1 /*- 2 * Copyright (c) 2004-2005 Pawel Jakub Dawidek <pjd@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/eventhandler.h> 41 #include <vm/uma.h> 42 #include <geom/geom.h> 43 #include <sys/proc.h> 44 #include <sys/kthread.h> 45 #include <sys/sched.h> 46 #include <geom/raid3/g_raid3.h> 47 48 49 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); 50 51 SYSCTL_DECL(_kern_geom); 52 SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff"); 53 u_int g_raid3_debug = 0; 54 TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug); 55 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0, 56 "Debug level"); 57 static u_int g_raid3_timeout = 4; 58 TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout); 59 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout, 60 0, "Time to wait on all raid3 components"); 61 static u_int g_raid3_idletime = 5; 62 TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime); 63 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW, 64 &g_raid3_idletime, 0, "Mark components as clean when idling"); 65 static u_int g_raid3_reqs_per_sync = 5; 66 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, reqs_per_sync, CTLFLAG_RW, 67 &g_raid3_reqs_per_sync, 0, 68 "Number of regular I/O requests per synchronization request"); 69 static u_int g_raid3_syncs_per_sec = 1000; 70 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, syncs_per_sec, CTLFLAG_RW, 71 &g_raid3_syncs_per_sec, 0, 72 "Number of synchronizations requests per second"); 73 74 static u_int g_raid3_n64k = 50; 75 TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k); 76 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0, 77 "Maximum number of 64kB allocations"); 78 static u_int g_raid3_n16k = 200; 79 TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k); 80 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0, 81 "Maximum number of 16kB allocations"); 82 static u_int g_raid3_n4k = 1200; 83 TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k); 84 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0, 85 "Maximum number of 4kB allocations"); 86 87 SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0, 88 "GEOM_RAID3 statistics"); 89 static u_int g_raid3_parity_mismatch = 0; 90 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 91 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 92 static u_int g_raid3_64k_requested = 0; 93 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 64k_requested, CTLFLAG_RD, 94 &g_raid3_64k_requested, 0, "Number of requested 64kB allocations"); 95 static u_int g_raid3_64k_failed = 0; 96 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 64k_failed, CTLFLAG_RD, 97 &g_raid3_64k_failed, 0, "Number of failed 64kB allocations"); 98 static u_int g_raid3_16k_requested = 0; 99 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 16k_requested, CTLFLAG_RD, 100 &g_raid3_16k_requested, 0, "Number of requested 16kB allocations"); 101 static u_int g_raid3_16k_failed = 0; 102 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 16k_failed, CTLFLAG_RD, 103 &g_raid3_16k_failed, 0, "Number of failed 16kB allocations"); 104 static u_int g_raid3_4k_requested = 0; 105 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 4k_requested, CTLFLAG_RD, 106 &g_raid3_4k_requested, 0, "Number of requested 4kB allocations"); 107 static u_int g_raid3_4k_failed = 0; 108 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, 4k_failed, CTLFLAG_RD, 109 &g_raid3_4k_failed, 0, "Number of failed 4kB allocations"); 110 111 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 112 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 113 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 114 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 115 } while (0) 116 117 static eventhandler_tag g_raid3_ehtag = NULL; 118 119 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 120 struct g_geom *gp); 121 static g_taste_t g_raid3_taste; 122 static void g_raid3_init(struct g_class *mp); 123 static void g_raid3_fini(struct g_class *mp); 124 125 struct g_class g_raid3_class = { 126 .name = G_RAID3_CLASS_NAME, 127 .version = G_VERSION, 128 .ctlreq = g_raid3_config, 129 .taste = g_raid3_taste, 130 .destroy_geom = g_raid3_destroy_geom, 131 .init = g_raid3_init, 132 .fini = g_raid3_fini 133 }; 134 135 136 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 137 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 138 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 139 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 140 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 141 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 142 143 144 static const char * 145 g_raid3_disk_state2str(int state) 146 { 147 148 switch (state) { 149 case G_RAID3_DISK_STATE_NODISK: 150 return ("NODISK"); 151 case G_RAID3_DISK_STATE_NONE: 152 return ("NONE"); 153 case G_RAID3_DISK_STATE_NEW: 154 return ("NEW"); 155 case G_RAID3_DISK_STATE_ACTIVE: 156 return ("ACTIVE"); 157 case G_RAID3_DISK_STATE_STALE: 158 return ("STALE"); 159 case G_RAID3_DISK_STATE_SYNCHRONIZING: 160 return ("SYNCHRONIZING"); 161 case G_RAID3_DISK_STATE_DISCONNECTED: 162 return ("DISCONNECTED"); 163 default: 164 return ("INVALID"); 165 } 166 } 167 168 static const char * 169 g_raid3_device_state2str(int state) 170 { 171 172 switch (state) { 173 case G_RAID3_DEVICE_STATE_STARTING: 174 return ("STARTING"); 175 case G_RAID3_DEVICE_STATE_DEGRADED: 176 return ("DEGRADED"); 177 case G_RAID3_DEVICE_STATE_COMPLETE: 178 return ("COMPLETE"); 179 default: 180 return ("INVALID"); 181 } 182 } 183 184 const char * 185 g_raid3_get_diskname(struct g_raid3_disk *disk) 186 { 187 188 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 189 return ("[unknown]"); 190 return (disk->d_name); 191 } 192 193 #define g_raid3_xor(src1, src2, dst, size) \ 194 _g_raid3_xor((uint64_t *)(src1), (uint64_t *)(src2), \ 195 (uint64_t *)(dst), (size_t)size) 196 static void 197 _g_raid3_xor(uint64_t *src1, uint64_t *src2, uint64_t *dst, size_t size) 198 { 199 200 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 201 for (; size > 0; size -= 128) { 202 *dst++ = (*src1++) ^ (*src2++); 203 *dst++ = (*src1++) ^ (*src2++); 204 *dst++ = (*src1++) ^ (*src2++); 205 *dst++ = (*src1++) ^ (*src2++); 206 *dst++ = (*src1++) ^ (*src2++); 207 *dst++ = (*src1++) ^ (*src2++); 208 *dst++ = (*src1++) ^ (*src2++); 209 *dst++ = (*src1++) ^ (*src2++); 210 *dst++ = (*src1++) ^ (*src2++); 211 *dst++ = (*src1++) ^ (*src2++); 212 *dst++ = (*src1++) ^ (*src2++); 213 *dst++ = (*src1++) ^ (*src2++); 214 *dst++ = (*src1++) ^ (*src2++); 215 *dst++ = (*src1++) ^ (*src2++); 216 *dst++ = (*src1++) ^ (*src2++); 217 *dst++ = (*src1++) ^ (*src2++); 218 } 219 } 220 221 static int 222 g_raid3_is_zero(struct bio *bp) 223 { 224 static const uint64_t zeros[] = { 225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 226 }; 227 u_char *addr; 228 ssize_t size; 229 230 size = bp->bio_length; 231 addr = (u_char *)bp->bio_data; 232 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 233 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 234 return (0); 235 } 236 return (1); 237 } 238 239 /* 240 * --- Events handling functions --- 241 * Events in geom_raid3 are used to maintain disks and device status 242 * from one thread to simplify locking. 243 */ 244 static void 245 g_raid3_event_free(struct g_raid3_event *ep) 246 { 247 248 free(ep, M_RAID3); 249 } 250 251 int 252 g_raid3_event_send(void *arg, int state, int flags) 253 { 254 struct g_raid3_softc *sc; 255 struct g_raid3_disk *disk; 256 struct g_raid3_event *ep; 257 int error; 258 259 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 260 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 261 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 262 disk = NULL; 263 sc = arg; 264 } else { 265 disk = arg; 266 sc = disk->d_softc; 267 } 268 ep->e_disk = disk; 269 ep->e_state = state; 270 ep->e_flags = flags; 271 ep->e_error = 0; 272 mtx_lock(&sc->sc_events_mtx); 273 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 274 mtx_unlock(&sc->sc_events_mtx); 275 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 276 mtx_lock(&sc->sc_queue_mtx); 277 wakeup(sc); 278 wakeup(&sc->sc_queue); 279 mtx_unlock(&sc->sc_queue_mtx); 280 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 281 return (0); 282 g_topology_assert(); 283 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 284 g_topology_unlock(); 285 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 286 mtx_lock(&sc->sc_events_mtx); 287 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 288 hz * 5); 289 } 290 /* Don't even try to use 'sc' here, because it could be already dead. */ 291 g_topology_lock(); 292 error = ep->e_error; 293 g_raid3_event_free(ep); 294 return (error); 295 } 296 297 static struct g_raid3_event * 298 g_raid3_event_get(struct g_raid3_softc *sc) 299 { 300 struct g_raid3_event *ep; 301 302 mtx_lock(&sc->sc_events_mtx); 303 ep = TAILQ_FIRST(&sc->sc_events); 304 mtx_unlock(&sc->sc_events_mtx); 305 return (ep); 306 } 307 308 static void 309 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) 310 { 311 312 mtx_lock(&sc->sc_events_mtx); 313 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 314 mtx_unlock(&sc->sc_events_mtx); 315 } 316 317 static void 318 g_raid3_event_cancel(struct g_raid3_disk *disk) 319 { 320 struct g_raid3_softc *sc; 321 struct g_raid3_event *ep, *tmpep; 322 323 g_topology_assert(); 324 325 sc = disk->d_softc; 326 mtx_lock(&sc->sc_events_mtx); 327 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 328 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 329 continue; 330 if (ep->e_disk != disk) 331 continue; 332 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 333 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 334 g_raid3_event_free(ep); 335 else { 336 ep->e_error = ECANCELED; 337 wakeup(ep); 338 } 339 } 340 mtx_unlock(&sc->sc_events_mtx); 341 } 342 343 /* 344 * Return the number of disks in the given state. 345 * If state is equal to -1, count all connected disks. 346 */ 347 u_int 348 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 349 { 350 struct g_raid3_disk *disk; 351 u_int n, ndisks; 352 353 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 354 disk = &sc->sc_disks[n]; 355 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 356 continue; 357 if (state == -1 || disk->d_state == state) 358 ndisks++; 359 } 360 return (ndisks); 361 } 362 363 static u_int 364 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 365 { 366 struct bio *bp; 367 u_int nreqs = 0; 368 369 mtx_lock(&sc->sc_queue_mtx); 370 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 371 if (bp->bio_from == cp) 372 nreqs++; 373 } 374 mtx_unlock(&sc->sc_queue_mtx); 375 return (nreqs); 376 } 377 378 static int 379 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 380 { 381 382 if (cp->index > 0) { 383 G_RAID3_DEBUG(2, 384 "I/O requests for %s exist, can't destroy it now.", 385 cp->provider->name); 386 return (1); 387 } 388 if (g_raid3_nrequests(sc, cp) > 0) { 389 G_RAID3_DEBUG(2, 390 "I/O requests for %s in queue, can't destroy it now.", 391 cp->provider->name); 392 return (1); 393 } 394 return (0); 395 } 396 397 static void 398 g_raid3_destroy_consumer(void *arg, int flags __unused) 399 { 400 struct g_consumer *cp; 401 402 cp = arg; 403 G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 404 g_detach(cp); 405 g_destroy_consumer(cp); 406 } 407 408 static void 409 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 410 { 411 struct g_provider *pp; 412 int retaste_wait; 413 414 g_topology_assert(); 415 416 cp->private = NULL; 417 if (g_raid3_is_busy(sc, cp)) 418 return; 419 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 420 pp = cp->provider; 421 retaste_wait = 0; 422 if (cp->acw == 1) { 423 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 424 retaste_wait = 1; 425 } 426 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, 427 -cp->acw, -cp->ace, 0); 428 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 429 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 430 if (retaste_wait) { 431 /* 432 * After retaste event was send (inside g_access()), we can send 433 * event to detach and destroy consumer. 