1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sbuf.h> 39 #include <sys/sysctl.h> 40 #include <sys/malloc.h> 41 #include <sys/eventhandler.h> 42 #include <vm/uma.h> 43 #include <geom/geom.h> 44 #include <geom/geom_dbg.h> 45 #include <sys/proc.h> 46 #include <sys/kthread.h> 47 #include <sys/sched.h> 48 #include <geom/raid3/g_raid3.h> 49 50 FEATURE(geom_raid3, "GEOM RAID-3 functionality"); 51 52 static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data"); 53 54 SYSCTL_DECL(_kern_geom); 55 static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 56 "GEOM_RAID3 stuff"); 57 u_int g_raid3_debug = 0; 58 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0, 59 "Debug level"); 60 static u_int g_raid3_timeout = 4; 61 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout, 62 0, "Time to wait on all raid3 components"); 63 static u_int g_raid3_idletime = 5; 64 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN, 65 &g_raid3_idletime, 0, "Mark components as clean when idling"); 66 static u_int g_raid3_disconnect_on_failure = 1; 67 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 68 &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 69 static u_int g_raid3_syncreqs = 2; 70 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN, 71 &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests."); 72 static u_int g_raid3_use_malloc = 0; 73 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN, 74 &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9)."); 75 76 static u_int g_raid3_n64k = 50; 77 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0, 78 "Maximum number of 64kB allocations"); 79 static u_int g_raid3_n16k = 200; 80 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0, 81 "Maximum number of 16kB allocations"); 82 static u_int g_raid3_n4k = 1200; 83 SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0, 84 "Maximum number of 4kB allocations"); 85 86 static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, 87 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 88 "GEOM_RAID3 statistics"); 89 static u_int g_raid3_parity_mismatch = 0; 90 SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD, 91 &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode"); 92 93 #define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \ 94 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 95 msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 96 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 97 } while (0) 98 99 static eventhandler_tag g_raid3_post_sync = NULL; 100 static int g_raid3_shutdown = 0; 101 102 static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp, 103 struct g_geom *gp); 104 static g_taste_t g_raid3_taste; 105 static void g_raid3_init(struct g_class *mp); 106 static void g_raid3_fini(struct g_class *mp); 107 static void g_raid3_providergone(struct g_provider *pp); 108 109 struct g_class g_raid3_class = { 110 .name = G_RAID3_CLASS_NAME, 111 .version = G_VERSION, 112 .ctlreq = g_raid3_config, 113 .taste = g_raid3_taste, 114 .destroy_geom = g_raid3_destroy_geom, 115 .init = g_raid3_init, 116 .fini = g_raid3_fini, 117 .providergone = g_raid3_providergone, 118 }; 119 120 static void g_raid3_destroy_provider(struct g_raid3_softc *sc); 121 static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state); 122 static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force); 123 static void g_raid3_dumpconf(struct sbuf *sb, const char *indent, 124 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 125 static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type); 126 static int g_raid3_register_request(struct bio *pbp); 127 static void g_raid3_sync_release(struct g_raid3_softc *sc); 128 static void g_raid3_timeout_drain(struct g_raid3_softc *sc); 129 130 static const char * 131 g_raid3_disk_state2str(int state) 132 { 133 134 switch (state) { 135 case G_RAID3_DISK_STATE_NODISK: 136 return ("NODISK"); 137 case G_RAID3_DISK_STATE_NONE: 138 return ("NONE"); 139 case G_RAID3_DISK_STATE_NEW: 140 return ("NEW"); 141 case G_RAID3_DISK_STATE_ACTIVE: 142 return ("ACTIVE"); 143 case G_RAID3_DISK_STATE_STALE: 144 return ("STALE"); 145 case G_RAID3_DISK_STATE_SYNCHRONIZING: 146 return ("SYNCHRONIZING"); 147 case G_RAID3_DISK_STATE_DISCONNECTED: 148 return ("DISCONNECTED"); 149 default: 150 return ("INVALID"); 151 } 152 } 153 154 static const char * 155 g_raid3_device_state2str(int state) 156 { 157 158 switch (state) { 159 case G_RAID3_DEVICE_STATE_STARTING: 160 return ("STARTING"); 161 case G_RAID3_DEVICE_STATE_DEGRADED: 162 return ("DEGRADED"); 163 case G_RAID3_DEVICE_STATE_COMPLETE: 164 return ("COMPLETE"); 165 default: 166 return ("INVALID"); 167 } 168 } 169 170 const char * 171 g_raid3_get_diskname(struct g_raid3_disk *disk) 172 { 173 174 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 175 return ("[unknown]"); 176 return (disk->d_name); 177 } 178 179 static void * 180 g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags) 181 { 182 void *ptr; 183 enum g_raid3_zones zone; 184 185 if (g_raid3_use_malloc || 186 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 187 ptr = malloc(size, M_RAID3, flags); 188 else { 189 ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone, 190 &sc->sc_zones[zone], flags); 191 sc->sc_zones[zone].sz_requested++; 192 if (ptr == NULL) 193 sc->sc_zones[zone].sz_failed++; 194 } 195 return (ptr); 196 } 197 198 static void 199 g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size) 200 { 201 enum g_raid3_zones zone; 202 203 if (g_raid3_use_malloc || 204 (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES) 205 free(ptr, M_RAID3); 206 else { 207 uma_zfree_arg(sc->sc_zones[zone].sz_zone, 208 ptr, &sc->sc_zones[zone]); 209 } 210 } 211 212 static int 213 g_raid3_uma_ctor(void *mem, int size, void *arg, int flags) 214 { 215 struct g_raid3_zone *sz = arg; 216 217 if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max) 218 return (ENOMEM); 219 sz->sz_inuse++; 220 return (0); 221 } 222 223 static void 224 g_raid3_uma_dtor(void *mem, int size, void *arg) 225 { 226 struct g_raid3_zone *sz = arg; 227 228 sz->sz_inuse--; 229 } 230 231 #define g_raid3_xor(src, dst, size) \ 232 _g_raid3_xor((uint64_t *)(src), \ 233 (uint64_t *)(dst), (size_t)size) 234 static void 235 _g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size) 236 { 237 238 KASSERT((size % 128) == 0, ("Invalid size: %zu.", size)); 239 for (; size > 0; size -= 128) { 240 *dst++ ^= (*src++); 241 *dst++ ^= (*src++); 242 *dst++ ^= (*src++); 243 *dst++ ^= (*src++); 244 *dst++ ^= (*src++); 245 *dst++ ^= (*src++); 246 *dst++ ^= (*src++); 247 *dst++ ^= (*src++); 248 *dst++ ^= (*src++); 249 *dst++ ^= (*src++); 250 *dst++ ^= (*src++); 251 *dst++ ^= (*src++); 252 *dst++ ^= (*src++); 253 *dst++ ^= (*src++); 254 *dst++ ^= (*src++); 255 *dst++ ^= (*src++); 256 } 257 } 258 259 static int 260 g_raid3_is_zero(struct bio *bp) 261 { 262 static const uint64_t zeros[] = { 263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 264 }; 265 u_char *addr; 266 ssize_t size; 267 268 size = bp->bio_length; 269 addr = (u_char *)bp->bio_data; 270 for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) { 271 if (bcmp(addr, zeros, sizeof(zeros)) != 0) 272 return (0); 273 } 274 return (1); 275 } 276 277 /* 278 * --- Events handling functions --- 279 * Events in geom_raid3 are used to maintain disks and device status 280 * from one thread to simplify locking. 281 */ 282 static void 283 g_raid3_event_free(struct g_raid3_event *ep) 284 { 285 286 free(ep, M_RAID3); 287 } 288 289 static int 290 g_raid3_event_dispatch(struct g_raid3_event *ep, void *arg, int state, 291 int flags) 292 { 293 struct g_raid3_softc *sc; 294 struct g_raid3_disk *disk; 295 int error; 296 297 G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep); 298 if ((flags & G_RAID3_EVENT_DEVICE) != 0) { 299 disk = NULL; 300 sc = arg; 301 } else { 302 disk = arg; 303 sc = disk->d_softc; 304 } 305 ep->e_disk = disk; 306 ep->e_state = state; 307 ep->e_flags = flags; 308 ep->e_error = 0; 309 mtx_lock(&sc->sc_events_mtx); 310 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 311 mtx_unlock(&sc->sc_events_mtx); 312 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 313 mtx_lock(&sc->sc_queue_mtx); 314 wakeup(sc); 315 wakeup(&sc->sc_queue); 316 mtx_unlock(&sc->sc_queue_mtx); 317 if ((flags & G_RAID3_EVENT_DONTWAIT) != 0) 318 return (0); 319 sx_assert(&sc->sc_lock, SX_XLOCKED); 320 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep); 321 sx_xunlock(&sc->sc_lock); 322 while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) { 323 mtx_lock(&sc->sc_events_mtx); 324 MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event", 325 hz * 5); 326 } 327 error = ep->e_error; 328 g_raid3_event_free(ep); 329 sx_xlock(&sc->sc_lock); 330 return (error); 331 } 332 333 int 334 g_raid3_event_send(void *arg, int state, int flags) 335 { 336 struct g_raid3_event *ep; 337 338 ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK); 339 return (g_raid3_event_dispatch(ep, arg, state, flags)); 340 } 341 342 static struct g_raid3_event * 343 g_raid3_event_get(struct g_raid3_softc *sc) 344 { 345 struct g_raid3_event *ep; 346 347 mtx_lock(&sc->sc_events_mtx); 348 ep = TAILQ_FIRST(&sc->sc_events); 349 mtx_unlock(&sc->sc_events_mtx); 350 return (ep); 351 } 352 353 static void 354 g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep) 355 { 356 357 mtx_lock(&sc->sc_events_mtx); 358 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 359 mtx_unlock(&sc->sc_events_mtx); 360 } 361 362 static void 363 g_raid3_event_cancel(struct g_raid3_disk *disk) 364 { 365 struct g_raid3_softc *sc; 366 struct g_raid3_event *ep, *tmpep; 367 368 sc = disk->d_softc; 369 sx_assert(&sc->sc_lock, SX_XLOCKED); 370 371 mtx_lock(&sc->sc_events_mtx); 372 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 373 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) 374 continue; 375 if (ep->e_disk != disk) 376 continue; 377 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 378 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 379 g_raid3_event_free(ep); 380 else { 381 ep->e_error = ECANCELED; 382 wakeup(ep); 383 } 384 } 385 mtx_unlock(&sc->sc_events_mtx); 386 } 387 388 /* 389 * Return the number of disks in the given state. 390 * If state is equal to -1, count all connected disks. 391 */ 392 u_int 393 g_raid3_ndisks(struct g_raid3_softc *sc, int state) 394 { 395 struct g_raid3_disk *disk; 396 u_int n, ndisks; 397 398 sx_assert(&sc->sc_lock, SX_LOCKED); 399 400 for (n = ndisks = 0; n < sc->sc_ndisks; n++) { 401 disk = &sc->sc_disks[n]; 402 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 403 continue; 404 if (state == -1 || disk->d_state == state) 405 ndisks++; 406 } 407 return (ndisks); 408 } 409 410 static u_int 411 g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp) 412 { 413 struct bio *bp; 414 u_int nreqs = 0; 415 416 mtx_lock(&sc->sc_queue_mtx); 417 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 418 if (bp->bio_from == cp) 419 nreqs++; 420 } 421 mtx_unlock(&sc->sc_queue_mtx); 422 return (nreqs); 423 } 424 425 static int 426 g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp) 427 { 428 429 if (cp->index > 0) { 430 G_RAID3_DEBUG(2, 431 "I/O requests for %s exist, can't destroy it now.", 432 cp->provider->name); 433 return (1); 434 } 435 if (g_raid3_nrequests(sc, cp) > 0) { 436 G_RAID3_DEBUG(2, 437 "I/O requests for %s in queue, can't destroy it now.", 438 cp->provider->name); 439 return (1); 440 } 441 return (0); 442 } 443 444 static void 445 g_raid3_destroy_consumer(void *arg, int flags __unused) 446 { 447 struct g_consumer *cp; 448 449 g_topology_assert(); 450 451 cp = arg; 452 G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 453 g_detach(cp); 454 g_destroy_consumer(cp); 455 } 456 457 static void 458 g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 459 { 460 struct g_provider *pp; 461 int retaste_wait; 462 463 g_topology_assert(); 464 465 cp->private = NULL; 466 if (g_raid3_is_busy(sc, cp)) 467 return; 468 G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name); 469 pp = cp->provider; 470 retaste_wait = 0; 471 if (cp->acw == 1) { 472 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 473 retaste_wait = 1; 474 } 475 G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr, 476 -cp->acw, -cp->ace, 0); 477 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 478 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 479 if (retaste_wait) { 480 /* 481 * After retaste event was send (inside g_access()), we can send 482 * event to detach and destroy consumer. 483 * A class, which has consumer to the given provider connected 484 * will not receive retaste event for the provider. 