1 /*- 2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 3 * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/bio.h> 33 #include <sys/endian.h> 34 #include <sys/kernel.h> 35 #include <sys/kobj.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mutex.h> 40 #include <sys/systm.h> 41 #include <sys/taskqueue.h> 42 #include <geom/geom.h> 43 #include "geom/raid/g_raid.h" 44 #include "g_raid_md_if.h" 45 46 static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata"); 47 48 struct intel_raid_map { 49 uint32_t offset; 50 uint32_t disk_sectors; 51 uint32_t stripe_count; 52 uint16_t strip_sectors; 53 uint8_t status; 54 #define INTEL_S_READY 0x00 55 #define INTEL_S_UNINITIALIZED 0x01 56 #define INTEL_S_DEGRADED 0x02 57 #define INTEL_S_FAILURE 0x03 58 59 uint8_t type; 60 #define INTEL_T_RAID0 0x00 61 #define INTEL_T_RAID1 0x01 62 #define INTEL_T_RAID5 0x05 63 64 uint8_t total_disks; 65 uint8_t total_domains; 66 uint8_t failed_disk_num; 67 uint8_t ddf; 68 uint32_t offset_hi; 69 uint32_t disk_sectors_hi; 70 uint32_t stripe_count_hi; 71 uint32_t filler_2[4]; 72 uint32_t disk_idx[1]; /* total_disks entries. */ 73 #define INTEL_DI_IDX 0x00ffffff 74 #define INTEL_DI_RBLD 0x01000000 75 } __packed; 76 77 struct intel_raid_vol { 78 uint8_t name[16]; 79 u_int64_t total_sectors __packed; 80 uint32_t state; 81 #define INTEL_ST_BOOTABLE 0x00000001 82 #define INTEL_ST_BOOT_DEVICE 0x00000002 83 #define INTEL_ST_READ_COALESCING 0x00000004 84 #define INTEL_ST_WRITE_COALESCING 0x00000008 85 #define INTEL_ST_LAST_SHUTDOWN_DIRTY 0x00000010 86 #define INTEL_ST_HIDDEN_AT_BOOT 0x00000020 87 #define INTEL_ST_CURRENTLY_HIDDEN 0x00000040 88 #define INTEL_ST_VERIFY_AND_FIX 0x00000080 89 #define INTEL_ST_MAP_STATE_UNINIT 0x00000100 90 #define INTEL_ST_NO_AUTO_RECOVERY 0x00000200 91 #define INTEL_ST_CLONE_N_GO 0x00000400 92 #define INTEL_ST_CLONE_MAN_SYNC 0x00000800 93 #define INTEL_ST_CNG_MASTER_DISK_NUM 0x00001000 94 uint32_t reserved; 95 uint8_t migr_priority; 96 uint8_t num_sub_vols; 97 uint8_t tid; 98 uint8_t cng_master_disk; 99 uint16_t cache_policy; 100 uint8_t cng_state; 101 #define INTEL_CNGST_UPDATED 0 102 #define INTEL_CNGST_NEEDS_UPDATE 1 103 #define INTEL_CNGST_MASTER_MISSING 2 104 uint8_t cng_sub_state; 105 uint32_t filler_0[10]; 106 107 uint32_t curr_migr_unit; 108 uint32_t checkpoint_id; 109 uint8_t migr_state; 110 uint8_t migr_type; 111 #define INTEL_MT_INIT 0 112 #define INTEL_MT_REBUILD 1 113 #define INTEL_MT_VERIFY 2 114 #define INTEL_MT_GEN_MIGR 3 115 #define INTEL_MT_STATE_CHANGE 4 116 #define INTEL_MT_REPAIR 5 117 uint8_t dirty; 118 uint8_t fs_state; 119 uint16_t verify_errors; 120 uint16_t bad_blocks; 121 uint32_t curr_migr_unit_hi; 122 uint32_t filler_1[3]; 123 struct intel_raid_map map[1]; /* 2 entries if migr_state != 0. */ 124 } __packed; 125 126 struct intel_raid_disk { 127 #define INTEL_SERIAL_LEN 16 128 uint8_t serial[INTEL_SERIAL_LEN]; 129 uint32_t sectors; 130 uint32_t id; 131 uint32_t flags; 132 #define INTEL_F_SPARE 0x01 133 #define INTEL_F_ASSIGNED 0x02 134 #define INTEL_F_FAILED 0x04 135 #define INTEL_F_ONLINE 0x08 136 #define INTEL_F_DISABLED 0x80 137 