434 * A class, which has consumer to the given provider connected 435 * will not receive retaste event for the provider. 436 * This is the way how I ignore retaste events when I close 437 * consumers opened for write: I detach and destroy consumer 438 * after retaste event is sent. 439 */ 440 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); 441 return; 442 } 443 G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); 444 g_detach(cp); 445 g_destroy_consumer(cp); 446 } 447 448 static int 449 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 450 { 451 struct g_consumer *cp; 452 int error; 453 454 g_topology_assert(); 455 KASSERT(disk->d_consumer == NULL, 456 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 457 458 cp = g_new_consumer(disk->d_softc->sc_geom); 459 error = g_attach(cp, pp); 460 if (error != 0) { 461 g_destroy_consumer(cp); 462 return (error); 463 } 464 error = g_access(cp, 1, 1, 1); 465 if (error != 0) { 466 g_detach(cp); 467 g_destroy_consumer(cp); 468 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", 469 pp->name, error); 470 return (error); 471 } 472 disk->d_consumer = cp; 473 disk->d_consumer->private = disk; 474 disk->d_consumer->index = 0; 475 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 476 return (0); 477 } 478 479 static void 480 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 481 { 482 483 g_topology_assert(); 484 485 if (cp == NULL) 486 return; 487 if (cp->provider != NULL) 488 g_raid3_kill_consumer(sc, cp); 489 else 490 g_destroy_consumer(cp); 491 } 492 493 /* 494 * Initialize disk. This means allocate memory, create consumer, attach it 495 * to the provider and open access (r1w1e1) to it. 496 */ 497 static struct g_raid3_disk * 498 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 499 struct g_raid3_metadata *md, int *errorp) 500 { 501 struct g_raid3_disk *disk; 502 int error; 503 504 disk = &sc->sc_disks[md->md_no]; 505 error = g_raid3_connect_disk(disk, pp); 506 if (error != 0) { 507 if (errorp != NULL) 508 *errorp = error; 509 return (NULL); 510 } 511 disk->d_state = G_RAID3_DISK_STATE_NONE; 512 disk->d_flags = md->md_dflags; 513 if (md->md_provider[0] != '\0') 514 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 515 disk->d_sync.ds_consumer = NULL; 516 disk->d_sync.ds_offset = md->md_sync_offset; 517 disk->d_sync.ds_offset_done = md->md_sync_offset; 518 disk->d_sync.ds_resync = -1; 519 disk->d_genid = md->md_genid; 520 disk->d_sync.ds_syncid = md->md_syncid; 521 if (errorp != NULL) 522 *errorp = 0; 523 return (disk); 524 } 525 526 static void 527 g_raid3_destroy_disk(struct g_raid3_disk *disk) 528 { 529 struct g_raid3_softc *sc; 530 531 g_topology_assert(); 532 533 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 534 return; 535 g_raid3_event_cancel(disk); 536 sc = disk->d_softc; 537 switch (disk->d_state) { 538 case G_RAID3_DISK_STATE_SYNCHRONIZING: 539 if (sc->sc_syncdisk != NULL) 540 g_raid3_sync_stop(sc, 1); 541 /* FALLTHROUGH */ 542 case G_RAID3_DISK_STATE_NEW: 543 case G_RAID3_DISK_STATE_STALE: 544 case G_RAID3_DISK_STATE_ACTIVE: 545 g_raid3_disconnect_consumer(sc, disk->d_consumer); 546 disk->d_consumer = NULL; 547 break; 548 default: 549 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 550 g_raid3_get_diskname(disk), 551 g_raid3_disk_state2str(disk->d_state))); 552 } 553 disk->d_state = G_RAID3_DISK_STATE_NODISK; 554 } 555 556 static void 557 g_raid3_destroy_device(struct g_raid3_softc *sc) 558 { 559 struct g_raid3_event *ep; 560 struct g_raid3_disk *disk; 561 struct g_geom *gp; 562 struct g_consumer *cp; 563 u_int n; 564 565 g_topology_assert(); 566 567 gp = sc->sc_geom; 568 if (sc->sc_provider != NULL) 569 g_raid3_destroy_provider(sc); 570 for (n = 0; n < sc->sc_ndisks; n++) { 571 disk = &sc->sc_disks[n]; 572 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { 573 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 574 g_raid3_update_metadata(disk); 575 g_raid3_destroy_disk(disk); 576 } 577 } 578 while ((ep = g_raid3_event_get(sc)) != NULL) { 579 g_raid3_event_remove(sc, ep); 580 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 581 g_raid3_event_free(ep); 582 else { 583 ep->e_error = ECANCELED; 584 ep->e_flags |= G_RAID3_EVENT_DONE; 585 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 586 mtx_lock(&sc->sc_events_mtx); 587 wakeup(ep); 588 mtx_unlock(&sc->sc_events_mtx); 589 } 590 } 591 callout_drain(&sc->sc_callout); 592 gp->softc = NULL; 593 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 594 if (cp != NULL) 595 g_raid3_disconnect_consumer(sc, cp); 596 sc->sc_sync.ds_geom->softc = NULL; 597 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 598 uma_zdestroy(sc->sc_zone_64k); 599 uma_zdestroy(sc->sc_zone_16k); 600 uma_zdestroy(sc->sc_zone_4k); 601 mtx_destroy(&sc->sc_queue_mtx); 602 mtx_destroy(&sc->sc_events_mtx); 603 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 604 g_wither_geom(gp, ENXIO); 605 } 606 607 static void 608 g_raid3_orphan(struct g_consumer *cp) 609 { 610 struct g_raid3_disk *disk; 611 612 g_topology_assert(); 613 614 disk = cp->private; 615 if (disk == NULL) 616 return; 617 disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; 618 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 619 G_RAID3_EVENT_DONTWAIT); 620 } 621 622 static int 623 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 624 { 625 struct g_raid3_softc *sc; 626 struct g_consumer *cp; 627 off_t offset, length; 628 u_char *sector; 629 int error = 0; 630 631 g_topology_assert(); 632 633 sc = disk->d_softc; 634 cp = disk->d_consumer; 635 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 636 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 637 KASSERT(cp->acr == 1 && cp->acw == 1 && cp->ace == 1, 638 ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, 639 cp->acw, cp->ace)); 640 length = cp->provider->sectorsize; 641 offset = cp->provider->mediasize - length; 642 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 643 if (md != NULL) 644 raid3_metadata_encode(md, sector); 645 g_topology_unlock(); 646 error = g_write_data(cp, offset, sector, length); 647 g_topology_lock(); 648 free(sector, M_RAID3); 649 if (error != 0) { 650 disk->d_softc->sc_bump_id = G_RAID3_BUMP_GENID; 651 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 652 G_RAID3_EVENT_DONTWAIT); 653 } 654 return (error); 655 } 656 657 int 658 g_raid3_clear_metadata(struct g_raid3_disk *disk) 659 { 660 int error; 661 662 g_topology_assert(); 663 error = g_raid3_write_metadata(disk, NULL); 664 if (error == 0) { 665 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 666 g_raid3_get_diskname(disk)); 667 } else { 668 G_RAID3_DEBUG(0, 669 "Cannot clear metadata on disk %s (error=%d).", 670 g_raid3_get_diskname(disk), error); 671 } 672 return (error); 673 } 674 675 void 676 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 677 { 678 struct g_raid3_softc *sc; 679 struct g_provider *pp; 680 681 sc = disk->d_softc; 682 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 683 md->md_version = G_RAID3_VERSION; 684 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 685 md->md_id = sc->sc_id; 686 md->md_all = sc->sc_ndisks; 687 md->md_genid = sc->sc_genid; 688 md->md_mediasize = sc->sc_mediasize; 689 md->md_sectorsize = sc->sc_sectorsize; 690 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 691 md->md_no = disk->d_no; 692 md->md_syncid = disk->d_sync.ds_syncid; 693 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 694 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) 695 md->md_sync_offset = disk->d_sync.ds_offset_done; 696 else 697 md->md_sync_offset = 0; 698 if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) 699 pp = disk->d_consumer->provider; 700 else 701 pp = NULL; 702 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) 703 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); 704 else 705 bzero(md->md_provider, sizeof(md->md_provider)); 706 if (pp != NULL) 707 md->md_provsize = pp->mediasize; 708 else 709 md->md_provsize = 0; 710 } 711 712 void 713 g_raid3_update_metadata(struct g_raid3_disk *disk) 714 { 715 struct g_raid3_metadata md; 716 int error; 717 718 g_topology_assert(); 719 g_raid3_fill_metadata(disk, &md); 720 error = g_raid3_write_metadata(disk, &md); 721 if (error == 0) { 722 G_RAID3_DEBUG(2, "Metadata on %s updated.", 723 g_raid3_get_diskname(disk)); 724 } else { 725 G_RAID3_DEBUG(0, 726 "Cannot update metadata on disk %s (error=%d).", 727 g_raid3_get_diskname(disk), error); 728 } 729 } 730 731 static void 732 g_raid3_bump_syncid(struct g_raid3_softc *sc) 733 { 734 struct g_raid3_disk *disk; 735 u_int n; 736 737 g_topology_assert(); 738 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 739 ("%s called with no active disks (device=%s).", __func__, 740 sc->sc_name)); 741 742 sc->sc_syncid++; 743 G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, 744 sc->sc_syncid); 745 for (n = 0; n < sc->sc_ndisks; n++) { 746 disk = &sc->sc_disks[n]; 747 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 748 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 749 disk->d_sync.ds_syncid = sc->sc_syncid; 750 g_raid3_update_metadata(disk); 751 } 752 } 753 } 754 755 static void 756 g_raid3_bump_genid(struct g_raid3_softc *sc) 757 { 758 struct g_raid3_disk *disk; 759 u_int n; 760 761 g_topology_assert(); 762 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 763 ("%s called with no active disks (device=%s).", __func__, 764 sc->sc_name)); 765 766 sc->sc_genid++; 767 G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, 768 sc->sc_genid); 769 for (n = 0; n < sc->sc_ndisks; n++) { 770 disk = &sc->sc_disks[n]; 771 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 772 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 773 disk->d_genid = sc->sc_genid; 774 g_raid3_update_metadata(disk); 775 } 776 } 777 } 778 779 static void 780 g_raid3_idle(struct g_raid3_softc *sc) 781 { 782 struct g_raid3_disk *disk; 783 u_int i; 784 785 if (sc->sc_provider == NULL || sc->sc_provider->acw == 0) 786 return; 787 sc->sc_idle = 1; 788 g_topology_lock(); 789 for (i = 0; i < sc->sc_ndisks; i++) { 790 disk = &sc->sc_disks[i]; 791 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 792 continue; 793 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 794 g_raid3_get_diskname(disk), sc->sc_name); 795 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 796 g_raid3_update_metadata(disk); 797 } 798 g_topology_unlock(); 799 } 800 801 static void 802 g_raid3_unidle(struct g_raid3_softc *sc) 803 { 804 struct g_raid3_disk *disk; 805 u_int i; 806 807 sc->sc_idle = 0; 808 g_topology_lock(); 809 for (i = 0; i < sc->sc_ndisks; i++) { 810 disk = &sc->sc_disks[i]; 811 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 812 continue; 813 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 814 g_raid3_get_diskname(disk), sc->sc_name); 815 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 816 g_raid3_update_metadata(disk); 817 } 818 g_topology_unlock(); 819 } 820 821 /* 822 * Return 1 if we should check if RAID3 device is idling. 