485 * This is the way how I ignore retaste events when I close 486 * consumers opened for write: I detach and destroy consumer 487 * after retaste event is sent. 488 */ 489 g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL); 490 return; 491 } 492 G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name); 493 g_detach(cp); 494 g_destroy_consumer(cp); 495 } 496 497 static int 498 g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp) 499 { 500 struct g_consumer *cp; 501 int error; 502 503 g_topology_assert_not(); 504 KASSERT(disk->d_consumer == NULL, 505 ("Disk already connected (device %s).", disk->d_softc->sc_name)); 506 507 g_topology_lock(); 508 cp = g_new_consumer(disk->d_softc->sc_geom); 509 error = g_attach(cp, pp); 510 if (error != 0) { 511 g_destroy_consumer(cp); 512 g_topology_unlock(); 513 return (error); 514 } 515 error = g_access(cp, 1, 1, 1); 516 g_topology_unlock(); 517 if (error != 0) { 518 g_detach(cp); 519 g_destroy_consumer(cp); 520 G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).", 521 pp->name, error); 522 return (error); 523 } 524 disk->d_consumer = cp; 525 disk->d_consumer->private = disk; 526 disk->d_consumer->index = 0; 527 G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk)); 528 return (0); 529 } 530 531 static void 532 g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp) 533 { 534 535 g_topology_assert(); 536 537 if (cp == NULL) 538 return; 539 if (cp->provider != NULL) 540 g_raid3_kill_consumer(sc, cp); 541 else 542 g_destroy_consumer(cp); 543 } 544 545 /* 546 * Initialize disk. This means allocate memory, create consumer, attach it 547 * to the provider and open access (r1w1e1) to it. 548 */ 549 static struct g_raid3_disk * 550 g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp, 551 struct g_raid3_metadata *md, int *errorp) 552 { 553 struct g_raid3_disk *disk; 554 int error; 555 556 disk = &sc->sc_disks[md->md_no]; 557 error = g_raid3_connect_disk(disk, pp); 558 if (error != 0) { 559 if (errorp != NULL) 560 *errorp = error; 561 return (NULL); 562 } 563 disk->d_state = G_RAID3_DISK_STATE_NONE; 564 disk->d_flags = md->md_dflags; 565 if (md->md_provider[0] != '\0') 566 disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED; 567 disk->d_sync.ds_consumer = NULL; 568 disk->d_sync.ds_offset = md->md_sync_offset; 569 disk->d_sync.ds_offset_done = md->md_sync_offset; 570 disk->d_genid = md->md_genid; 571 disk->d_sync.ds_syncid = md->md_syncid; 572 if (errorp != NULL) 573 *errorp = 0; 574 return (disk); 575 } 576 577 static void 578 g_raid3_destroy_disk(struct g_raid3_disk *disk) 579 { 580 struct g_raid3_softc *sc; 581 582 g_topology_assert_not(); 583 sc = disk->d_softc; 584 sx_assert(&sc->sc_lock, SX_XLOCKED); 585 586 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 587 return; 588 g_raid3_event_cancel(disk); 589 switch (disk->d_state) { 590 case G_RAID3_DISK_STATE_SYNCHRONIZING: 591 if (sc->sc_syncdisk != NULL) 592 g_raid3_sync_stop(sc, 1); 593 /* FALLTHROUGH */ 594 case G_RAID3_DISK_STATE_NEW: 595 case G_RAID3_DISK_STATE_STALE: 596 case G_RAID3_DISK_STATE_ACTIVE: 597 g_topology_lock(); 598 g_raid3_disconnect_consumer(sc, disk->d_consumer); 599 g_topology_unlock(); 600 disk->d_consumer = NULL; 601 break; 602 default: 603 KASSERT(0 == 1, ("Wrong disk state (%s, %s).", 604 g_raid3_get_diskname(disk), 605 g_raid3_disk_state2str(disk->d_state))); 606 } 607 disk->d_state = G_RAID3_DISK_STATE_NODISK; 608 } 609 610 static void 611 g_raid3_free_device(struct g_raid3_softc *sc) 612 { 613 KASSERT(sc->sc_refcnt == 0, 614 ("%s: non-zero refcount %u", __func__, sc->sc_refcnt)); 615 616 if (!g_raid3_use_malloc) { 617 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone); 618 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone); 619 uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone); 620 } 621 mtx_destroy(&sc->sc_queue_mtx); 622 mtx_destroy(&sc->sc_events_mtx); 623 sx_xunlock(&sc->sc_lock); 624 sx_destroy(&sc->sc_lock); 625 free(sc->sc_disks, M_RAID3); 626 free(sc, M_RAID3); 627 } 628 629 static void 630 g_raid3_providergone(struct g_provider *pp) 631 { 632 struct g_raid3_softc *sc = pp->private; 633 634 if (--sc->sc_refcnt == 0) 635 g_raid3_free_device(sc); 636 } 637 638 static void 639 g_raid3_destroy_device(struct g_raid3_softc *sc) 640 { 641 struct g_raid3_event *ep; 642 struct g_raid3_disk *disk; 643 struct g_geom *gp; 644 struct g_consumer *cp; 645 u_int n; 646 647 g_topology_assert_not(); 648 sx_assert(&sc->sc_lock, SX_XLOCKED); 649 650 gp = sc->sc_geom; 651 if (sc->sc_provider != NULL) 652 g_raid3_destroy_provider(sc); 653 for (n = 0; n < sc->sc_ndisks; n++) { 654 disk = &sc->sc_disks[n]; 655 if (disk->d_state != G_RAID3_DISK_STATE_NODISK) { 656 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 657 g_raid3_update_metadata(disk); 658 g_raid3_destroy_disk(disk); 659 } 660 } 661 while ((ep = g_raid3_event_get(sc)) != NULL) { 662 g_raid3_event_remove(sc, ep); 663 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) 664 g_raid3_event_free(ep); 665 else { 666 ep->e_error = ECANCELED; 667 ep->e_flags |= G_RAID3_EVENT_DONE; 668 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep); 669 mtx_lock(&sc->sc_events_mtx); 670 wakeup(ep); 671 mtx_unlock(&sc->sc_events_mtx); 672 } 673 } 674 g_raid3_timeout_drain(sc); 675 cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer); 676 g_topology_lock(); 677 if (cp != NULL) 678 g_raid3_disconnect_consumer(sc, cp); 679 g_wither_geom(sc->sc_sync.ds_geom, ENXIO); 680 G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name); 681 g_wither_geom(gp, ENXIO); 682 if (--sc->sc_refcnt == 0) 683 g_raid3_free_device(sc); 684 g_topology_unlock(); 685 } 686 687 static void 688 g_raid3_orphan(struct g_consumer *cp) 689 { 690 struct g_raid3_disk *disk; 691 692 g_topology_assert(); 693 694 disk = cp->private; 695 if (disk == NULL) 696 return; 697 disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID; 698 g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED, 699 G_RAID3_EVENT_DONTWAIT); 700 } 701 702 static int 703 g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 704 { 705 struct g_raid3_softc *sc; 706 struct g_consumer *cp; 707 off_t offset, length; 708 u_char *sector; 709 int error = 0; 710 711 g_topology_assert_not(); 712 sc = disk->d_softc; 713 sx_assert(&sc->sc_lock, SX_LOCKED); 714 715 cp = disk->d_consumer; 716 KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name)); 717 KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name)); 718 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 719 ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr, 720 cp->acw, cp->ace)); 721 length = cp->provider->sectorsize; 722 offset = cp->provider->mediasize - length; 723 sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO); 724 if (md != NULL) 725 raid3_metadata_encode(md, sector); 726 error = g_write_data(cp, offset, sector, length); 727 free(sector, M_RAID3); 728 if (error != 0) { 729 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 730 G_RAID3_DEBUG(0, "Cannot write metadata on %s " 731 "(device=%s, error=%d).", 732 g_raid3_get_diskname(disk), sc->sc_name, error); 733 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 734 } else { 735 G_RAID3_DEBUG(1, "Cannot write metadata on %s " 736 "(device=%s, error=%d).", 737 g_raid3_get_diskname(disk), sc->sc_name, error); 738 } 739 if (g_raid3_disconnect_on_failure && 740 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 741 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 742 g_raid3_event_send(disk, 743 G_RAID3_DISK_STATE_DISCONNECTED, 744 G_RAID3_EVENT_DONTWAIT); 745 } 746 } 747 return (error); 748 } 749 750 int 751 g_raid3_clear_metadata(struct g_raid3_disk *disk) 752 { 753 int error; 754 755 g_topology_assert_not(); 756 sx_assert(&disk->d_softc->sc_lock, SX_LOCKED); 757 758 error = g_raid3_write_metadata(disk, NULL); 759 if (error == 0) { 760 G_RAID3_DEBUG(2, "Metadata on %s cleared.", 761 g_raid3_get_diskname(disk)); 762 } else { 763 G_RAID3_DEBUG(0, 764 "Cannot clear metadata on disk %s (error=%d).", 765 g_raid3_get_diskname(disk), error); 766 } 767 return (error); 768 } 769 770 void 771 g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md) 772 { 773 struct g_raid3_softc *sc; 774 struct g_provider *pp; 775 776 bzero(md, sizeof(*md)); 777 sc = disk->d_softc; 778 strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic)); 779 md->md_version = G_RAID3_VERSION; 780 strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name)); 781 md->md_id = sc->sc_id; 782 md->md_all = sc->sc_ndisks; 783 md->md_genid = sc->sc_genid; 784 md->md_mediasize = sc->sc_mediasize; 785 md->md_sectorsize = sc->sc_sectorsize; 786 md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK); 787 md->md_no = disk->d_no; 788 md->md_syncid = disk->d_sync.ds_syncid; 789 md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK); 790 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 791 md->md_sync_offset = 792 disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1); 793 } 794 if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL) 795 pp = disk->d_consumer->provider; 796 else 797 pp = NULL; 798 if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL) 799 strlcpy(md->md_provider, pp->name, sizeof(md->md_provider)); 800 if (pp != NULL) 801 md->md_provsize = pp->mediasize; 802 } 803 804 void 805 g_raid3_update_metadata(struct g_raid3_disk *disk) 806 { 807 struct g_raid3_softc *sc __diagused; 808 struct g_raid3_metadata md; 809 int error; 810 811 g_topology_assert_not(); 812 sc = disk->d_softc; 813 sx_assert(&sc->sc_lock, SX_LOCKED); 814 815 g_raid3_fill_metadata(disk, &md); 816 error = g_raid3_write_metadata(disk, &md); 817 if (error == 0) { 818 G_RAID3_DEBUG(2, "Metadata on %s updated.", 819 g_raid3_get_diskname(disk)); 820 } else { 821 G_RAID3_DEBUG(0, 822 "Cannot update metadata on disk %s (error=%d).", 823 g_raid3_get_diskname(disk), error); 824 } 825 } 826 827 static void 828 g_raid3_bump_syncid(struct g_raid3_softc *sc) 829 { 830 struct g_raid3_disk *disk; 831 u_int n; 832 833 g_topology_assert_not(); 834 sx_assert(&sc->sc_lock, SX_XLOCKED); 835 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 836 ("%s called with no active disks (device=%s).", __func__, 837 sc->sc_name)); 838 839 sc->sc_syncid++; 840 G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name, 841 sc->sc_syncid); 842 for (n = 0; n < sc->sc_ndisks; n++) { 843 disk = &sc->sc_disks[n]; 844 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 845 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 846 disk->d_sync.ds_syncid = sc->sc_syncid; 847 g_raid3_update_metadata(disk); 848 } 849 } 850 } 851 852 static void 853 g_raid3_bump_genid(struct g_raid3_softc *sc) 854 { 855 struct g_raid3_disk *disk; 856 u_int n; 857 858 g_topology_assert_not(); 859 sx_assert(&sc->sc_lock, SX_XLOCKED); 860 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0, 861 ("%s called with no active disks (device=%s).", __func__, 862 sc->sc_name)); 863 864 sc->sc_genid++; 865 G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name, 866 sc->sc_genid); 867 for (n = 0; n < sc->sc_ndisks; n++) { 868 disk = &sc->sc_disks[n]; 869 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 870 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 871 disk->d_genid = sc->sc_genid; 872 g_raid3_update_metadata(disk); 873 } 874 } 875 } 876 877 static int 878 g_raid3_idle(struct g_raid3_softc *sc, int acw) 879 { 880 struct g_raid3_disk *disk; 881 u_int i; 882 int timeout; 883 884 g_topology_assert_not(); 885 sx_assert(&sc->sc_lock, SX_XLOCKED); 886 887 if (sc->sc_provider == NULL) 888 return (0); 889 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 890 return (0); 891 if (sc->sc_idle) 892 return (0); 893 if (sc->sc_writes > 0) 894 return (0); 895 if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) { 896 timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write); 897 if (!g_raid3_shutdown && timeout > 0) 898 return (timeout); 899 } 900 sc->sc_idle = 1; 901 for (i = 0; i < sc->sc_ndisks; i++) { 902 disk = &sc->sc_disks[i]; 903 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 904 continue; 905 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 906 g_raid3_get_diskname(disk), sc->sc_name); 907 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 908 g_raid3_update_metadata(disk); 909 } 910 return (0); 911 } 912 913 static void 914 g_raid3_unidle(struct g_raid3_softc *sc) 915 { 916 struct g_raid3_disk *disk; 917 u_int i; 918 919 g_topology_assert_not(); 920 sx_assert(&sc->sc_lock, SX_XLOCKED); 921 922 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 923 return; 924 sc->sc_idle = 0; 925 sc->sc_last_write = time_uptime; 926 for (i = 0; i < sc->sc_ndisks; i++) { 927 disk = &sc->sc_disks[i]; 928 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 929 continue; 930 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 931 g_raid3_get_diskname(disk), sc->sc_name); 932 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 933 g_raid3_update_metadata(disk); 934 } 935 } 936 937 /* 938 * Treat bio_driver1 field in parent bio as list head and field bio_caller1 939 * in child bio as pointer to the next element on the list. 940 */ 941 #define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1 942 943 #define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1 944 945 #define G_RAID3_FOREACH_BIO(pbp, bp) \ 946 for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \ 947 (bp) = G_RAID3_NEXT_BIO(bp)) 948 949 #define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \ 950 for ((bp) = G_RAID3_HEAD_BIO(pbp); \ 951 (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \ 952 (bp) = (tmpbp)) 953 954 static void 955 g_raid3_init_bio(struct bio *pbp) 956 { 957 958 G_RAID3_HEAD_BIO(pbp) = NULL; 959 } 960 961 static void 962 g_raid3_remove_bio(struct bio *cbp) 963 { 964 struct bio *pbp, *bp; 965 966 pbp = cbp->bio_parent; 967 if (G_RAID3_HEAD_BIO(pbp) == cbp) 968 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 969 else { 970 G_RAID3_FOREACH_BIO(pbp, bp) { 971 if (G_RAID3_NEXT_BIO(bp) == cbp) { 972 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 