1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 5 * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bio.h> 35 #include <sys/endian.h> 36 #include <sys/kernel.h> 37 #include <sys/kobj.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/systm.h> 43 #include <sys/taskqueue.h> 44 #include <sys/disk.h> 45 #include <geom/geom.h> 46 #include <geom/geom_dbg.h> 47 #include "geom/raid/g_raid.h" 48 #include "g_raid_md_if.h" 49 50 static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata"); 51 52 struct intel_raid_map { 53 uint32_t offset; 54 uint32_t disk_sectors; 55 uint32_t stripe_count; 56 uint16_t strip_sectors; 57 uint8_t status; 58 #define INTEL_S_READY 0x00 59 #define INTEL_S_UNINITIALIZED 0x01 60 #define INTEL_S_DEGRADED 0x02 61 #define INTEL_S_FAILURE 0x03 62 63 uint8_t type; 64 #define INTEL_T_RAID0 0x00 65 #define INTEL_T_RAID1 0x01 66 #define INTEL_T_RAID5 0x05 67 68 uint8_t total_disks; 69 uint8_t total_domains; 70 uint8_t failed_disk_num; 71 uint8_t ddf; 72 uint32_t offset_hi; 73 uint32_t disk_sectors_hi; 74 uint32_t stripe_count_hi; 75 uint32_t filler_2[4]; 76 uint32_t disk_idx[1]; /* total_disks entries. */ 77 #define INTEL_DI_IDX 0x00ffffff 78 #define INTEL_DI_RBLD 0x01000000 79 } __packed; 80 81 struct intel_raid_vol { 82 uint8_t name[16]; 83 u_int64_t total_sectors __packed; 84 uint32_t state; 85 #define INTEL_ST_BOOTABLE 0x00000001 86 #define INTEL_ST_BOOT_DEVICE 0x00000002 87 #define INTEL_ST_READ_COALESCING 0x00000004 88 #define INTEL_ST_WRITE_COALESCING 0x00000008 89 #define INTEL_ST_LAST_SHUTDOWN_DIRTY 0x00000010 90 #define INTEL_ST_HIDDEN_AT_BOOT 0x00000020 91 #define INTEL_ST_CURRENTLY_HIDDEN 0x00000040 92 #define INTEL_ST_VERIFY_AND_FIX 0x00000080 93 #define INTEL_ST_MAP_STATE_UNINIT 0x00000100 94 #define INTEL_ST_NO_AUTO_RECOVERY 0x00000200 95 #define INTEL_ST_CLONE_N_GO 0x00000400 96 #define INTEL_ST_CLONE_MAN_SYNC 0x00000800 97 #define INTEL_ST_CNG_MASTER_DISK_NUM 0x00001000 98 uint32_t reserved; 99 uint8_t migr_priority; 100 uint8_t num_sub_vols; 101 uint8_t tid; 102 uint8_t cng_master_disk; 103 uint16_t cache_policy; 104 uint8_t cng_state; 105 #define INTEL_CNGST_UPDATED 0 106 #define INTEL_CNGST_NEEDS_UPDATE 1 107 #define INTEL_CNGST_MASTER_MISSING 2 108 uint8_t cng_sub_state; 109 uint32_t filler_0[10]; 110 111 uint32_t curr_migr_unit; 112 uint32_t checkpoint_id; 113 uint8_t migr_state; 114 uint8_t migr_type; 115 #define INTEL_MT_INIT 0 116 #define INTEL_MT_REBUILD 1 117 #define INTEL_MT_VERIFY 2 118 #define INTEL_MT_GEN_MIGR 3 119 #define INTEL_MT_STATE_CHANGE 4 120 #define INTEL_MT_REPAIR 5 121 uint8_t dirty; 122 uint8_t fs_state; 123 uint16_t verify_errors; 124 uint16_t bad_blocks; 125 uint32_t curr_migr_unit_hi; 126 uint32_t filler_1[3]; 127 struct intel_raid_map map[1]; /* 2 entries if migr_state != 0. */ 128 } __packed; 129 130 struct intel_raid_disk { 131 #define INTEL_SERIAL_LEN 16 132 uint8_t serial[INTEL_SERIAL_LEN]; 133 uint32_t sectors; 134 uint32_t id; 135 uint32_t flags; 136 #define INTEL_F_SPARE 0x01 137 #define INTEL_F_ASSIGNED 0x02 138 #define INTEL_F_FAILED 0x04 139 #define INTEL_F_ONLINE 0x08 140 #define INTEL_F_DISABLED 0x80 141 uint32_t owner_cfg_num; 142 uint32_t sectors_hi; 143 uint32_t filler[3]; 144 } __packed; 145 146 struct intel_raid_conf { 147 uint8_t intel_id[24]; 148 #define INTEL_MAGIC "Intel Raid ISM Cfg Sig. " 149 150 uint8_t version[6]; 151 #define INTEL_VERSION_1000 "1.0.00" /* RAID0 */ 152 #define INTEL_VERSION_1100 "1.1.00" /* RAID1 */ 153 #define INTEL_VERSION_1200 "1.2.00" /* Many volumes */ 154 #define INTEL_VERSION_1201 "1.2.01" /* 3 or 4 disks */ 155 #define INTEL_VERSION_1202 "1.2.02" /* RAID5 */ 156 #define INTEL_VERSION_1204 "1.2.04" /* 5 or 6 disks */ 157 #define INTEL_VERSION_1206 "1.2.06" /* CNG */ 158 #define INTEL_VERSION_1300 "1.3.00" /* Attributes */ 159 160 uint8_t dummy_0[2]; 161 uint32_t checksum; 162 uint32_t config_size; 163 uint32_t config_id; 164 uint32_t generation; 165 uint32_t error_log_size; 166 uint32_t attributes; 167 #define INTEL_ATTR_RAID0 0x00000001 168 #define INTEL_ATTR_RAID1 0x00000002 169 #define INTEL_ATTR_RAID10 0x00000004 170 #define INTEL_ATTR_RAID1E 0x00000008 171 #define INTEL_ATTR_RAID5 0x00000010 172 #define INTEL_ATTR_RAIDCNG 0x00000020 173 #define INTEL_ATTR_EXT_STRIP 0x00000040 174 #define INTEL_ATTR_NVM_CACHE 0x02000000 175 #define INTEL_ATTR_2TB_DISK 0x04000000 176 #define INTEL_ATTR_BBM 0x08000000 177 #define INTEL_ATTR_NVM_CACHE2 0x10000000 178 #define INTEL_ATTR_2TB 0x20000000 179 #define INTEL_ATTR_PM 0x40000000 180 #define INTEL_ATTR_CHECKSUM 0x80000000 181 182 uint8_t total_disks; 183 uint8_t total_volumes; 184 uint8_t error_log_pos; 185 uint8_t dummy_2[1]; 186 uint32_t cache_size; 187 uint32_t orig_config_id; 188 uint32_t pwr_cycle_count; 189 uint32_t bbm_log_size; 190 uint32_t filler_0[35]; 191 struct intel_raid_disk disk[1]; /* total_disks entries. */ 192 /* Here goes total_volumes of struct intel_raid_vol. */ 193 } __packed; 194 195 #define INTEL_ATTR_SUPPORTED ( INTEL_ATTR_RAID0 | INTEL_ATTR_RAID1 | \ 196 INTEL_ATTR_RAID10 | INTEL_ATTR_RAID1E | INTEL_ATTR_RAID5 | \ 197 INTEL_ATTR_RAIDCNG | INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | \ 198 INTEL_ATTR_2TB | INTEL_ATTR_PM | INTEL_ATTR_CHECKSUM ) 199 200 #define INTEL_MAX_MD_SIZE(ndisks) \ 201 (sizeof(struct intel_raid_conf) + \ 202 sizeof(struct intel_raid_disk) * (ndisks - 1) + \ 203 sizeof(struct intel_raid_vol) * 2 + \ 204 sizeof(struct intel_raid_map) * 2 + \ 205 sizeof(uint32_t) * (ndisks - 1) * 4) 206 207 struct g_raid_md_intel_perdisk { 208 struct intel_raid_conf *pd_meta; 209 int pd_disk_pos; 210 struct intel_raid_disk pd_disk_meta; 211 }; 212 213 struct g_raid_md_intel_pervolume { 214 int pv_volume_pos; 215 int pv_cng; 216 int pv_cng_man_sync; 217 int pv_cng_master_disk; 218 }; 219 220 struct g_raid_md_intel_object { 221 struct g_raid_md_object mdio_base; 222 uint32_t mdio_config_id; 223 uint32_t mdio_orig_config_id; 224 uint32_t mdio_generation; 225 struct intel_raid_conf *mdio_meta; 226 struct callout mdio_start_co; /* STARTING state timer. */ 227 int mdio_disks_present; 228 int mdio_started; 229 int mdio_incomplete; 230 struct root_hold_token *mdio_rootmount; /* Root mount delay token. */ 231 }; 232 233 static g_raid_md_create_t g_raid_md_create_intel; 234 static g_raid_md_taste_t g_raid_md_taste_intel; 235 static g_raid_md_event_t g_raid_md_event_intel; 236 static g_raid_md_ctl_t g_raid_md_ctl_intel; 237 static g_raid_md_write_t g_raid_md_write_intel; 238 static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel; 239 static g_raid_md_free_disk_t g_raid_md_free_disk_intel; 240 static g_raid_md_free_volume_t g_raid_md_free_volume_intel; 241 static g_raid_md_free_t g_raid_md_free_intel; 242 243 static kobj_method_t g_raid_md_intel_methods[] = { 244 KOBJMETHOD(g_raid_md_create, g_raid_md_create_intel), 245 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_intel), 246 KOBJMETHOD(g_raid_md_event, g_raid_md_event_intel), 247 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_intel), 248 KOBJMETHOD(g_raid_md_write, g_raid_md_write_intel), 249 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel), 250 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel), 251 KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_intel), 252 KOBJMETHOD(g_raid_md_free, g_raid_md_free_intel), 253 { 0, 0 } 254 }; 255 256 static struct g_raid_md_class g_raid_md_intel_class = { 257 "Intel", 258 g_raid_md_intel_methods, 259 sizeof(struct g_raid_md_intel_object), 260 .mdc_enable = 1, 261 .mdc_priority = 100 262 }; 263 264 static struct intel_raid_map * 265 intel_get_map(struct intel_raid_vol *mvol, int i) 266 { 267 struct intel_raid_map *mmap; 268 269 if (i > (mvol->migr_state ? 1 : 0)) 270 return (NULL); 271 mmap = &mvol->map[0]; 272 for (; i > 0; i--) { 273 mmap = (struct intel_raid_map *) 274 &mmap->disk_idx[mmap->total_disks]; 275 } 276 return ((struct intel_raid_map *)mmap); 277 } 278 279 static struct intel_raid_vol * 280 intel_get_volume(struct intel_raid_conf *meta, int i) 281 { 282 struct intel_raid_vol *mvol; 283 struct intel_raid_map *mmap; 284 285 if (i > 1) 286 return (NULL); 287 mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks]; 288 for (; i > 0; i--) { 289 mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0); 290 mvol = (struct intel_raid_vol *) 291 &mmap->disk_idx[mmap->total_disks]; 292 } 293 return (mvol); 294 } 295 296 static off_t 297 intel_get_map_offset(struct intel_raid_map *mmap) 298 { 299 off_t offset = (off_t)mmap->offset_hi << 32; 300 301 offset += mmap->offset; 302 return (offset); 303 } 304 305 static void 306 intel_set_map_offset(struct intel_raid_map *mmap, off_t offset) 307 { 308 309 mmap->offset = offset & 0xffffffff; 310 mmap->offset_hi = offset >> 32; 311 } 312 313 static off_t 314 intel_get_map_disk_sectors(struct intel_raid_map *mmap) 315 { 316 off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32; 317 318 disk_sectors += mmap->disk_sectors; 319 return (disk_sectors); 320 } 321 322 static void 323 intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors) 324 { 325 326 mmap->disk_sectors = disk_sectors & 0xffffffff; 327 mmap->disk_sectors_hi = disk_sectors >> 32; 328 } 329 330 static void 331 intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count) 332 { 333 334 mmap->stripe_count = stripe_count & 0xffffffff; 335 mmap->stripe_count_hi = stripe_count >> 32; 336 } 337 338 static off_t 339 intel_get_disk_sectors(struct intel_raid_disk *disk) 340 { 341 off_t sectors = (off_t)disk->sectors_hi << 32; 342 343 sectors += disk->sectors; 344 return (sectors); 345 } 346 347 static void 348 intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors) 349 { 350 351 disk->sectors = sectors & 0xffffffff; 352 disk->sectors_hi = sectors >> 32; 353 } 354 355 static off_t 356 intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol) 357 { 358 off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32; 359 360 curr_migr_unit += vol->curr_migr_unit; 361 return (curr_migr_unit); 362 } 363 364 static void 365 intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit) 366 { 367 368 vol->curr_migr_unit = curr_migr_unit & 0xffffffff; 369 vol->curr_migr_unit_hi = curr_migr_unit >> 32; 370 } 371 372 static char * 373 intel_status2str(int status) 374 { 375 376 switch (status) { 377 case INTEL_S_READY: 378 return ("READY"); 379 case INTEL_S_UNINITIALIZED: 380 return ("UNINITIALIZED"); 381 case INTEL_S_DEGRADED: 382 return ("DEGRADED"); 383 case INTEL_S_FAILURE: 384 return ("FAILURE"); 385 default: 386 return ("UNKNOWN"); 387 } 388 } 389 390 static char * 391 intel_type2str(int type) 392 { 393 394 switch (type) { 395 case INTEL_T_RAID0: 396 return ("RAID0"); 397 case INTEL_T_RAID1: 398 return ("RAID1"); 399 case INTEL_T_RAID5: 400 return ("RAID5"); 401 default: 402 return ("UNKNOWN"); 403 } 404 } 405 406 static char * 407 intel_cngst2str(int cng_state) 408 { 409 410 switch (cng_state) { 411 case INTEL_CNGST_UPDATED: 412 return ("UPDATED"); 413 case INTEL_CNGST_NEEDS_UPDATE: 414 return ("NEEDS_UPDATE"); 415 case INTEL_CNGST_MASTER_MISSING: 416 return ("MASTER_MISSING"); 417 default: 418 return ("UNKNOWN"); 419 } 420 } 421 422 static char * 423 intel_mt2str(int type) 424 { 425 426 switch (type) { 427 case INTEL_MT_INIT: 428 return ("INIT"); 429 case INTEL_MT_REBUILD: 430 return ("REBUILD"); 431 case INTEL_MT_VERIFY: 432 return ("VERIFY"); 433 case INTEL_MT_GEN_MIGR: 434 return ("GEN_MIGR"); 435 case INTEL_MT_STATE_CHANGE: 436 return ("STATE_CHANGE"); 437 case INTEL_MT_REPAIR: 438 return ("REPAIR"); 439 default: 440 return ("UNKNOWN"); 441 } 442 } 443 444 static void 445 g_raid_md_intel_print(struct intel_raid_conf *meta) 446 { 447 struct intel_raid_vol *mvol; 448 struct intel_raid_map *mmap; 449 int i, j, k; 450 451 if (g_raid_debug < 1) 452 return; 453 454 printf("********* ATA Intel MatrixRAID Metadata *********\n"); 455 printf("intel_id <%.24s>\n", meta->intel_id); 456 printf("version <%.6s>\n", meta->version); 457 printf("checksum 0x%08x\n", meta->checksum); 458 printf("config_size 0x%08x\n", meta->config_size); 459 printf("config_id 0x%08x\n", meta->config_id); 460 printf("generation 0x%08x\n", meta->generation); 461 printf("error_log_size %d\n", meta->error_log_size); 462 printf("attributes 0x%b\n", meta->attributes, 463 "\020" 464 "\001RAID0" 465 "\002RAID1" 466 "\003RAID10" 467 "\004RAID1E" 468 "\005RAID15" 469 "\006RAIDCNG" 470 "\007EXT_STRIP" 471 "\032NVM_CACHE" 472 "\0332TB_DISK" 473 "\034BBM" 474 "\035NVM_CACHE" 475 "\0362TB" 476 "\037PM" 477 "\040CHECKSUM"); 478 printf("total_disks %u\n", meta->total_disks); 479 printf("total_volumes %u\n", meta->total_volumes); 480 printf("error_log_pos %u\n", meta->error_log_pos); 481 printf("cache_size %u\n", meta->cache_size); 482 printf("orig_config_id 0x%08x\n", meta->orig_config_id); 483 printf("pwr_cycle_count %u\n", meta->pwr_cycle_count); 484 printf("bbm_log_size %u\n", meta->bbm_log_size); 485 printf("Flags: S - Spare, A - Assigned, F - Failed, O - Online, D - Disabled\n"); 486 printf("DISK# serial disk_sectors disk_sectors_hi disk_id flags owner\n"); 487 for (i = 0; i < meta->total_disks; i++ ) { 488 printf(" %d <%.16s> %u %u 0x%08x 0x%b %08x\n", i, 489 meta->disk[i].serial, meta->disk[i].sectors, 490 meta->disk[i].sectors_hi, meta->disk[i].id, 491 meta->disk[i].flags, "\20\01S\02A\03F\04O\05D", 492 meta->disk[i].owner_cfg_num); 493 } 494 for (i = 0; i < meta->total_volumes; i++) { 495 mvol = intel_get_volume(meta, i); 496 printf(" ****** Volume %d ******\n", i); 497 printf(" name %.16s\n", mvol->name); 498 printf(" total_sectors %ju\n", mvol->total_sectors); 499 printf(" state 0x%b\n", mvol->state, 500 "\020" 501 "\001BOOTABLE" 502 "\002BOOT_DEVICE" 503 "\003READ_COALESCING" 504 "\004WRITE_COALESCING" 505 "\005LAST_SHUTDOWN_DIRTY" 506 "\006HIDDEN_AT_BOOT" 507 "\007CURRENTLY_HIDDEN" 508 "\010VERIFY_AND_FIX" 509 "\011MAP_STATE_UNINIT" 510 "\012NO_AUTO_RECOVERY" 511 "\013CLONE_N_GO" 512 "\014CLONE_MAN_SYNC" 513 "\015CNG_MASTER_DISK_NUM"); 514 printf(" reserved %u\n", mvol->reserved); 515 printf(" migr_priority %u\n", mvol->migr_priority); 516 printf(" num_sub_vols %u\n", mvol->num_sub_vols); 517 printf(" tid %u\n", mvol->tid); 518 printf(" cng_master_disk %u\n", mvol->cng_master_disk); 519 printf(" cache_policy %u\n", mvol->cache_policy); 520 printf(" cng_state %u (%s)\n", mvol->cng_state, 521 intel_cngst2str(mvol->cng_state)); 522 printf(" cng_sub_state %u\n", mvol->cng_sub_state); 523 printf(" curr_migr_unit %u\n", mvol->curr_migr_unit); 524 printf(" curr_migr_unit_hi %u\n", mvol->curr_migr_unit_hi); 525 printf(" checkpoint_id %u\n", mvol->checkpoint_id); 526 printf(" migr_state %u\n", mvol->migr_state); 527 printf(" migr_type %u (%s)\n", mvol->migr_type, 528 intel_mt2str(mvol->migr_type)); 529 printf(" dirty %u\n", mvol->dirty); 530 printf(" fs_state %u\n", mvol->fs_state); 531 printf(" verify_errors %u\n", mvol->verify_errors); 532 printf(" bad_blocks %u\n", mvol->bad_blocks); 533 534 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) { 535 printf(" *** Map %d ***\n", j); 536 mmap = intel_get_map(mvol, j); 537 printf(" offset %u\n", mmap->offset); 538 printf(" offset_hi %u\n", mmap->offset_hi); 539 printf(" disk_sectors %u\n", mmap->disk_sectors); 540 printf(" disk_sectors_hi %u\n", mmap->disk_sectors_hi); 541 printf(" stripe_count %u\n", mmap->stripe_count); 542 printf(" stripe_count_hi %u\n", mmap->stripe_count_hi); 543 printf(" strip_sectors %u\n", mmap->strip_sectors); 544 printf(" status %u (%s)\n", mmap->status, 545 intel_status2str(mmap->status)); 546 printf(" type %u (%s)\n", mmap->type, 547 intel_type2str(mmap->type)); 548 printf(" total_disks %u\n", mmap->total_disks); 549 printf(" total_domains %u\n", mmap->total_domains); 550 printf(" failed_disk_num %u\n", mmap->failed_disk_num); 551 printf(" ddf %u\n", mmap->ddf); 552 printf(" disk_idx "); 553 for (k = 0; k < mmap->total_disks; k++) 554 printf(" 0x%08x", mmap->disk_idx[k]); 555 printf("\n"); 556 } 557 } 558 printf("=================================================\n"); 559 } 560 561 static struct intel_raid_conf * 562 intel_meta_copy(struct intel_raid_conf *meta) 563 { 564 struct intel_raid_conf *nmeta; 565 566 nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK); 567 memcpy(nmeta, meta, meta->config_size); 568 return (nmeta); 569 } 570 571 static int 572 intel_meta_find_disk(struct intel_raid_conf *meta, char *serial) 573 { 574 int pos; 575 576 for (pos = 0; pos < meta->total_disks; pos++) { 577 if (strncmp(meta->disk[pos].serial, 578 serial, INTEL_SERIAL_LEN) == 0) 579 return (pos); 580 } 581 return (-1); 582 } 583 584 static struct intel_raid_conf * 585 intel_meta_read(struct g_consumer *cp) 586 { 587 struct g_provider *pp; 588 struct intel_raid_conf *meta; 589 struct intel_raid_vol *mvol; 590 struct intel_raid_map *mmap, *mmap1; 591 char *buf; 592 int error, i, j, k, left, size; 593 uint32_t checksum, *ptr; 594 595 pp = cp->provider; 596 if (pp->sectorsize < sizeof(*meta)) 597 return (NULL); 598 /* Read the anchor sector. */ 599 buf = g_read_data(cp, 600 pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error); 601 if (buf == NULL) { 602 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).", 603 pp->name, error); 604 return (NULL); 605 } 606 meta = (struct intel_raid_conf *)buf; 607 608 /* Check if this is an Intel RAID struct */ 609 if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) { 610 G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name); 611 g_free(buf); 612 return (NULL); 613 } 614 if (meta->config_size > 65536 || 615 meta->config_size < sizeof(struct intel_raid_conf)) { 616 G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d", 617 meta->config_size); 618 g_free(buf); 619 return (NULL); 620 } 621 size = meta->config_size; 622 meta = malloc(size, M_MD_INTEL, M_WAITOK); 623 memcpy(meta, buf, min(size, pp->sectorsize)); 624 g_free(buf); 625 626 /* Read all the rest, if needed. */ 627 if (meta->config_size > pp->sectorsize) { 628 left = (meta->config_size - 1) / pp->sectorsize; 629 buf = g_read_data(cp, 630 pp->mediasize - pp->sectorsize * (2 + left), 631 pp->sectorsize * left, &error); 632 if (buf == NULL) { 633 G_RAID_DEBUG(1, "Cannot read remaining metadata" 634 " part from %s (error=%d).", 635 pp->name, error); 636 free(meta, M_MD_INTEL); 637 return (NULL); 638 } 639 memcpy(((char *)meta) + pp->sectorsize, buf, 640 pp->sectorsize * left); 641 g_free(buf); 642 } 643 644 /* Check metadata checksum. */ 645 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; 646 i < (meta->config_size / sizeof(uint32_t)); i++) { 647 checksum += *ptr++; 648 } 649 checksum -= meta->checksum; 650 if (checksum != meta->checksum) { 651 G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name); 652 free(meta, M_MD_INTEL); 653 return (NULL); 654 } 655 656 /* Validate metadata size. */ 657 size = sizeof(struct intel_raid_conf) + 658 sizeof(struct intel_raid_disk) * (meta->total_disks - 1) + 659 sizeof(struct intel_raid_vol) * meta->total_volumes; 660 if (size > meta->config_size) { 661 badsize: 662 G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d", 663 meta->config_size, size); 664 free(meta, M_MD_INTEL); 665 return (NULL); 666 } 667 for (i = 0; i < meta->total_volumes; i++) { 668 mvol = intel_get_volume(meta, i); 669 mmap = intel_get_map(mvol, 0); 670 size += 4 * (mmap->total_disks - 1); 671 if (size > meta->config_size) 672 goto badsize; 673 if (mvol->migr_state) { 674 size += sizeof(struct intel_raid_map); 675 if (size > meta->config_size) 676 goto badsize; 677 mmap = intel_get_map(mvol, 1); 678 size += 4 * (mmap->total_disks - 1); 679 if (size > meta->config_size) 680 goto badsize; 681 } 682 } 683 684 g_raid_md_intel_print(meta); 685 686 if (strncmp(meta->version, INTEL_VERSION_1300, 6) > 0) { 687 G_RAID_DEBUG(1, "Intel unsupported version: '%.6s'", 688 meta->version); 689 free(meta, M_MD_INTEL); 690 return (NULL); 691 } 692 693 if (strncmp(meta->version, INTEL_VERSION_1300, 6) >= 0 && 694 (meta->attributes & ~INTEL_ATTR_SUPPORTED) != 0) { 695 G_RAID_DEBUG(1, "Intel unsupported attributes: 0x%08x", 696 meta->attributes & ~INTEL_ATTR_SUPPORTED); 697 free(meta, M_MD_INTEL); 698 return (NULL); 699 } 700 701 /* Validate disk indexes. */ 702 for (i = 0; i < meta->total_volumes; i++) { 703 mvol = intel_get_volume(meta, i); 704 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) { 705 mmap = intel_get_map(mvol, j); 706 for (k = 0; k < mmap->total_disks; k++) { 707 if ((mmap->disk_idx[k] & INTEL_DI_IDX) > 708 meta->total_disks) { 709 G_RAID_DEBUG(1, "Intel metadata disk" 710 " index %d too big (>%d)", 711 mmap->disk_idx[k] & INTEL_DI_IDX, 712 meta->total_disks); 713 free(meta, M_MD_INTEL); 714 return (NULL); 715 } 716 } 717 } 718 } 719 720 /* Validate migration types. */ 721 for (i = 0; i < meta->total_volumes; i++) { 722 mvol = intel_get_volume(meta, i); 723 /* Deny unknown migration types. */ 724 if (mvol->migr_state && 725 mvol->migr_type != INTEL_MT_INIT && 726 mvol->migr_type != INTEL_MT_REBUILD && 727 mvol->migr_type != INTEL_MT_VERIFY && 728 mvol->migr_type != INTEL_MT_GEN_MIGR && 729 mvol->migr_type != INTEL_MT_REPAIR) { 730 G_RAID_DEBUG(1, "Intel metadata has unsupported" 731 " migration type %d", mvol->migr_type); 732 free(meta, M_MD_INTEL); 733 return (NULL); 734 } 735 /* Deny general migrations except SINGLE->RAID1. */ 736 if (mvol->migr_state && 737 mvol->migr_type == INTEL_MT_GEN_MIGR) { 738 mmap = intel_get_map(mvol, 0); 739 mmap1 = intel_get_map(mvol, 1); 740 if (mmap1->total_disks != 1 || 741 mmap->type != INTEL_T_RAID1 || 742 mmap->total_disks != 2 || 743 mmap->offset != mmap1->offset || 744 mmap->disk_sectors != mmap1->disk_sectors || 745 mmap->total_domains != mmap->total_disks || 746 mmap->offset_hi != mmap1->offset_hi || 747 mmap->disk_sectors_hi != mmap1->disk_sectors_hi || 748 (mmap->disk_idx[0] != mmap1->disk_idx[0] && 749 mmap->disk_idx[0] != mmap1->disk_idx[1])) { 750 G_RAID_DEBUG(1, "Intel metadata has unsupported" 751 " variant of general migration"); 752 free(meta, M_MD_INTEL); 753 return (NULL); 754 } 755 } 756 } 757 758 return (meta); 759 } 760 761 static int 762 intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta) 763 { 764 struct g_provider *pp; 765 char *buf; 766 int error, i, sectors; 767 uint32_t checksum, *ptr; 768 769 pp = cp->provider; 770 771 /* Recalculate checksum for case if metadata were changed. */ 772 meta->checksum = 0; 773 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; 774 i < (meta->config_size / sizeof(uint32_t)); i++) { 775 checksum += *ptr++; 776 } 777 meta->checksum = checksum; 778 779 /* Create and fill buffer. */ 780 sectors = howmany(meta->config_size, pp->sectorsize); 781 buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO); 782 if (sectors > 1) { 783 memcpy(buf, ((char *)meta) + pp->sectorsize, 784 (sectors - 1) * pp->sectorsize); 785 } 786 memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize); 787 788 error = g_write_data(cp, 789 pp->mediasize - pp->sectorsize * (1 + sectors), 790 buf, pp->sectorsize * sectors); 791 if (error != 0) { 792 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).", 793 pp->name, error); 794 } 795 796 free(buf, M_MD_INTEL); 797 return (error); 798 } 799 800 static int 801 intel_meta_erase(struct g_consumer *cp) 802 { 803 struct g_provider *pp; 804 char *buf; 805 int error; 806 807 pp = cp->provider; 808 buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO); 809 error = g_write_data(cp, 810 pp->mediasize - 2 * pp->sectorsize, 811 buf, pp->sectorsize); 812 if (error != 0) { 813 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).", 814 pp->name, error); 815 } 816 free(buf, M_MD_INTEL); 817 return (error); 818 } 819 820 static int 821 intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d) 822 { 823 struct intel_raid_conf *meta; 824 int error; 825 826 /* Fill anchor and single disk. */ 827 meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO); 828 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1); 829 memcpy(&meta->version[0], INTEL_VERSION_1000, 830 sizeof(INTEL_VERSION_1000) - 1); 831 meta->config_size = INTEL_MAX_MD_SIZE(1); 832 meta->config_id = meta->orig_config_id = arc4random(); 833 meta->generation = 1; 834 meta->total_disks = 1; 835 meta->disk[0] = *d; 836 error = intel_meta_write(cp, meta); 837 free(meta, M_MD_INTEL); 838 return (error); 839 } 840 841 static struct g_raid_disk * 842 g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id) 843 { 844 struct g_raid_disk *disk; 845 struct g_raid_md_intel_perdisk *pd; 846 847 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 848 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 849 if (pd->pd_disk_pos == id) 850 break; 851 } 852 return (disk); 853 } 854 855 static int 856 g_raid_md_intel_supported(int level, int qual, int disks, int force) 857 { 858 859 switch (level) { 860 case G_RAID_VOLUME_RL_RAID0: 861 if (disks < 1) 862 return (0); 863 if (!force && (disks < 2 || disks > 6)) 864 return (0); 865 break; 866 case G_RAID_VOLUME_RL_RAID1: 867 if (disks < 1) 868 return (0); 869 if (!force && (disks != 2)) 870 return (0); 871 break; 872 case G_RAID_VOLUME_RL_RAID1E: 873 if (disks < 2) 874 return (0); 875 if (!force && (disks != 4)) 876 return (0); 877 break; 878 case G_RAID_VOLUME_RL_RAID5: 879 if (disks < 3) 880 return (0); 881 if (!force && disks > 6) 882 return (0); 883 if (qual != G_RAID_VOLUME_RLQ_R5LA) 884 return (0); 885 break; 886 default: 887 return (0); 888 } 889 if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE) 890 return (0); 891 return (1); 892 } 893 894 static struct g_raid_volume * 895 g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id) 896 { 897 struct g_raid_volume *mvol; 898 struct g_raid_md_intel_pervolume *pv; 899 900 TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) { 901 pv = mvol->v_md_data; 902 if (pv->pv_volume_pos == id) 903 break; 904 } 905 return (mvol); 906 } 907 908 static int 909 g_raid_md_intel_start_disk(struct g_raid_disk *disk) 910 { 911 struct g_raid_softc *sc; 912 struct g_raid_subdisk *sd, *tmpsd; 913 struct g_raid_disk *olddisk, *tmpdisk; 914 struct g_raid_md_object *md; 915 struct g_raid_md_intel_object *mdi; 916 struct g_raid_md_intel_pervolume *pv; 917 struct g_raid_md_intel_perdisk *pd, *oldpd; 918 struct intel_raid_conf *meta; 919 struct intel_raid_vol *mvol; 920 struct intel_raid_map *mmap0, *mmap1; 921 int disk_pos, resurrection = 0, migr_global, i; 922 923 sc = disk->d_softc; 924 md = sc->sc_md; 925 mdi = (struct g_raid_md_intel_object *)md; 926 meta = mdi->mdio_meta; 927 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 928 olddisk = NULL; 929 930 /* Find disk position in metadata by its serial. */ 931 disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial); 932 if (disk_pos < 0) { 933 G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk"); 934 /* Failed stale disk is useless for us. */ 935 if ((pd->pd_disk_meta.flags & INTEL_F_FAILED) && 936 !(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) { 937 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED); 938 return (0); 939 } 940 /* If we are in the start process, that's all for now. */ 941 if (!mdi->mdio_started) 942 goto nofit; 943 /* 944 * If we have already started - try to get use of the disk. 945 * Try to replace OFFLINE disks first, then FAILED. 946 */ 947 TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) { 948 if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE && 949 tmpdisk->d_state != G_RAID_DISK_S_FAILED) 950 continue; 951 /* Make sure this disk is big enough. */ 952 TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) { 953 off_t disk_sectors = 954 intel_get_disk_sectors(&pd->pd_disk_meta); 955 956 if (sd->sd_offset + sd->sd_size + 4096 > 957 disk_sectors * 512) { 958 G_RAID_DEBUG1(1, sc, 959 "Disk too small (%llu < %llu)", 960 (unsigned long long) 961 disk_sectors * 512, 962 (unsigned long long) 963 sd->sd_offset + sd->sd_size + 4096); 964 break; 965 } 966 } 967 if (sd != NULL) 968 continue; 969 if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) { 970 olddisk = tmpdisk; 971 break; 972 } else if (olddisk == NULL) 973 olddisk = tmpdisk; 974 } 975 if (olddisk == NULL) { 976 nofit: 977 if (pd->pd_disk_meta.flags & INTEL_F_SPARE) { 978 g_raid_change_disk_state(disk, 979 G_RAID_DISK_S_SPARE); 980 return (1); 981 } else { 982 g_raid_change_disk_state(disk, 983 G_RAID_DISK_S_STALE); 984 return (0); 985 } 986 } 987 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data; 988 disk_pos = oldpd->pd_disk_pos; 989 resurrection = 1; 990 } 991 992 if (olddisk == NULL) { 993 /* Find placeholder by position. */ 994 olddisk = g_raid_md_intel_get_disk(sc, disk_pos); 995 if (olddisk == NULL) 996 panic("No disk at position %d!", disk_pos); 997 if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) { 998 G_RAID_DEBUG1(1, sc, "More than one disk for pos %d", 999 disk_pos); 1000 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE); 1001 return (0); 1002 } 1003 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data; 1004 } 1005 1006 /* Replace failed disk or placeholder with new disk. */ 1007 TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) { 1008 TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next); 1009 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1010 sd->sd_disk = disk; 1011 } 1012 oldpd->pd_disk_pos = -2; 1013 pd->pd_disk_pos = disk_pos; 1014 1015 /* If it was placeholder -- destroy it. */ 1016 if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) { 1017 g_raid_destroy_disk(olddisk); 1018 } else { 1019 /* Otherwise, make it STALE_FAILED. */ 1020 g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED); 1021 /* Update global metadata just in case. */ 1022 memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta, 1023 sizeof(struct intel_raid_disk)); 1024 } 1025 1026 /* Welcome the new disk. */ 1027 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) && 1028 !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) 1029 g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED); 1030 else if (resurrection) 1031 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 1032 else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) 1033 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED); 1034 else if (meta->disk[disk_pos].flags & INTEL_F_SPARE) 1035 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE); 1036 else 1037 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 1038 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 1039 pv = sd->sd_volume->v_md_data; 1040 mvol = intel_get_volume(meta, pv->pv_volume_pos); 1041 mmap0 = intel_get_map(mvol, 0); 1042 if (mvol->migr_state) 1043 mmap1 = intel_get_map(mvol, 1); 1044 else 1045 mmap1 = mmap0; 1046 1047 migr_global = 1; 1048 for (i = 0; i < mmap0->total_disks; i++) { 1049 if ((mmap0->disk_idx[i] & INTEL_DI_RBLD) == 0 && 1050 (mmap1->disk_idx[i] & INTEL_DI_RBLD) != 0) 1051 migr_global = 0; 1052 } 1053 1054 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) && 1055 !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) { 1056 /* Disabled disk, useless. */ 1057 g_raid_change_subdisk_state(sd, 1058 G_RAID_SUBDISK_S_NONE); 1059 } else if (resurrection) { 1060 /* Stale disk, almost same as new. */ 1061 g_raid_change_subdisk_state(sd, 1062 G_RAID_SUBDISK_S_NEW); 1063 } else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) { 1064 /* Failed disk, almost useless. */ 1065 g_raid_change_subdisk_state(sd, 1066 G_RAID_SUBDISK_S_FAILED); 1067 } else if (mvol->migr_state == 0) { 1068 if (mmap0->status == INTEL_S_UNINITIALIZED && 1069 (!