823 */ 824 static int 825 g_raid3_check_idle(struct g_raid3_softc *sc) 826 { 827 struct g_raid3_disk *disk; 828 u_int i; 829 830 if (sc->sc_idle) 831 return (0); 832 if (sc->sc_provider != NULL && sc->sc_provider->acw == 0) 833 return (0); 834 /* 835 * Check if there are no in-flight requests. 836 */ 837 for (i = 0; i < sc->sc_ndisks; i++) { 838 disk = &sc->sc_disks[i]; 839 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 840 continue; 841 if (disk->d_consumer->index > 0) 842 return (0); 843 } 844 return (1); 845 } 846 847 /* 848 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 849 * in child bio as pointer to the next element on the list. 850 */ 851 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 852 853 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 854 855 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 856 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 857 (bp) = G_RAID3_NEXT_BIO(bp)) 858 859 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 860 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 861 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 862 (bp) = (tmpbp)) 863 864 static void 865 g_raid3_init_bio(struct bio *pbp) 866 { 867 868 G_RAID3_HEAD_BIO(pbp) = NULL; 869 } 870 871 static void 872 g_raid3_remove_bio(struct bio *cbp) 873 { 874 struct bio *pbp, *bp; 875 876 pbp = cbp->bio_parent; 877 if (G_RAID3_HEAD_BIO(pbp) == cbp) 878 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 879 else { 880 G_RAID3_FOREACH_BIO(pbp, bp) { 881 if (G_RAID3_NEXT_BIO(bp) == cbp) { 882 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 883 break; 884 } 885 } 886 } 887 G_RAID3_NEXT_BIO(cbp) = NULL; 888 } 889 890 static void 891 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 892 { 893 struct bio *pbp, *bp; 894 895 g_raid3_remove_bio(sbp); 896 pbp = dbp->bio_parent; 897 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 898 if (G_RAID3_HEAD_BIO(pbp) == dbp) 899 G_RAID3_HEAD_BIO(pbp) = sbp; 900 else { 901 G_RAID3_FOREACH_BIO(pbp, bp) { 902 if (G_RAID3_NEXT_BIO(bp) == dbp) { 903 G_RAID3_NEXT_BIO(bp) = sbp; 904 break; 905 } 906 } 907 } 908 G_RAID3_NEXT_BIO(dbp) = NULL; 909 } 910 911 static void 912 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 913 { 914 struct bio *bp, *pbp; 915 size_t size; 916 917 pbp = cbp->bio_parent; 918 pbp->bio_children--; 919 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 920 size = pbp->bio_length / (sc->sc_ndisks - 1); 921 if (size > 16384) 922 uma_zfree(sc->sc_zone_64k, cbp->bio_data); 923 else if (size > 4096) 924 uma_zfree(sc->sc_zone_16k, cbp->bio_data); 925 else 926 uma_zfree(sc->sc_zone_4k, cbp->bio_data); 927 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 928 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 929 G_RAID3_NEXT_BIO(cbp) = NULL; 930 g_destroy_bio(cbp); 931 } else { 932 G_RAID3_FOREACH_BIO(pbp, bp) { 933 if (G_RAID3_NEXT_BIO(bp) == cbp) 934 break; 935 } 936 if (bp != NULL) { 937 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 938 ("NULL bp->bio_driver1")); 939 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 940 G_RAID3_NEXT_BIO(cbp) = NULL; 941 } 942 g_destroy_bio(cbp); 943 } 944 } 945 946 static struct bio * 947 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 948 { 949 struct bio *bp, *cbp; 950 size_t size; 951 952 cbp = g_clone_bio(pbp); 953 if (cbp == NULL) 954 return (NULL); 955 size = pbp->bio_length / (sc->sc_ndisks - 1); 956 if (size > 16384) { 957 cbp->bio_data = uma_zalloc(sc->sc_zone_64k, M_NOWAIT); 958 g_raid3_64k_requested++; 959 } else if (size > 4096) { 960 cbp->bio_data = uma_zalloc(sc->sc_zone_16k, M_NOWAIT); 961 g_raid3_16k_requested++; 962 } else { 963 cbp->bio_data = uma_zalloc(sc->sc_zone_4k, M_NOWAIT); 964 g_raid3_4k_requested++; 965 } 966 if (cbp->bio_data == NULL) { 967 if (size > 16384) 968 g_raid3_64k_failed++; 969 else if (size > 4096) 970 g_raid3_16k_failed++; 971 else 972 g_raid3_4k_failed++; 973 pbp->bio_children--; 974 g_destroy_bio(cbp); 975 return (NULL); 976 } 977 G_RAID3_NEXT_BIO(cbp) = NULL; 978 if (G_RAID3_HEAD_BIO(pbp) == NULL) 979 G_RAID3_HEAD_BIO(pbp) = cbp; 980 else { 981 G_RAID3_FOREACH_BIO(pbp, bp) { 982 if (G_RAID3_NEXT_BIO(bp) == NULL) { 983 G_RAID3_NEXT_BIO(bp) = cbp; 984 break; 985 } 986 } 987 } 988 return (cbp); 989 } 990 991 static void 992 g_raid3_scatter(struct bio *pbp) 993 { 994 struct g_raid3_softc *sc; 995 struct g_raid3_disk *disk; 996 struct bio *bp, *cbp; 997 off_t atom, cadd, padd, left; 998 999 sc = pbp->bio_to->geom->softc; 1000 bp = NULL; 1001 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1002 /* 1003 * Find bio for which we should calculate data. 1004 */ 1005 G_RAID3_FOREACH_BIO(pbp, cbp) { 1006 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1007 bp = cbp; 1008 break; 1009 } 1010 } 1011 KASSERT(bp != NULL, ("NULL parity bio.")); 1012 } 1013 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1014 cadd = padd = 0; 1015 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1016 G_RAID3_FOREACH_BIO(pbp, cbp) { 1017 if (cbp == bp) 1018 continue; 1019 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 1020 padd += atom; 1021 } 1022 cadd += atom; 1023 } 1024 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1025 struct bio *tmpbp; 1026 1027 /* 1028 * Calculate parity. 1029 */ 1030 bzero(bp->bio_data, bp->bio_length); 1031 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1032 if (cbp == bp) 1033 continue; 1034 g_raid3_xor(cbp->bio_data, bp->bio_data, bp->bio_data, 1035 bp->bio_length); 1036 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1037 g_raid3_destroy_bio(sc, cbp); 1038 } 1039 } 1040 G_RAID3_FOREACH_BIO(pbp, cbp) { 1041 struct g_consumer *cp; 1042 1043 disk = cbp->bio_caller2; 1044 cp = disk->d_consumer; 1045 cbp->bio_to = cp->provider; 1046 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1047 KASSERT(cp->acr == 1 && cp->acw == 1 && cp->ace == 1, 1048 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1049 cp->acr, cp->acw, cp->ace)); 1050 cp->index++; 1051 g_io_request(cbp, cp); 1052 } 1053 } 1054 1055 static void 1056 g_raid3_gather(struct bio *pbp) 1057 { 1058 struct g_raid3_softc *sc; 1059 struct g_raid3_disk *disk; 1060 struct bio *xbp, *fbp, *cbp; 1061 off_t atom, cadd, padd, left; 1062 1063 sc = pbp->bio_to->geom->softc; 1064 /* 1065 * Find bio for which we have to calculate data. 1066 * While going through this path, check if all requests 1067 * succeeded, if not, deny whole request. 1068 * If we're in COMPLETE mode, we allow one request to fail, 1069 * so if we find one, we're sending it to the parity consumer. 1070 * If there are more failed requests, we deny whole request. 1071 */ 1072 xbp = fbp = NULL; 1073 G_RAID3_FOREACH_BIO(pbp, cbp) { 1074 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1075 KASSERT(xbp == NULL, ("More than one parity bio.")); 1076 xbp = cbp; 1077 } 1078 if (cbp->bio_error == 0) 1079 continue; 1080 /* 1081 * Found failed request. 1082 */ 1083 G_RAID3_LOGREQ(0, cbp, "Request failed."); 1084 disk = cbp->bio_caller2; 1085 if (disk != NULL) { 1086 /* 1087 * Actually this is pointless to bump genid, 1088 * because whole device is fucked up. 1089 */ 1090 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1091 g_raid3_event_send(disk, 1092 G_RAID3_DISK_STATE_DISCONNECTED, 1093 G_RAID3_EVENT_DONTWAIT); 1094 } 1095 if (fbp == NULL) { 1096 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1097 /* 1098 * We are already in degraded mode, so we can't 1099 * accept any failures. 1100 */ 1101 if (pbp->bio_error == 0) 1102 pbp->bio_error = fbp->bio_error; 1103 } else { 1104 fbp = cbp; 1105 } 1106 } else { 1107 /* 1108 * Next failed request, that's too many. 1109 */ 1110 if (pbp->bio_error == 0) 1111 pbp->bio_error = fbp->bio_error; 1112 } 1113 } 1114 if (pbp->bio_error != 0) 1115 goto finish; 1116 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1117 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1118 if (xbp != fbp) 1119 g_raid3_replace_bio(xbp, fbp); 1120 g_raid3_destroy_bio(sc, fbp); 1121 } else if (fbp != NULL) { 1122 struct g_consumer *cp; 1123 1124 /* 1125 * One request failed, so send the same request to 1126 * the parity consumer. 1127 */ 1128 disk = pbp->bio_driver2; 1129 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1130 pbp->bio_error = fbp->bio_error; 1131 goto finish; 1132 } 1133 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1134 pbp->bio_inbed--; 1135 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1136 if (disk->d_no == sc->sc_ndisks - 1) 1137 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1138 fbp->bio_error = 0; 1139 fbp->bio_completed = 0; 1140 fbp->bio_children = 0; 1141 fbp->bio_inbed = 0; 1142 cp = disk->d_consumer; 1143 fbp->bio_caller2 = disk; 1144 fbp->bio_to = cp->provider; 1145 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1146 KASSERT(cp->acr == 1 && cp->acw == 1 && cp->ace == 1, 1147 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1148 cp->acr, cp->acw, cp->ace)); 1149 cp->index++; 1150 g_io_request(fbp, cp); 1151 return; 1152 } 1153 if (xbp != NULL) { 1154 /* 1155 * Calculate parity. 1156 */ 1157 G_RAID3_FOREACH_BIO(pbp, cbp) { 1158 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1159 continue; 1160 g_raid3_xor(cbp->bio_data, xbp->bio_data, xbp->bio_data, 1161 xbp->bio_length); 1162 } 1163 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1164 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1165 if (!g_raid3_is_zero(xbp)) { 1166 g_raid3_parity_mismatch++; 1167 pbp->bio_error = EIO; 1168 goto finish; 1169 } 1170 g_raid3_destroy_bio(sc, xbp); 1171 } 1172 } 1173 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1174 cadd = padd = 0; 1175 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1176 G_RAID3_FOREACH_BIO(pbp, cbp) { 1177 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1178 pbp->bio_completed += atom; 1179 padd += atom; 1180 } 1181 cadd += atom; 1182 } 1183 finish: 1184 if (pbp->bio_error == 0) 1185 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1186 else { 1187 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1188 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1189 else 1190 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1191 } 1192 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1193 g_io_deliver(pbp, pbp->bio_error); 1194 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1195 g_raid3_destroy_bio(sc, cbp); 1196 } 1197 1198 static void 1199 g_raid3_done(struct bio *bp) 1200 { 1201 struct g_raid3_softc *sc; 1202 1203 sc = bp->bio_from->geom->softc; 1204 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1205 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1206 mtx_lock(&sc->sc_queue_mtx); 1207 bioq_insert_head(&sc->sc_queue, bp); 1208 wakeup(sc); 1209 wakeup(&sc->sc_queue); 1210 mtx_unlock(&sc->sc_queue_mtx); 1211 } 1212 1213 static void 1214 g_raid3_regular_request(struct bio *cbp) 1215 { 1216 struct g_raid3_softc *sc; 1217 struct g_raid3_disk *disk; 1218 struct bio *pbp; 1219 1220 g_topology_assert_not(); 1221 1222 cbp->bio_from->index--; 1223 pbp = cbp->bio_parent; 1224 sc = pbp->bio_to->geom->softc; 1225 disk = cbp->bio_from->private; 1226 if (disk == NULL) { 1227 g_topology_lock(); 1228 g_raid3_kill_consumer(sc, cbp->bio_from); 