumpconf = g_raid3_dumpconf; 2728 2729 sc->sc_id = md->md_id; 2730 sc->sc_mediasize = md->md_mediasize; 2731 sc->sc_sectorsize = md->md_sectorsize; 2732 sc->sc_ndisks = md->md_all; 2733 sc->sc_round_robin = 0; 2734 sc->sc_flags = md->md_mflags; 2735 sc->sc_bump_syncid = 0; 2736 sc->sc_idle = 0; 2737 for (n = 0; n < sc->sc_ndisks; n++) 2738 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 2739 bioq_init(&sc->sc_queue); 2740 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 2741 TAILQ_INIT(&sc->sc_events); 2742 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 2743 callout_init(&sc->sc_callout, CALLOUT_MPSAFE); 2744 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 2745 gp->softc = sc; 2746 sc->sc_geom = gp; 2747 sc->sc_provider = NULL; 2748 /* 2749 * Synchronization geom. 2750 */ 2751 gp = g_new_geomf(mp, "%s.sync", md->md_name); 2752 gp->softc = sc; 2753 gp->orphan = g_raid3_orphan; 2754 sc->sc_sync.ds_geom = gp; 2755 sc->sc_zone_64k = uma_zcreate("gr3:64k", 65536, NULL, NULL, NULL, NULL, 2756 UMA_ALIGN_PTR, 0); 2757 uma_zone_set_max(sc->sc_zone_64k, g_raid3_n64k); 2758 sc->sc_zone_16k = uma_zcreate("gr3:16k", 16384, NULL, NULL, NULL, NULL, 2759 UMA_ALIGN_PTR, 0); 2760 uma_zone_set_max(sc->sc_zone_64k, g_raid3_n16k); 2761 sc->sc_zone_4k = uma_zcreate("gr3:4k", 4096, NULL, NULL, NULL, NULL, 2762 UMA_ALIGN_PTR, 0); 2763 uma_zone_set_max(sc->sc_zone_4k, g_raid3_n4k); 2764 error = kthread_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 2765 "g_raid3 %s", md->md_name); 2766 if (error != 0) { 2767 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 2768 sc->sc_name); 2769 uma_zdestroy(sc->sc_zone_64k); 2770 uma_zdestroy(sc->sc_zone_16k); 2771 uma_zdestroy(sc->sc_zone_4k); 2772 g_destroy_geom(sc->sc_sync.ds_geom); 2773 mtx_destroy(&sc->sc_events_mtx); 2774 mtx_destroy(&sc->sc_queue_mtx); 2775 g_destroy_geom(sc->sc_geom); 2776 free(sc->sc_disks, M_RAID3); 2777 free(sc, M_RAID3); 2778 return (NULL); 2779 } 2780 2781 G_RAID3_DEBUG(0, "Device %s created (id=%u).", sc->sc_name, sc->sc_id); 2782 2783 /* 2784 * Run timeout. 2785 */ 2786 timeout = atomic_load_acq_int(&g_raid3_timeout); 2787 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 2788 return (sc->sc_geom); 2789 } 2790 2791 int 2792 g_raid3_destroy(struct g_raid3_softc *sc, boolean_t force) 2793 { 2794 struct g_provider *pp; 2795 2796 g_topology_assert(); 2797 2798 if (sc == NULL) 2799 return (ENXIO); 2800 pp = sc->sc_provider; 2801 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 2802 if (force) { 2803 G_RAID3_DEBUG(0, "Device %s is still open, so it " 2804 "can't be definitely removed.", pp->name); 2805 } else { 2806 G_RAID3_DEBUG(1, 2807 "Device %s is still open (r%dw%de%d).", pp->name, 2808 pp->acr, pp->acw, pp->ace); 2809 return (EBUSY); 2810 } 2811 } 2812 2813 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2814 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 2815 g_topology_unlock(); 2816 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 2817 mtx_lock(&sc->sc_queue_mtx); 2818 wakeup(sc); 2819 wakeup(&sc->sc_queue); 2820 mtx_unlock(&sc->sc_queue_mtx); 2821 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 2822 while (sc->sc_worker != NULL) 2823 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 2824 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 