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) { 1070 /* Freshly created uninitialized volume. */ 1071 g_raid_change_subdisk_state(sd, 1072 G_RAID_SUBDISK_S_UNINITIALIZED); 1073 } else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 1074 /* Freshly inserted disk. */ 1075 g_raid_change_subdisk_state(sd, 1076 G_RAID_SUBDISK_S_NEW); 1077 } else if (mvol->dirty && (!pv->pv_cng || 1078 pv->pv_cng_master_disk != disk_pos)) { 1079 /* Dirty volume (unclean shutdown). */ 1080 g_raid_change_subdisk_state(sd, 1081 G_RAID_SUBDISK_S_STALE); 1082 } else { 1083 /* Up to date disk. */ 1084 g_raid_change_subdisk_state(sd, 1085 G_RAID_SUBDISK_S_ACTIVE); 1086 } 1087 } else if (mvol->migr_type == INTEL_MT_INIT || 1088 mvol->migr_type == INTEL_MT_REBUILD) { 1089 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 1090 /* Freshly inserted disk. */ 1091 g_raid_change_subdisk_state(sd, 1092 G_RAID_SUBDISK_S_NEW); 1093 } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 1094 /* Rebuilding disk. */ 1095 g_raid_change_subdisk_state(sd, 1096 G_RAID_SUBDISK_S_REBUILD); 1097 if (mvol->dirty) { 1098 sd->sd_rebuild_pos = 0; 1099 } else { 1100 sd->sd_rebuild_pos = 1101 intel_get_vol_curr_migr_unit(mvol) * 1102 sd->sd_volume->v_strip_size * 1103 mmap0->total_domains; 1104 } 1105 } else if (mvol->migr_type == INTEL_MT_INIT && 1106 migr_global) { 1107 /* Freshly created uninitialized volume. */ 1108 g_raid_change_subdisk_state(sd, 1109 G_RAID_SUBDISK_S_UNINITIALIZED); 1110 } else if (mvol->dirty && (!pv->pv_cng || 1111 pv->pv_cng_master_disk != disk_pos)) { 1112 /* Dirty volume (unclean shutdown). */ 1113 g_raid_change_subdisk_state(sd, 1114 G_RAID_SUBDISK_S_STALE); 1115 } else { 1116 /* Up to date disk. */ 1117 g_raid_change_subdisk_state(sd, 1118 G_RAID_SUBDISK_S_ACTIVE); 1119 } 1120 } else if (mvol->migr_type == INTEL_MT_VERIFY || 1121 mvol->migr_type == INTEL_MT_REPAIR) { 1122 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 1123 /* Freshly inserted disk. */ 1124 g_raid_change_subdisk_state(sd, 1125 G_RAID_SUBDISK_S_NEW); 1126 } else if ((mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) || 1127 migr_global) { 1128 /* Resyncing disk. */ 1129 g_raid_change_subdisk_state(sd, 1130 G_RAID_SUBDISK_S_RESYNC); 1131 if (mvol->dirty) { 1132 sd->sd_rebuild_pos = 0; 1133 } else { 1134 sd->sd_rebuild_pos = 1135 intel_get_vol_curr_migr_unit(mvol) * 1136 sd->sd_volume->v_strip_size * 1137 mmap0->total_domains; 1138 } 1139 } else if (mvol->dirty) { 1140 /* Dirty volume (unclean shutdown). */ 1141 g_raid_change_subdisk_state(sd, 1142 G_RAID_SUBDISK_S_STALE); 1143 } else { 1144 /* Up to date disk. */ 1145 g_raid_change_subdisk_state(sd, 1146 G_RAID_SUBDISK_S_ACTIVE); 1147 } 1148 } else if (mvol->migr_type == INTEL_MT_GEN_MIGR) { 1149 if ((mmap1->disk_idx[0] & INTEL_DI_IDX) != disk_pos) { 1150 /* Freshly inserted disk. */ 1151 g_raid_change_subdisk_state(sd, 1152 G_RAID_SUBDISK_S_NEW); 1153 } else { 1154 /* Up to date disk. */ 1155 g_raid_change_subdisk_state(sd, 1156 G_RAID_SUBDISK_S_ACTIVE); 1157 } 1158 } 1159 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1160 G_RAID_EVENT_SUBDISK); 1161 } 1162 1163 /* Update status of our need for spare. */ 1164 if (mdi->mdio_started) { 1165 mdi->mdio_incomplete = 1166 (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) + 1167 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < 1168 meta->total_disks); 1169 } 1170 1171 return (resurrection); 1172 } 1173 1174 static void 1175 g_disk_md_intel_retaste(void *arg, int pending) 1176 { 1177 1178 G_RAID_DEBUG(1, "Array is not complete, trying to retaste."); 1179 g_retaste(&g_raid_class); 1180 free(arg, M_MD_INTEL); 1181 } 1182 1183 static void 1184 g_raid_md_intel_refill(struct g_raid_softc *sc) 1185 { 1186 struct g_raid_md_object *md; 1187 struct g_raid_md_intel_object *mdi; 1188 struct intel_raid_conf *meta; 1189 struct g_raid_disk *disk; 1190 struct task *task; 1191 int update, na; 1192 1193 md = sc->sc_md; 1194 mdi = (struct g_raid_md_intel_object *)md; 1195 meta = mdi->mdio_meta; 1196 update = 0; 1197 do { 1198 /* Make sure we miss anything. */ 1199 na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) + 1200 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED); 1201 if (na == meta->total_disks) 1202 break; 1203 1204 G_RAID_DEBUG1(1, md->mdo_softc, 1205 "Array is not complete (%d of %d), " 1206 "trying to refill.", na, meta->total_disks); 1207 1208 /* Try to get use some of STALE disks. */ 1209 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1210 if (disk->d_state == G_RAID_DISK_S_STALE) { 1211 update += g_raid_md_intel_start_disk(disk); 1212 if (disk->d_state == G_RAID_DISK_S_ACTIVE || 1213 disk->d_state == G_RAID_DISK_S_DISABLED) 1214 break; 1215 } 1216 } 1217 if (disk != NULL) 1218 continue; 1219 1220 /* Try to get use some of SPARE disks. */ 1221 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1222 if (disk->d_state == G_RAID_DISK_S_SPARE) { 1223 update += g_raid_md_intel_start_disk(disk); 1224 if (disk->d_state == G_RAID_DISK_S_ACTIVE) 1225 break; 1226 } 1227 } 1228 } while (disk != NULL); 1229 1230 /* Write new metadata if we changed something. */ 1231 if (update) { 1232 g_raid_md_write_intel(md, NULL, NULL, NULL); 1233 meta = mdi->mdio_meta; 1234 } 1235 1236 /* Update status of our need for spare. */ 1237 mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) + 1238 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < meta->total_disks); 1239 1240 /* Request retaste hoping to find spare. */ 1241 if (mdi->mdio_incomplete) { 1242 task = malloc(sizeof(struct task), 1243 M_MD_INTEL, M_WAITOK | M_ZERO); 1244 TASK_INIT(task, 0, g_disk_md_intel_retaste, task); 1245 taskqueue_enqueue(taskqueue_swi, task); 1246 } 1247 } 1248 1249 static void 1250 g_raid_md_intel_start(struct g_raid_softc *sc) 1251 { 1252 struct g_raid_md_object *md; 1253 struct g_raid_md_intel_object *mdi; 1254 struct g_raid_md_intel_pervolume *pv; 1255 struct g_raid_md_intel_perdisk *pd; 1256 struct intel_raid_conf *meta; 1257 struct intel_raid_vol *mvol; 1258 struct intel_raid_map *mmap; 1259 struct g_raid_volume *vol; 1260 struct g_raid_subdisk *sd; 1261 struct g_raid_disk *disk; 1262 int i, j, disk_pos; 1263 1264 md = sc->sc_md; 1265 mdi = (struct g_raid_md_intel_object *)md; 1266 meta = mdi->mdio_meta; 1267 1268 /* Create volumes and subdisks. */ 1269 for (i = 0; i < meta->total_volumes; i++) { 1270 mvol = intel_get_volume(meta, i); 1271 mmap = intel_get_map(mvol, 0); 1272 vol = g_raid_create_volume(sc, mvol->name, mvol->tid - 1); 1273 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO); 1274 pv->pv_volume_pos = i; 1275 pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0; 1276 pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0; 1277 if (mvol->cng_master_disk < mmap->total_disks) 1278 pv->pv_cng_master_disk = mvol->cng_master_disk; 1279 vol->v_md_data = pv; 1280 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; 1281 if (mmap->type == INTEL_T_RAID0) 1282 vol->v_raid_level = G_RAID_VOLUME_RL_RAID0; 1283 else if (mmap->type == INTEL_T_RAID1 && 1284 mmap->total_domains >= 2 && 1285 mmap->total_domains <= mmap->total_disks) { 1286 /* Assume total_domains is correct. */ 1287 if (mmap->total_domains == mmap->total_disks) 1288 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; 1289 else 1290 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; 1291 } else if (mmap->type == INTEL_T_RAID1) { 1292 /* total_domains looks wrong. */ 1293 if (mmap->total_disks <= 2) 1294 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; 1295 else 1296 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; 1297 } else if (mmap->type == INTEL_T_RAID5) { 1298 vol->v_raid_level = G_RAID_VOLUME_RL_RAID5; 1299 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA; 1300 } else 1301 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1302 vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ 1303 vol->v_disks_count = mmap->total_disks; 1304 vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ 1305 vol->v_sectorsize = 512; //ZZZ 1306 for (j = 0; j < vol->v_disks_count; j++) { 1307 sd = &vol->v_subdisks[j]; 1308 sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ 1309 sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ 1310 } 1311 g_raid_start_volume(vol); 1312 } 1313 1314 /* Create disk placeholders to store data for later writing. */ 1315 for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) { 1316 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1317 pd->pd_disk_pos = disk_pos; 1318 pd->pd_disk_meta = meta->disk[disk_pos]; 1319 disk = g_raid_create_disk(sc); 1320 disk->d_md_data = (void *)pd; 1321 disk->d_state = G_RAID_DISK_S_OFFLINE; 1322 for (i = 0; i < meta->total_volumes; i++) { 1323 mvol = intel_get_volume(meta, i); 1324 mmap = intel_get_map(mvol, 0); 1325 for (j = 0; j < mmap->total_disks; j++) { 1326 if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos) 1327 break; 1328 } 1329 if (j == mmap->total_disks) 1330 continue; 1331 vol = g_raid_md_intel_get_volume(sc, i); 1332 sd = &vol->v_subdisks[j]; 1333 sd->sd_disk = disk; 1334 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1335 } 1336 } 1337 1338 /* Make all disks found till the moment take their places. */ 1339 do { 1340 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1341 if (disk->d_state == G_RAID_DISK_S_NONE) { 1342 g_raid_md_intel_start_disk(disk); 1343 break; 1344 } 1345 } 1346 } while (disk != NULL); 1347 1348 mdi->mdio_started = 1; 1349 G_RAID_DEBUG1(0, sc, "Array started."); 1350 g_raid_md_write_intel(md, NULL, NULL, NULL); 1351 1352 /* Pickup any STALE/SPARE disks to refill array if needed. */ 1353 g_raid_md_intel_refill(sc); 1354 1355 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1356 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1357 G_RAID_EVENT_VOLUME); 1358 } 1359 1360 callout_stop(&mdi->mdio_start_co); 1361 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount); 1362 root_mount_rel(mdi->mdio_rootmount); 1363 mdi->mdio_rootmount = NULL; 1364 } 1365 1366 static void 1367 g_raid_md_intel_new_disk(struct g_raid_disk *disk) 1368 { 1369 struct g_raid_softc *sc; 1370 struct g_raid_md_object *md; 1371 struct g_raid_md_intel_object *mdi; 1372 struct intel_raid_conf *pdmeta; 1373 struct g_raid_md_intel_perdisk *pd; 1374 1375 sc = disk->d_softc; 1376 md = sc->sc_md; 1377 mdi = (struct g_raid_md_intel_object *)md; 1378 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1379 