1229 g_topology_unlock(); 1230 } 1231 1232 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1233 pbp->bio_inbed++; 1234 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1235 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1236 pbp->bio_children)); 1237 if (pbp->bio_inbed != pbp->bio_children) 1238 return; 1239 switch (pbp->bio_cmd) { 1240 case BIO_READ: 1241 g_raid3_gather(pbp); 1242 break; 1243 case BIO_WRITE: 1244 case BIO_DELETE: 1245 { 1246 int error = 0; 1247 1248 pbp->bio_completed = pbp->bio_length; 1249 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1250 if (cbp->bio_error != 0) { 1251 disk = cbp->bio_caller2; 1252 if (disk != NULL) { 1253 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1254 g_raid3_event_send(disk, 1255 G_RAID3_DISK_STATE_DISCONNECTED, 1256 G_RAID3_EVENT_DONTWAIT); 1257 } 1258 if (error == 0) 1259 error = cbp->bio_error; 1260 else if (pbp->bio_error == 0) { 1261 /* 1262 * Next failed request, that's too many. 1263 */ 1264 pbp->bio_error = error; 1265 } 1266 } 1267 g_raid3_destroy_bio(sc, cbp); 1268 } 1269 if (pbp->bio_error == 0) 1270 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1271 else 1272 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1273 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1274 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1275 g_io_deliver(pbp, pbp->bio_error); 1276 break; 1277 } 1278 } 1279 } 1280 1281 static void 1282 g_raid3_sync_done(struct bio *bp) 1283 { 1284 struct g_raid3_softc *sc; 1285 1286 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1287 sc = bp->bio_from->geom->softc; 1288 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1289 mtx_lock(&sc->sc_queue_mtx); 1290 bioq_insert_head(&sc->sc_queue, bp); 1291 wakeup(sc); 1292 wakeup(&sc->sc_queue); 1293 mtx_unlock(&sc->sc_queue_mtx); 1294 } 1295 1296 static void 1297 g_raid3_start(struct bio *bp) 1298 { 1299 struct g_raid3_softc *sc; 1300 1301 sc = bp->bio_to->geom->softc; 1302 /* 1303 * If sc == NULL or there are no valid disks, provider's error 1304 * should be set and g_raid3_start() should not be called at all. 1305 */ 1306 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1307 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1308 ("Provider's error should be set (error=%d)(device=%s).", 1309 bp->bio_to->error, bp->bio_to->name)); 1310 G_RAID3_LOGREQ(3, bp, "Request received."); 1311 1312 switch (bp->bio_cmd) { 1313 case BIO_READ: 1314 case BIO_WRITE: 1315 case BIO_DELETE: 1316 break; 1317 case BIO_GETATTR: 1318 default: 1319 g_io_deliver(bp, EOPNOTSUPP); 1320 return; 1321 } 1322 mtx_lock(&sc->sc_queue_mtx); 1323 bioq_insert_tail(&sc->sc_queue, bp); 1324 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1325 wakeup(sc); 1326 mtx_unlock(&sc->sc_queue_mtx); 1327 } 1328 1329 /* 1330 * Send one synchronization request. 1331 */ 1332 static void 1333 g_raid3_sync_one(struct g_raid3_softc *sc) 1334 { 1335 struct g_raid3_disk *disk; 1336 struct bio *bp; 1337 1338 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1339 ("Wrong device state (%s, %s).", sc->sc_name, 1340 g_raid3_device_state2str(sc->sc_state))); 1341 disk = sc->sc_syncdisk; 1342 KASSERT(disk != NULL, ("No sync disk (%s).", sc->sc_name)); 1343 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 1344 ("Disk %s is not marked for synchronization.", 1345 g_raid3_get_diskname(disk))); 1346 1347 bp = g_new_bio(); 1348 if (bp == NULL) 1349 return; 1350 bp->bio_parent = NULL; 1351 bp->bio_cmd = BIO_READ; 1352 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 1353 bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset); 1354 bp->bio_cflags = 0; 1355 bp->bio_done = g_raid3_sync_done; 1356 bp->bio_data = disk->d_sync.ds_data; 1357 if (bp->bio_data == NULL) { 1358 g_destroy_bio(bp); 1359 return; 1360 } 1361 bp->bio_cflags = G_RAID3_BIO_CFLAG_REGSYNC; 1362 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1363 bp->bio_to = sc->sc_provider; 1364 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1365 disk->d_sync.ds_consumer->index++; 1366 g_io_request(bp, disk->d_sync.ds_consumer); 1367 } 1368 1369 static void 1370 g_raid3_sync_request(struct bio *bp) 1371 { 1372 struct g_raid3_softc *sc; 1373 struct g_raid3_disk *disk; 1374 1375 bp->bio_from->index--; 1376 sc = bp->bio_from->geom->softc; 1377 disk = bp->bio_from->private; 1378 if (disk == NULL) { 1379 g_topology_lock(); 1380 g_raid3_kill_consumer(sc, bp->bio_from); 1381 g_topology_unlock(); 1382 g_destroy_bio(bp); 1383 return; 1384 } 1385 1386 /* 1387 * Synchronization request. 1388 */ 1389 switch (bp->bio_cmd) { 1390 case BIO_READ: 1391 { 1392 struct g_consumer *cp; 1393 u_char *dst, *src; 1394 off_t left; 1395 u_int atom; 1396 1397 if (bp->bio_error != 0) { 1398 G_RAID3_LOGREQ(0, bp, 1399 "Synchronization request failed (error=%d).", 1400 bp->bio_error); 1401 g_destroy_bio(bp); 1402 return; 1403 } 1404 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1405 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1406 dst = src = bp->bio_data; 1407 if (disk->d_no == sc->sc_ndisks - 1) { 1408 u_int n; 1409 1410 /* Parity component. */ 1411 for (left = bp->bio_length; left > 0; 1412 left -= sc->sc_sectorsize) { 1413 bcopy(src, dst, atom); 1414 src += atom; 1415 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1416 g_raid3_xor(src, dst, dst, atom); 1417 src += atom; 1418 } 1419 dst += atom; 1420 } 1421 } else { 1422 /* Regular component. */ 1423 src += atom * disk->d_no; 1424 for (left = bp->bio_length; left > 0; 1425 left -= sc->sc_sectorsize) { 1426 bcopy(src, dst, atom); 1427 src += sc->sc_sectorsize; 1428 dst += atom; 1429 } 1430 } 1431 bp->bio_offset /= sc->sc_ndisks - 1; 1432 bp->bio_length /= sc->sc_ndisks - 1; 1433 bp->bio_cmd = BIO_WRITE; 1434 bp->bio_cflags = 0; 1435 bp->bio_children = bp->bio_inbed = 0; 1436 cp = disk->d_consumer; 1437 KASSERT(cp->acr == 1 && cp->acw == 1 && cp->ace == 1, 1438 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1439 cp->acr, cp->acw, cp->ace)); 1440 cp->index++; 1441 g_io_request(bp, cp); 1442 return; 1443 } 1444 case BIO_WRITE: 1445 { 1446 struct g_raid3_disk_sync *sync; 1447 1448 if (bp->bio_error != 0) { 1449 G_RAID3_LOGREQ(0, bp, 1450 "Synchronization request failed (error=%d).", 1451 bp->bio_error); 1452 g_destroy_bio(bp); 1453 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1454 g_raid3_event_send(disk, 1455 G_RAID3_DISK_STATE_DISCONNECTED, 1456 G_RAID3_EVENT_DONTWAIT); 1457 return; 1458 } 1459 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1460 sync = &disk->d_sync; 1461 sync->ds_offset_done = bp->bio_offset + bp->bio_length; 1462 g_destroy_bio(bp); 1463 if (sync->ds_resync != -1) 1464 return; 1465 if (sync->ds_offset_done == 1466 sc->sc_mediasize / (sc->sc_ndisks - 1)) { 1467 /* 1468 * Disk up-to-date, activate it. 1469 */ 1470 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1471 G_RAID3_EVENT_DONTWAIT); 1472 return; 1473 } else if (sync->ds_offset_done % (MAXPHYS * 100) == 0) { 1474 /* 1475 * Update offset_done on every 100 blocks. 1476 * XXX: This should be configurable. 1477 */ 1478 g_topology_lock(); 1479 g_raid3_update_metadata(disk); 1480 g_topology_unlock(); 1481 } 1482 return; 1483 } 1484 default: 1485 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1486 bp->bio_cmd, sc->sc_name)); 1487 break; 1488 } 1489 } 1490 1491 static int 1492 g_raid3_register_request(struct bio *pbp) 1493 { 1494 struct g_raid3_softc *sc; 1495 struct g_raid3_disk *disk; 1496 struct g_consumer *cp; 1497 struct bio *cbp; 1498 off_t offset, length; 1499 u_int n, ndisks; 1500 int round_robin, verify; 1501 1502 ndisks = 0; 1503 sc = pbp->bio_to->geom->softc; 1504 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1505 sc->sc_syncdisk == NULL) { 1506 g_io_deliver(pbp, EIO); 1507 return (0); 1508 } 1509 g_raid3_init_bio(pbp); 1510 length = pbp->bio_length / (sc->sc_ndisks - 1); 1511 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1512 round_robin = verify = 0; 1513 switch (pbp->bio_cmd) { 1514 case BIO_READ: 1515 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1516 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1517 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1518 verify = 1; 1519 ndisks = sc->sc_ndisks; 1520 } else { 1521 verify = 0; 1522 ndisks = sc->sc_ndisks - 1; 1523 } 1524 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1525 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1526 round_robin = 1; 1527 } else { 1528 round_robin = 0; 1529 } 1530 KASSERT(!round_robin || !verify, 1531 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1532 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1533 break; 1534 case BIO_WRITE: 1535 case BIO_DELETE: 1536 { 1537 struct g_raid3_disk_sync *sync; 1538 1539 if (sc->sc_idle) 1540 g_raid3_unidle(sc); 1541 1542 ndisks = sc->sc_ndisks; 1543 1544 if (sc->sc_syncdisk == NULL) 1545 break; 1546 sync = &sc->sc_syncdisk->d_sync; 1547 if (offset >= sync->ds_offset) 1548 break; 1549 if (offset + length <= sync->ds_offset_done) 1550 break; 1551 if (offset >= sync->ds_resync && sync->ds_resync != -1) 1552 break; 1553 sync->ds_resync = offset - (offset % MAXPHYS); 1554 break; 1555 } 1556 } 1557 for (n = 0; n < ndisks; n++) { 1558 disk = &sc->sc_disks[n]; 1559 cbp = g_raid3_clone_bio(sc, pbp); 1560 if (cbp == NULL) { 1561 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1562 g_raid3_destroy_bio(sc, cbp); 1563 /* 1564 * To prevent deadlock, we must run back up 1565 * with the ENOMEM for failed requests of any 1566 * of our consumers. Our own sync requests 1567 * can stick around, as they are finite. 1568 */ 1569 if ((pbp->bio_cflags & 1570 G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1571 g_io_deliver(pbp, ENOMEM); 1572 return (0); 1573 } 1574 return (ENOMEM); 1575 } 1576 cbp->bio_offset = offset; 1577 cbp->bio_length = length; 1578 cbp->bio_done = g_raid3_done; 1579 switch (pbp->bio_cmd) { 1580 case BIO_READ: 1581 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1582 /* 1583 * Replace invalid component with the parity 1584 * component. 1585 */ 1586 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1587 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1588 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1589 } else if (round_robin && 1590 disk->d_no == sc->sc_round_robin) { 1591 /* 1592 * In round-robin mode skip one data component 1593 * and use parity component when reading. 1594 */ 1595 pbp->bio_driver2 = disk; 1596 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1597 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1598 sc->sc_round_robin++; 1599 round_robin = 0; 1600 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1601 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1602 } 1603 break; 1604 case BIO_WRITE: 1605 case BIO_DELETE: 1606 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1607 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1608 if (n == ndisks - 1) { 1609 /* 1610 * Active parity component, mark it as such. 1611 */ 1612 cbp->bio_cflags |= 1613 G_RAID3_BIO_CFLAG_PARITY; 1614 } 1615 } else { 1616 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1617 if (n == ndisks - 1) { 1618 /* 1619 * Parity component is not connected, 1620 * so destroy its request. 