2825 g_topology_lock(); 2826 g_raid3_destroy_device(sc); 2827 free(sc->sc_disks, M_RAID3); 2828 free(sc, M_RAID3); 2829 return (0); 2830 } 2831 2832 static void 2833 g_raid3_taste_orphan(struct g_consumer *cp) 2834 { 2835 2836 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2837 cp->provider->name)); 2838 } 2839 2840 static struct g_geom * 2841 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2842 { 2843 struct g_raid3_metadata md; 2844 struct g_raid3_softc *sc; 2845 struct g_consumer *cp; 2846 struct g_geom *gp; 2847 int error; 2848 2849 g_topology_assert(); 2850 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2851 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 2852 2853 gp = g_new_geomf(mp, "raid3:taste"); 2854 /* This orphan function should be never called. */ 2855 gp->orphan = g_raid3_taste_orphan; 2856 cp = g_new_consumer(gp); 2857 g_attach(cp, pp); 2858 error = g_raid3_read_metadata(cp, &md); 2859 g_detach(cp); 2860 g_destroy_consumer(cp); 2861 g_destroy_geom(gp); 2862 if (error != 0) 2863 return (NULL); 2864 gp = NULL; 2865 2866 if (md.md_version > G_RAID3_VERSION) { 2867 printf("geom_raid3.ko module is too old to handle %s.\n", 2868 pp->name); 2869 return (NULL); 2870 } 2871 if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0) 2872 return (NULL); 2873 if (g_raid3_debug >= 2) 2874 raid3_metadata_dump(&md); 2875 2876 /* 2877 * Let's check if device already exists. 2878 */ 2879 sc = NULL; 2880 LIST_FOREACH(gp, &mp->geom, geom) { 2881 sc = gp->softc; 2882 if (sc == NULL) 2883 continue; 2884 if (sc->sc_sync.ds_geom == gp) 2885 continue; 2886 if (strcmp(md.md_name, sc->sc_name) != 0) 2887 continue; 2888 if (md.md_id != sc->sc_id) { 2889 G_RAID3_DEBUG(0, "Device %s already configured.", 2890 sc->sc_name); 2891 return (NULL); 2892 } 2893 break; 2894 } 2895 if (gp == NULL) { 2896 gp = g_raid3_create(mp, &md); 2897 if (gp == NULL) { 2898 G_RAID3_DEBUG(0, "Cannot create device %s.", 2899 md.md_name); 2900 return (NULL); 2901 } 2902 sc = gp->softc; 2903 } 2904 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 2905 error = g_raid3_add_disk(sc, pp, &md); 2906 if (error != 0) { 2907 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 2908 pp->name, gp->name, error); 2909 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 2910 sc->sc_ndisks) { 2911 g_raid3_destroy(sc, 1); 2912 } 2913 return (NULL); 2914 } 2915 return (gp); 2916 } 2917 2918 static int 2919 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 2920 struct g_geom *gp) 2921 { 2922 2923 return (g_raid3_destroy(gp->softc, 0)); 2924 } 2925 2926 static void 2927 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2928 struct g_consumer *cp, struct g_provider *pp) 2929 { 2930 struct g_raid3_softc *sc; 2931 2932 g_topology_assert(); 2933 2934 sc = gp->softc; 2935 if (sc == NULL) 2936 return; 2937 /* Skip synchronization geom. */ 2938 if (gp == sc->sc_sync.ds_geom) 2939 return; 2940 if (pp != NULL) { 2941 /* Nothing here. */ 2942 } else if (cp != NULL) { 2943 struct g_raid3_disk *disk; 2944 2945 disk = cp->private; 2946 if (disk == NULL) 2947 return; 2948 sbuf_printf(sb, "%s<Type>", indent); 2949 if (disk->d_no == sc->sc_ndisks - 1) 2950 sbuf_printf(sb, "PARITY"); 2951 else 2952 sbuf_printf(sb, "DATA"); 2953 sbuf_printf(sb, "</Type>\n"); 