pdmeta = pd->pd_meta; 1380 1381 if (mdi->mdio_started) { 1382 if (g_raid_md_intel_start_disk(disk)) 1383 g_raid_md_write_intel(md, NULL, NULL, NULL); 1384 } else { 1385 /* If we haven't started yet - check metadata freshness. */ 1386 if (mdi->mdio_meta == NULL || 1387 ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) { 1388 G_RAID_DEBUG1(1, sc, "Newer disk"); 1389 if (mdi->mdio_meta != NULL) 1390 free(mdi->mdio_meta, M_MD_INTEL); 1391 mdi->mdio_meta = intel_meta_copy(pdmeta); 1392 mdi->mdio_generation = mdi->mdio_meta->generation; 1393 mdi->mdio_disks_present = 1; 1394 } else if (pdmeta->generation == mdi->mdio_generation) { 1395 mdi->mdio_disks_present++; 1396 G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)", 1397 mdi->mdio_disks_present, 1398 mdi->mdio_meta->total_disks); 1399 } else { 1400 G_RAID_DEBUG1(1, sc, "Older disk"); 1401 } 1402 /* If we collected all needed disks - start array. */ 1403 if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks) 1404 g_raid_md_intel_start(sc); 1405 } 1406 } 1407 1408 static void 1409 g_raid_intel_go(void *arg) 1410 { 1411 struct g_raid_softc *sc; 1412 struct g_raid_md_object *md; 1413 struct g_raid_md_intel_object *mdi; 1414 1415 sc = arg; 1416 md = sc->sc_md; 1417 mdi = (struct g_raid_md_intel_object *)md; 1418 if (!mdi->mdio_started) { 1419 G_RAID_DEBUG1(0, sc, "Force array start due to timeout."); 1420 g_raid_event_send(sc, G_RAID_NODE_E_START, 0); 1421 } 1422 } 1423 1424 static int 1425 g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp, 1426 struct g_geom **gp) 1427 { 1428 struct g_raid_softc *sc; 1429 struct g_raid_md_intel_object *mdi; 1430 char name[16]; 1431 1432 mdi = (struct g_raid_md_intel_object *)md; 1433 mdi->mdio_config_id = mdi->mdio_orig_config_id = arc4random(); 1434 mdi->mdio_generation = 0; 1435 snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id); 1436 sc = g_raid_create_node(mp, name, md); 1437 if (sc == NULL) 1438 return (G_RAID_MD_TASTE_FAIL); 1439 md->mdo_softc = sc; 1440 *gp = sc->sc_geom; 1441 return (G_RAID_MD_TASTE_NEW); 1442 } 1443 1444 /* 1445 * Return the last N characters of the serial label. The Linux and 1446 * ataraid(7) code always uses the last 16 characters of the label to 1447 * store into the Intel meta format. Generalize this to N characters 1448 * since that's easy. Labels can be up to 20 characters for SATA drives 1449 * and up 251 characters for SAS drives. Since intel controllers don't 1450 * support SAS drives, just stick with the SATA limits for stack friendliness. 1451 */ 1452 static int 1453 g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen) 1454 { 1455 char serial_buffer[DISK_IDENT_SIZE]; 1456 int len, error; 1457 1458 len = sizeof(serial_buffer); 1459 error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer); 1460 if (error != 0) 1461 return (error); 1462 len = strlen(serial_buffer); 1463 if (len > serlen) 1464 len -= serlen; 1465 else 1466 len = 0; 1467 strncpy(serial, serial_buffer + len, serlen); 1468 return (0); 1469 } 1470 1471 static int 1472 g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp, 1473 struct g_consumer *cp, struct g_geom **gp) 1474 { 1475 struct g_consumer *rcp; 1476 struct g_provider *pp; 1477 struct g_raid_md_intel_object *mdi, *mdi1; 1478 struct g_raid_softc *sc; 1479 struct g_raid_disk *disk; 1480 struct intel_raid_conf *meta; 1481 struct g_raid_md_intel_perdisk *pd; 1482 struct g_geom *geom; 1483 int error, disk_pos, result, spare, len; 1484 char serial[INTEL_SERIAL_LEN]; 1485 char name[16]; 1486 uint16_t vendor; 1487 1488 G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name); 1489 mdi = (struct g_raid_md_intel_object *)md; 1490 pp = cp->provider; 1491 1492 /* Read metadata from device. */ 1493 meta = NULL; 1494 disk_pos = 0; 1495 g_topology_unlock(); 1496 error = g_raid_md_get_label(cp, serial, sizeof(serial)); 1497 if (error != 0) { 1498 G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).", 1499 pp->name, error); 1500 goto fail2; 1501 } 1502 vendor = 0xffff; 1503 len = sizeof(vendor); 1504 if (pp->geom->rank == 1) 1505 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor); 1506 meta = intel_meta_read(cp); 1507 g_topology_lock(); 1508 if (meta == NULL) { 1509 if (g_raid_aggressive_spare) { 1510 if (vendor != 0x8086) { 1511 G_RAID_DEBUG(1, 1512 "Intel vendor mismatch 0x%04x != 0x8086", 1513 vendor); 1514 } else { 1515 G_RAID_DEBUG(1, 1516 "No Intel metadata, forcing spare."); 1517 spare = 2; 1518 goto search; 1519 } 1520 } 1521 return (G_RAID_MD_TASTE_FAIL); 1522 } 1523 1524 /* Check this disk position in obtained metadata. */ 1525 disk_pos = intel_meta_find_disk(meta, serial); 1526 if (disk_pos < 0) { 1527 G_RAID_DEBUG(1, "Intel serial '%s' not found", serial); 1528 goto fail1; 1529 } 1530 if (intel_get_disk_sectors(&meta->disk[disk_pos]) != 1531 (pp->mediasize / pp->sectorsize)) { 1532 G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju", 1533 intel_get_disk_sectors(&meta->disk[disk_pos]), 1534 (off_t)(pp->mediasize / pp->sectorsize)); 1535 goto fail1; 1536 } 1537 1538 G_RAID_DEBUG(1, "Intel disk position %d", disk_pos); 1539 spare = meta->disk[disk_pos].flags & INTEL_F_SPARE; 1540 1541 search: 1542 /* Search for matching node. */ 1543 sc = NULL; 1544 mdi1 = NULL; 1545 LIST_FOREACH(geom, &mp->geom, geom) { 1546 sc = geom->softc; 1547 if (sc == NULL) 1548 continue; 1549 if (sc->sc_stopping != 0) 1550 continue; 1551 if (sc->sc_md->mdo_class != md->mdo_class) 1552 continue; 1553 mdi1 = (struct g_raid_md_intel_object *)sc->sc_md; 1554 if (spare) { 1555 if (mdi1->mdio_incomplete) 1556 break; 1557 } else { 1558 if (mdi1->mdio_config_id == meta->config_id) 1559 break; 1560 } 1561 } 1562 1563 /* Found matching node. */ 1564 if (geom != NULL) { 1565 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name); 1566 result = G_RAID_MD_TASTE_EXISTING; 1567 1568 } else if (spare) { /* Not found needy node -- left for later. */ 1569 G_RAID_DEBUG(1, "Spare is not needed at this time"); 1570 goto fail1; 1571 1572 } else { /* Not found matching node -- create one. */ 1573 result = G_RAID_MD_TASTE_NEW; 1574 mdi->mdio_config_id = meta->config_id; 1575 mdi->mdio_orig_config_id = meta->orig_config_id; 1576 snprintf(name, sizeof(name), "Intel-%08x", meta->config_id); 1577 sc = g_raid_create_node(mp, name, md); 1578 md->mdo_softc = sc; 1579 geom = sc->sc_geom; 1580 callout_init(&mdi->mdio_start_co, 1); 1581 callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz, 1582 g_raid_intel_go, sc); 1583 mdi->mdio_rootmount = root_mount_hold("GRAID-Intel"); 1584 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount); 1585 } 1586 1587 /* There is no return after this point, so we close passed consumer. */ 1588 g_access(cp, -1, 0, 0); 1589 1590 rcp = g_new_consumer(geom); 1591 rcp->flags |= G_CF_DIRECT_RECEIVE; 1592 g_attach(rcp, pp); 1593 if (g_access(rcp, 1, 1, 1) != 0) 1594 ; //goto fail1; 1595 1596 g_topology_unlock(); 1597 sx_xlock(&sc->sc_lock); 1598 1599 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1600 pd->pd_meta = meta; 1601 pd->pd_disk_pos = -1; 1602 if (spare == 2) { 1603 memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN); 1604 intel_set_disk_sectors(&pd->pd_disk_meta, 1605 pp->mediasize / pp->sectorsize); 1606 pd->pd_disk_meta.id = 0; 1607 pd->pd_disk_meta.flags = INTEL_F_SPARE; 1608 } else { 1609 pd->pd_disk_meta = meta->disk[disk_pos]; 1610 } 1611 disk = g_raid_create_disk(sc); 1612 disk->d_md_data = (void *)pd; 1613 disk->d_consumer = rcp; 1614 rcp->private = disk; 1615 1616 g_raid_get_disk_info(disk); 1617 1618 g_raid_md_intel_new_disk(disk); 1619 1620 sx_xunlock(&sc->sc_lock); 1621 g_topology_lock(); 1622 *gp = geom; 1623 return (result); 1624 fail2: 1625 g_topology_lock(); 1626 fail1: 1627 free(meta, M_MD_INTEL); 1628 return (G_RAID_MD_TASTE_FAIL); 1629 } 1630 1631 static int 1632 g_raid_md_event_intel(struct g_raid_md_object *md, 1633 struct g_raid_disk *disk, u_int event) 1634 { 1635 struct g_raid_softc *sc; 1636 struct g_raid_subdisk *sd; 1637 struct g_raid_md_intel_object *mdi; 1638 struct g_raid_md_intel_perdisk *pd; 1639 1640 sc = md->mdo_softc; 1641 mdi = (struct g_raid_md_intel_object *)md; 1642 if (disk == NULL) { 1643 switch (event) { 1644 case G_RAID_NODE_E_START: 1645 if (!mdi->mdio_started) 1646 g_raid_md_intel_start(sc); 1647 return (0); 1648 } 1649 return (-1); 1650 } 1651 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1652 switch (event) { 1653 case G_RAID_DISK_E_DISCONNECTED: 1654 /* If disk was assigned, just update statuses. */ 1655 if (pd->pd_disk_pos >= 0) { 1656 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 1657 if (disk->d_consumer) { 1658 g_raid_kill_consumer(sc, disk->d_consumer); 1659 disk->d_consumer = NULL; 1660 } 1661 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 1662 g_raid_change_subdisk_state(sd, 1663 G_RAID_SUBDISK_S_NONE); 1664 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 1665 G_RAID_EVENT_SUBDISK); 1666 } 1667 } else { 1668 /* Otherwise -- delete. */ 1669 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); 1670 g_raid_destroy_disk(disk); 1671 } 1672 1673 /* Write updated metadata to all disks. */ 1674 g_raid_md_write_intel(md, NULL, NULL, NULL); 1675 1676 /* Check if anything left except placeholders. */ 1677 if (g_raid_ndisks(sc, -1) == 1678 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 1679 g_raid_destroy_node(sc, 0); 1680 else 1681 g_raid_md_intel_refill(sc); 1682 return (0); 1683 } 1684 return (-2); 1685 } 1686 1687 static int 1688 g_raid_md_ctl_intel(struct g_raid_md_object *md, 1689 struct gctl_req *req) 1690 { 1691 struct g_raid_softc *sc; 1692 struct g_raid_volume *vol, *vol1; 1693 struct g_raid_subdisk *sd; 1694 struct g_raid_disk *disk; 1695 struct g_raid_md_intel_object *mdi; 1696 struct g_raid_md_intel_pervolume *pv; 1697 struct g_raid_md_intel_perdisk *pd; 1698 struct g_consumer *cp; 1699 struct g_provider *pp; 1700 char arg[16], serial[INTEL_SERIAL_LEN]; 1701 const char *nodename, *verb, *volname, *levelname, *diskname; 1702 char *tmp; 1703 int *nargs, *force; 1704 off_t off, size, sectorsize, strip, disk_sectors; 1705 intmax_t *sizearg, *striparg; 1706 int numdisks, i, len, level, qual, update; 1707 int error; 1708 1709 sc = md->mdo_softc; 1710 mdi = (struct g_raid_md_intel_object *)md; 1711 verb = gctl_get_param(req, "verb", NULL); 1712 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); 1713 error = 0; 1714 if (strcmp(verb, "label") == 0) { 1715 if (*nargs < 4) { 1716 gctl_error(req, "Invalid number of arguments."); 