uint32_t owner_cfg_num; 138 uint32_t sectors_hi; 139 uint32_t filler[3]; 140 } __packed; 141 142 struct intel_raid_conf { 143 uint8_t intel_id[24]; 144 #define INTEL_MAGIC "Intel Raid ISM Cfg Sig. " 145 146 uint8_t version[6]; 147 #define INTEL_VERSION_1000 "1.0.00" /* RAID0 */ 148 #define INTEL_VERSION_1100 "1.1.00" /* RAID1 */ 149 #define INTEL_VERSION_1200 "1.2.00" /* Many volumes */ 150 #define INTEL_VERSION_1201 "1.2.01" /* 3 or 4 disks */ 151 #define INTEL_VERSION_1202 "1.2.02" /* RAID5 */ 152 #define INTEL_VERSION_1204 "1.2.04" /* 5 or 6 disks */ 153 #define INTEL_VERSION_1206 "1.2.06" /* CNG */ 154 #define INTEL_VERSION_1300 "1.3.00" /* Attributes */ 155 156 uint8_t dummy_0[2]; 157 uint32_t checksum; 158 uint32_t config_size; 159 uint32_t config_id; 160 uint32_t generation; 161 uint32_t error_log_size; 162 uint32_t attributes; 163 #define INTEL_ATTR_RAID0 0x00000001 164 #define INTEL_ATTR_RAID1 0x00000002 165 #define INTEL_ATTR_RAID10 0x00000004 166 #define INTEL_ATTR_RAID1E 0x00000008 167 #define INTEL_ATTR_RAID5 0x00000010 168 #define INTEL_ATTR_RAIDCNG 0x00000020 169 #define INTEL_ATTR_EXT_STRIP 0x00000040 170 #define INTEL_ATTR_NVM_CACHE 0x02000000 171 #define INTEL_ATTR_2TB_DISK 0x04000000 172 #define INTEL_ATTR_BBM 0x08000000 173 #define INTEL_ATTR_NVM_CACHE2 0x10000000 174 #define INTEL_ATTR_2TB 0x20000000 175 #define INTEL_ATTR_PM 0x40000000 176 #define INTEL_ATTR_CHECKSUM 0x80000000 177 178 uint8_t total_disks; 179 uint8_t total_volumes; 180 uint8_t error_log_pos; 181 uint8_t dummy_2[1]; 182 uint32_t cache_size; 183 uint32_t orig_config_id; 184 uint32_t pwr_cycle_count; 185 uint32_t bbm_log_size; 186 uint32_t filler_0[35]; 187 struct intel_raid_disk disk[1]; /* total_disks entries. */ 188 /* Here goes total_volumes of struct intel_raid_vol. */ 189 } __packed; 190 191 #define INTEL_ATTR_SUPPORTED ( INTEL_ATTR_RAID0 | INTEL_ATTR_RAID1 | \ 192 INTEL_ATTR_RAID10 | INTEL_ATTR_RAID1E | INTEL_ATTR_RAID5 | \ 193 INTEL_ATTR_RAIDCNG | INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | \ 194 INTEL_ATTR_2TB | INTEL_ATTR_PM | INTEL_ATTR_CHECKSUM ) 195 196 #define INTEL_MAX_MD_SIZE(ndisks) \ 197 (sizeof(struct intel_raid_conf) + \ 198 sizeof(struct intel_raid_disk) * (ndisks - 1) + \ 199 sizeof(struct intel_raid_vol) * 2 + \ 200 sizeof(struct intel_raid_map) * 2 + \ 201 sizeof(uint32_t) * (ndisks - 1) * 4) 202 203 struct g_raid_md_intel_perdisk { 204 struct intel_raid_conf *pd_meta; 205 int pd_disk_pos; 206 struct intel_raid_disk pd_disk_meta; 207 }; 208 209 struct g_raid_md_intel_pervolume { 210 int pv_volume_pos; 211 int pv_cng; 212 int pv_cng_man_sync; 213 int pv_cng_master_disk; 214 }; 215 216 struct g_raid_md_intel_object { 217 struct g_raid_md_object mdio_base; 218 uint32_t mdio_config_id; 219 uint32_t mdio_orig_config_id; 220 uint32_t mdio_generation; 221 struct intel_raid_conf *mdio_meta; 222 struct callout mdio_start_co; /* STARTING state timer. */ 223 int mdio_disks_present; 224 int mdio_started; 225 int mdio_incomplete; 226 struct root_hold_token *mdio_rootmount; /* Root mount delay token. */ 227 }; 228 229 static g_raid_md_create_t g_raid_md_create_intel; 