973 break; 974 } 975 } 976 } 977 G_RAID3_NEXT_BIO(cbp) = NULL; 978 } 979 980 static void 981 g_raid3_replace_bio(struct bio *sbp, struct bio *dbp) 982 { 983 struct bio *pbp, *bp; 984 985 g_raid3_remove_bio(sbp); 986 pbp = dbp->bio_parent; 987 G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp); 988 if (G_RAID3_HEAD_BIO(pbp) == dbp) 989 G_RAID3_HEAD_BIO(pbp) = sbp; 990 else { 991 G_RAID3_FOREACH_BIO(pbp, bp) { 992 if (G_RAID3_NEXT_BIO(bp) == dbp) { 993 G_RAID3_NEXT_BIO(bp) = sbp; 994 break; 995 } 996 } 997 } 998 G_RAID3_NEXT_BIO(dbp) = NULL; 999 } 1000 1001 static void 1002 g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp) 1003 { 1004 struct bio *bp, *pbp; 1005 size_t size; 1006 1007 pbp = cbp->bio_parent; 1008 pbp->bio_children--; 1009 KASSERT(cbp->bio_data != NULL, ("NULL bio_data")); 1010 size = pbp->bio_length / (sc->sc_ndisks - 1); 1011 g_raid3_free(sc, cbp->bio_data, size); 1012 if (G_RAID3_HEAD_BIO(pbp) == cbp) { 1013 G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp); 1014 G_RAID3_NEXT_BIO(cbp) = NULL; 1015 g_destroy_bio(cbp); 1016 } else { 1017 G_RAID3_FOREACH_BIO(pbp, bp) { 1018 if (G_RAID3_NEXT_BIO(bp) == cbp) 1019 break; 1020 } 1021 if (bp != NULL) { 1022 KASSERT(G_RAID3_NEXT_BIO(bp) != NULL, 1023 ("NULL bp->bio_driver1")); 1024 G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp); 1025 G_RAID3_NEXT_BIO(cbp) = NULL; 1026 } 1027 g_destroy_bio(cbp); 1028 } 1029 } 1030 1031 static struct bio * 1032 g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp) 1033 { 1034 struct bio *bp, *cbp; 1035 size_t size; 1036 int memflag; 1037 1038 cbp = g_clone_bio(pbp); 1039 if (cbp == NULL) 1040 return (NULL); 1041 size = pbp->bio_length / (sc->sc_ndisks - 1); 1042 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 1043 memflag = M_WAITOK; 1044 else 1045 memflag = M_NOWAIT; 1046 cbp->bio_data = g_raid3_alloc(sc, size, memflag); 1047 if (cbp->bio_data == NULL) { 1048 pbp->bio_children--; 1049 g_destroy_bio(cbp); 1050 return (NULL); 1051 } 1052 G_RAID3_NEXT_BIO(cbp) = NULL; 1053 if (G_RAID3_HEAD_BIO(pbp) == NULL) 1054 G_RAID3_HEAD_BIO(pbp) = cbp; 1055 else { 1056 G_RAID3_FOREACH_BIO(pbp, bp) { 1057 if (G_RAID3_NEXT_BIO(bp) == NULL) { 1058 G_RAID3_NEXT_BIO(bp) = cbp; 1059 break; 1060 } 1061 } 1062 } 1063 return (cbp); 1064 } 1065 1066 static void 1067 g_raid3_scatter(struct bio *pbp) 1068 { 1069 struct g_raid3_softc *sc; 1070 struct g_raid3_disk *disk; 1071 struct bio *bp, *cbp, *tmpbp; 1072 off_t atom, cadd, padd, left; 1073 int first; 1074 1075 sc = pbp->bio_to->private; 1076 bp = NULL; 1077 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1078 /* 1079 * Find bio for which we should calculate data. 1080 */ 1081 G_RAID3_FOREACH_BIO(pbp, cbp) { 1082 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1083 bp = cbp; 1084 break; 1085 } 1086 } 1087 KASSERT(bp != NULL, ("NULL parity bio.")); 1088 } 1089 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1090 cadd = padd = 0; 1091 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1092 G_RAID3_FOREACH_BIO(pbp, cbp) { 1093 if (cbp == bp) 1094 continue; 1095 bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom); 1096 padd += atom; 1097 } 1098 cadd += atom; 1099 } 1100 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) { 1101 /* 1102 * Calculate parity. 1103 */ 1104 first = 1; 1105 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1106 if (cbp == bp) 1107 continue; 1108 if (first) { 1109 bcopy(cbp->bio_data, bp->bio_data, 1110 bp->bio_length); 1111 first = 0; 1112 } else { 1113 g_raid3_xor(cbp->bio_data, bp->bio_data, 1114 bp->bio_length); 1115 } 1116 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0) 1117 g_raid3_destroy_bio(sc, cbp); 1118 } 1119 } 1120 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1121 struct g_consumer *cp; 1122 1123 disk = cbp->bio_caller2; 1124 cp = disk->d_consumer; 1125 cbp->bio_to = cp->provider; 1126 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1127 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1128 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1129 cp->acr, cp->acw, cp->ace)); 1130 cp->index++; 1131 sc->sc_writes++; 1132 g_io_request(cbp, cp); 1133 } 1134 } 1135 1136 static void 1137 g_raid3_gather(struct bio *pbp) 1138 { 1139 struct g_raid3_softc *sc; 1140 struct g_raid3_disk *disk; 1141 struct bio *xbp, *fbp, *cbp; 1142 off_t atom, cadd, padd, left; 1143 1144 sc = pbp->bio_to->private; 1145 /* 1146 * Find bio for which we have to calculate data. 1147 * While going through this path, check if all requests 1148 * succeeded, if not, deny whole request. 1149 * If we're in COMPLETE mode, we allow one request to fail, 1150 * so if we find one, we're sending it to the parity consumer. 1151 * If there are more failed requests, we deny whole request. 1152 */ 1153 xbp = fbp = NULL; 1154 G_RAID3_FOREACH_BIO(pbp, cbp) { 1155 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) { 1156 KASSERT(xbp == NULL, ("More than one parity bio.")); 1157 xbp = cbp; 1158 } 1159 if (cbp->bio_error == 0) 1160 continue; 1161 /* 1162 * Found failed request. 1163 */ 1164 if (fbp == NULL) { 1165 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) { 1166 /* 1167 * We are already in degraded mode, so we can't 1168 * accept any failures. 1169 */ 1170 if (pbp->bio_error == 0) 1171 pbp->bio_error = cbp->bio_error; 1172 } else { 1173 fbp = cbp; 1174 } 1175 } else { 1176 /* 1177 * Next failed request, that's too many. 1178 */ 1179 if (pbp->bio_error == 0) 1180 pbp->bio_error = fbp->bio_error; 1181 } 1182 disk = cbp->bio_caller2; 1183 if (disk == NULL) 1184 continue; 1185 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1186 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1187 G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).", 1188 cbp->bio_error); 1189 } else { 1190 G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).", 1191 cbp->bio_error); 1192 } 1193 if (g_raid3_disconnect_on_failure && 1194 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1195 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1196 g_raid3_event_send(disk, 1197 G_RAID3_DISK_STATE_DISCONNECTED, 1198 G_RAID3_EVENT_DONTWAIT); 1199 } 1200 } 1201 if (pbp->bio_error != 0) 1202 goto finish; 1203 if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1204 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY; 1205 if (xbp != fbp) 1206 g_raid3_replace_bio(xbp, fbp); 1207 g_raid3_destroy_bio(sc, fbp); 1208 } else if (fbp != NULL) { 1209 struct g_consumer *cp; 1210 1211 /* 1212 * One request failed, so send the same request to 1213 * the parity consumer. 1214 */ 1215 disk = pbp->bio_driver2; 1216 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1217 pbp->bio_error = fbp->bio_error; 1218 goto finish; 1219 } 1220 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1221 pbp->bio_inbed--; 1222 fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR); 1223 if (disk->d_no == sc->sc_ndisks - 1) 1224 fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1225 fbp->bio_error = 0; 1226 fbp->bio_completed = 0; 1227 fbp->bio_children = 0; 1228 fbp->bio_inbed = 0; 1229 cp = disk->d_consumer; 1230 fbp->bio_caller2 = disk; 1231 fbp->bio_to = cp->provider; 1232 G_RAID3_LOGREQ(3, fbp, "Sending request (recover)."); 1233 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1234 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1235 cp->acr, cp->acw, cp->ace)); 1236 cp->index++; 1237 g_io_request(fbp, cp); 1238 return; 1239 } 1240 if (xbp != NULL) { 1241 /* 1242 * Calculate parity. 1243 */ 1244 G_RAID3_FOREACH_BIO(pbp, cbp) { 1245 if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) 1246 continue; 1247 g_raid3_xor(cbp->bio_data, xbp->bio_data, 1248 xbp->bio_length); 1249 } 1250 xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY; 1251 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) { 1252 if (!g_raid3_is_zero(xbp)) { 1253 g_raid3_parity_mismatch++; 1254 pbp->bio_error = EIO; 1255 goto finish; 1256 } 1257 g_raid3_destroy_bio(sc, xbp); 1258 } 1259 } 1260 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1261 cadd = padd = 0; 1262 for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) { 1263 G_RAID3_FOREACH_BIO(pbp, cbp) { 1264 bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom); 1265 pbp->bio_completed += atom; 1266 padd += atom; 1267 } 1268 cadd += atom; 1269 } 1270 finish: 1271 if (pbp->bio_error == 0) 1272 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1273 else { 1274 if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) 1275 G_RAID3_LOGREQ(1, pbp, "Verification error."); 1276 else 1277 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1278 } 1279 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK; 1280 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1281 g_raid3_destroy_bio(sc, cbp); 1282 g_io_deliver(pbp, pbp->bio_error); 1283 } 1284 1285 static void 1286 g_raid3_done(struct bio *bp) 1287 { 1288 struct g_raid3_softc *sc; 1289 1290 sc = bp->bio_from->geom->softc; 1291 bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR; 1292 G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error); 1293 mtx_lock(&sc->sc_queue_mtx); 1294 bioq_insert_head(&sc->sc_queue, bp); 1295 mtx_unlock(&sc->sc_queue_mtx); 1296 wakeup(sc); 1297 wakeup(&sc->sc_queue); 1298 } 1299 1300 static void 1301 g_raid3_regular_request(struct bio *cbp) 1302 { 1303 struct g_raid3_softc *sc; 1304 struct g_raid3_disk *disk; 1305 struct bio *pbp; 1306 1307 g_topology_assert_not(); 1308 1309 pbp = cbp->bio_parent; 1310 sc = pbp->bio_to->private; 1311 cbp->bio_from->index--; 1312 if (cbp->bio_cmd == BIO_WRITE) 1313 sc->sc_writes--; 1314 disk = cbp->bio_from->private; 1315 if (disk == NULL) { 1316 g_topology_lock(); 1317 g_raid3_kill_consumer(sc, cbp->bio_from); 1318 g_topology_unlock(); 1319 } 1320 1321 G_RAID3_LOGREQ(3, cbp, "Request finished."); 1322 pbp->bio_inbed++; 1323 KASSERT(pbp->bio_inbed <= pbp->bio_children, 1324 ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed, 1325 pbp->bio_children)); 1326 if (pbp->bio_inbed != pbp->bio_children) 1327 return; 1328 switch (pbp->bio_cmd) { 1329 case BIO_READ: 1330 g_raid3_gather(pbp); 1331 break; 1332 case BIO_WRITE: 1333 case BIO_DELETE: 1334 { 1335 int error = 0; 1336 1337 pbp->bio_completed = pbp->bio_length; 1338 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) { 1339 if (cbp->bio_error == 0) { 1340 g_raid3_destroy_bio(sc, cbp); 1341 continue; 1342 } 1343 1344 if (error == 0) 1345 error = cbp->bio_error; 1346 else if (pbp->bio_error == 0) { 1347 /* 1348 * Next failed request, that's too many. 1349 */ 1350 pbp->bio_error = error; 1351 } 1352 1353 disk = cbp->bio_caller2; 1354 if (disk == NULL) { 1355 g_raid3_destroy_bio(sc, cbp); 1356 continue; 1357 } 1358 1359 if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) { 1360 disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN; 1361 G_RAID3_LOGREQ(0, cbp, 1362 "Request failed (error=%d).", 1363 cbp->bio_error); 1364 } else { 1365 G_RAID3_LOGREQ(1, cbp, 1366 "Request failed (error=%d).", 1367 cbp->bio_error); 1368 } 1369 if (g_raid3_disconnect_on_failure && 1370 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1371 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1372 g_raid3_event_send(disk, 1373 G_RAID3_DISK_STATE_DISCONNECTED, 1374 G_RAID3_EVENT_DONTWAIT); 1375 } 1376 g_raid3_destroy_bio(sc, cbp); 1377 } 1378 if (pbp->bio_error == 0) 1379 G_RAID3_LOGREQ(3, pbp, "Request finished."); 1380 else 1381 G_RAID3_LOGREQ(0, pbp, "Request failed."); 1382 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED; 1383 pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY; 1384 bioq_remove(&sc->sc_inflight, pbp); 1385 /* Release delayed sync requests if possible. */ 1386 g_raid3_sync_release(sc); 1387 g_io_deliver(pbp, pbp->bio_error); 1388 break; 1389 } 1390 } 1391 } 1392 1393 static void 1394 g_raid3_sync_done(struct bio *bp) 1395 { 1396 struct g_raid3_softc *sc; 1397 1398 G_RAID3_LOGREQ(3, bp, "Synchronization request delivered."); 1399 sc = bp->bio_from->geom->softc; 1400 bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC; 1401 mtx_lock(&sc->sc_queue_mtx); 1402 bioq_insert_head(&sc->sc_queue, bp); 1403 mtx_unlock(&sc->sc_queue_mtx); 1404 wakeup(sc); 1405 wakeup(&sc->sc_queue); 1406 } 1407 1408 static void 1409 g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp) 1410 { 1411 struct bio_queue_head queue; 1412 struct g_raid3_disk *disk; 1413 struct g_consumer *cp __diagused; 1414 struct bio *cbp; 1415 u_int i; 1416 1417 bioq_init(&queue); 1418 for (i = 0; i < sc->sc_ndisks; i++) { 1419 disk = &sc->sc_disks[i]; 1420 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) 1421 continue; 1422 cbp = g_clone_bio(bp); 1423 if (cbp == NULL) { 1424 for (cbp = bioq_first(&queue); cbp != NULL; 1425 cbp = bioq_first(&queue)) { 1426 bioq_remove(&queue, cbp); 1427 g_destroy_bio(cbp); 1428 } 1429 if (bp->bio_error == 0) 1430 bp->bio_error = ENOMEM; 1431 g_io_deliver(bp, bp->bio_error); 1432 return; 1433 } 1434 bioq_insert_tail(&queue, cbp); 1435 cbp->bio_done = g_std_done; 1436 cbp->bio_caller1 = disk; 1437 cbp->bio_to = disk->d_consumer->provider; 1438 } 1439 for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { 1440 bioq_remove(&queue, cbp); 1441 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1442 disk = cbp->bio_caller1; 1443 cbp->bio_caller1 = NULL; 1444 cp = disk->d_consumer; 1445 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1446 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1447 cp->acr, cp->acw, cp->ace)); 1448 g_io_request(cbp, disk->d_consumer); 1449 } 1450 } 1451 1452 static void 1453 g_raid3_start(struct bio *bp) 1454 { 1455 struct g_raid3_softc *sc; 1456 1457 sc = bp->bio_to->private; 1458 /* 1459 * If sc == NULL or there are no valid disks, provider's error 1460 * should be set and g_raid3_start() should not be called at all. 1461 */ 1462 KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 1463 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE), 1464 ("Provider's error should be set (error=%d)(device=%s).", 1465 bp->bio_to->error, bp->bio_to->name)); 1466 G_RAID3_LOGREQ(3, bp, "Request received."); 1467 1468 switch (bp->bio_cmd) { 1469 case BIO_READ: 1470 case BIO_WRITE: 1471 case BIO_DELETE: 1472 break; 1473 case BIO_SPEEDUP: 1474 case BIO_FLUSH: 1475 g_raid3_flush(sc, bp); 1476 return; 1477 case BIO_GETATTR: 1478 default: 1479 g_io_deliver(bp, EOPNOTSUPP); 1480 return; 1481 } 1482 mtx_lock(&sc->sc_queue_mtx); 1483 bioq_insert_tail(&sc->sc_queue, bp); 1484 mtx_unlock(&sc->sc_queue_mtx); 1485 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 1486 wakeup(sc); 1487 } 1488 1489 /* 1490 * Return TRUE if the given request is colliding with a in-progress 1491 * synchronization request. 