1621 */ 1622 pbp->bio_pflags |= 1623 G_RAID3_BIO_PFLAG_NOPARITY; 1624 g_raid3_destroy_bio(sc, cbp); 1625 cbp = NULL; 1626 } else { 1627 cbp->bio_cflags |= 1628 G_RAID3_BIO_CFLAG_NODISK; 1629 disk = NULL; 1630 } 1631 } 1632 break; 1633 } 1634 if (cbp != NULL) 1635 cbp->bio_caller2 = disk; 1636 } 1637 switch (pbp->bio_cmd) { 1638 case BIO_READ: 1639 if (round_robin) { 1640 /* 1641 * If we are in round-robin mode and 'round_robin' is 1642 * still 1, it means, that we skipped parity component 1643 * for this read and must reset sc_round_robin field. 1644 */ 1645 sc->sc_round_robin = 0; 1646 } 1647 G_RAID3_FOREACH_BIO(pbp, cbp) { 1648 disk = cbp->bio_caller2; 1649 cp = disk->d_consumer; 1650 cbp->bio_to = cp->provider; 1651 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1652 KASSERT(cp->acr == 1 && cp->acw == 1 && cp->ace == 1, 1653 ("Consumer %s not opened (r%dw%de%d).", 1654 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1655 cp->index++; 1656 g_io_request(cbp, cp); 1657 } 1658 break; 1659 case BIO_WRITE: 1660 case BIO_DELETE: 1661 /* 1662 * Bump syncid on first write. 1663 */ 1664 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { 1665 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 1666 g_topology_lock(); 1667 g_raid3_bump_syncid(sc); 1668 g_topology_unlock(); 1669 } 1670 g_raid3_scatter(pbp); 1671 break; 1672 } 1673 return (0); 1674 } 1675 1676 static int 1677 g_raid3_can_destroy(struct g_raid3_softc *sc) 1678 { 1679 struct g_geom *gp; 1680 struct g_consumer *cp; 1681 1682 g_topology_assert(); 1683 gp = sc->sc_geom; 1684 LIST_FOREACH(cp, &gp->consumer, consumer) { 1685 if (g_raid3_is_busy(sc, cp)) 1686 return (0); 1687 } 1688 gp = sc->sc_sync.ds_geom; 1689 LIST_FOREACH(cp, &gp->consumer, consumer) { 1690 if (g_raid3_is_busy(sc, cp)) 1691 return (0); 1692 } 1693 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1694 sc->sc_name); 1695 return (1); 1696 } 1697 1698 static int 1699 g_raid3_try_destroy(struct g_raid3_softc *sc) 1700 { 1701 1702 if (sc->sc_rootmount != NULL) { 1703 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 1704 sc->sc_rootmount); 1705 root_mount_rel(sc->sc_rootmount); 1706 sc->sc_rootmount = NULL; 1707 } 1708 1709 g_topology_lock(); 1710 if (!g_raid3_can_destroy(sc)) { 1711 g_topology_unlock(); 1712 return (0); 1713 } 1714 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 1715 g_topology_unlock(); 1716 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1717 &sc->sc_worker); 1718 wakeup(&sc->sc_worker); 1719 sc->sc_worker = NULL; 1720 } else { 1721 g_raid3_destroy_device(sc); 1722 g_topology_unlock(); 1723 free(sc->sc_disks, M_RAID3); 1724 free(sc, M_RAID3); 1725 } 1726 return (1); 1727 } 1728 1729 /* 1730 * Worker thread. 1731 */ 1732 static void 1733 g_raid3_worker(void *arg) 1734 { 1735 struct g_raid3_softc *sc; 1736 struct g_raid3_disk *disk; 1737 struct g_raid3_disk_sync *sync; 1738 struct g_raid3_event *ep; 1739 struct bio *bp; 1740 u_int nreqs; 1741 1742 sc = arg; 1743 mtx_lock_spin(&sched_lock); 1744 sched_prio(curthread, PRIBIO); 1745 mtx_unlock_spin(&sched_lock); 1746 1747 nreqs = 0; 1748 for (;;) { 1749 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 1750 /* 1751 * First take a look at events. 1752 * This is important to handle events before any I/O requests. 1753 */ 1754 ep = g_raid3_event_get(sc); 1755 if (ep != NULL && g_topology_try_lock()) { 1756 g_raid3_event_remove(sc, ep); 1757 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 1758 /* Update only device status. */ 1759 G_RAID3_DEBUG(3, 1760 "Running event for device %s.", 1761 sc->sc_name); 1762 ep->e_error = 0; 1763 g_raid3_update_device(sc, 1); 1764 } else { 1765 /* Update disk status. */ 1766 G_RAID3_DEBUG(3, "Running event for disk %s.", 1767 g_raid3_get_diskname(ep->e_disk)); 1768 ep->e_error = g_raid3_update_disk(ep->e_disk, 1769 ep->e_state); 1770 if (ep->e_error == 0) 1771 g_raid3_update_device(sc, 0); 1772 } 1773 g_topology_unlock(); 1774 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 1775 KASSERT(ep->e_error == 0, 1776 ("Error cannot be handled.")); 1777 g_raid3_event_free(ep); 1778 } else { 1779 ep->e_flags |= G_RAID3_EVENT_DONE; 1780 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 1781 ep); 1782 mtx_lock(&sc->sc_events_mtx); 1783 wakeup(ep); 1784 mtx_unlock(&sc->sc_events_mtx); 1785 } 1786 if ((sc->sc_flags & 1787 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1788 if (g_raid3_try_destroy(sc)) 1789 kthread_exit(0); 1790 } 1791 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 1792 continue; 1793 } 1794 /* 1795 * Now I/O requests. 1796 */ 1797 /* Get first request from the queue. */ 1798 mtx_lock(&sc->sc_queue_mtx); 1799 bp = bioq_first(&sc->sc_queue); 1800 if (bp == NULL) { 1801 if (ep != NULL) { 1802 /* 1803 * No I/O requests and topology lock was 1804 * already held? Try again. 1805 */ 1806 mtx_unlock(&sc->sc_queue_mtx); 1807 tsleep(ep, PRIBIO, "r3:top1", hz / 5); 1808 continue; 1809 } 1810 if ((sc->sc_flags & 1811 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1812 mtx_unlock(&sc->sc_queue_mtx); 1813 if (g_raid3_try_destroy(sc)) 1814 kthread_exit(0); 1815 mtx_lock(&sc->sc_queue_mtx); 1816 } 1817 } 1818 if (sc->sc_syncdisk != NULL && 1819 (bp == NULL || nreqs > g_raid3_reqs_per_sync)) { 1820 mtx_unlock(&sc->sc_queue_mtx); 1821 /* 1822 * It is time for synchronization... 1823 */ 1824 nreqs = 0; 1825 disk = sc->sc_syncdisk; 1826 sync = &disk->d_sync; 1827 if (sync->ds_offset < 1828 sc->sc_mediasize / (sc->sc_ndisks - 1) && 1829 sync->ds_offset == sync->ds_offset_done) { 1830 if (sync->ds_resync != -1) { 1831 sync->ds_offset = sync->ds_resync; 1832 sync->ds_offset_done = sync->ds_resync; 1833 sync->ds_resync = -1; 1834 } 1835 g_raid3_sync_one(sc); 1836 } 1837 G_RAID3_DEBUG(5, "%s: I'm here 2.", __func__); 1838 goto sleep; 1839 } 1840 if (bp == NULL) { 1841 if (g_raid3_check_idle(sc)) { 1842 u_int idletime; 1843 1844 idletime = g_raid3_idletime; 1845 if (idletime == 0) 1846 idletime = 1; 1847 idletime *= hz; 1848 if (msleep(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, 1849 "r3:w1", idletime) == EWOULDBLOCK) { 1850 G_RAID3_DEBUG(5, "%s: I'm here 3.", 1851 __func__); 1852 /* 1853 * No I/O requests in 'idletime' 1854 * seconds, so mark components as clean. 1855 */ 1856 g_raid3_idle(sc); 1857 } 1858 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 1859 } else { 1860 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, 1861 "r3:w2", 0); 1862 G_RAID3_DEBUG(5, "%s: I'm here 5.", __func__); 1863 } 1864 continue; 1865 } 1866 nreqs++; 1867 bioq_remove(&sc->sc_queue, bp); 1868 mtx_unlock(&sc->sc_queue_mtx); 1869 1870 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1871 g_raid3_regular_request(bp); 1872 } else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 1873 u_int timeout, sps; 1874 1875 g_raid3_sync_request(bp); 1876 sleep: 1877 sps = atomic_load_acq_int(&g_raid3_syncs_per_sec); 1878 if (sps == 0) { 1879 G_RAID3_DEBUG(5, "%s: I'm here 6.", __func__); 1880 continue; 1881 } 1882 if (ep != NULL) { 1883 /* 1884 * We have some pending events, don't sleep now. 1885 */ 1886 G_RAID3_DEBUG(5, "%s: I'm here 7.", __func__); 1887 tsleep(ep, PRIBIO, "r3:top2", hz / 5); 1888 continue; 1889 } 1890 mtx_lock(&sc->sc_queue_mtx); 1891 if (bioq_first(&sc->sc_queue) != NULL) { 1892 mtx_unlock(&sc->sc_queue_mtx); 1893 G_RAID3_DEBUG(5, "%s: I'm here 8.", __func__); 1894 continue; 1895 } 1896 timeout = hz / sps; 1897 if (timeout == 0) 1898 timeout = 1; 1899 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w2", 1900 timeout); 1901 } else { 1902 if (g_raid3_register_request(bp) != 0) { 1903 mtx_lock(&sc->sc_queue_mtx); 1904 bioq_insert_tail(&sc->sc_queue, bp); 1905 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, 1906 PRIBIO | PDROP, "r3:lowmem", hz / 10); 1907 } 1908 } 1909 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); 1910 } 1911 } 1912 1913 /* 1914 * Open disk's consumer if needed. 1915 */ 1916 static void 1917 g_raid3_update_access(struct g_raid3_disk *disk) 1918 { 1919 struct g_provider *pp; 1920 1921 g_topology_assert(); 1922 1923 pp = disk->d_softc->sc_provider; 1924 if (pp == NULL) 1925 return; 1926 if (pp->acw > 0) { 1927 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 1928 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 1929 g_raid3_get_diskname(disk), disk->d_softc->sc_name); 1930 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 1931 } 1932 } else if (pp->acw == 0) { 1933 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { 1934 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 1935 g_raid3_get_diskname(disk), disk->d_softc->sc_name); 1936 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 1937 } 1938 } 1939 } 1940 1941 static void 1942 g_raid3_sync_start(struct g_raid3_softc *sc) 1943 { 1944 struct g_raid3_disk *disk; 1945 int error; 1946 u_int n; 1947 1948 g_topology_assert(); 1949 1950 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1951 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 1952 sc->sc_state)); 1953 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 1954 sc->sc_name, sc->sc_state)); 1955 disk = NULL; 1956 for (n = 0; n < sc->sc_ndisks; n++) { 1957 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 1958 continue; 1959 disk = &sc->sc_disks[n]; 1960 break; 1961 } 1962 if (disk == NULL) 1963 return; 1964 1965 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 1966 g_raid3_get_diskname(disk)); 1967 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 1968 KASSERT(disk->d_sync.ds_consumer == NULL, 1969 ("Sync consumer already exists (device=%s, disk=%s).", 1970 sc->sc_name, g_raid3_get_diskname(disk))); 1971 disk->d_sync.ds_consumer = g_new_consumer(sc->sc_sync.ds_geom); 1972 disk->d_sync.ds_consumer->private = disk; 1973 disk->d_sync.ds_consumer->index = 0; 1974 error = g_attach(disk->d_sync.ds_consumer, disk->d_softc->sc_provider); 1975 KASSERT(error == 0, ("Cannot attach to %s (error=%d).", 1976 disk->d_softc->sc_name, error)); 1977 error = g_access(disk->d_sync.ds_consumer, 1, 0, 0); 1978 KASSERT(error == 0, ("Cannot open %s (error=%d).", 1979 disk->d_softc->sc_name, error)); 1980 disk->d_sync.ds_data = malloc(MAXPHYS, M_RAID3, M_WAITOK); 1981 sc->sc_syncdisk = disk; 1982 } 1983 1984 /* 1985 * Stop synchronization process. 