1717 return (-1); 1718 } 1719 volname = gctl_get_asciiparam(req, "arg1"); 1720 if (volname == NULL) { 1721 gctl_error(req, "No volume name."); 1722 return (-2); 1723 } 1724 levelname = gctl_get_asciiparam(req, "arg2"); 1725 if (levelname == NULL) { 1726 gctl_error(req, "No RAID level."); 1727 return (-3); 1728 } 1729 if (strcasecmp(levelname, "RAID5") == 0) 1730 levelname = "RAID5-LA"; 1731 if (g_raid_volume_str2level(levelname, &level, &qual)) { 1732 gctl_error(req, "Unknown RAID level '%s'.", levelname); 1733 return (-4); 1734 } 1735 numdisks = *nargs - 3; 1736 force = gctl_get_paraml(req, "force", sizeof(*force)); 1737 if (!g_raid_md_intel_supported(level, qual, numdisks, 1738 force ? *force : 0)) { 1739 gctl_error(req, "Unsupported RAID level " 1740 "(0x%02x/0x%02x), or number of disks (%d).", 1741 level, qual, numdisks); 1742 return (-5); 1743 } 1744 1745 /* Search for disks, connect them and probe. */ 1746 size = 0x7fffffffffffffffllu; 1747 sectorsize = 0; 1748 for (i = 0; i < numdisks; i++) { 1749 snprintf(arg, sizeof(arg), "arg%d", i + 3); 1750 diskname = gctl_get_asciiparam(req, arg); 1751 if (diskname == NULL) { 1752 gctl_error(req, "No disk name (%s).", arg); 1753 error = -6; 1754 break; 1755 } 1756 if (strcmp(diskname, "NONE") == 0) { 1757 cp = NULL; 1758 pp = NULL; 1759 } else { 1760 g_topology_lock(); 1761 cp = g_raid_open_consumer(sc, diskname); 1762 if (cp == NULL) { 1763 gctl_error(req, "Can't open disk '%s'.", 1764 diskname); 1765 g_topology_unlock(); 1766 error = -7; 1767 break; 1768 } 1769 pp = cp->provider; 1770 } 1771 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1772 pd->pd_disk_pos = i; 1773 disk = g_raid_create_disk(sc); 1774 disk->d_md_data = (void *)pd; 1775 disk->d_consumer = cp; 1776 if (cp == NULL) { 1777 strcpy(&pd->pd_disk_meta.serial[0], "NONE"); 1778 pd->pd_disk_meta.id = 0xffffffff; 1779 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED; 1780 continue; 1781 } 1782 cp->private = disk; 1783 g_topology_unlock(); 1784 1785 error = g_raid_md_get_label(cp, 1786 &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN); 1787 if (error != 0) { 1788 gctl_error(req, 1789 "Can't get serial for provider '%s'.", 1790 diskname); 1791 error = -8; 1792 break; 1793 } 1794 1795 g_raid_get_disk_info(disk); 1796 1797 intel_set_disk_sectors(&pd->pd_disk_meta, 1798 pp->mediasize / pp->sectorsize); 1799 if (size > pp->mediasize) 1800 size = pp->mediasize; 1801 if (sectorsize < pp->sectorsize) 1802 sectorsize = pp->sectorsize; 1803 pd->pd_disk_meta.id = 0; 1804 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE; 1805 } 1806 if (error != 0) 1807 return (error); 1808 1809 if (sectorsize <= 0) { 1810 gctl_error(req, "Can't get sector size."); 1811 return (-8); 1812 } 1813 1814 /* Reserve some space for metadata. */ 1815 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize; 1816 1817 /* Handle size argument. */ 1818 len = sizeof(*sizearg); 1819 sizearg = gctl_get_param(req, "size", &len); 1820 if (sizearg != NULL && len == sizeof(*sizearg) && 1821 *sizearg > 0) { 1822 if (*sizearg > size) { 1823 gctl_error(req, "Size too big %lld > %lld.", 1824 (long long)*sizearg, (long long)size); 1825 return (-9); 1826 } 1827 size = *sizearg; 1828 } 1829 1830 /* Handle strip argument. */ 1831 strip = 131072; 1832 len = sizeof(*striparg); 1833 striparg = gctl_get_param(req, "strip", &len); 1834 if (striparg != NULL && len == sizeof(*striparg) && 1835 *striparg > 0) { 1836 if (*striparg < sectorsize) { 1837 gctl_error(req, "Strip size too small."); 1838 return (-10); 1839 } 1840 if (*striparg % sectorsize != 0) { 1841 gctl_error(req, "Incorrect strip size."); 1842 return (-11); 1843 } 1844 if (strip > 65535 * sectorsize) { 1845 gctl_error(req, "Strip size too big."); 1846 return (-12); 1847 } 1848 strip = *striparg; 1849 } 1850 1851 /* Round size down to strip or sector. */ 1852 if (level == G_RAID_VOLUME_RL_RAID1) 1853 size -= (size % sectorsize); 1854 else if (level == G_RAID_VOLUME_RL_RAID1E && 1855 (numdisks & 1) != 0) 1856 size -= (size % (2 * strip)); 1857 else 1858 size -= (size % strip); 1859 if (size <= 0) { 1860 gctl_error(req, "Size too small."); 1861 return (-13); 1862 } 1863 1864 /* We have all we need, create things: volume, ... */ 1865 mdi->mdio_started = 1; 1866 vol = g_raid_create_volume(sc, volname, -1); 1867 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO); 1868 pv->pv_volume_pos = 0; 1869 vol->v_md_data = pv; 1870 vol->v_raid_level = level; 1871 vol->v_raid_level_qualifier = qual; 1872 vol->v_strip_size = strip; 1873 vol->v_disks_count = numdisks; 1874 if (level == G_RAID_VOLUME_RL_RAID0) 1875 vol->v_mediasize = size * numdisks; 1876 else if (level == G_RAID_VOLUME_RL_RAID1) 1877 vol->v_mediasize = size; 1878 else if (level == G_RAID_VOLUME_RL_RAID5) 1879 vol->v_mediasize = size * (numdisks - 1); 1880 else { /* RAID1E */ 1881 vol->v_mediasize = ((size * numdisks) / strip / 2) * 1882 strip; 1883 } 1884 vol->v_sectorsize = sectorsize; 1885 g_raid_start_volume(vol); 1886 1887 /* , and subdisks. */ 1888 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1889 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1890 sd = &vol->v_subdisks[pd->pd_disk_pos]; 1891 sd->sd_disk = disk; 1892 sd->sd_offset = 0; 1893 sd->sd_size = size; 1894 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1895 if (sd->sd_disk->d_consumer != NULL) { 1896 g_raid_change_disk_state(disk, 1897 G_RAID_DISK_S_ACTIVE); 1898 if (level == G_RAID_VOLUME_RL_RAID5) 1899 g_raid_change_subdisk_state(sd, 1900 G_RAID_SUBDISK_S_UNINITIALIZED); 1901 else 1902 g_raid_change_subdisk_state(sd, 1903 G_RAID_SUBDISK_S_ACTIVE); 1904 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1905 G_RAID_EVENT_SUBDISK); 1906 } else { 1907 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 1908 } 1909 } 1910 1911 /* Write metadata based on created entities. */ 1912 G_RAID_DEBUG1(0, sc, "Array started."); 1913 g_raid_md_write_intel(md, NULL, NULL, NULL); 1914 1915 /* Pickup any STALE/SPARE disks to refill array if needed. */ 1916 g_raid_md_intel_refill(sc); 1917 1918 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1919 G_RAID_EVENT_VOLUME); 1920 return (0); 1921 } 1922 if (strcmp(verb, "add") == 0) { 1923 if (*nargs != 3) { 1924 gctl_error(req, "Invalid number of arguments."); 1925 return (-1); 1926 } 1927 volname = gctl_get_asciiparam(req, "arg1"); 1928 if (volname == NULL) { 1929 gctl_error(req, "No volume name."); 1930 return (-2); 1931 } 1932 levelname = gctl_get_asciiparam(req, "arg2"); 1933 if (levelname == NULL) { 1934 gctl_error(req, "No RAID level."); 1935 return (-3); 1936 } 1937 if (strcasecmp(levelname, "RAID5") == 0) 1938 levelname = "RAID5-LA"; 1939 if (g_raid_volume_str2level(levelname, &level, &qual)) { 1940 gctl_error(req, "Unknown RAID level '%s'.", levelname); 1941 return (-4); 1942 } 1943 1944 /* Look for existing volumes. */ 1945 i = 0; 1946 vol1 = NULL; 1947 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1948 vol1 = vol; 1949 i++; 1950 } 1951 if (i > 1) { 1952 gctl_error(req, "Maximum two volumes supported."); 1953 return (-6); 1954 } 1955 if (vol1 == NULL) { 1956 gctl_error(req, "At least one volume must exist."); 1957 return (-7); 1958 } 1959 1960 numdisks = vol1->v_disks_count; 1961 force = gctl_get_paraml(req, "force", sizeof(*force)); 1962 if (!g_raid_md_intel_supported(level, qual, numdisks, 1963 force ? *force : 0)) { 1964 gctl_error(req, "Unsupported RAID level " 1965 "(0x%02x/0x%02x), or number of disks (%d).", 1966 level, qual, numdisks); 1967 return (-5); 1968 } 1969 1970 /* Collect info about present disks. */ 1971 size = 0x7fffffffffffffffllu; 1972 sectorsize = 512; 1973 for (i = 0; i < numdisks; i++) { 1974 disk = vol1->v_subdisks[i].sd_disk; 1975 pd = (struct g_raid_md_intel_perdisk *) 1976 disk->d_md_data; 1977 disk_sectors = 1978 intel_get_disk_sectors(&pd->pd_disk_meta); 1979 1980 if (disk_sectors * 512 < size) 1981 size = disk_sectors * 512; 1982 if (disk->d_consumer != NULL && 1983 disk->d_consumer->provider != NULL && 1984 disk->d_consumer->provider->sectorsize > 1985 sectorsize) { 1986 sectorsize = 1987 disk->d_consumer->provider->sectorsize; 1988 } 1989 } 1990 1991 /* Reserve some space for metadata. */ 1992 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize; 1993 1994 /* Decide insert before or after. */ 1995 sd = &vol1->v_subdisks[0]; 1996 if (sd->sd_offset > 1997 size - (sd->sd_offset + sd->sd_size)) { 1998 off = 0; 1999 size = sd->sd_offset; 2000 } else { 2001 off = sd->sd_offset + sd->sd_size; 2002 size = size - (sd->sd_offset + sd->sd_size); 2003 } 2004 2005 /* Handle strip argument. */ 2006 strip = 131072; 2007 len = sizeof(*striparg); 2008 striparg = gctl_get_param(req, "strip", &len); 2009 if (striparg != NULL && len == sizeof(*striparg) && 2010 *striparg > 0) { 2011 if (*striparg < sectorsize) { 2012 gctl_error(req, "Strip size too small."); 2013 return (-10); 2014 } 2015 if (*striparg % sectorsize != 0) { 2016 gctl_error(req, "Incorrect strip size."); 2017 return (-11); 2018 } 2019 if (strip > 65535 * sectorsize) { 2020 gctl_error(req, "Strip size too big."); 2021 return (-12); 2022 } 2023 strip = *striparg; 2024 } 2025 2026 /* Round offset up to strip. */ 2027 if (off % strip != 0) { 2028 size -= strip - off % strip; 2029 off += strip - off % strip; 2030 } 2031 2032 /* Handle size argument. */ 2033 len = sizeof(*sizearg); 2034 sizearg = gctl_get_param(req, "size", &len); 2035 if (sizearg != NULL && len == sizeof(*sizearg) && 2036 *sizearg > 0) { 2037 if (*sizearg > size) { 2038 gctl_error(req, "Size too big %lld > %lld.", 2039 (long long)*sizearg, (long long)size); 2040 return (-9); 2041 } 2042 size = *sizearg; 2043 } 2044 2045 /* Round size down to strip or sector. */ 2046 if (level == G_RAID_VOLUME_RL_RAID1) 2047 size -= (size % sectorsize); 2048 else 2049 size -= (size % strip); 2050 if (size <= 0) { 2051 gctl_error(req, "Size too small."); 2052 return (-13); 2053 } 2054 if (size > 0xffffffffllu * sectorsize) { 2055 gctl_error(req, "Size too big."); 2056 return (-14); 2057 } 2058 2059 /* We have all we need, create things: volume, ... */ 2060 vol = g_raid_create_volume(sc, volname, -1); 2061 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO); 2062 pv->pv_volume_pos = i; 2063 vol->v_md_data = pv; 2064 vol->v_raid_level = level; 2065 vol->v_raid_level_qualifier = qual; 2066 vol->v_strip_size = strip; 2067 vol->v_disks_count = numdisks; 2068 if (level == G_RAID_VOLUME_RL_RAID0) 2069 vol->v_mediasize = size * numdisks; 2070 else if (level == G_RAID_VOLUME_RL_RAID1) 2071 vol->v_mediasize = size; 2072 else if (level == G_RAID_VOLUME_RL_RAID5) 2073 vol->v_mediasize = size * (numdisks - 1); 2074 else { /* RAID1E */ 2075 vol->v_mediasize = ((size * numdisks) / strip / 2) * 2076 strip; 2077 } 2078 vol->v_sectorsize = sectorsize; 2079 g_raid_start_volume(vol); 2080 2081 /* , and subdisks. */ 2082 for (i = 0; i < numdisks; i++) { 2083 disk = vol1->v_subdisks[i].sd_disk; 2084 sd = &vol->v_subdisks[i]; 2085 sd->sd_disk = disk; 2086 sd->sd_offset = off; 2087 sd->sd_size = size; 2088 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 2089 if (disk->d_state == G_RAID_DISK_S_ACTIVE) { 2090 if (level == G_RAID_VOLUME_RL_RAID5) 2091 g_raid_change_subdisk_state(sd, 2092 G_RAID_SUBDISK_S_UNINITIALIZED); 2093 else 2094 g_raid_change_subdisk_state(sd, 2095 G_RAID_SUBDISK_S_ACTIVE); 2096 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 2097 G_RAID_EVENT_SUBDISK); 2098 } 2099 } 2100 2101 /* Write metadata based on created entities. */ 2102 g_raid_md_write_intel(md, NULL, NULL, NULL); 2103 2104 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 2105 G_RAID_EVENT_VOLUME); 2106 return (0); 2107 } 2108 if (strcmp(verb, "delete") == 0) { 2109 nodename = gctl_get_asciiparam(req, "arg0"); 2110 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0) 2111 nodename = NULL; 2112 2113 /* Full node destruction. */ 2114 if (*nargs == 1 && nodename != NULL) { 2115 /* Check if some volume is still open. */ 2116 force = gctl_get_paraml(req, "force", sizeof(*force)); 2117 if (force != NULL && *force == 0 && 2118 g_raid_nopens(sc) != 0) { 2119 gctl_error(req, "Some volume is still open."); 2120 return (-4); 2121 } 2122 2123 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2124 if (disk->d_consumer) 2125 intel_meta_erase(disk->d_consumer); 2126 } 2127 g_raid_destroy_node(sc, 0); 2128 return (0); 2129 } 2130 2131 /* Destroy specified volume. If it was last - all node. */ 2132 if (*nargs > 2) { 2133 gctl_error(req, "Invalid number of arguments."); 2134 return (-1); 2135 } 2136 volname = gctl_get_asciiparam(req, 2137 nodename != NULL ? "arg1" : "arg0"); 2138 if (volname == NULL) { 2139 gctl_error(req, "No volume name."); 2140 return (-2); 2141 } 2142 2143 /* Search for volume. */ 2144 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2145 if (strcmp(vol->v_name, volname) == 0) 2146 break; 2147 pp = vol->v_provider; 2148 if (pp == NULL) 2149 continue; 2150 if (strcmp(pp->name, volname) == 0) 2151 break; 2152 if (strncmp(pp->name, "raid/", 5) == 0 && 2153 strcmp(pp->name + 5, volname) == 0) 2154 break; 2155 } 2156 if (vol == NULL) { 2157 i = strtol(volname, &tmp, 10); 2158 if (verb != volname && tmp[0] == 0) { 2159 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2160 if (vol->v_global_id == i) 2161 break; 2162 } 2163 } 2164 } 2165 if (vol == NULL) { 2166 gctl_error(req, "Volume '%s' not found.", volname); 2167 return (-3); 2168 } 2169 2170 /* Check if volume is still open. */ 2171 force = gctl_get_paraml(req, "force", sizeof(*force)); 2172 if (force != NULL && *force == 0 && 2173 vol->v_provider_open != 0) { 2174 gctl_error(req, "Volume is still open."); 2175 return (-4); 2176 } 2177 2178 /* Destroy volume and potentially node. */ 2179 i = 0; 2180 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next) 2181 i++; 2182 if (i >= 2) { 2183 g_raid_destroy_volume(vol); 2184 g_raid_md_write_intel(md, NULL, NULL, NULL); 2185 } else { 2186 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2187 if (disk->d_consumer) 2188 intel_meta_erase(disk->d_consumer); 2189 } 2190 g_raid_destroy_node(sc, 0); 2191 } 2192 return (0); 2193 } 2194 if (strcmp(verb, "remove") == 0 || 2195 strcmp(verb, "fail") == 0) { 2196 if (*nargs < 2) { 2197 gctl_error(req, "Invalid number of arguments."); 2198 return (-1); 2199 } 2200 for (i = 1; i < *nargs; i++) { 2201 snprintf(arg, sizeof(arg), "arg%d", i); 2202 diskname = gctl_get_asciiparam(req, arg); 2203 if (diskname == NULL) { 2204 gctl_error(req, "No disk name (%s).", arg); 2205 error = -2; 2206 break; 2207 } 2208 if (strncmp(diskname, _PATH_DEV, 5) == 0) 2209 diskname += 5; 2210 2211 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2212 if (disk->d_consumer != NULL && 2213 disk->d_consumer->provider != NULL && 2214 strcmp(disk->d_consumer->provider->name, 2215 diskname) == 0) 2216 break; 2217 } 2218 if (disk == NULL) { 2219 gctl_error(req, "Disk '%s' not found.", 2220 diskname); 2221 error = -3; 2222 break; 2223 } 2224 2225 if (strcmp(verb, "fail") == 0) { 2226 g_raid_md_fail_disk_intel(md, NULL, disk); 2227 continue; 2228 } 2229 2230 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2231 2232 /* Erase metadata on deleting disk. */ 2233 intel_meta_erase(disk->d_consumer); 2234 2235 /* If disk was assigned, just update statuses. */ 2236 if (pd->pd_disk_pos >= 0) { 2237 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 2238 g_raid_kill_consumer(sc, disk->d_consumer); 2239 disk->d_consumer = NULL; 2240 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2241 g_raid_change_subdisk_state(sd, 2242 G_RAID_SUBDISK_S_NONE); 2243 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2244 G_RAID_EVENT_SUBDISK); 2245 } 2246 } else { 2247 /* Otherwise -- delete. */ 2248 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); 2249 g_raid_destroy_disk(disk); 2250 } 2251 } 2252 2253 /* Write updated metadata to remaining disks. */ 2254 g_raid_md_write_intel(md, NULL, NULL, NULL); 2255 2256 /* Check if anything left except placeholders. */ 2257 if (g_raid_ndisks(sc, -1) == 2258 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 2259 g_raid_destroy_node(sc, 0); 2260 else 2261 g_raid_md_intel_refill(sc); 2262 return (error); 2263 } 2264 if (strcmp(verb, "insert") == 0) { 2265 if (*nargs < 2) { 2266 gctl_error(req, "Invalid number of arguments."); 2267 return (-1); 2268 } 2269 update = 0; 2270 for (i = 1; i < *nargs; i++) { 2271 /* Get disk name. */ 2272 snprintf(arg, sizeof(arg), "arg%d", i); 2273 diskname = gctl_get_asciiparam(req, arg); 2274 if (diskname == NULL) { 2275 gctl_error(req, "No disk name (%s).", arg); 2276 error = -3; 2277 break; 2278 } 2279 2280 /* Try to find provider with specified name. */ 2281 g_topology_lock(); 2282 cp = g_raid_open_consumer(sc, diskname); 2283 if (cp == NULL) { 2284 gctl_error(req, "Can't open disk '%s'.", 2285 diskname); 2286 g_topology_unlock(); 2287 error = -4; 2288 break; 2289 } 2290 pp = cp->provider; 2291 g_topology_unlock(); 2292 2293 /* Read disk serial. */ 2294 error = g_raid_md_get_label(cp, 2295 &serial[0], INTEL_SERIAL_LEN); 2296 if (error != 0) { 2297 gctl_error(req, 2298 "Can't get serial for provider '%s'.", 2299 diskname); 2300 g_raid_kill_consumer(sc, cp); 2301 error = -7; 2302 break; 2303 } 2304 2305 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 2306 pd->pd_disk_pos = -1; 2307 2308 disk = g_raid_create_disk(sc); 2309 disk->d_consumer = cp; 2310 disk->d_md_data = (void *)pd; 2311 cp->private = disk; 2312 2313 g_raid_get_disk_info(disk); 2314 2315 memcpy(&pd->pd_disk_meta.serial[0], &serial[0], 2316 INTEL_SERIAL_LEN); 2317 intel_set_disk_sectors(&pd->pd_disk_meta, 2318 pp->mediasize / pp->sectorsize); 2319 pd->pd_disk_meta.id = 0; 2320 pd->pd_disk_meta.flags = INTEL_F_SPARE; 2321 2322 /* Welcome the "new" disk. */ 2323 update += g_raid_md_intel_start_disk(disk); 2324 if (disk->d_state == G_RAID_DISK_S_SPARE) { 2325 intel_meta_write_spare(cp, &pd->pd_disk_meta); 2326 g_raid_destroy_disk(disk); 2327 } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2328 gctl_error(req, "Disk '%s' doesn't fit.", 2329 diskname); 2330 g_raid_destroy_disk(disk); 2331 error = -8; 2332 break; 2333 } 2334 } 2335 2336 /* Write new metadata if we changed something. */ 2337 if (update) 2338 g_raid_md_write_intel(md, NULL, NULL, NULL); 2339 return (error); 2340 } 2341 return (-100); 2342 } 2343 2344 static int 2345 g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol, 2346 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 2347 { 2348 struct g_raid_softc *sc; 2349 struct g_raid_volume *vol; 2350 struct g_raid_subdisk *sd; 2351 struct g_raid_disk *disk; 2352 struct g_raid_md_intel_object *mdi; 2353 struct g_raid_md_intel_pervolume *pv; 2354 struct g_raid_md_intel_perdisk *pd; 2355 struct intel_raid_conf *meta; 2356 struct intel_raid_vol *mvol; 2357 struct intel_raid_map *mmap0, *mmap1; 2358 off_t sectorsize = 512, pos; 2359 const char *version, *cv; 2360 int vi, sdi, numdisks, len, state, stale; 2361 2362 sc = md->mdo_softc; 2363 mdi = (struct g_raid_md_intel_object *)md; 2364 2365 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2366 return (0); 2367 2368 /* Bump generation. Newly written metadata may differ from previous. */ 2369 mdi->mdio_generation++; 2370 2371 /* Count number of disks. */ 2372 numdisks = 0; 2373 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2374 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2375 if (pd->pd_disk_pos < 0) 2376 continue; 2377 numdisks++; 2378 if (disk->d_state == G_RAID_DISK_S_ACTIVE) { 2379 pd->pd_disk_meta.flags = 2380 INTEL_F_ONLINE | INTEL_F_ASSIGNED; 2381 } else if (disk->d_state == G_RAID_DISK_S_FAILED) { 2382 pd->pd_disk_meta.flags = INTEL_F_FAILED | 2383 INTEL_F_ASSIGNED; 2384 } else if (disk->d_state == G_RAID_DISK_S_DISABLED) { 2385 pd->pd_disk_meta.flags = INTEL_F_FAILED | 2386 INTEL_F_ASSIGNED | INTEL_F_DISABLED; 2387 } else { 2388 if (!