1492 */ 1493 static int 1494 g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp) 1495 { 1496 struct g_raid3_disk *disk; 1497 struct bio *sbp; 1498 off_t rstart, rend, sstart, send; 1499 int i; 1500 1501 disk = sc->sc_syncdisk; 1502 if (disk == NULL) 1503 return (0); 1504 rstart = bp->bio_offset; 1505 rend = bp->bio_offset + bp->bio_length; 1506 for (i = 0; i < g_raid3_syncreqs; i++) { 1507 sbp = disk->d_sync.ds_bios[i]; 1508 if (sbp == NULL) 1509 continue; 1510 sstart = sbp->bio_offset; 1511 send = sbp->bio_length; 1512 if (sbp->bio_cmd == BIO_WRITE) { 1513 sstart *= sc->sc_ndisks - 1; 1514 send *= sc->sc_ndisks - 1; 1515 } 1516 send += sstart; 1517 if (rend > sstart && rstart < send) 1518 return (1); 1519 } 1520 return (0); 1521 } 1522 1523 /* 1524 * Return TRUE if the given sync request is colliding with a in-progress regular 1525 * request. 1526 */ 1527 static int 1528 g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp) 1529 { 1530 off_t rstart, rend, sstart, send; 1531 struct bio *bp; 1532 1533 if (sc->sc_syncdisk == NULL) 1534 return (0); 1535 sstart = sbp->bio_offset; 1536 send = sstart + sbp->bio_length; 1537 TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) { 1538 rstart = bp->bio_offset; 1539 rend = bp->bio_offset + bp->bio_length; 1540 if (rend > sstart && rstart < send) 1541 return (1); 1542 } 1543 return (0); 1544 } 1545 1546 /* 1547 * Puts request onto delayed queue. 1548 */ 1549 static void 1550 g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp) 1551 { 1552 1553 G_RAID3_LOGREQ(2, bp, "Delaying request."); 1554 bioq_insert_head(&sc->sc_regular_delayed, bp); 1555 } 1556 1557 /* 1558 * Puts synchronization request onto delayed queue. 1559 */ 1560 static void 1561 g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp) 1562 { 1563 1564 G_RAID3_LOGREQ(2, bp, "Delaying synchronization request."); 1565 bioq_insert_tail(&sc->sc_sync_delayed, bp); 1566 } 1567 1568 /* 1569 * Releases delayed regular requests which don't collide anymore with sync 1570 * requests. 1571 */ 1572 static void 1573 g_raid3_regular_release(struct g_raid3_softc *sc) 1574 { 1575 struct bio *bp, *bp2; 1576 1577 TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) { 1578 if (g_raid3_sync_collision(sc, bp)) 1579 continue; 1580 bioq_remove(&sc->sc_regular_delayed, bp); 1581 G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp); 1582 mtx_lock(&sc->sc_queue_mtx); 1583 bioq_insert_head(&sc->sc_queue, bp); 1584 #if 0 1585 /* 1586 * wakeup() is not needed, because this function is called from 1587 * the worker thread. 1588 */ 1589 wakeup(&sc->sc_queue); 1590 #endif 1591 mtx_unlock(&sc->sc_queue_mtx); 1592 } 1593 } 1594 1595 /* 1596 * Releases delayed sync requests which don't collide anymore with regular 1597 * requests. 1598 */ 1599 static void 1600 g_raid3_sync_release(struct g_raid3_softc *sc) 1601 { 1602 struct bio *bp, *bp2; 1603 1604 TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) { 1605 if (g_raid3_regular_collision(sc, bp)) 1606 continue; 1607 bioq_remove(&sc->sc_sync_delayed, bp); 1608 G_RAID3_LOGREQ(2, bp, 1609 "Releasing delayed synchronization request."); 1610 g_io_request(bp, bp->bio_from); 1611 } 1612 } 1613 1614 /* 1615 * Handle synchronization requests. 1616 * Every synchronization request is two-steps process: first, READ request is 1617 * send to active provider and then WRITE request (with read data) to the provider 1618 * being synchronized. When WRITE is finished, new synchronization request is 1619 * send. 1620 */ 1621 static void 1622 g_raid3_sync_request(struct bio *bp) 1623 { 1624 struct g_raid3_softc *sc; 1625 struct g_raid3_disk *disk; 1626 1627 bp->bio_from->index--; 1628 sc = bp->bio_from->geom->softc; 1629 disk = bp->bio_from->private; 1630 if (disk == NULL) { 1631 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 1632 g_topology_lock(); 1633 g_raid3_kill_consumer(sc, bp->bio_from); 1634 g_topology_unlock(); 1635 free(bp->bio_data, M_RAID3); 1636 g_destroy_bio(bp); 1637 sx_xlock(&sc->sc_lock); 1638 return; 1639 } 1640 1641 /* 1642 * Synchronization request. 1643 */ 1644 switch (bp->bio_cmd) { 1645 case BIO_READ: 1646 { 1647 struct g_consumer *cp; 1648 u_char *dst, *src; 1649 off_t left; 1650 u_int atom; 1651 1652 if (bp->bio_error != 0) { 1653 G_RAID3_LOGREQ(0, bp, 1654 "Synchronization request failed (error=%d).", 1655 bp->bio_error); 1656 g_destroy_bio(bp); 1657 return; 1658 } 1659 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1660 atom = sc->sc_sectorsize / (sc->sc_ndisks - 1); 1661 dst = src = bp->bio_data; 1662 if (disk->d_no == sc->sc_ndisks - 1) { 1663 u_int n; 1664 1665 /* Parity component. */ 1666 for (left = bp->bio_length; left > 0; 1667 left -= sc->sc_sectorsize) { 1668 bcopy(src, dst, atom); 1669 src += atom; 1670 for (n = 1; n < sc->sc_ndisks - 1; n++) { 1671 g_raid3_xor(src, dst, atom); 1672 src += atom; 1673 } 1674 dst += atom; 1675 } 1676 } else { 1677 /* Regular component. */ 1678 src += atom * disk->d_no; 1679 for (left = bp->bio_length; left > 0; 1680 left -= sc->sc_sectorsize) { 1681 bcopy(src, dst, atom); 1682 src += sc->sc_sectorsize; 1683 dst += atom; 1684 } 1685 } 1686 bp->bio_driver1 = bp->bio_driver2 = NULL; 1687 bp->bio_pflags = 0; 1688 bp->bio_offset /= sc->sc_ndisks - 1; 1689 bp->bio_length /= sc->sc_ndisks - 1; 1690 bp->bio_cmd = BIO_WRITE; 1691 bp->bio_cflags = 0; 1692 bp->bio_children = bp->bio_inbed = 0; 1693 cp = disk->d_consumer; 1694 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1695 ("Consumer %s not opened (r%dw%de%d).", cp->provider->name, 1696 cp->acr, cp->acw, cp->ace)); 1697 cp->index++; 1698 g_io_request(bp, cp); 1699 return; 1700 } 1701 case BIO_WRITE: 1702 { 1703 struct g_raid3_disk_sync *sync; 1704 off_t boffset, moffset; 1705 void *data; 1706 int i; 1707 1708 if (bp->bio_error != 0) { 1709 G_RAID3_LOGREQ(0, bp, 1710 "Synchronization request failed (error=%d).", 1711 bp->bio_error); 1712 g_destroy_bio(bp); 1713 sc->sc_bump_id |= G_RAID3_BUMP_GENID; 1714 g_raid3_event_send(disk, 1715 G_RAID3_DISK_STATE_DISCONNECTED, 1716 G_RAID3_EVENT_DONTWAIT); 1717 return; 1718 } 1719 G_RAID3_LOGREQ(3, bp, "Synchronization request finished."); 1720 sync = &disk->d_sync; 1721 if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) || 1722 sync->ds_consumer == NULL || 1723 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1724 /* Don't send more synchronization requests. */ 1725 sync->ds_inflight--; 1726 if (sync->ds_bios != NULL) { 1727 i = (int)(uintptr_t)bp->bio_caller1; 1728 sync->ds_bios[i] = NULL; 1729 } 1730 free(bp->bio_data, M_RAID3); 1731 g_destroy_bio(bp); 1732 if (sync->ds_inflight > 0) 1733 return; 1734 if (sync->ds_consumer == NULL || 1735 (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 1736 return; 1737 } 1738 /* 1739 * Disk up-to-date, activate it. 1740 */ 1741 g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE, 1742 G_RAID3_EVENT_DONTWAIT); 1743 return; 1744 } 1745 1746 /* Send next synchronization request. */ 1747 data = bp->bio_data; 1748 g_reset_bio(bp); 1749 bp->bio_cmd = BIO_READ; 1750 bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1); 1751 bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset); 1752 sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 1753 bp->bio_done = g_raid3_sync_done; 1754 bp->bio_data = data; 1755 bp->bio_from = sync->ds_consumer; 1756 bp->bio_to = sc->sc_provider; 1757 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 1758 sync->ds_consumer->index++; 1759 /* 1760 * Delay the request if it is colliding with a regular request. 1761 */ 1762 if (g_raid3_regular_collision(sc, bp)) 1763 g_raid3_sync_delay(sc, bp); 1764 else 1765 g_io_request(bp, sync->ds_consumer); 1766 1767 /* Release delayed requests if possible. */ 1768 g_raid3_regular_release(sc); 1769 1770 /* Find the smallest offset. */ 1771 moffset = sc->sc_mediasize; 1772 for (i = 0; i < g_raid3_syncreqs; i++) { 1773 bp = sync->ds_bios[i]; 1774 boffset = bp->bio_offset; 1775 if (bp->bio_cmd == BIO_WRITE) 1776 boffset *= sc->sc_ndisks - 1; 1777 if (boffset < moffset) 1778 moffset = boffset; 1779 } 1780 if (sync->ds_offset_done + maxphys * 100 < moffset) { 1781 /* Update offset_done on every 100 blocks. */ 1782 sync->ds_offset_done = moffset; 1783 g_raid3_update_metadata(disk); 1784 } 1785 return; 1786 } 1787 default: 1788 KASSERT(1 == 0, ("Invalid command here: %u (device=%s)", 1789 bp->bio_cmd, sc->sc_name)); 1790 break; 1791 } 1792 } 1793 1794 static int 1795 g_raid3_register_request(struct bio *pbp) 1796 { 1797 struct g_raid3_softc *sc; 1798 struct g_raid3_disk *disk; 1799 struct g_consumer *cp; 1800 struct bio *cbp, *tmpbp; 1801 off_t offset, length; 1802 u_int n, ndisks; 1803 int round_robin, verify; 1804 1805 ndisks = 0; 1806 sc = pbp->bio_to->private; 1807 if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 && 1808 sc->sc_syncdisk == NULL) { 1809 g_io_deliver(pbp, EIO); 1810 return (0); 1811 } 1812 g_raid3_init_bio(pbp); 1813 length = pbp->bio_length / (sc->sc_ndisks - 1); 1814 offset = pbp->bio_offset / (sc->sc_ndisks - 1); 1815 round_robin = verify = 0; 1816 switch (pbp->bio_cmd) { 1817 case BIO_READ: 1818 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 1819 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1820 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY; 1821 verify = 1; 1822 ndisks = sc->sc_ndisks; 1823 } else { 1824 verify = 0; 1825 ndisks = sc->sc_ndisks - 1; 1826 } 1827 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 && 1828 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 1829 round_robin = 1; 1830 } else { 1831 round_robin = 0; 1832 } 1833 KASSERT(!round_robin || !verify, 1834 ("ROUND-ROBIN and VERIFY are mutually exclusive.")); 1835 pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1]; 1836 break; 1837 case BIO_WRITE: 1838 case BIO_DELETE: 1839 /* 1840 * Delay the request if it is colliding with a synchronization 1841 * request. 1842 */ 1843 if (g_raid3_sync_collision(sc, pbp)) { 1844 g_raid3_regular_delay(sc, pbp); 1845 return (0); 1846 } 1847 1848 if (sc->sc_idle) 1849 g_raid3_unidle(sc); 1850 else 1851 sc->sc_last_write = time_uptime; 1852 1853 ndisks = sc->sc_ndisks; 1854 break; 1855 } 1856 for (n = 0; n < ndisks; n++) { 1857 disk = &sc->sc_disks[n]; 1858 cbp = g_raid3_clone_bio(sc, pbp); 1859 if (cbp == NULL) { 1860 while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) 1861 g_raid3_destroy_bio(sc, cbp); 1862 /* 1863 * To prevent deadlock, we must run back up 1864 * with the ENOMEM for failed requests of any 1865 * of our consumers. Our own sync requests 1866 * can stick around, as they are finite. 1867 */ 1868 if ((pbp->bio_cflags & 1869 G_RAID3_BIO_CFLAG_REGULAR) != 0) { 1870 g_io_deliver(pbp, ENOMEM); 1871 return (0); 1872 } 1873 return (ENOMEM); 1874 } 1875 cbp->bio_offset = offset; 1876 cbp->bio_length = length; 1877 cbp->bio_done = g_raid3_done; 1878 switch (pbp->bio_cmd) { 1879 case BIO_READ: 1880 if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) { 1881 /* 1882 * Replace invalid component with the parity 1883 * component. 1884 */ 1885 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1886 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1887 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1888 } else if (round_robin && 1889 disk->d_no == sc->sc_round_robin) { 1890 /* 1891 * In round-robin mode skip one data component 1892 * and use parity component when reading. 1893 */ 1894 pbp->bio_driver2 = disk; 1895 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 1896 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1897 sc->sc_round_robin++; 1898 round_robin = 0; 1899 } else if (verify && disk->d_no == sc->sc_ndisks - 1) { 1900 cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY; 1901 } 1902 break; 1903 case BIO_WRITE: 1904 case BIO_DELETE: 1905 if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 1906 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 1907 if (n == ndisks - 1) { 1908 /* 1909 * Active parity component, mark it as such. 1910 */ 1911 cbp->bio_cflags |= 1912 G_RAID3_BIO_CFLAG_PARITY; 1913 } 1914 } else { 1915 pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED; 1916 if (n == ndisks - 1) { 1917 /* 1918 * Parity component is not connected, 1919 * so destroy its request. 