230 static g_raid_md_taste_t g_raid_md_taste_intel; 231 static g_raid_md_event_t g_raid_md_event_intel; 232 static g_raid_md_ctl_t g_raid_md_ctl_intel; 233 static g_raid_md_write_t g_raid_md_write_intel; 234 static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel; 235 static g_raid_md_free_disk_t g_raid_md_free_disk_intel; 236 static g_raid_md_free_volume_t g_raid_md_free_volume_intel; 237 static g_raid_md_free_t g_raid_md_free_intel; 238 239 static kobj_method_t g_raid_md_intel_methods[] = { 240 KOBJMETHOD(g_raid_md_create, g_raid_md_create_intel), 241 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_intel), 242 KOBJMETHOD(g_raid_md_event, g_raid_md_event_intel), 243 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_intel), 244 KOBJMETHOD(g_raid_md_write, g_raid_md_write_intel), 245 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel), 246 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel), 247 KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_intel), 248 KOBJMETHOD(g_raid_md_free, g_raid_md_free_intel), 249 { 0, 0 } 250 }; 251 252 static struct g_raid_md_class g_raid_md_intel_class = { 253 "Intel", 254 g_raid_md_intel_methods, 255 sizeof(struct g_raid_md_intel_object), 256 .mdc_enable = 1, 257 .mdc_priority = 100 258 }; 259 260 261 static struct intel_raid_map * 262 intel_get_map(struct intel_raid_vol *mvol, int i) 263 { 264 struct intel_raid_map *mmap; 265 266 if (i > (mvol->migr_state ? 1 : 0)) 267 return (NULL); 268 mmap = &mvol->map[0]; 269 for (; i > 0; i--) { 270 mmap = (struct intel_raid_map *) 271 &mmap->disk_idx[mmap->total_disks]; 272 } 273 return ((struct intel_raid_map *)mmap); 274 } 275 276 static struct intel_raid_vol * 277 intel_get_volume(struct intel_raid_conf *meta, int i) 278 { 279 struct intel_raid_vol *mvol; 280 struct intel_raid_map *mmap; 281 282 if (i > 1) 283 return (NULL); 284 mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks]; 285 for (; i > 0; i--) { 286 mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0); 287 mvol = (struct intel_raid_vol *) 288 &mmap->disk_idx[mmap->total_disks]; 289 } 290 return (mvol); 291 } 292 293 static off_t 294 intel_get_map_offset(struct intel_raid_map *mmap) 295 { 296 off_t offset = (off_t)mmap->offset_hi << 32; 297 298 offset += mmap->offset; 299 return (offset); 300 } 301 302 static void 303 intel_set_map_offset(struct intel_raid_map *mmap, off_t offset) 304 { 305 306 mmap->offset = offset & 0xffffffff; 307 mmap->offset_hi = offset >> 32; 308 } 309 310 static off_t 311 intel_get_map_disk_sectors(struct intel_raid_map *mmap) 312 { 313 off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32; 314 315 disk_sectors += mmap->disk_sectors; 316 return (disk_sectors); 317 } 318 319 static void 320 intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors) 321 { 322 323 mmap->disk_sectors = disk_sectors & 0xffffffff; 324 mmap->disk_sectors_hi = disk_sectors >> 32; 325 } 326 327 static void 328 intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count) 329 { 330 331 mmap->stripe_count = stripe_count & 0xffffffff; 332 mmap->stripe_count_hi = stripe_count >> 32; 333 } 334 335 static off_t 336 intel_get_disk_sectors(struct intel_raid_disk *disk) 337 { 338 off_t sectors = (off_t)disk->sectors_hi << 32; 339 340 sectors += disk->sectors; 341 return (sectors); 342 } 343 344 static void 345 intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors) 346 { 347 348 disk->sectors = sectors & 0xffffffff; 349 disk->sectors_hi = sectors >> 32; 350 } 351 352 static off_t 353 intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol) 354 { 355 off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32; 356 357 curr_migr_unit += vol->curr_migr_unit; 358 return (curr_migr_unit); 359 } 360 361 static void 362 intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit) 363 { 364 365 vol->curr_migr_unit = curr_migr_unit & 0xffffffff; 366 vol->curr_migr_unit_hi = curr_migr_unit >> 32; 367 } 368 369 static void 370 g_raid_md_intel_print(struct intel_raid_conf *meta) 371 { 372 struct intel_raid_vol *mvol; 373 struct intel_raid_map *mmap; 374 int i, j, k; 375 376 if (g_raid_debug < 1) 377 return; 378 379 printf("********* ATA Intel MatrixRAID Metadata *********\n"); 380 printf("intel_id <%.24s>\n", meta->intel_id); 381 printf("version <%.6s>\n", meta->version); 382 printf("checksum 0x%08x\n", meta->checksum); 383 printf("config_size 0x%08x\n", meta->config_size); 384 printf("config_id 0x%08x\n", meta->config_id); 385 printf("generation 0x%08x\n", meta->generation); 386 printf("error_log_size %d\n", meta->error_log_size); 387 printf("attributes 0x%08x\n", meta->attributes); 388 printf("total_disks %u\n", meta->total_disks); 389 printf("total_volumes %u\n", meta->total_volumes); 390 printf("error_log_pos %u\n", meta->error_log_pos); 391 printf("cache_size %u\n", meta->cache_size); 392 printf("orig_config_id 0x%08x\n", meta->orig_config_id); 393 printf("pwr_cycle_count %u\n", meta->pwr_cycle_count); 394 printf("bbm_log_size %u\n", meta->bbm_log_size); 395 printf("DISK# serial disk_sectors disk_sectors_hi disk_id flags owner\n"); 396 for (i = 0; i < meta->total_disks; i++ ) { 397 printf(" %d <%.16s> %u %u 0x%08x 0x%08x %08x\n", i, 398 meta->disk[i].serial, meta->disk[i].sectors, 399 meta->disk[i].sectors_hi, meta->disk[i].id, 400 meta->disk[i].flags, meta->disk[i].owner_cfg_num); 401 } 402 for (i = 0; i < meta->total_volumes; i++) { 403 mvol = intel_get_volume(meta, i); 404 printf(" ****** Volume %d ******\n", i); 405 printf(" name %.16s\n", mvol->name); 406 printf(" total_sectors %ju\n", mvol->total_sectors); 407 printf(" state 0x%08x\n", mvol->state); 408 printf(" reserved %u\n", mvol->reserved); 409 printf(" migr_priority %u\n", mvol->migr_priority); 410 printf(" num_sub_vols %u\n", mvol->num_sub_vols); 411 printf(" tid %u\n", mvol->tid); 412 printf(" cng_master_disk %u\n", mvol->cng_master_disk); 413 printf(" cache_policy %u\n", mvol->cache_policy); 414 printf(" cng_state %u\n", mvol->cng_state); 415 printf(" cng_sub_state %u\n", mvol->cng_sub_state); 416 printf(" curr_migr_unit %u\n", mvol->curr_migr_unit); 417 printf(" curr_migr_unit_hi %u\n", mvol->curr_migr_unit_hi); 418 printf(" checkpoint_id %u\n", mvol->checkpoint_id); 419 