1986 * type: 0 - synchronization finished 1987 * 1 - synchronization stopped 1988 */ 1989 static void 1990 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 1991 { 1992 struct g_raid3_disk *disk; 1993 1994 g_topology_assert(); 1995 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 1996 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 1997 sc->sc_state)); 1998 disk = sc->sc_syncdisk; 1999 sc->sc_syncdisk = NULL; 2000 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 2001 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2002 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2003 g_raid3_disk_state2str(disk->d_state))); 2004 if (disk->d_sync.ds_consumer == NULL) 2005 return; 2006 2007 if (type == 0) { 2008 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 2009 disk->d_softc->sc_name, g_raid3_get_diskname(disk)); 2010 } else /* if (type == 1) */ { 2011 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 2012 disk->d_softc->sc_name, g_raid3_get_diskname(disk)); 2013 } 2014 g_raid3_kill_consumer(disk->d_softc, disk->d_sync.ds_consumer); 2015 free(disk->d_sync.ds_data, M_RAID3); 2016 disk->d_sync.ds_consumer = NULL; 2017 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2018 } 2019 2020 static void 2021 g_raid3_launch_provider(struct g_raid3_softc *sc) 2022 { 2023 struct g_provider *pp; 2024 2025 g_topology_assert(); 2026 2027 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2028 pp->mediasize = sc->sc_mediasize; 2029 pp->sectorsize = sc->sc_sectorsize; 2030 sc->sc_provider = pp; 2031 g_error_provider(pp, 0); 2032 G_RAID3_DEBUG(0, "Device %s: provider %s launched.", sc->sc_name, 2033 pp->name); 2034 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2035 g_raid3_sync_start(sc); 2036 } 2037 2038 static void 2039 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2040 { 2041 struct bio *bp; 2042 2043 g_topology_assert(); 2044 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2045 sc->sc_name)); 2046 2047 g_error_provider(sc->sc_provider, ENXIO); 2048 mtx_lock(&sc->sc_queue_mtx); 2049 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2050 bioq_remove(&sc->sc_queue, bp); 2051 g_io_deliver(bp, ENXIO); 2052 } 2053 mtx_unlock(&sc->sc_queue_mtx); 2054 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2055 sc->sc_provider->name); 2056 sc->sc_provider->flags |= G_PF_WITHER; 2057 g_orphan_provider(sc->sc_provider, ENXIO); 2058 sc->sc_provider = NULL; 2059 if (sc->sc_syncdisk != NULL) 2060 g_raid3_sync_stop(sc, 1); 2061 } 2062 2063 static void 2064 g_raid3_go(void *arg) 2065 { 2066 struct g_raid3_softc *sc; 2067 2068 sc = arg; 2069 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2070 g_raid3_event_send(sc, 0, 2071 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2072 } 2073 2074 static u_int 2075 g_raid3_determine_state(struct g_raid3_disk *disk) 2076 { 2077 struct g_raid3_softc *sc; 2078 u_int state; 2079 2080 sc = disk->d_softc; 2081 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2082 if ((disk->d_flags & 2083 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2084 /* Disk does not need synchronization. */ 2085 state = G_RAID3_DISK_STATE_ACTIVE; 2086 } else { 2087 if ((sc->sc_flags & 2088 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2089 (disk->d_flags & 2090 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2091 /* 2092 * We can start synchronization from 2093 * the stored offset. 2094 */ 2095 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2096 } else { 2097 state = G_RAID3_DISK_STATE_STALE; 2098 } 2099 } 2100 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2101 /* 2102 * Reset all synchronization data for this disk, 2103 * because if it even was synchronized, it was 2104 * synchronized to disks with different syncid. 2105 */ 2106 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2107 disk->d_sync.ds_offset = 0; 2108 disk->d_sync.ds_offset_done = 0; 2109 disk->d_sync.ds_syncid = sc->sc_syncid; 2110 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2111 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2112 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2113 } else { 2114 state = G_RAID3_DISK_STATE_STALE; 2115 } 2116 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2117 /* 2118 * Not good, NOT GOOD! 2119 * It means that device was started on stale disks 2120 * and more fresh disk just arrive. 2121 * If there were writes, device is fucked up, sorry. 2122 * I think the best choice here is don't touch 2123 * this disk and inform the user laudly. 2124 */ 2125 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2126 "disk (%s) arrives!! It will not be connected to the " 2127 "running device.", sc->sc_name, 2128 g_raid3_get_diskname(disk)); 2129 g_raid3_destroy_disk(disk); 2130 state = G_RAID3_DISK_STATE_NONE; 2131 /* Return immediately, because disk was destroyed. */ 2132 return (state); 2133 } 2134 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2135 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2136 return (state); 2137 } 2138 2139 /* 2140 * Update device state. 2141 */ 2142 static void 2143 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2144 { 2145 struct g_raid3_disk *disk; 2146 u_int state; 2147 2148 g_topology_assert(); 2149 2150 switch (sc->sc_state) { 2151 case G_RAID3_DEVICE_STATE_STARTING: 2152 { 2153 u_int n, ndirty, ndisks, genid, syncid; 2154 2155 KASSERT(sc->sc_provider == NULL, 2156 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2157 /* 2158 * Are we ready? We are, if all disks are connected or 2159 * one disk is missing and 'force' is true. 2160 */ 2161 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2162 if (!force) 2163 callout_drain(&sc->sc_callout); 2164 } else { 2165 if (force) { 2166 /* 2167 * Timeout expired, so destroy device. 2168 */ 2169 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2170 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", 2171 __LINE__, sc->sc_rootmount); 2172 root_mount_rel(sc->sc_rootmount); 2173 sc->sc_rootmount = NULL; 2174 } 2175 return; 2176 } 2177 2178 /* 2179 * Find the biggest genid. 2180 */ 2181 genid = 0; 2182 for (n = 0; n < sc->sc_ndisks; n++) { 2183 disk = &sc->sc_disks[n]; 2184 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2185 continue; 2186 if (disk->d_genid > genid) 2187 genid = disk->d_genid; 2188 } 2189 sc->sc_genid = genid; 2190 /* 2191 * Remove all disks without the biggest genid. 2192 */ 2193 for (n = 0; n < sc->sc_ndisks; n++) { 2194 disk = &sc->sc_disks[n]; 2195 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2196 continue; 2197 if (disk->d_genid < genid) { 2198 G_RAID3_DEBUG(0, 2199 "Component %s (device %s) broken, skipping.", 2200 g_raid3_get_diskname(disk), sc->sc_name); 2201 g_raid3_destroy_disk(disk); 2202 } 2203 } 2204 2205 /* 2206 * There must be at least 'sc->sc_ndisks - 1' components 2207 * with the same syncid and without SYNCHRONIZING flag. 2208 */ 2209 2210 /* 2211 * Find the biggest syncid, number of valid components and 2212 * number of dirty components. 2213 */ 2214 ndirty = ndisks = syncid = 0; 2215 for (n = 0; n < sc->sc_ndisks; n++) { 2216 disk = &sc->sc_disks[n]; 2217 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2218 continue; 2219 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2220 ndirty++; 2221 if (disk->d_sync.ds_syncid > syncid) { 2222 syncid = disk->d_sync.ds_syncid; 2223 ndisks = 0; 2224 } else if (disk->d_sync.ds_syncid < syncid) { 2225 continue; 2226 } 2227 if ((disk->d_flags & 2228 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2229 continue; 2230 } 2231 ndisks++; 2232 } 2233 /* 2234 * Do we have enough valid components? 2235 */ 2236 if (ndisks + 1 < sc->sc_ndisks) { 2237 G_RAID3_DEBUG(0, 2238 "Device %s is broken, too few valid components.", 2239 sc->sc_name); 2240 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2241 return; 2242 } 2243 /* 2244 * If there is one DIRTY component and all disks are present, 2245 * mark it for synchronization. If there is more than one DIRTY 2246 * component, mark parity component for synchronization. 2247 */ 2248 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2249 for (n = 0; n < sc->sc_ndisks; n++) { 2250 disk = &sc->sc_disks[n]; 2251 if ((disk->d_flags & 2252 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2253 continue; 2254 } 2255 disk->d_flags |= 2256 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2257 } 2258 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2259 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2260 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2261 } 2262 2263 sc->sc_syncid = syncid; 2264 if (force) { 2265 /* Remember to bump syncid on first write. */ 2266 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2267 } 2268 if (ndisks == sc->sc_ndisks) 2269 state = G_RAID3_DEVICE_STATE_COMPLETE; 2270 else /* if (ndisks == sc->sc_ndisks - 1) */ 2271 state = G_RAID3_DEVICE_STATE_DEGRADED; 2272 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2273 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2274 g_raid3_device_state2str(state)); 2275 sc->sc_state = state; 2276 for (n = 0; n < sc->sc_ndisks; n++) { 2277 disk = &sc->sc_disks[n]; 2278 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2279 continue; 2280 state = g_raid3_determine_state(disk); 2281 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2282 if (state == G_RAID3_DISK_STATE_STALE) 2283 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2284 } 2285 break; 2286 } 2287 case G_RAID3_DEVICE_STATE_DEGRADED: 2288 /* 2289 * Genid need to be bumped immediately, so do it here. 2290 */ 2291 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2292 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2293 g_raid3_bump_genid(sc); 2294 } 2295 2296 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2297 return; 2298 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2299 sc->sc_ndisks - 1) { 2300 if (sc->sc_provider != NULL) 2301 g_raid3_destroy_provider(sc); 2302 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2303 return; 2304 } 2305 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2306 sc->sc_ndisks) { 2307 state = G_RAID3_DEVICE_STATE_COMPLETE; 2308 G_RAID3_DEBUG(1, 2309 "Device %s state changed from %s to %s.", 2310 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2311 g_raid3_device_state2str(state)); 2312 sc->sc_state = state; 2313 } 2314 if (sc->sc_provider == NULL) 2315 g_raid3_launch_provider(sc); 2316 if (sc->sc_rootmount != NULL) { 2317 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2318 sc->sc_rootmount); 2319 root_mount_rel(sc->sc_rootmount); 2320 sc->sc_rootmount = NULL; 2321 } 2322 break; 2323 case G_RAID3_DEVICE_STATE_COMPLETE: 2324 /* 2325 * Genid need to be bumped immediately, so do it here. 2326 */ 2327 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2328 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2329 g_raid3_bump_genid(sc); 2330 } 2331 2332 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2333 return; 2334 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2335 sc->sc_ndisks - 1, 2336 ("Too few ACTIVE components in COMPLETE state (device %s).", 2337 sc->sc_name)); 2338 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2339 sc->sc_ndisks - 1) { 2340 state = G_RAID3_DEVICE_STATE_DEGRADED; 2341 G_RAID3_DEBUG(1, 2342 "Device %s state changed from %s to %s.", 2343 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2344 g_raid3_device_state2str(state)); 2345 sc->sc_state = state; 2346 } 2347 if (sc->sc_provider == NULL) 2348 g_raid3_launch_provider(sc); 2349 if (sc->sc_rootmount != NULL) { 2350 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2351 sc->sc_rootmount); 2352 root_mount_rel(sc->sc_rootmount); 2353 sc->sc_rootmount = NULL; 2354 } 2355 break; 2356 default: 2357 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2358 g_raid3_device_state2str(sc->sc_state))); 2359 break; 2360 } 2361 } 2362 2363 /* 2364 * Update disk state and device state if needed. 2365 */ 2366 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2367 "Disk %s state changed from %s to %s (device %s).", \ 2368 g_raid3_get_diskname(disk), \ 2369 g_raid3_disk_state2str(disk->d_state), \ 2370 g_raid3_disk_state2str(state), sc->sc_name) 2371 static int 2372 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2373 { 2374 struct g_raid3_softc *sc; 2375 2376 g_topology_assert(); 2377 2378 sc = disk->d_softc; 2379 again: 2380 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2381 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2382 g_raid3_disk_state2str(state)); 2383 switch (state) { 2384 case G_RAID3_DISK_STATE_NEW: 2385 /* 2386 * Possible scenarios: 2387 * 1. New disk arrive. 