1920 */ 1921 pbp->bio_pflags |= 1922 G_RAID3_BIO_PFLAG_NOPARITY; 1923 g_raid3_destroy_bio(sc, cbp); 1924 cbp = NULL; 1925 } else { 1926 cbp->bio_cflags |= 1927 G_RAID3_BIO_CFLAG_NODISK; 1928 disk = NULL; 1929 } 1930 } 1931 break; 1932 } 1933 if (cbp != NULL) 1934 cbp->bio_caller2 = disk; 1935 } 1936 switch (pbp->bio_cmd) { 1937 case BIO_READ: 1938 if (round_robin) { 1939 /* 1940 * If we are in round-robin mode and 'round_robin' is 1941 * still 1, it means, that we skipped parity component 1942 * for this read and must reset sc_round_robin field. 1943 */ 1944 sc->sc_round_robin = 0; 1945 } 1946 G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) { 1947 disk = cbp->bio_caller2; 1948 cp = disk->d_consumer; 1949 cbp->bio_to = cp->provider; 1950 G_RAID3_LOGREQ(3, cbp, "Sending request."); 1951 KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1, 1952 ("Consumer %s not opened (r%dw%de%d).", 1953 cp->provider->name, cp->acr, cp->acw, cp->ace)); 1954 cp->index++; 1955 g_io_request(cbp, cp); 1956 } 1957 break; 1958 case BIO_WRITE: 1959 case BIO_DELETE: 1960 /* 1961 * Put request onto inflight queue, so we can check if new 1962 * synchronization requests don't collide with it. 1963 */ 1964 bioq_insert_tail(&sc->sc_inflight, pbp); 1965 1966 /* 1967 * Bump syncid on first write. 1968 */ 1969 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) { 1970 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 1971 g_raid3_bump_syncid(sc); 1972 } 1973 g_raid3_scatter(pbp); 1974 break; 1975 } 1976 return (0); 1977 } 1978 1979 static int 1980 g_raid3_can_destroy(struct g_raid3_softc *sc) 1981 { 1982 struct g_geom *gp; 1983 struct g_consumer *cp; 1984 1985 g_topology_assert(); 1986 gp = sc->sc_geom; 1987 if (gp->softc == NULL) 1988 return (1); 1989 LIST_FOREACH(cp, &gp->consumer, consumer) { 1990 if (g_raid3_is_busy(sc, cp)) 1991 return (0); 1992 } 1993 gp = sc->sc_sync.ds_geom; 1994 LIST_FOREACH(cp, &gp->consumer, consumer) { 1995 if (g_raid3_is_busy(sc, cp)) 1996 return (0); 1997 } 1998 G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.", 1999 sc->sc_name); 2000 return (1); 2001 } 2002 2003 static int 2004 g_raid3_try_destroy(struct g_raid3_softc *sc) 2005 { 2006 2007 g_topology_assert_not(); 2008 sx_assert(&sc->sc_lock, SX_XLOCKED); 2009 2010 if (sc->sc_rootmount != NULL) { 2011 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2012 sc->sc_rootmount); 2013 root_mount_rel(sc->sc_rootmount); 2014 sc->sc_rootmount = NULL; 2015 } 2016 2017 g_topology_lock(); 2018 if (!g_raid3_can_destroy(sc)) { 2019 g_topology_unlock(); 2020 return (0); 2021 } 2022 sc->sc_geom->softc = NULL; 2023 sc->sc_sync.ds_geom->softc = NULL; 2024 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) { 2025 g_topology_unlock(); 2026 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2027 &sc->sc_worker); 2028 /* Unlock sc_lock here, as it can be destroyed after wakeup. */ 2029 sx_xunlock(&sc->sc_lock); 2030 wakeup(&sc->sc_worker); 2031 sc->sc_worker = NULL; 2032 } else { 2033 g_topology_unlock(); 2034 g_raid3_free_device(sc); 2035 } 2036 return (1); 2037 } 2038 2039 /* 2040 * Worker thread. 2041 */ 2042 static void 2043 g_raid3_worker(void *arg) 2044 { 2045 struct g_raid3_softc *sc; 2046 struct g_raid3_event *ep; 2047 struct bio *bp; 2048 int timeout; 2049 2050 sc = arg; 2051 thread_lock(curthread); 2052 sched_prio(curthread, PRIBIO); 2053 thread_unlock(curthread); 2054 2055 sx_xlock(&sc->sc_lock); 2056 for (;;) { 2057 G_RAID3_DEBUG(5, "%s: Let's see...", __func__); 2058 /* 2059 * First take a look at events. 2060 * This is important to handle events before any I/O requests. 2061 */ 2062 ep = g_raid3_event_get(sc); 2063 if (ep != NULL) { 2064 g_raid3_event_remove(sc, ep); 2065 if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) { 2066 /* Update only device status. */ 2067 G_RAID3_DEBUG(3, 2068 "Running event for device %s.", 2069 sc->sc_name); 2070 ep->e_error = 0; 2071 g_raid3_update_device(sc, 1); 2072 } else { 2073 /* Update disk status. */ 2074 G_RAID3_DEBUG(3, "Running event for disk %s.", 2075 g_raid3_get_diskname(ep->e_disk)); 2076 ep->e_error = g_raid3_update_disk(ep->e_disk, 2077 ep->e_state); 2078 if (ep->e_error == 0) 2079 g_raid3_update_device(sc, 0); 2080 } 2081 if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) { 2082 KASSERT(ep->e_error == 0, 2083 ("Error cannot be handled.")); 2084 g_raid3_event_free(ep); 2085 } else { 2086 ep->e_flags |= G_RAID3_EVENT_DONE; 2087 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, 2088 ep); 2089 mtx_lock(&sc->sc_events_mtx); 2090 wakeup(ep); 2091 mtx_unlock(&sc->sc_events_mtx); 2092 } 2093 if ((sc->sc_flags & 2094 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2095 if (g_raid3_try_destroy(sc)) { 2096 curthread->td_pflags &= ~TDP_GEOM; 2097 G_RAID3_DEBUG(1, "Thread exiting."); 2098 kproc_exit(0); 2099 } 2100 } 2101 G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__); 2102 continue; 2103 } 2104 /* 2105 * Check if we can mark array as CLEAN and if we can't take 2106 * how much seconds should we wait. 2107 */ 2108 timeout = g_raid3_idle(sc, -1); 2109 /* 2110 * Now I/O requests. 2111 */ 2112 /* Get first request from the queue. */ 2113 mtx_lock(&sc->sc_queue_mtx); 2114 bp = bioq_first(&sc->sc_queue); 2115 if (bp == NULL) { 2116 if ((sc->sc_flags & 2117 G_RAID3_DEVICE_FLAG_DESTROY) != 0) { 2118 mtx_unlock(&sc->sc_queue_mtx); 2119 if (g_raid3_try_destroy(sc)) { 2120 curthread->td_pflags &= ~TDP_GEOM; 2121 G_RAID3_DEBUG(1, "Thread exiting."); 2122 kproc_exit(0); 2123 } 2124 mtx_lock(&sc->sc_queue_mtx); 2125 } 2126 sx_xunlock(&sc->sc_lock); 2127 /* 2128 * XXX: We can miss an event here, because an event 2129 * can be added without sx-device-lock and without 2130 * mtx-queue-lock. Maybe I should just stop using 2131 * dedicated mutex for events synchronization and 2132 * stick with the queue lock? 2133 * The event will hang here until next I/O request 2134 * or next event is received. 2135 */ 2136 MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1", 2137 timeout * hz); 2138 sx_xlock(&sc->sc_lock); 2139 G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__); 2140 continue; 2141 } 2142 process: 2143 bioq_remove(&sc->sc_queue, bp); 2144 mtx_unlock(&sc->sc_queue_mtx); 2145 2146 if (bp->bio_from->geom == sc->sc_sync.ds_geom && 2147 (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) { 2148 g_raid3_sync_request(bp); /* READ */ 2149 } else if (bp->bio_to != sc->sc_provider) { 2150 if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0) 2151 g_raid3_regular_request(bp); 2152 else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) 2153 g_raid3_sync_request(bp); /* WRITE */ 2154 else { 2155 KASSERT(0, 2156 ("Invalid request cflags=0x%hx to=%s.", 2157 bp->bio_cflags, bp->bio_to->name)); 2158 } 2159 } else if (g_raid3_register_request(bp) != 0) { 2160 mtx_lock(&sc->sc_queue_mtx); 2161 bioq_insert_head(&sc->sc_queue, bp); 2162 /* 2163 * We are short in memory, let see if there are finished 2164 * request we can free. 2165 */ 2166 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2167 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) 2168 goto process; 2169 } 2170 /* 2171 * No finished regular request, so at least keep 2172 * synchronization running. 2173 */ 2174 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 2175 if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) 2176 goto process; 2177 } 2178 sx_xunlock(&sc->sc_lock); 2179 MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP, 2180 "r3:lowmem", hz / 10); 2181 sx_xlock(&sc->sc_lock); 2182 } 2183 G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__); 2184 } 2185 } 2186 2187 static void 2188 g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk) 2189 { 2190 2191 sx_assert(&sc->sc_lock, SX_LOCKED); 2192 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0) 2193 return; 2194 if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) { 2195 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.", 2196 g_raid3_get_diskname(disk), sc->sc_name); 2197 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2198 } else if (sc->sc_idle && 2199 (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) { 2200 G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.", 2201 g_raid3_get_diskname(disk), sc->sc_name); 2202 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2203 } 2204 } 2205 2206 static void 2207 g_raid3_sync_start(struct g_raid3_softc *sc) 2208 { 2209 struct g_raid3_disk *disk; 2210 struct g_consumer *cp; 2211 struct bio *bp; 2212 int error __diagused; 2213 u_int n; 2214 2215 g_topology_assert_not(); 2216 sx_assert(&sc->sc_lock, SX_XLOCKED); 2217 2218 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2219 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2220 sc->sc_state)); 2221 KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).", 2222 sc->sc_name, sc->sc_state)); 2223 disk = NULL; 2224 for (n = 0; n < sc->sc_ndisks; n++) { 2225 if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING) 2226 continue; 2227 disk = &sc->sc_disks[n]; 2228 break; 2229 } 2230 if (disk == NULL) 2231 return; 2232 2233 sx_xunlock(&sc->sc_lock); 2234 g_topology_lock(); 2235 cp = g_new_consumer(sc->sc_sync.ds_geom); 2236 error = g_attach(cp, sc->sc_provider); 2237 KASSERT(error == 0, 2238 ("Cannot attach to %s (error=%d).", sc->sc_name, error)); 2239 error = g_access(cp, 1, 0, 0); 2240 KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error)); 2241 g_topology_unlock(); 2242 sx_xlock(&sc->sc_lock); 2243 2244 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name, 2245 g_raid3_get_diskname(disk)); 2246 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0) 2247 disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY; 2248 KASSERT(disk->d_sync.ds_consumer == NULL, 2249 ("Sync consumer already exists (device=%s, disk=%s).", 2250 sc->sc_name, g_raid3_get_diskname(disk))); 2251 2252 disk->d_sync.ds_consumer = cp; 2253 disk->d_sync.ds_consumer->private = disk; 2254 disk->d_sync.ds_consumer->index = 0; 2255 sc->sc_syncdisk = disk; 2256 2257 /* 2258 * Allocate memory for synchronization bios and initialize them. 2259 */ 2260 disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs, 2261 M_RAID3, M_WAITOK); 2262 for (n = 0; n < g_raid3_syncreqs; n++) { 2263 bp = g_alloc_bio(); 2264 disk->d_sync.ds_bios[n] = bp; 2265 bp->bio_parent = NULL; 2266 bp->bio_cmd = BIO_READ; 2267 bp->bio_data = malloc(maxphys, M_RAID3, M_WAITOK); 2268 bp->bio_cflags = 0; 2269 bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1); 2270 bp->bio_length = MIN(maxphys, sc->sc_mediasize - bp->bio_offset); 2271 disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1); 2272 bp->bio_done = g_raid3_sync_done; 2273 bp->bio_from = disk->d_sync.ds_consumer; 2274 bp->bio_to = sc->sc_provider; 2275 bp->bio_caller1 = (void *)(uintptr_t)n; 2276 } 2277 2278 /* Set the number of in-flight synchronization requests. */ 2279 disk->d_sync.ds_inflight = g_raid3_syncreqs; 2280 2281 /* 2282 * Fire off first synchronization requests. 2283 */ 2284 for (n = 0; n < g_raid3_syncreqs; n++) { 2285 bp = disk->d_sync.ds_bios[n]; 2286 G_RAID3_LOGREQ(3, bp, "Sending synchronization request."); 2287 disk->d_sync.ds_consumer->index++; 2288 /* 2289 * Delay the request if it is colliding with a regular request. 2290 */ 2291 if (g_raid3_regular_collision(sc, bp)) 2292 g_raid3_sync_delay(sc, bp); 2293 else 2294 g_io_request(bp, disk->d_sync.ds_consumer); 2295 } 2296 } 2297 2298 /* 2299 * Stop synchronization process. 