(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) 2389 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED; 2390 if (pd->pd_disk_meta.id != 0xffffffff) { 2391 pd->pd_disk_meta.id = 0xffffffff; 2392 len = strlen(pd->pd_disk_meta.serial); 2393 len = min(len, INTEL_SERIAL_LEN - 3); 2394 strcpy(pd->pd_disk_meta.serial + len, ":0"); 2395 } 2396 } 2397 } 2398 2399 /* Fill anchor and disks. */ 2400 meta = malloc(INTEL_MAX_MD_SIZE(numdisks), 2401 M_MD_INTEL, M_WAITOK | M_ZERO); 2402 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1); 2403 meta->config_size = INTEL_MAX_MD_SIZE(numdisks); 2404 meta->config_id = mdi->mdio_config_id; 2405 meta->orig_config_id = mdi->mdio_orig_config_id; 2406 meta->generation = mdi->mdio_generation; 2407 meta->attributes = INTEL_ATTR_CHECKSUM; 2408 meta->total_disks = numdisks; 2409 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2410 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2411 if (pd->pd_disk_pos < 0) 2412 continue; 2413 meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta; 2414 if (pd->pd_disk_meta.sectors_hi != 0) 2415 meta->attributes |= INTEL_ATTR_2TB_DISK; 2416 } 2417 2418 /* Fill volumes and maps. */ 2419 vi = 0; 2420 version = INTEL_VERSION_1000; 2421 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2422 pv = vol->v_md_data; 2423 if (vol->v_stopping) 2424 continue; 2425 mvol = intel_get_volume(meta, vi); 2426 2427 /* New metadata may have different volumes order. */ 2428 pv->pv_volume_pos = vi; 2429 2430 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2431 sd = &vol->v_subdisks[sdi]; 2432 if (sd->sd_disk != NULL) 2433 break; 2434 } 2435 if (sdi >= vol->v_disks_count) 2436 panic("No any filled subdisk in volume"); 2437 if (vol->v_mediasize >= 0x20000000000llu) 2438 meta->attributes |= INTEL_ATTR_2TB; 2439 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) 2440 meta->attributes |= INTEL_ATTR_RAID0; 2441 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2442 meta->attributes |= INTEL_ATTR_RAID1; 2443 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) 2444 meta->attributes |= INTEL_ATTR_RAID5; 2445 else if ((vol->v_disks_count & 1) == 0) 2446 meta->attributes |= INTEL_ATTR_RAID10; 2447 else 2448 meta->attributes |= INTEL_ATTR_RAID1E; 2449 if (pv->pv_cng) 2450 meta->attributes |= INTEL_ATTR_RAIDCNG; 2451 if (vol->v_strip_size > 131072) 2452 meta->attributes |= INTEL_ATTR_EXT_STRIP; 2453 2454 if (pv->pv_cng) 2455 cv = INTEL_VERSION_1206; 2456 else if (vol->v_disks_count > 4) 2457 cv = INTEL_VERSION_1204; 2458 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) 2459 cv = INTEL_VERSION_1202; 2460 else if (vol->v_disks_count > 2) 2461 cv = INTEL_VERSION_1201; 2462 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2463 cv = INTEL_VERSION_1100; 2464 else 2465 cv = INTEL_VERSION_1000; 2466 if (strcmp(cv, version) > 0) 2467 version = cv; 2468 2469 strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name)); 2470 mvol->total_sectors = vol->v_mediasize / sectorsize; 2471 mvol->state = (INTEL_ST_READ_COALESCING | 2472 INTEL_ST_WRITE_COALESCING); 2473 mvol->tid = vol->v_global_id + 1; 2474 if (pv->pv_cng) { 2475 mvol->state |= INTEL_ST_CLONE_N_GO; 2476 if (pv->pv_cng_man_sync) 2477 mvol->state |= INTEL_ST_CLONE_MAN_SYNC; 2478 mvol->cng_master_disk = pv->pv_cng_master_disk; 2479 if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state == 2480 G_RAID_SUBDISK_S_NONE) 2481 mvol->cng_state = INTEL_CNGST_MASTER_MISSING; 2482 else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL) 2483 mvol->cng_state = INTEL_CNGST_NEEDS_UPDATE; 2484 else 2485 mvol->cng_state = INTEL_CNGST_UPDATED; 2486 } 2487 2488 /* Check for any recovery in progress. */ 2489 state = G_RAID_SUBDISK_S_ACTIVE; 2490 pos = 0x7fffffffffffffffllu; 2491 stale = 0; 2492 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2493 sd = &vol->v_subdisks[sdi]; 2494 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) 2495 state = G_RAID_SUBDISK_S_REBUILD; 2496 else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC && 2497 state != G_RAID_SUBDISK_S_REBUILD) 2498 state = G_RAID_SUBDISK_S_RESYNC; 2499 else if (sd->sd_state == G_RAID_SUBDISK_S_STALE) 2500 stale = 1; 2501 if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2502 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) && 2503 sd->sd_rebuild_pos < pos) 2504 pos = sd->sd_rebuild_pos; 2505 } 2506 if (state == G_RAID_SUBDISK_S_REBUILD) { 2507 mvol->migr_state = 1; 2508 mvol->migr_type = INTEL_MT_REBUILD; 2509 } else if (state == G_RAID_SUBDISK_S_RESYNC) { 2510 mvol->migr_state = 1; 2511 /* mvol->migr_type = INTEL_MT_REPAIR; */ 2512 mvol->migr_type = INTEL_MT_VERIFY; 2513 mvol->state |= INTEL_ST_VERIFY_AND_FIX; 2514 } else 2515 mvol->migr_state = 0; 2516 mvol->dirty = (vol->v_dirty || stale); 2517 2518 mmap0 = intel_get_map(mvol, 0); 2519 2520 /* Write map / common part of two maps. */ 2521 intel_set_map_offset(mmap0, sd->sd_offset / sectorsize); 2522 intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize); 2523 mmap0->strip_sectors = vol->v_strip_size / sectorsize; 2524 if (vol->v_state == G_RAID_VOLUME_S_BROKEN) 2525 mmap0->status = INTEL_S_FAILURE; 2526 else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED) 2527 mmap0->status = INTEL_S_DEGRADED; 2528 else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED) 2529 == g_raid_nsubdisks(vol, -1)) 2530 mmap0->status = INTEL_S_UNINITIALIZED; 2531 else 2532 mmap0->status = INTEL_S_READY; 2533 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) 2534 mmap0->type = INTEL_T_RAID0; 2535 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 2536 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 2537 mmap0->type = INTEL_T_RAID1; 2538 else 2539 mmap0->type = INTEL_T_RAID5; 2540 mmap0->total_disks = vol->v_disks_count; 2541 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2542 mmap0->total_domains = vol->v_disks_count; 2543 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 2544 mmap0->total_domains = 2; 2545 else 2546 mmap0->total_domains = 1; 2547 intel_set_map_stripe_count(mmap0, 2548 sd->sd_size / vol->v_strip_size / mmap0->total_domains); 2549 mmap0->failed_disk_num = 0xff; 2550 mmap0->ddf = 1; 2551 2552 /* If there are two maps - copy common and update. */ 2553 if (mvol->migr_state) { 2554 intel_set_vol_curr_migr_unit(mvol, 2555 pos / vol->v_strip_size / mmap0->total_domains); 2556 mmap1 = intel_get_map(mvol, 1); 2557 memcpy(mmap1, mmap0, sizeof(struct intel_raid_map)); 2558 mmap0->status = INTEL_S_READY; 2559 } else 2560 mmap1 = NULL; 2561 2562 /* Write disk indexes and put rebuild flags. */ 2563 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2564 sd = &vol->v_subdisks[sdi]; 2565 pd = (struct g_raid_md_intel_perdisk *) 2566 sd->sd_disk->d_md_data; 2567 mmap0->disk_idx[sdi] = pd->pd_disk_pos; 2568 if (mvol->migr_state) 2569 mmap1->disk_idx[sdi] = pd->pd_disk_pos; 2570 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2571 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2572 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD; 2573 } else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE && 2574 sd->sd_state != G_RAID_SUBDISK_S_STALE && 2575 sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) { 2576 mmap0->disk_idx[sdi] |= INTEL_DI_RBLD; 2577 if (mvol->migr_state) 2578 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD; 2579 } 2580 if ((sd->sd_state == G_RAID_SUBDISK_S_NONE || 2581 sd->sd_state == G_RAID_SUBDISK_S_FAILED || 2582 sd->sd_state == G_RAID_SUBDISK_S_REBUILD) && 2583 mmap0->failed_disk_num == 0xff) { 2584 mmap0->failed_disk_num = sdi; 2585 if (mvol->migr_state) 2586 mmap1->failed_disk_num = sdi; 2587 } 2588 } 2589 vi++; 2590 } 2591 meta->total_volumes = vi; 2592 if (vi > 1 || meta->attributes & 2593 (INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | INTEL_ATTR_2TB)) 2594 version = INTEL_VERSION_1300; 2595 if (strcmp(version, INTEL_VERSION_1300) < 0) 2596 meta->attributes &= INTEL_ATTR_CHECKSUM; 2597 memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1); 2598 2599 /* We are done. Print meta data and store them to disks. */ 2600 g_raid_md_intel_print(meta); 2601 if (mdi->mdio_meta != NULL) 2602 free(mdi->mdio_meta, M_MD_INTEL); 2603 mdi->mdio_meta = meta; 2604 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2605 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2606 if (disk->d_state != G_RAID_DISK_S_ACTIVE) 2607 continue; 2608 if (pd->pd_meta != NULL) { 2609 free(pd->pd_meta, M_MD_INTEL); 2610 pd->pd_meta = NULL; 2611 } 2612 pd->pd_meta = intel_meta_copy(meta); 2613 intel_meta_write(disk->d_consumer, meta); 2614 } 2615 return (0); 2616 } 2617 2618 static int 2619 g_raid_md_fail_disk_intel(struct g_raid_md_object *md, 2620 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 2621 { 2622 struct g_raid_softc *sc; 2623 struct g_raid_md_intel_object *mdi; 2624 struct g_raid_md_intel_perdisk *pd; 2625 struct g_raid_subdisk *sd; 2626 2627 sc = md->mdo_softc; 2628 mdi = (struct g_raid_md_intel_object *)md; 2629 pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data; 2630 2631 /* We can't fail disk that is not a part of array now. */ 2632 if (pd->pd_disk_pos < 0) 2633 return (-1); 2634 2635 /* 2636 * Mark disk as failed in metadata and try to write that metadata 2637 * to the disk itself to prevent it's later resurrection as STALE. 2638 */ 2639 mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED; 2640 pd->pd_disk_meta.flags = INTEL_F_FAILED; 2641 g_raid_md_intel_print(mdi->mdio_meta); 2642 if (tdisk->d_consumer) 2643 intel_meta_write(tdisk->d_consumer, mdi->mdio_meta); 2644 2645 /* Change states. */ 2646 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED); 2647 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) { 2648 g_raid_change_subdisk_state(sd, 2649 G_RAID_SUBDISK_S_FAILED); 2650 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED, 2651 G_RAID_EVENT_SUBDISK); 2652 } 2653 2654 /* Write updated metadata to remaining disks. */ 2655 g_raid_md_write_intel(md, NULL, NULL, tdisk); 2656 2657 /* Check if anything left except placeholders. */ 2658 if (g_raid_ndisks(sc, -1) == 2659 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 2660 g_raid_destroy_node(sc, 0); 2661 else 2662 g_raid_md_intel_refill(sc); 2663 return (0); 2664 } 2665 2666 static int 2667 g_raid_md_free_disk_intel(struct g_raid_md_object *md, 2668 struct g_raid_disk *disk) 2669 { 2670 struct g_raid_md_intel_perdisk *pd; 2671 2672 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2673 if (pd->pd_meta != NULL) { 2674 free(pd->pd_meta, M_MD_INTEL); 2675 pd->pd_meta = NULL; 2676 } 2677 free(pd, M_MD_INTEL); 2678 disk->d_md_data = NULL; 2679 return (0); 2680 } 2681 2682 static int 2683 g_raid_md_free_volume_intel(struct g_raid_md_object *md, 2684 struct g_raid_volume *vol) 2685 { 2686 struct g_raid_md_intel_pervolume *pv; 2687 2688 pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data; 2689 free(pv, M_MD_INTEL); 2690 vol->v_md_data = NULL; 2691 return (0); 2692 } 2693 2694 static int 2695 g_raid_md_free_intel(struct g_raid_md_object *md) 2696 { 2697 struct g_raid_md_intel_object *mdi; 2698 2699 mdi = (struct g_raid_md_intel_object *)md; 2700 if (!mdi->mdio_started) { 2701 mdi->mdio_started = 0; 2702 callout_stop(&mdi->mdio_start_co); 2703 G_RAID_DEBUG1(1, md->mdo_softc, 2704 "root_mount_rel %p", mdi->mdio_rootmount); 2705 root_mount_rel(mdi->mdio_rootmount); 2706 mdi->mdio_rootmount = NULL; 2707 } 2708 if (mdi->mdio_meta != NULL) { 2709 free(mdi->mdio_meta, M_MD_INTEL); 2710 mdi->mdio_meta = NULL; 2711 } 2712 return (0); 2713 } 2714 2715 G_RAID_MD_DECLARE(intel, "Intel"); 2716