2388 */ 2389 /* Previous state should be NONE. */ 2390 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2391 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2392 g_raid3_disk_state2str(disk->d_state))); 2393 DISK_STATE_CHANGED(); 2394 2395 disk->d_state = state; 2396 G_RAID3_DEBUG(0, "Device %s: provider %s detected.", 2397 sc->sc_name, g_raid3_get_diskname(disk)); 2398 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2399 break; 2400 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2401 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2402 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2403 g_raid3_device_state2str(sc->sc_state), 2404 g_raid3_get_diskname(disk), 2405 g_raid3_disk_state2str(disk->d_state))); 2406 state = g_raid3_determine_state(disk); 2407 if (state != G_RAID3_DISK_STATE_NONE) 2408 goto again; 2409 break; 2410 case G_RAID3_DISK_STATE_ACTIVE: 2411 /* 2412 * Possible scenarios: 2413 * 1. New disk does not need synchronization. 2414 * 2. Synchronization process finished successfully. 2415 */ 2416 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2417 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2418 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2419 g_raid3_device_state2str(sc->sc_state), 2420 g_raid3_get_diskname(disk), 2421 g_raid3_disk_state2str(disk->d_state))); 2422 /* Previous state should be NEW or SYNCHRONIZING. */ 2423 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2424 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2425 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2426 g_raid3_disk_state2str(disk->d_state))); 2427 DISK_STATE_CHANGED(); 2428 2429 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2430 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2431 else if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2432 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2433 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2434 g_raid3_sync_stop(sc, 0); 2435 } 2436 disk->d_state = state; 2437 disk->d_sync.ds_offset = 0; 2438 disk->d_sync.ds_offset_done = 0; 2439 g_raid3_update_access(disk); 2440 g_raid3_update_metadata(disk); 2441 G_RAID3_DEBUG(0, "Device %s: provider %s activated.", 2442 sc->sc_name, g_raid3_get_diskname(disk)); 2443 break; 2444 case G_RAID3_DISK_STATE_STALE: 2445 /* 2446 * Possible scenarios: 2447 * 1. Stale disk was connected. 2448 */ 2449 /* Previous state should be NEW. */ 2450 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2451 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2452 g_raid3_disk_state2str(disk->d_state))); 2453 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2454 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2455 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2456 g_raid3_device_state2str(sc->sc_state), 2457 g_raid3_get_diskname(disk), 2458 g_raid3_disk_state2str(disk->d_state))); 2459 /* 2460 * STALE state is only possible if device is marked 2461 * NOAUTOSYNC. 2462 */ 2463 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2464 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2465 g_raid3_device_state2str(sc->sc_state), 2466 g_raid3_get_diskname(disk), 2467 g_raid3_disk_state2str(disk->d_state))); 2468 DISK_STATE_CHANGED(); 2469 2470 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2471 disk->d_state = state; 2472 g_raid3_update_metadata(disk); 2473 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2474 sc->sc_name, g_raid3_get_diskname(disk)); 2475 break; 2476 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2477 /* 2478 * Possible scenarios: 2479 * 1. Disk which needs synchronization was connected. 2480 */ 2481 /* Previous state should be NEW. */ 2482 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2483 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2484 g_raid3_disk_state2str(disk->d_state))); 2485 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2486 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2487 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2488 g_raid3_device_state2str(sc->sc_state), 2489 g_raid3_get_diskname(disk), 2490 g_raid3_disk_state2str(disk->d_state))); 2491 DISK_STATE_CHANGED(); 2492 2493 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2494 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2495 disk->d_state = state; 2496 if (sc->sc_provider != NULL) { 2497 g_raid3_sync_start(sc); 2498 g_raid3_update_metadata(disk); 2499 } 2500 break; 2501 case G_RAID3_DISK_STATE_DISCONNECTED: 2502 /* 2503 * Possible scenarios: 2504 * 1. Device wasn't running yet, but disk disappear. 2505 * 2. Disk was active and disapppear. 2506 * 3. Disk disappear during synchronization process. 2507 */ 2508 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2509 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2510 /* 2511 * Previous state should be ACTIVE, STALE or 2512 * SYNCHRONIZING. 2513 */ 2514 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2515 disk->d_state == G_RAID3_DISK_STATE_STALE || 2516 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2517 ("Wrong disk state (%s, %s).", 2518 g_raid3_get_diskname(disk), 2519 g_raid3_disk_state2str(disk->d_state))); 2520 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2521 /* Previous state should be NEW. */ 2522 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2523 ("Wrong disk state (%s, %s).", 2524 g_raid3_get_diskname(disk), 2525 g_raid3_disk_state2str(disk->d_state))); 2526 /* 2527 * Reset bumping syncid if disk disappeared in STARTING 2528 * state. 2529 */ 2530 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) 2531 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 2532 #ifdef INVARIANTS 2533 } else { 2534 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2535 sc->sc_name, 2536 g_raid3_device_state2str(sc->sc_state), 2537 g_raid3_get_diskname(disk), 2538 g_raid3_disk_state2str(disk->d_state))); 2539 #endif 2540 } 2541 DISK_STATE_CHANGED(); 2542 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2543 sc->sc_name, g_raid3_get_diskname(disk)); 2544 2545 g_raid3_destroy_disk(disk); 2546 break; 2547 default: 2548 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2549 break; 2550 } 2551 return (0); 2552 } 2553 #undef DISK_STATE_CHANGED 2554 2555 int 2556 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2557 { 2558 struct g_provider *pp; 2559 u_char *buf; 2560 int error; 2561 2562 g_topology_assert(); 2563 2564 error = g_access(cp, 1, 0, 0); 2565 if (error != 0) 2566 return (error); 2567 pp = cp->provider; 2568 g_topology_unlock(); 2569 /* Metadata are stored on last sector. */ 2570 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2571 &error); 2572 g_topology_lock(); 2573 g_access(cp, -1, 0, 0); 2574 if (buf == NULL) { 2575 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", 2576 cp->provider->name, error); 2577 if (buf != NULL) 2578 g_free(buf); 2579 return (error); 2580 } 2581 2582 /* Decode metadata. */ 2583 error = raid3_metadata_decode(buf, md); 2584 g_free(buf); 2585 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2586 return (EINVAL); 2587 if (md->md_version > G_RAID3_VERSION) { 2588 G_RAID3_DEBUG(0, 2589 "Kernel module is too old to handle metadata from %s.", 2590 cp->provider->name); 2591 return (EINVAL); 2592 } 2593 if (error != 0) { 2594 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2595 cp->provider->name); 2596 return (error); 2597 } 2598 2599 return (0); 2600 } 2601 2602 static int 2603 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2604 struct g_raid3_metadata *md) 2605 { 2606 2607 if (md->md_no >= sc->sc_ndisks) { 2608 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2609 pp->name, md->md_no); 2610 return (EINVAL); 2611 } 2612 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2613 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2614 pp->name, md->md_no); 2615 return (EEXIST); 2616 } 2617 if (md->md_all != sc->sc_ndisks) { 2618 G_RAID3_DEBUG(1, 2619 "Invalid '%s' field on disk %s (device %s), skipping.", 2620 "md_all", pp->name, sc->sc_name); 2621 return (EINVAL); 2622 } 2623 if (md->md_mediasize != sc->sc_mediasize) { 2624 G_RAID3_DEBUG(1, 2625 "Invalid '%s' field on disk %s (device %s), skipping.", 2626 "md_mediasize", pp->name, sc->sc_name); 2627 return (EINVAL); 2628 } 2629 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2630 G_RAID3_DEBUG(1, 2631 "Invalid '%s' field on disk %s (device %s), skipping.", 2632 "md_mediasize", pp->name, sc->sc_name); 2633 return (EINVAL); 2634 } 2635 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2636 G_RAID3_DEBUG(1, 2637 "Invalid size of disk %s (device %s), skipping.", pp->name, 2638 sc->sc_name); 2639 return (EINVAL); 2640 } 2641 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 2642 G_RAID3_DEBUG(1, 2643 "Invalid '%s' field on disk %s (device %s), skipping.", 2644 "md_sectorsize", pp->name, sc->sc_name); 2645 return (EINVAL); 2646 } 2647 if (md->md_sectorsize != sc->sc_sectorsize) { 2648 G_RAID3_DEBUG(1, 2649 "Invalid '%s' field on disk %s (device %s), skipping.", 2650 "md_sectorsize", pp->name, sc->sc_name); 2651 return (EINVAL); 2652 } 2653 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 2654 G_RAID3_DEBUG(1, 2655 "Invalid sector size of disk %s (device %s), skipping.", 2656 pp->name, sc->sc_name); 2657 return (EINVAL); 2658 } 2659 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 2660 G_RAID3_DEBUG(1, 2661 "Invalid device flags on disk %s (device %s), skipping.", 2662 pp->name, sc->sc_name); 2663 return (EINVAL); 2664 } 2665 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 2666 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 2667 /* 2668 * VERIFY and ROUND-ROBIN options are mutally exclusive. 2669 */ 2670 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 2671 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 2672 return (EINVAL); 2673 } 2674 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 2675 G_RAID3_DEBUG(1, 2676 "Invalid disk flags on disk %s (device %s), skipping.", 2677 pp->name, sc->sc_name); 2678 return (EINVAL); 2679 } 2680 return (0); 2681 } 2682 2683 int 2684 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 2685 struct g_raid3_metadata *md) 2686 { 2687 struct g_raid3_disk *disk; 2688 int error; 2689 2690 g_topology_assert(); 2691 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 2692 2693 error = g_raid3_check_metadata(sc, pp, md); 2694 if (error != 0) 2695 return (error); 2696 if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && 2697 md->md_genid < sc->sc_genid) { 2698 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", 2699 pp->name, sc->sc_name); 2700 return (EINVAL); 2701 } 2702 disk = g_raid3_init_disk(sc, pp, md, &error); 2703 if (disk == NULL) 2704 return (error); 2705 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 2706 G_RAID3_EVENT_WAIT); 2707 if (error != 0) 2708 return (error); 2709 if (md->md_version < G_RAID3_VERSION) { 2710 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", 2711 pp->name, md->md_version, G_RAID3_VERSION); 2712 g_raid3_update_metadata(disk); 2713 } 2714 return (0); 2715 } 2716 2717 static int 2718 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 2719 { 2720 struct g_raid3_softc *sc; 2721 struct g_raid3_disk *disk; 2722 int dcr, dcw, dce; 2723 u_int n; 2724 2725 g_topology_assert(); 2726 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 2727 acw, ace); 2728 2729 dcr = pp->acr + acr; 2730 dcw = pp->acw + acw; 2731 dce = pp->ace + ace; 2732 2733 sc = pp->geom->softc; 2734 if (sc == NULL || 2735 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1 || 2736 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2737 if (acr <= 0 && acw <= 0 && ace <= 0) 2738 return (0); 2739 else 2740 return (ENXIO); 2741 } 2742 for (n = 0; n < sc->sc_ndisks; n++) { 2743 disk = &sc->sc_disks[n]; 2744 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 2745 continue; 2746 /* 2747 * Mark disk as dirty on open and unmark on close. 