2300 * type: 0 - synchronization finished 2301 * 1 - synchronization stopped 2302 */ 2303 static void 2304 g_raid3_sync_stop(struct g_raid3_softc *sc, int type) 2305 { 2306 struct g_raid3_disk *disk; 2307 struct g_consumer *cp; 2308 2309 g_topology_assert_not(); 2310 sx_assert(&sc->sc_lock, SX_LOCKED); 2311 2312 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED, 2313 ("Device not in DEGRADED state (%s, %u).", sc->sc_name, 2314 sc->sc_state)); 2315 disk = sc->sc_syncdisk; 2316 sc->sc_syncdisk = NULL; 2317 KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name)); 2318 KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2319 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2320 g_raid3_disk_state2str(disk->d_state))); 2321 if (disk->d_sync.ds_consumer == NULL) 2322 return; 2323 2324 if (type == 0) { 2325 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.", 2326 sc->sc_name, g_raid3_get_diskname(disk)); 2327 } else /* if (type == 1) */ { 2328 G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.", 2329 sc->sc_name, g_raid3_get_diskname(disk)); 2330 } 2331 free(disk->d_sync.ds_bios, M_RAID3); 2332 disk->d_sync.ds_bios = NULL; 2333 cp = disk->d_sync.ds_consumer; 2334 disk->d_sync.ds_consumer = NULL; 2335 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2336 sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */ 2337 g_topology_lock(); 2338 g_raid3_kill_consumer(sc, cp); 2339 g_topology_unlock(); 2340 sx_xlock(&sc->sc_lock); 2341 } 2342 2343 static void 2344 g_raid3_launch_provider(struct g_raid3_softc *sc) 2345 { 2346 struct g_provider *pp; 2347 struct g_raid3_disk *disk; 2348 int n; 2349 2350 sx_assert(&sc->sc_lock, SX_LOCKED); 2351 2352 g_topology_lock(); 2353 pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name); 2354 pp->mediasize = sc->sc_mediasize; 2355 pp->sectorsize = sc->sc_sectorsize; 2356 pp->stripesize = 0; 2357 pp->stripeoffset = 0; 2358 for (n = 0; n < sc->sc_ndisks; n++) { 2359 disk = &sc->sc_disks[n]; 2360 if (disk->d_consumer && disk->d_consumer->provider && 2361 disk->d_consumer->provider->stripesize > pp->stripesize) { 2362 pp->stripesize = disk->d_consumer->provider->stripesize; 2363 pp->stripeoffset = disk->d_consumer->provider->stripeoffset; 2364 } 2365 } 2366 pp->stripesize *= sc->sc_ndisks - 1; 2367 pp->stripeoffset *= sc->sc_ndisks - 1; 2368 pp->private = sc; 2369 sc->sc_refcnt++; 2370 sc->sc_provider = pp; 2371 g_error_provider(pp, 0); 2372 g_topology_unlock(); 2373 G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name, 2374 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks); 2375 2376 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED) 2377 g_raid3_sync_start(sc); 2378 } 2379 2380 static void 2381 g_raid3_destroy_provider(struct g_raid3_softc *sc) 2382 { 2383 struct bio *bp; 2384 2385 g_topology_assert_not(); 2386 KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).", 2387 sc->sc_name)); 2388 2389 g_topology_lock(); 2390 g_error_provider(sc->sc_provider, ENXIO); 2391 mtx_lock(&sc->sc_queue_mtx); 2392 while ((bp = bioq_first(&sc->sc_queue)) != NULL) { 2393 bioq_remove(&sc->sc_queue, bp); 2394 g_io_deliver(bp, ENXIO); 2395 } 2396 mtx_unlock(&sc->sc_queue_mtx); 2397 G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name, 2398 sc->sc_provider->name); 2399 g_wither_provider(sc->sc_provider, ENXIO); 2400 g_topology_unlock(); 2401 sc->sc_provider = NULL; 2402 if (sc->sc_syncdisk != NULL) 2403 g_raid3_sync_stop(sc, 1); 2404 } 2405 2406 static void 2407 g_raid3_go(void *arg) 2408 { 2409 struct g_raid3_softc *sc; 2410 struct g_raid3_event *ep; 2411 2412 sc = arg; 2413 G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name); 2414 ep = sc->sc_timeout_event; 2415 sc->sc_timeout_event = NULL; 2416 g_raid3_event_dispatch(ep, sc, 0, 2417 G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE); 2418 } 2419 2420 static void 2421 g_raid3_timeout_drain(struct g_raid3_softc *sc) 2422 { 2423 sx_assert(&sc->sc_lock, SX_XLOCKED); 2424 2425 callout_drain(&sc->sc_callout); 2426 g_raid3_event_free(sc->sc_timeout_event); 2427 sc->sc_timeout_event = NULL; 2428 } 2429 2430 static u_int 2431 g_raid3_determine_state(struct g_raid3_disk *disk) 2432 { 2433 struct g_raid3_softc *sc; 2434 u_int state; 2435 2436 sc = disk->d_softc; 2437 if (sc->sc_syncid == disk->d_sync.ds_syncid) { 2438 if ((disk->d_flags & 2439 G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) { 2440 /* Disk does not need synchronization. */ 2441 state = G_RAID3_DISK_STATE_ACTIVE; 2442 } else { 2443 if ((sc->sc_flags & 2444 G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2445 (disk->d_flags & 2446 G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2447 /* 2448 * We can start synchronization from 2449 * the stored offset. 2450 */ 2451 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2452 } else { 2453 state = G_RAID3_DISK_STATE_STALE; 2454 } 2455 } 2456 } else if (disk->d_sync.ds_syncid < sc->sc_syncid) { 2457 /* 2458 * Reset all synchronization data for this disk, 2459 * because if it even was synchronized, it was 2460 * synchronized to disks with different syncid. 2461 */ 2462 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2463 disk->d_sync.ds_offset = 0; 2464 disk->d_sync.ds_offset_done = 0; 2465 disk->d_sync.ds_syncid = sc->sc_syncid; 2466 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 || 2467 (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) { 2468 state = G_RAID3_DISK_STATE_SYNCHRONIZING; 2469 } else { 2470 state = G_RAID3_DISK_STATE_STALE; 2471 } 2472 } else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ { 2473 /* 2474 * Not good, NOT GOOD! 2475 * It means that device was started on stale disks 2476 * and more fresh disk just arrive. 2477 * If there were writes, device is broken, sorry. 2478 * I think the best choice here is don't touch 2479 * this disk and inform the user loudly. 2480 */ 2481 G_RAID3_DEBUG(0, "Device %s was started before the freshest " 2482 "disk (%s) arrives!! It will not be connected to the " 2483 "running device.", sc->sc_name, 2484 g_raid3_get_diskname(disk)); 2485 g_raid3_destroy_disk(disk); 2486 state = G_RAID3_DISK_STATE_NONE; 2487 /* Return immediately, because disk was destroyed. */ 2488 return (state); 2489 } 2490 G_RAID3_DEBUG(3, "State for %s disk: %s.", 2491 g_raid3_get_diskname(disk), g_raid3_disk_state2str(state)); 2492 return (state); 2493 } 2494 2495 /* 2496 * Update device state. 2497 */ 2498 static void 2499 g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force) 2500 { 2501 struct g_raid3_disk *disk; 2502 u_int state; 2503 2504 sx_assert(&sc->sc_lock, SX_XLOCKED); 2505 2506 switch (sc->sc_state) { 2507 case G_RAID3_DEVICE_STATE_STARTING: 2508 { 2509 u_int n, ndirty, ndisks, genid, syncid; 2510 2511 KASSERT(sc->sc_provider == NULL, 2512 ("Non-NULL provider in STARTING state (%s).", sc->sc_name)); 2513 /* 2514 * Are we ready? We are, if all disks are connected or 2515 * one disk is missing and 'force' is true. 2516 */ 2517 if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) { 2518 if (!force) 2519 g_raid3_timeout_drain(sc); 2520 } else { 2521 if (force) { 2522 /* 2523 * Timeout expired, so destroy device. 2524 */ 2525 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2526 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", 2527 __LINE__, sc->sc_rootmount); 2528 root_mount_rel(sc->sc_rootmount); 2529 sc->sc_rootmount = NULL; 2530 } 2531 return; 2532 } 2533 2534 /* 2535 * Find the biggest genid. 2536 */ 2537 genid = 0; 2538 for (n = 0; n < sc->sc_ndisks; n++) { 2539 disk = &sc->sc_disks[n]; 2540 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2541 continue; 2542 if (disk->d_genid > genid) 2543 genid = disk->d_genid; 2544 } 2545 sc->sc_genid = genid; 2546 /* 2547 * Remove all disks without the biggest genid. 2548 */ 2549 for (n = 0; n < sc->sc_ndisks; n++) { 2550 disk = &sc->sc_disks[n]; 2551 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2552 continue; 2553 if (disk->d_genid < genid) { 2554 G_RAID3_DEBUG(0, 2555 "Component %s (device %s) broken, skipping.", 2556 g_raid3_get_diskname(disk), sc->sc_name); 2557 g_raid3_destroy_disk(disk); 2558 } 2559 } 2560 2561 /* 2562 * There must be at least 'sc->sc_ndisks - 1' components 2563 * with the same syncid and without SYNCHRONIZING flag. 2564 */ 2565 2566 /* 2567 * Find the biggest syncid, number of valid components and 2568 * number of dirty components. 2569 */ 2570 ndirty = ndisks = syncid = 0; 2571 for (n = 0; n < sc->sc_ndisks; n++) { 2572 disk = &sc->sc_disks[n]; 2573 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2574 continue; 2575 if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) 2576 ndirty++; 2577 if (disk->d_sync.ds_syncid > syncid) { 2578 syncid = disk->d_sync.ds_syncid; 2579 ndisks = 0; 2580 } else if (disk->d_sync.ds_syncid < syncid) { 2581 continue; 2582 } 2583 if ((disk->d_flags & 2584 G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) { 2585 continue; 2586 } 2587 ndisks++; 2588 } 2589 /* 2590 * Do we have enough valid components? 2591 */ 2592 if (ndisks + 1 < sc->sc_ndisks) { 2593 G_RAID3_DEBUG(0, 2594 "Device %s is broken, too few valid components.", 2595 sc->sc_name); 2596 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2597 return; 2598 } 2599 /* 2600 * If there is one DIRTY component and all disks are present, 2601 * mark it for synchronization. If there is more than one DIRTY 2602 * component, mark parity component for synchronization. 2603 */ 2604 if (ndisks == sc->sc_ndisks && ndirty == 1) { 2605 for (n = 0; n < sc->sc_ndisks; n++) { 2606 disk = &sc->sc_disks[n]; 2607 if ((disk->d_flags & 2608 G_RAID3_DISK_FLAG_DIRTY) == 0) { 2609 continue; 2610 } 2611 disk->d_flags |= 2612 G_RAID3_DISK_FLAG_SYNCHRONIZING; 2613 } 2614 } else if (ndisks == sc->sc_ndisks && ndirty > 1) { 2615 disk = &sc->sc_disks[sc->sc_ndisks - 1]; 2616 disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING; 2617 } 2618 2619 sc->sc_syncid = syncid; 2620 if (force) { 2621 /* Remember to bump syncid on first write. */ 2622 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2623 } 2624 if (ndisks == sc->sc_ndisks) 2625 state = G_RAID3_DEVICE_STATE_COMPLETE; 2626 else /* if (ndisks == sc->sc_ndisks - 1) */ 2627 state = G_RAID3_DEVICE_STATE_DEGRADED; 2628 G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.", 2629 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2630 g_raid3_device_state2str(state)); 2631 sc->sc_state = state; 2632 for (n = 0; n < sc->sc_ndisks; n++) { 2633 disk = &sc->sc_disks[n]; 2634 if (disk->d_state == G_RAID3_DISK_STATE_NODISK) 2635 continue; 2636 state = g_raid3_determine_state(disk); 2637 g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT); 2638 if (state == G_RAID3_DISK_STATE_STALE) 2639 sc->sc_bump_id |= G_RAID3_BUMP_SYNCID; 2640 } 2641 break; 2642 } 2643 case G_RAID3_DEVICE_STATE_DEGRADED: 2644 /* 2645 * Genid need to be bumped immediately, so do it here. 2646 */ 2647 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2648 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2649 g_raid3_bump_genid(sc); 2650 } 2651 2652 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2653 return; 2654 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < 2655 sc->sc_ndisks - 1) { 2656 if (sc->sc_provider != NULL) 2657 g_raid3_destroy_provider(sc); 2658 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 2659 return; 2660 } 2661 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2662 sc->sc_ndisks) { 2663 state = G_RAID3_DEVICE_STATE_COMPLETE; 2664 G_RAID3_DEBUG(1, 2665 "Device %s state changed from %s to %s.", 2666 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2667 g_raid3_device_state2str(state)); 2668 sc->sc_state = state; 2669 } 2670 if (sc->sc_provider == NULL) 2671 g_raid3_launch_provider(sc); 2672 if (sc->sc_rootmount != NULL) { 2673 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2674 sc->sc_rootmount); 2675 root_mount_rel(sc->sc_rootmount); 2676 sc->sc_rootmount = NULL; 2677 } 2678 break; 2679 case G_RAID3_DEVICE_STATE_COMPLETE: 2680 /* 2681 * Genid need to be bumped immediately, so do it here. 2682 */ 2683 if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) { 2684 sc->sc_bump_id &= ~G_RAID3_BUMP_GENID; 2685 g_raid3_bump_genid(sc); 2686 } 2687 2688 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0) 2689 return; 2690 KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >= 2691 sc->sc_ndisks - 1, 2692 ("Too few ACTIVE components in COMPLETE state (device %s).", 2693 sc->sc_name)); 2694 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) == 2695 sc->sc_ndisks - 1) { 2696 state = G_RAID3_DEVICE_STATE_DEGRADED; 2697 G_RAID3_DEBUG(1, 2698 "Device %s state changed from %s to %s.", 2699 sc->sc_name, g_raid3_device_state2str(sc->sc_state), 2700 g_raid3_device_state2str(state)); 2701 sc->sc_state = state; 2702 } 2703 if (sc->sc_provider == NULL) 2704 g_raid3_launch_provider(sc); 2705 if (sc->sc_rootmount != NULL) { 2706 G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__, 2707 sc->sc_rootmount); 2708 root_mount_rel(sc->sc_rootmount); 2709 sc->sc_rootmount = NULL; 2710 } 2711 break; 2712 default: 2713 KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name, 2714 g_raid3_device_state2str(sc->sc_state))); 2715 break; 2716 } 2717 } 2718 2719 /* 2720 * Update disk state and device state if needed. 2721 */ 2722 #define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \ 2723 "Disk %s state changed from %s to %s (device %s).", \ 2724 g_raid3_get_diskname(disk), \ 2725 g_raid3_disk_state2str(disk->d_state), \ 2726 g_raid3_disk_state2str(state), sc->sc_name) 2727 static int 2728 g_raid3_update_disk(struct g_raid3_disk *disk, u_int state) 2729 { 2730 struct g_raid3_softc *sc; 2731 2732 sc = disk->d_softc; 2733 sx_assert(&sc->sc_lock, SX_XLOCKED); 2734 2735 again: 2736 G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.", 2737 g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state), 2738 g_raid3_disk_state2str(state)); 2739 switch (state) { 2740 case G_RAID3_DISK_STATE_NEW: 2741 /* 2742 * Possible scenarios: 2743 * 1. New disk arrive. 2744 */ 2745 /* Previous state should be NONE. */ 2746 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE, 2747 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2748 g_raid3_disk_state2str(disk->d_state))); 2749 DISK_STATE_CHANGED(); 2750 2751 disk->d_state = state; 2752 G_RAID3_DEBUG(1, "Device %s: provider %s detected.", 2753 sc->sc_name, g_raid3_get_diskname(disk)); 2754 if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) 2755 break; 2756 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2757 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2758 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2759 g_raid3_device_state2str(sc->sc_state), 2760 g_raid3_get_diskname(disk), 2761 g_raid3_disk_state2str(disk->d_state))); 2762 state = g_raid3_determine_state(disk); 2763 if (state != G_RAID3_DISK_STATE_NONE) 2764 goto again; 2765 break; 2766 case G_RAID3_DISK_STATE_ACTIVE: 2767 /* 2768 * Possible scenarios: 2769 * 1. New disk does not need synchronization. 2770 * 2. Synchronization process finished successfully. 