2954 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 2955 (u_int)disk->d_no); 2956 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2957 sbuf_printf(sb, "%s<Synchronized>", indent); 2958 if (disk->d_sync.ds_offset_done == 0) 2959 sbuf_printf(sb, "0%%"); 2960 else { 2961 sbuf_printf(sb, "%u%%", 2962 (u_int)((disk->d_sync.ds_offset_done * 100) / 2963 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 2964 } 2965 sbuf_printf(sb, "</Synchronized>\n"); 2966 } 2967 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 2968 disk->d_sync.ds_syncid); 2969 sbuf_printf(sb, "%s<Flags>", indent); 2970 if (disk->d_flags == 0) 2971 sbuf_printf(sb, "NONE"); 2972 else { 2973 int first = 1; 2974 2975 #define ADD_FLAG(flag, name) do { \ 2976 if ((disk->d_flags & (flag)) != 0) { \ 2977 if (!first) \ 2978 sbuf_printf(sb, ", "); \ 2979 else \ 2980 first = 0; \ 2981 sbuf_printf(sb, name); \ 2982 } \ 2983 } while (0) 2984 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 2985 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 2986 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 2987 "SYNCHRONIZING"); 2988 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 2989 #undef ADD_FLAG 2990 } 2991 sbuf_printf(sb, "</Flags>\n"); 2992 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2993 g_raid3_disk_state2str(disk->d_state)); 2994 } else { 2995 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 2996 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 2997 sbuf_printf(sb, "%s<Flags>", indent); 2998 if (sc->sc_flags == 0) 2999 sbuf_printf(sb, "NONE"); 3000 else { 3001 int first = 1; 3002 3003 #define ADD_FLAG(flag, name) do { \ 3004 if ((sc->sc_flags & (flag)) != 0) { \ 3005 if (!first) \ 3006 sbuf_printf(sb, ", "); \ 3007 else \ 3008 first = 0; \ 3009 sbuf_printf(sb, name); \ 3010 } \ 3011 } while (0) 3012 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3013 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3014 "ROUND-ROBIN"); 3015 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3016 #undef ADD_FLAG 3017 } 3018 sbuf_printf(sb, "</Flags>\n"); 3019 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3020 sc->sc_ndisks); 3021 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3022 g_raid3_device_state2str(sc->sc_state)); 3023 } 3024 } 3025 3026 static void 3027 g_raid3_shutdown(void *arg, int howto) 3028 { 3029 struct g_class *mp; 3030 struct g_geom *gp, *gp2; 3031 3032 mp = arg; 3033 DROP_GIANT(); 3034 g_topology_lock(); 3035 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3036 if (gp->softc == NULL) 3037 continue; 3038 g_raid3_destroy(gp->softc, 1); 3039 } 3040 g_topology_unlock(); 3041 PICKUP_GIANT(); 3042 #if 0 3043 tsleep(&gp, PRIBIO, "r3:shutdown", hz * 20); 3044 #endif 3045 } 3046 3047 static void 3048 g_raid3_init(struct g_class *mp) 3049 { 3050 3051 g_raid3_ehtag = EVENTHANDLER_REGISTER(shutdown_post_sync, 3052 g_raid3_shutdown, mp, SHUTDOWN_PRI_FIRST); 3053 if (g_raid3_ehtag == NULL) 3054 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3055 } 3056 3057 static void 3058 g_raid3_fini(struct g_class *mp) 3059 { 3060 3061 if (g_raid3_ehtag == NULL) 3062 return; 3063 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_ehtag); 3064 } 3065 3066 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3067