2748 */ 2749 if (pp->acw == 0 && dcw > 0) { 2750 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 2751 g_raid3_get_diskname(disk), sc->sc_name); 2752 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2753 g_raid3_update_metadata(disk); 2754 } else if (pp->acw > 0 && dcw == 0) { 2755 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 2756 g_raid3_get_diskname(disk), sc->sc_name); 2757 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2758 g_raid3_update_metadata(disk); 2759 } 2760 } 2761 return (0); 2762 } 2763 2764 static struct g_geom * 2765 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 2766 { 2767 struct g_raid3_softc *sc; 2768 struct g_geom *gp; 2769 int error, timeout; 2770 u_int n; 2771 2772 g_topology_assert(); 2773 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 2774 2775 /* One disk is minimum. */ 2776 if (md->md_all < 1) 2777 return (NULL); 2778 /* 2779 * Action geom. 2780 */ 2781 gp = g_new_geomf(mp, "%s", md->md_name); 2782 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 2783 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 2784 M_WAITOK | M_ZERO); 2785 gp->start = g_raid3_start; 2786 gp->orphan = g_raid3_orphan; 2787 gp->access = g_raid3_access; 2788 gp->dumpconf = g_raid3_dumpconf; 2789 2790 sc->sc_id = md->md_id; 2791 sc->sc_mediasize = md->md_mediasize; 2792 sc->sc_sectorsize = md->md_sectorsize; 2793 sc->sc_ndisks = md->md_all; 2794 sc->sc_round_robin = 0; 2795 sc->sc_flags = md->md_mflags; 2796 sc->sc_bump_id = 0; 2797 sc->sc_idle = 0; 2798 for (n = 0; n < sc->sc_ndisks; n++) { 2799 sc->sc_disks[n].d_softc = sc; 2800 sc->sc_disks[n].d_no = n; 2801 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 2802 } 2803 bioq_init(&sc->sc_queue); 2804 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 2805 TAILQ_INIT(&sc->sc_events); 2806 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 2807 callout_init(&sc->sc_callout, CALLOUT_MPSAFE); 2808 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 2809 gp->softc = sc; 2810 sc->sc_geom = gp; 2811 sc->sc_provider = NULL; 2812 /* 2813 * Synchronization geom. 2814 */ 2815 gp = g_new_geomf(mp, "%s.sync", md->md_name); 2816 gp->softc = sc; 2817 gp->orphan = g_raid3_orphan; 2818 sc->sc_sync.ds_geom = gp; 2819 sc->sc_zone_64k = uma_zcreate("gr3:64k", 65536, NULL, NULL, NULL, NULL, 2820 UMA_ALIGN_PTR, 0); 2821 uma_zone_set_max(sc->sc_zone_64k, g_raid3_n64k); 2822 sc->sc_zone_16k = uma_zcreate("gr3:16k", 16384, NULL, NULL, NULL, NULL, 2823 UMA_ALIGN_PTR, 0); 2824 uma_zone_set_max(sc->sc_zone_64k, g_raid3_n16k); 2825 sc->sc_zone_4k = uma_zcreate("gr3:4k", 4096, NULL, NULL, NULL, NULL, 2826 UMA_ALIGN_PTR, 0); 2827 uma_zone_set_max(sc->sc_zone_4k, g_raid3_n4k); 2828 error = kthread_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 2829 "g_raid3 %s", md->md_name); 2830 if (error != 0) { 2831 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 2832 sc->sc_name); 2833 uma_zdestroy(sc->sc_zone_64k); 2834 uma_zdestroy(sc->sc_zone_16k); 2835 uma_zdestroy(sc->sc_zone_4k); 2836 g_destroy_geom(sc->sc_sync.ds_geom); 2837 mtx_destroy(&sc->sc_events_mtx); 2838 mtx_destroy(&sc->sc_queue_mtx); 2839 g_destroy_geom(sc->sc_geom); 2840 free(sc->sc_disks, M_RAID3); 2841 free(sc, M_RAID3); 2842 return (NULL); 2843 } 2844 2845 G_RAID3_DEBUG(0, "Device %s created (id=%u).", sc->sc_name, sc->sc_id); 2846 2847 sc->sc_rootmount = root_mount_hold("GRAID3"); 2848 G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); 2849 2850 /* 2851 * Run timeout. 2852 */ 2853 timeout = atomic_load_acq_int(&g_raid3_timeout); 2854 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 2855 return (sc->sc_geom); 2856 } 2857 2858 int 2859 g_raid3_destroy(struct g_raid3_softc *sc, boolean_t force) 2860 { 2861 struct g_provider *pp; 2862 2863 g_topology_assert(); 2864 2865 if (sc == NULL) 2866 return (ENXIO); 2867 pp = sc->sc_provider; 2868 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 2869 if (force) { 2870 G_RAID3_DEBUG(1, "Device %s is still open, so it " 2871 "can't be definitely removed.", pp->name); 2872 } else { 2873 G_RAID3_DEBUG(1, 2874 "Device %s is still open (r%dw%de%d).", pp->name, 2875 pp->acr, pp->acw, pp->ace); 2876 return (EBUSY); 2877 } 2878 } 2879 2880 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2881 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 2882 g_topology_unlock(); 2883 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 2884 mtx_lock(&sc->sc_queue_mtx); 2885 wakeup(sc); 2886 wakeup(&sc->sc_queue); 2887 mtx_unlock(&sc->sc_queue_mtx); 2888 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 2889 while (sc->sc_worker != NULL) 2890 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 2891 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 2892 g_topology_lock(); 2893 g_raid3_destroy_device(sc); 2894 free(sc->sc_disks, M_RAID3); 2895 free(sc, M_RAID3); 2896 return (0); 2897 } 2898 2899 static void 2900 g_raid3_taste_orphan(struct g_consumer *cp) 2901 { 2902 2903 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2904 cp->provider->name)); 2905 } 2906 2907 static struct g_geom * 2908 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2909 { 2910 struct g_raid3_metadata md; 2911 struct g_raid3_softc *sc; 2912 struct g_consumer *cp; 2913 struct g_geom *gp; 2914 int error; 2915 2916 g_topology_assert(); 2917 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2918 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 2919 2920 gp = g_new_geomf(mp, "raid3:taste"); 2921 /* This orphan function should be never called. */ 2922 gp->orphan = g_raid3_taste_orphan; 2923 cp = g_new_consumer(gp); 2924 g_attach(cp, pp); 2925 error = g_raid3_read_metadata(cp, &md); 2926 g_detach(cp); 2927 g_destroy_consumer(cp); 2928 g_destroy_geom(gp); 2929 if (error != 0) 2930 return (NULL); 2931 gp = NULL; 2932 2933 if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0) 2934 return (NULL); 2935 if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) 2936 return (NULL); 2937 if (g_raid3_debug >= 2) 2938 raid3_metadata_dump(&md); 2939 2940 /* 2941 * Let's check if device already exists. 2942 */ 2943 sc = NULL; 2944 LIST_FOREACH(gp, &mp->geom, geom) { 2945 sc = gp->softc; 2946 if (sc == NULL) 2947 continue; 2948 if (sc->sc_sync.ds_geom == gp) 2949 continue; 2950 if (strcmp(md.md_name, sc->sc_name) != 0) 2951 continue; 2952 if (md.md_id != sc->sc_id) { 2953 G_RAID3_DEBUG(0, "Device %s already configured.", 2954 sc->sc_name); 2955 return (NULL); 2956 } 2957 break; 2958 } 2959 if (gp == NULL) { 2960 gp = g_raid3_create(mp, &md); 2961 if (gp == NULL) { 2962 G_RAID3_DEBUG(0, "Cannot create device %s.", 2963 md.md_name); 2964 return (NULL); 2965 } 2966 sc = gp->softc; 2967 } 2968 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 2969 error = g_raid3_add_disk(sc, pp, &md); 2970 if (error != 0) { 2971 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 2972 pp->name, gp->name, error); 2973 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 2974 sc->sc_ndisks) { 2975 g_raid3_destroy(sc, 1); 2976 } 2977 return (NULL); 2978 } 2979 return (gp); 2980 } 2981 2982 static int 2983 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 2984 struct g_geom *gp) 2985 { 2986 2987 return (g_raid3_destroy(gp->softc, 0)); 2988 } 2989 2990 static void 2991 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2992 struct g_consumer *cp, struct g_provider *pp) 2993 { 2994 struct g_raid3_softc *sc; 2995 2996 g_topology_assert(); 2997 2998 sc = gp->softc; 2999 if (sc == NULL) 3000 return; 3001 /* Skip synchronization geom. */ 3002 if (gp == sc->sc_sync.ds_geom) 3003 return; 3004 if (pp != NULL) { 3005 /* Nothing here. */ 3006 } else if (cp != NULL) { 3007 struct g_raid3_disk *disk; 3008 3009 disk = cp->private; 3010 if (disk == NULL) 3011 return; 3012 sbuf_printf(sb, "%s<Type>", indent); 3013 if (disk->d_no == sc->sc_ndisks - 1) 3014 sbuf_printf(sb, "PARITY"); 3015 else 3016 sbuf_printf(sb, "DATA"); 3017 sbuf_printf(sb, "</Type>\n"); 3018 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 3019 (u_int)disk->d_no); 3020 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 3021 sbuf_printf(sb, "%s<Synchronized>", indent); 3022 if (disk->d_sync.ds_offset_done == 0) 3023 sbuf_printf(sb, "0%%"); 3024 else { 3025 sbuf_printf(sb, "%u%%", 3026 (u_int)((disk->d_sync.ds_offset_done * 100) / 3027 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 3028 } 3029 sbuf_printf(sb, "</Synchronized>\n"); 3030 } 3031 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 3032 disk->d_sync.ds_syncid); 3033 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); 3034 sbuf_printf(sb, "%s<Flags>", indent); 3035 if (disk->d_flags == 0) 3036 sbuf_printf(sb, "NONE"); 3037 else { 3038 int first = 1; 3039 3040 #define ADD_FLAG(flag, name) do { \ 3041 if ((disk->d_flags & (flag)) != 0) { \ 3042 if (!first) \ 3043 sbuf_printf(sb, ", "); \ 3044 else \ 3045 first = 0; \ 3046 sbuf_printf(sb, name); \ 3047 } \ 3048 } while (0) 3049 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 3050 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 3051 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 3052 "SYNCHRONIZING"); 3053 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 3054 #undef ADD_FLAG 3055 } 3056 sbuf_printf(sb, "</Flags>\n"); 3057 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3058 g_raid3_disk_state2str(disk->d_state)); 3059 } else { 3060 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 3061 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 3062 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); 3063 sbuf_printf(sb, "%s<Flags>", indent); 3064 if (sc->sc_flags == 0) 3065 sbuf_printf(sb, "NONE"); 3066 else { 3067 int first = 1; 3068 3069 #define ADD_FLAG(flag, name) do { \ 3070 if ((sc->sc_flags & (flag)) != 0) { \ 3071 if (!first) \ 3072 sbuf_printf(sb, ", "); \ 3073 else \ 3074 first = 0; \ 3075 sbuf_printf(sb, name); \ 3076 } \ 3077 } while (0) 3078 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3079 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3080 "ROUND-ROBIN"); 3081 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3082 #undef ADD_FLAG 3083 } 3084 sbuf_printf(sb, "</Flags>\n"); 3085 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3086 sc->sc_ndisks); 3087 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3088 g_raid3_device_state2str(sc->sc_state)); 3089 } 3090 } 3091 3092 static void 3093 g_raid3_shutdown(void *arg, int howto) 3094 { 3095 struct g_class *mp; 3096 struct g_geom *gp, *gp2; 3097 3098 mp = arg; 3099 DROP_GIANT(); 3100 g_topology_lock(); 3101 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3102 if (gp->softc == NULL) 3103 continue; 3104 g_raid3_destroy(gp->softc, 1); 3105 } 3106 g_topology_unlock(); 3107 PICKUP_GIANT(); 3108 #if 0 3109 tsleep(&gp, PRIBIO, "r3:shutdown", hz * 20); 3110 #endif 3111 } 3112 3113 static void 3114 g_raid3_init(struct g_class *mp) 3115 { 3116 3117 g_raid3_ehtag = EVENTHANDLER_REGISTER(shutdown_post_sync, 3118 g_raid3_shutdown, mp, SHUTDOWN_PRI_FIRST); 3119 if (g_raid3_ehtag == NULL) 3120 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3121 } 3122 3123 static void 3124 g_raid3_fini(struct g_class *mp) 3125 { 3126 3127 if (g_raid3_ehtag == NULL) 3128 return; 3129 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_ehtag); 3130 } 3131 3132 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3133