2771 */ 2772 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2773 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2774 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2775 g_raid3_device_state2str(sc->sc_state), 2776 g_raid3_get_diskname(disk), 2777 g_raid3_disk_state2str(disk->d_state))); 2778 /* Previous state should be NEW or SYNCHRONIZING. */ 2779 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW || 2780 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2781 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2782 g_raid3_disk_state2str(disk->d_state))); 2783 DISK_STATE_CHANGED(); 2784 2785 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 2786 disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING; 2787 disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC; 2788 g_raid3_sync_stop(sc, 0); 2789 } 2790 disk->d_state = state; 2791 disk->d_sync.ds_offset = 0; 2792 disk->d_sync.ds_offset_done = 0; 2793 g_raid3_update_idle(sc, disk); 2794 g_raid3_update_metadata(disk); 2795 G_RAID3_DEBUG(1, "Device %s: provider %s activated.", 2796 sc->sc_name, g_raid3_get_diskname(disk)); 2797 break; 2798 case G_RAID3_DISK_STATE_STALE: 2799 /* 2800 * Possible scenarios: 2801 * 1. Stale disk was connected. 2802 */ 2803 /* Previous state should be NEW. */ 2804 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2805 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2806 g_raid3_disk_state2str(disk->d_state))); 2807 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2808 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2809 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2810 g_raid3_device_state2str(sc->sc_state), 2811 g_raid3_get_diskname(disk), 2812 g_raid3_disk_state2str(disk->d_state))); 2813 /* 2814 * STALE state is only possible if device is marked 2815 * NOAUTOSYNC. 2816 */ 2817 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0, 2818 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2819 g_raid3_device_state2str(sc->sc_state), 2820 g_raid3_get_diskname(disk), 2821 g_raid3_disk_state2str(disk->d_state))); 2822 DISK_STATE_CHANGED(); 2823 2824 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2825 disk->d_state = state; 2826 g_raid3_update_metadata(disk); 2827 G_RAID3_DEBUG(0, "Device %s: provider %s is stale.", 2828 sc->sc_name, g_raid3_get_diskname(disk)); 2829 break; 2830 case G_RAID3_DISK_STATE_SYNCHRONIZING: 2831 /* 2832 * Possible scenarios: 2833 * 1. Disk which needs synchronization was connected. 2834 */ 2835 /* Previous state should be NEW. */ 2836 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2837 ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk), 2838 g_raid3_disk_state2str(disk->d_state))); 2839 KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2840 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE, 2841 ("Wrong device state (%s, %s, %s, %s).", sc->sc_name, 2842 g_raid3_device_state2str(sc->sc_state), 2843 g_raid3_get_diskname(disk), 2844 g_raid3_disk_state2str(disk->d_state))); 2845 DISK_STATE_CHANGED(); 2846 2847 if (disk->d_state == G_RAID3_DISK_STATE_NEW) 2848 disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY; 2849 disk->d_state = state; 2850 if (sc->sc_provider != NULL) { 2851 g_raid3_sync_start(sc); 2852 g_raid3_update_metadata(disk); 2853 } 2854 break; 2855 case G_RAID3_DISK_STATE_DISCONNECTED: 2856 /* 2857 * Possible scenarios: 2858 * 1. Device wasn't running yet, but disk disappear. 2859 * 2. Disk was active and disapppear. 2860 * 3. Disk disappear during synchronization process. 2861 */ 2862 if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED || 2863 sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) { 2864 /* 2865 * Previous state should be ACTIVE, STALE or 2866 * SYNCHRONIZING. 2867 */ 2868 KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE || 2869 disk->d_state == G_RAID3_DISK_STATE_STALE || 2870 disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING, 2871 ("Wrong disk state (%s, %s).", 2872 g_raid3_get_diskname(disk), 2873 g_raid3_disk_state2str(disk->d_state))); 2874 } else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) { 2875 /* Previous state should be NEW. */ 2876 KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW, 2877 ("Wrong disk state (%s, %s).", 2878 g_raid3_get_diskname(disk), 2879 g_raid3_disk_state2str(disk->d_state))); 2880 /* 2881 * Reset bumping syncid if disk disappeared in STARTING 2882 * state. 2883 */ 2884 if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) 2885 sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID; 2886 #ifdef INVARIANTS 2887 } else { 2888 KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).", 2889 sc->sc_name, 2890 g_raid3_device_state2str(sc->sc_state), 2891 g_raid3_get_diskname(disk), 2892 g_raid3_disk_state2str(disk->d_state))); 2893 #endif 2894 } 2895 DISK_STATE_CHANGED(); 2896 G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.", 2897 sc->sc_name, g_raid3_get_diskname(disk)); 2898 2899 g_raid3_destroy_disk(disk); 2900 break; 2901 default: 2902 KASSERT(1 == 0, ("Unknown state (%u).", state)); 2903 break; 2904 } 2905 return (0); 2906 } 2907 #undef DISK_STATE_CHANGED 2908 2909 int 2910 g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md) 2911 { 2912 struct g_provider *pp; 2913 u_char *buf; 2914 int error; 2915 2916 g_topology_assert(); 2917 2918 error = g_access(cp, 1, 0, 0); 2919 if (error != 0) 2920 return (error); 2921 pp = cp->provider; 2922 g_topology_unlock(); 2923 /* Metadata are stored on last sector. */ 2924 buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, 2925 &error); 2926 g_topology_lock(); 2927 g_access(cp, -1, 0, 0); 2928 if (buf == NULL) { 2929 G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).", 2930 cp->provider->name, error); 2931 return (error); 2932 } 2933 2934 /* Decode metadata. */ 2935 error = raid3_metadata_decode(buf, md); 2936 g_free(buf); 2937 if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0) 2938 return (EINVAL); 2939 if (md->md_version > G_RAID3_VERSION) { 2940 G_RAID3_DEBUG(0, 2941 "Kernel module is too old to handle metadata from %s.", 2942 cp->provider->name); 2943 return (EINVAL); 2944 } 2945 if (error != 0) { 2946 G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.", 2947 cp->provider->name); 2948 return (error); 2949 } 2950 if (md->md_sectorsize > maxphys) { 2951 G_RAID3_DEBUG(0, "The blocksize is too big."); 2952 return (EINVAL); 2953 } 2954 2955 return (0); 2956 } 2957 2958 static int 2959 g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp, 2960 struct g_raid3_metadata *md) 2961 { 2962 2963 if (md->md_no >= sc->sc_ndisks) { 2964 G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.", 2965 pp->name, md->md_no); 2966 return (EINVAL); 2967 } 2968 if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) { 2969 G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.", 2970 pp->name, md->md_no); 2971 return (EEXIST); 2972 } 2973 if (md->md_all != sc->sc_ndisks) { 2974 G_RAID3_DEBUG(1, 2975 "Invalid '%s' field on disk %s (device %s), skipping.", 2976 "md_all", pp->name, sc->sc_name); 2977 return (EINVAL); 2978 } 2979 if ((md->md_mediasize % md->md_sectorsize) != 0) { 2980 G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != " 2981 "0) on disk %s (device %s), skipping.", pp->name, 2982 sc->sc_name); 2983 return (EINVAL); 2984 } 2985 if (md->md_mediasize != sc->sc_mediasize) { 2986 G_RAID3_DEBUG(1, 2987 "Invalid '%s' field on disk %s (device %s), skipping.", 2988 "md_mediasize", pp->name, sc->sc_name); 2989 return (EINVAL); 2990 } 2991 if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) { 2992 G_RAID3_DEBUG(1, 2993 "Invalid '%s' field on disk %s (device %s), skipping.", 2994 "md_mediasize", pp->name, sc->sc_name); 2995 return (EINVAL); 2996 } 2997 if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) { 2998 G_RAID3_DEBUG(1, 2999 "Invalid size of disk %s (device %s), skipping.", pp->name, 3000 sc->sc_name); 3001 return (EINVAL); 3002 } 3003 if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) { 3004 G_RAID3_DEBUG(1, 3005 "Invalid '%s' field on disk %s (device %s), skipping.", 3006 "md_sectorsize", pp->name, sc->sc_name); 3007 return (EINVAL); 3008 } 3009 if (md->md_sectorsize != sc->sc_sectorsize) { 3010 G_RAID3_DEBUG(1, 3011 "Invalid '%s' field on disk %s (device %s), skipping.", 3012 "md_sectorsize", pp->name, sc->sc_name); 3013 return (EINVAL); 3014 } 3015 if ((sc->sc_sectorsize % pp->sectorsize) != 0) { 3016 G_RAID3_DEBUG(1, 3017 "Invalid sector size of disk %s (device %s), skipping.", 3018 pp->name, sc->sc_name); 3019 return (EINVAL); 3020 } 3021 if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) { 3022 G_RAID3_DEBUG(1, 3023 "Invalid device flags on disk %s (device %s), skipping.", 3024 pp->name, sc->sc_name); 3025 return (EINVAL); 3026 } 3027 if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 && 3028 (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) { 3029 /* 3030 * VERIFY and ROUND-ROBIN options are mutally exclusive. 3031 */ 3032 G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on " 3033 "disk %s (device %s), skipping.", pp->name, sc->sc_name); 3034 return (EINVAL); 3035 } 3036 if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) { 3037 G_RAID3_DEBUG(1, 3038 "Invalid disk flags on disk %s (device %s), skipping.", 3039 pp->name, sc->sc_name); 3040 return (EINVAL); 3041 } 3042 return (0); 3043 } 3044 3045 int 3046 g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp, 3047 struct g_raid3_metadata *md) 3048 { 3049 struct g_raid3_disk *disk; 3050 int error; 3051 3052 g_topology_assert_not(); 3053 G_RAID3_DEBUG(2, "Adding disk %s.", pp->name); 3054 3055 error = g_raid3_check_metadata(sc, pp, md); 3056 if (error != 0) 3057 return (error); 3058 if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING && 3059 md->md_genid < sc->sc_genid) { 3060 G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.", 3061 pp->name, sc->sc_name); 3062 return (EINVAL); 3063 } 3064 disk = g_raid3_init_disk(sc, pp, md, &error); 3065 if (disk == NULL) 3066 return (error); 3067 error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW, 3068 G_RAID3_EVENT_WAIT); 3069 if (error != 0) 3070 return (error); 3071 if (md->md_version < G_RAID3_VERSION) { 3072 G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).", 3073 pp->name, md->md_version, G_RAID3_VERSION); 3074 g_raid3_update_metadata(disk); 3075 } 3076 return (0); 3077 } 3078 3079 static void 3080 g_raid3_destroy_delayed(void *arg, int flag) 3081 { 3082 struct g_raid3_softc *sc; 3083 int error; 3084 3085 if (flag == EV_CANCEL) { 3086 G_RAID3_DEBUG(1, "Destroying canceled."); 3087 return; 3088 } 3089 sc = arg; 3090 g_topology_unlock(); 3091 sx_xlock(&sc->sc_lock); 3092 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0, 3093 ("DESTROY flag set on %s.", sc->sc_name)); 3094 KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0, 3095 ("DESTROYING flag not set on %s.", sc->sc_name)); 3096 G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name); 3097 error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT); 3098 if (error != 0) { 3099 G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name); 3100 sx_xunlock(&sc->sc_lock); 3101 } 3102 g_topology_lock(); 3103 } 3104 3105 static int 3106 g_raid3_access(struct g_provider *pp, int acr, int acw, int ace) 3107 { 3108 struct g_raid3_softc *sc; 3109 int dcr, dcw, dce, error = 0; 3110 3111 g_topology_assert(); 3112 G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr, 3113 acw, ace); 3114 3115 sc = pp->private; 3116 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 3117 3118 dcr = pp->acr + acr; 3119 dcw = pp->acw + acw; 3120 dce = pp->ace + ace; 3121 3122 g_topology_unlock(); 3123 sx_xlock(&sc->sc_lock); 3124 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 || 3125 g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) { 3126 if (acr > 0 || acw > 0 || ace > 0) 3127 error = ENXIO; 3128 goto end; 3129 } 3130 if (dcw == 0) 3131 g_raid3_idle(sc, dcw); 3132 if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) { 3133 if (acr > 0 || acw > 0 || ace > 0) { 3134 error = ENXIO; 3135 goto end; 3136 } 3137 if (dcr == 0 && dcw == 0 && dce == 0) { 3138 g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK, 3139 sc, NULL); 3140 } 3141 } 3142 end: 3143 sx_xunlock(&sc->sc_lock); 3144 g_topology_lock(); 3145 return (error); 3146 } 3147 3148 static struct g_geom * 3149 g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md) 3150 { 3151 struct g_raid3_softc *sc; 3152 struct g_geom *gp; 3153 int error, timeout; 3154 u_int n; 3155 3156 g_topology_assert(); 3157 G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id); 3158 3159 /* One disk is minimum. */ 3160 if (md->md_all < 1) 3161 return (NULL); 3162 /* 3163 * Action geom. 3164 */ 3165 gp = g_new_geomf(mp, "%s", md->md_name); 3166 sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO); 3167 sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3, 3168 M_WAITOK | M_ZERO); 3169 gp->start = g_raid3_start; 3170 gp->orphan = g_raid3_orphan; 3171 gp->access = g_raid3_access; 3172 gp->dumpconf = g_raid3_dumpconf; 3173 3174 sc->sc_id = md->md_id; 3175 sc->sc_mediasize = md->md_mediasize; 3176 sc->sc_sectorsize = md->md_sectorsize; 3177 sc->sc_ndisks = md->md_all; 3178 sc->sc_round_robin = 0; 3179 sc->sc_flags = md->md_mflags; 3180 sc->sc_bump_id = 0; 3181 sc->sc_idle = 1; 3182 sc->sc_last_write = time_uptime; 3183 sc->sc_writes = 0; 3184 sc->sc_refcnt = 1; 3185 for (n = 0; n < sc->sc_ndisks; n++) { 3186 sc->sc_disks[n].d_softc = sc; 3187 sc->sc_disks[n].d_no = n; 3188 sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK; 3189 } 3190 sx_init(&sc->sc_lock, "graid3:lock"); 3191 bioq_init(&sc->sc_queue); 3192 mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF); 3193 bioq_init(&sc->sc_regular_delayed); 3194 bioq_init(&sc->sc_inflight); 3195 bioq_init(&sc->sc_sync_delayed); 3196 TAILQ_INIT(&sc->sc_events); 3197 mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF); 3198 callout_init(&sc->sc_callout, 1); 3199 sc->sc_state = G_RAID3_DEVICE_STATE_STARTING; 3200 gp->softc = sc; 3201 sc->sc_geom = gp; 3202 sc->sc_provider = NULL; 3203 /* 3204 * Synchronization geom. 3205 */ 3206 gp = g_new_geomf(mp, "%s.sync", md->md_name); 3207 gp->softc = sc; 3208 gp->orphan = g_raid3_orphan; 3209 sc->sc_sync.ds_geom = gp; 3210 3211 if (!g_raid3_use_malloc) { 3212 sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k", 3213 65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3214 UMA_ALIGN_PTR, 0); 3215 sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0; 3216 sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k; 3217 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested = 3218 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0; 3219 sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k", 3220 16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3221 UMA_ALIGN_PTR, 0); 3222 sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0; 3223 sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k; 3224 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested = 3225 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0; 3226 sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k", 3227 4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL, 3228 UMA_ALIGN_PTR, 0); 3229 sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0; 3230 sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k; 3231 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested = 3232 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0; 3233 } 3234 3235 error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0, 3236 "g_raid3 %s", md->md_name); 3237 if (error != 0) { 3238 G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.", 3239 sc->sc_name); 3240 g_destroy_geom(sc->sc_geom); 3241 g_raid3_free_device(sc); 3242 return (NULL); 3243 } 3244 3245 G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).", 3246 sc->sc_name, sc->sc_ndisks, sc->sc_id); 3247 3248 sc->sc_rootmount = root_mount_hold("GRAID3"); 3249 G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount); 3250 3251 /* 3252 * Schedule startup timeout. 3253 */ 3254 timeout = atomic_load_acq_int(&g_raid3_timeout); 3255 sc->sc_timeout_event = malloc(sizeof(struct g_raid3_event), M_RAID3, 3256 M_WAITOK); 3257 callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc); 3258 return (sc->sc_geom); 3259 } 3260 3261 int 3262 g_raid3_destroy(struct g_raid3_softc *sc, int how) 3263 { 3264 struct g_provider *pp; 3265 3266 g_topology_assert_not(); 3267 sx_assert(&sc->sc_lock, SX_XLOCKED); 3268 3269 pp = sc->sc_provider; 3270 if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) { 3271 switch (how) { 3272 case G_RAID3_DESTROY_SOFT: 3273 G_RAID3_DEBUG(1, 3274 "Device %s is still open (r%dw%de%d).", pp->name, 3275 pp->acr, pp->acw, pp->ace); 3276 return (EBUSY); 3277 case G_RAID3_DESTROY_DELAYED: 3278 G_RAID3_DEBUG(1, 3279 "Device %s will be destroyed on last close.", 3280 pp->name); 3281 if (sc->sc_syncdisk != NULL) 3282 g_raid3_sync_stop(sc, 1); 3283 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING; 3284 return (EBUSY); 3285 case G_RAID3_DESTROY_HARD: 3286 G_RAID3_DEBUG(1, "Device %s is still open, so it " 3287 "can't be definitely removed.", pp->name); 3288 break; 3289 } 3290 } 3291 3292 g_topology_lock(); 3293 if (sc->sc_geom->softc == NULL) { 3294 g_topology_unlock(); 3295 return (0); 3296 } 3297 sc->sc_geom->softc = NULL; 3298 sc->sc_sync.ds_geom->softc = NULL; 3299 g_topology_unlock(); 3300 3301 sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY; 3302 sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT; 3303 G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc); 3304 sx_xunlock(&sc->sc_lock); 3305 mtx_lock(&sc->sc_queue_mtx); 3306 wakeup(sc); 3307 wakeup(&sc->sc_queue); 3308 mtx_unlock(&sc->sc_queue_mtx); 3309 G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker); 3310 while (sc->sc_worker != NULL) 3311 tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5); 3312 G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker); 3313 sx_xlock(&sc->sc_lock); 3314 g_raid3_destroy_device(sc); 3315 return (0); 3316 } 3317 3318 static void 3319 g_raid3_taste_orphan(struct g_consumer *cp) 3320 { 3321 3322 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 3323 cp->provider->name)); 3324 } 3325 3326 static struct g_geom * 3327 g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 3328 { 3329 struct g_raid3_metadata md; 3330 struct g_raid3_softc *sc; 3331 struct g_consumer *cp; 3332 struct g_geom *gp; 3333 int error; 3334 3335 g_topology_assert(); 3336 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 3337 G_RAID3_DEBUG(2, "Tasting %s.", pp->name); 3338 3339 gp = g_new_geomf(mp, "raid3:taste"); 3340 /* This orphan function should be never called. */ 3341 gp->orphan = g_raid3_taste_orphan; 3342 cp = g_new_consumer(gp); 3343 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 3344 error = g_attach(cp, pp); 3345 if (error == 0) { 3346 error = g_raid3_read_metadata(cp, &md); 3347 g_detach(cp); 3348 } 3349 g_destroy_consumer(cp); 3350 g_destroy_geom(gp); 3351 if (error != 0) 3352 return (NULL); 3353 gp = NULL; 3354 3355 if (md.md_provider[0] != '\0' && 3356 !g_compare_names(md.md_provider, pp->name)) 3357 return (NULL); 3358 if (md.md_provsize != 0 && md.md_provsize != pp->mediasize) 3359 return (NULL); 3360 if (g_raid3_debug >= 2) 3361 raid3_metadata_dump(&md); 3362 3363 /* 3364 * Let's check if device already exists. 3365 */ 3366 sc = NULL; 3367 LIST_FOREACH(gp, &mp->geom, geom) { 3368 sc = gp->softc; 3369 if (sc == NULL) 3370 continue; 3371 if (sc->sc_sync.ds_geom == gp) 3372 continue; 3373 if (strcmp(md.md_name, sc->sc_name) != 0) 3374 continue; 3375 if (md.md_id != sc->sc_id) { 3376 G_RAID3_DEBUG(0, "Device %s already configured.", 3377 sc->sc_name); 3378 return (NULL); 3379 } 3380 break; 3381 } 3382 if (gp == NULL) { 3383 gp = g_raid3_create(mp, &md); 3384 if (gp == NULL) { 3385 G_RAID3_DEBUG(0, "Cannot create device %s.", 3386 md.md_name); 3387 return (NULL); 3388 } 3389 sc = gp->softc; 3390 } 3391 G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name); 3392 g_topology_unlock(); 3393 sx_xlock(&sc->sc_lock); 3394 error = g_raid3_add_disk(sc, pp, &md); 3395 if (error != 0) { 3396 G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).", 3397 pp->name, gp->name, error); 3398 if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) == 3399 sc->sc_ndisks) { 3400 g_cancel_event(sc); 3401 g_raid3_destroy(sc, G_RAID3_DESTROY_HARD); 3402 g_topology_lock(); 3403 return (NULL); 3404 } 3405 gp = NULL; 3406 } 3407 sx_xunlock(&sc->sc_lock); 3408 g_topology_lock(); 3409 return (gp); 3410 } 3411 3412 static int 3413 g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused, 3414 struct g_geom *gp) 3415 { 3416 struct g_raid3_softc *sc; 3417 int error; 3418 3419 g_topology_unlock(); 3420 sc = gp->softc; 3421 sx_xlock(&sc->sc_lock); 3422 g_cancel_event(sc); 3423 error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT); 3424 if (error != 0) 3425 sx_xunlock(&sc->sc_lock); 3426 g_topology_lock(); 3427 return (error); 3428 } 3429 3430 static void 3431 g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 3432 struct g_consumer *cp, struct g_provider *pp) 3433 { 3434 struct g_raid3_softc *sc; 3435 3436 g_topology_assert(); 3437 3438 sc = gp->softc; 3439 if (sc == NULL) 3440 return; 3441 /* Skip synchronization geom. */ 3442 if (gp == sc->sc_sync.ds_geom) 3443 return; 3444 if (pp != NULL) { 3445 /* Nothing here. */ 3446 } else if (cp != NULL) { 3447 struct g_raid3_disk *disk; 3448 3449 disk = cp->private; 3450 if (disk == NULL) 3451 return; 3452 g_topology_unlock(); 3453 sx_xlock(&sc->sc_lock); 3454 sbuf_printf(sb, "%s<Type>", indent); 3455 if (disk->d_no == sc->sc_ndisks - 1) 3456 sbuf_cat(sb, "PARITY"); 3457 else 3458 sbuf_cat(sb, "DATA"); 3459 sbuf_cat(sb, "</Type>\n"); 3460 sbuf_printf(sb, "%s<Number>%u</Number>\n", indent, 3461 (u_int)disk->d_no); 3462 if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) { 3463 sbuf_printf(sb, "%s<Synchronized>", indent); 3464 if (disk->d_sync.ds_offset == 0) 3465 sbuf_cat(sb, "0%"); 3466 else { 3467 sbuf_printf(sb, "%u%%", 3468 (u_int)((disk->d_sync.ds_offset * 100) / 3469 (sc->sc_mediasize / (sc->sc_ndisks - 1)))); 3470 } 3471 sbuf_cat(sb, "</Synchronized>\n"); 3472 if (disk->d_sync.ds_offset > 0) { 3473 sbuf_printf(sb, "%s<BytesSynced>%jd" 3474 "</BytesSynced>\n", indent, 3475 (intmax_t)disk->d_sync.ds_offset); 3476 } 3477 } 3478 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, 3479 disk->d_sync.ds_syncid); 3480 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid); 3481 sbuf_printf(sb, "%s<Flags>", indent); 3482 if (disk->d_flags == 0) 3483 sbuf_cat(sb, "NONE"); 3484 else { 3485 int first = 1; 3486 3487 #define ADD_FLAG(flag, name) do { \ 3488 if ((disk->d_flags & (flag)) != 0) { \ 3489 if (!first) \ 3490 sbuf_cat(sb, ", "); \ 3491 else \ 3492 first = 0; \ 3493 sbuf_cat(sb, name); \ 3494 } \ 3495 } while (0) 3496 ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY"); 3497 ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED"); 3498 ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING, 3499 "SYNCHRONIZING"); 3500 ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC"); 3501 ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN"); 3502 #undef ADD_FLAG 3503 } 3504 sbuf_cat(sb, "</Flags>\n"); 3505 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3506 g_raid3_disk_state2str(disk->d_state)); 3507 sx_xunlock(&sc->sc_lock); 3508 g_topology_lock(); 3509 } else { 3510 g_topology_unlock(); 3511 sx_xlock(&sc->sc_lock); 3512 if (!g_raid3_use_malloc) { 3513 sbuf_printf(sb, 3514 "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent, 3515 sc->sc_zones[G_RAID3_ZONE_4K].sz_requested); 3516 sbuf_printf(sb, 3517 "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent, 3518 sc->sc_zones[G_RAID3_ZONE_4K].sz_failed); 3519 sbuf_printf(sb, 3520 "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent, 3521 sc->sc_zones[G_RAID3_ZONE_16K].sz_requested); 3522 sbuf_printf(sb, 3523 "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent, 3524 sc->sc_zones[G_RAID3_ZONE_16K].sz_failed); 3525 sbuf_printf(sb, 3526 "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent, 3527 sc->sc_zones[G_RAID3_ZONE_64K].sz_requested); 3528 sbuf_printf(sb, 3529 "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent, 3530 sc->sc_zones[G_RAID3_ZONE_64K].sz_failed); 3531 } 3532 sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id); 3533 sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid); 3534 sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid); 3535 sbuf_printf(sb, "%s<Flags>", indent); 3536 if (sc->sc_flags == 0) 3537 sbuf_cat(sb, "NONE"); 3538 else { 3539 int first = 1; 3540 3541 #define ADD_FLAG(flag, name) do { \ 3542 if ((sc->sc_flags & (flag)) != 0) { \ 3543 if (!first) \ 3544 sbuf_cat(sb, ", "); \ 3545 else \ 3546 first = 0; \ 3547 sbuf_cat(sb, name); \ 3548 } \ 3549 } while (0) 3550 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC"); 3551 ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC"); 3552 ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN, 3553 "ROUND-ROBIN"); 3554 ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY"); 3555 #undef ADD_FLAG 3556 } 3557 sbuf_cat(sb, "</Flags>\n"); 3558 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 3559 sc->sc_ndisks); 3560 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 3561 g_raid3_device_state2str(sc->sc_state)); 3562 sx_xunlock(&sc->sc_lock); 3563 g_topology_lock(); 3564 } 3565 } 3566 3567 static void 3568 g_raid3_shutdown_post_sync(void *arg, int howto) 3569 { 3570 struct g_class *mp; 3571 struct g_geom *gp, *gp2; 3572 struct g_raid3_softc *sc; 3573 int error; 3574 3575 mp = arg; 3576 g_topology_lock(); 3577 g_raid3_shutdown = 1; 3578 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 3579 if ((sc = gp->softc) == NULL) 3580 continue; 3581 /* Skip synchronization geom. */ 3582 if (gp == sc->sc_sync.ds_geom) 3583 continue; 3584 g_topology_unlock(); 3585 sx_xlock(&sc->sc_lock); 3586 g_raid3_idle(sc, -1); 3587 g_cancel_event(sc); 3588 error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED); 3589 if (error != 0) 3590 sx_xunlock(&sc->sc_lock); 3591 g_topology_lock(); 3592 } 3593 g_topology_unlock(); 3594 } 3595 3596 static void 3597 g_raid3_init(struct g_class *mp) 3598 { 3599 3600 g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 3601 g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 3602 if (g_raid3_post_sync == NULL) 3603 G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event."); 3604 } 3605 3606 static void 3607 g_raid3_fini(struct g_class *mp) 3608 { 3609 3610 if (g_raid3_post_sync != NULL) 3611 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync); 3612 } 3613 3614 DECLARE_GEOM_CLASS(g_raid3_class, g_raid3); 3615 MODULE_VERSION(geom_raid3, 0); 3616