printf(" migr_state %u\n", mvol->migr_state); 420 printf(" migr_type %u\n", mvol->migr_type); 421 printf(" dirty %u\n", mvol->dirty); 422 printf(" fs_state %u\n", mvol->fs_state); 423 printf(" verify_errors %u\n", mvol->verify_errors); 424 printf(" bad_blocks %u\n", mvol->bad_blocks); 425 426 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) { 427 printf(" *** Map %d ***\n", j); 428 mmap = intel_get_map(mvol, j); 429 printf(" offset %u\n", mmap->offset); 430 printf(" offset_hi %u\n", mmap->offset_hi); 431 printf(" disk_sectors %u\n", mmap->disk_sectors); 432 printf(" disk_sectors_hi %u\n", mmap->disk_sectors_hi); 433 printf(" stripe_count %u\n", mmap->stripe_count); 434 printf(" stripe_count_hi %u\n", mmap->stripe_count_hi); 435 printf(" strip_sectors %u\n", mmap->strip_sectors); 436 printf(" status %u\n", mmap->status); 437 printf(" type %u\n", mmap->type); 438 printf(" total_disks %u\n", mmap->total_disks); 439 printf(" total_domains %u\n", mmap->total_domains); 440 printf(" failed_disk_num %u\n", mmap->failed_disk_num); 441 printf(" ddf %u\n", mmap->ddf); 442 printf(" disk_idx "); 443 for (k = 0; k < mmap->total_disks; k++) 444 printf(" 0x%08x", mmap->disk_idx[k]); 445 printf("\n"); 446 } 447 } 448 printf("=================================================\n"); 449 } 450 451 static struct intel_raid_conf * 452 intel_meta_copy(struct intel_raid_conf *meta) 453 { 454 struct intel_raid_conf *nmeta; 455 456 nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK); 457 memcpy(nmeta, meta, meta->config_size); 458 return (nmeta); 459 } 460 461 static int 462 intel_meta_find_disk(struct intel_raid_conf *meta, char *serial) 463 { 464 int pos; 465 466 for (pos = 0; pos < meta->total_disks; pos++) { 467 if (strncmp(meta->disk[pos].serial, 468 serial, INTEL_SERIAL_LEN) == 0) 469 return (pos); 470 } 471 return (-1); 472 } 473 474 static struct intel_raid_conf * 475 intel_meta_read(struct g_consumer *cp) 476 { 477 struct g_provider *pp; 478 struct intel_raid_conf *meta; 479 struct intel_raid_vol *mvol; 480 struct intel_raid_map *mmap, *mmap1; 481 char *buf; 482 int error, i, j, k, left, size; 483 uint32_t checksum, *ptr; 484 485 pp = cp->provider; 486 487 /* Read the anchor sector. */ 488 buf = g_read_data(cp, 489 pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error); 490 if (buf == NULL) { 491 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).", 492 pp->name, error); 493 return (NULL); 494 } 495 meta = (struct intel_raid_conf *)buf; 496 497 /* Check if this is an Intel RAID struct */ 498 if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) { 499 G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name); 500 g_free(buf); 501 return (NULL); 502 } 503 if (meta->config_size > 65536 || 504 meta->config_size < sizeof(struct intel_raid_conf)) { 505 G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d", 506 meta->config_size); 507 g_free(buf); 508 return (NULL); 509 } 510 size = meta->config_size; 511 meta = malloc(size, M_MD_INTEL, M_WAITOK); 512 memcpy(meta, buf, min(size, pp->sectorsize)); 513 g_free(buf); 514 515 /* Read all the rest, if needed. */ 516 if (meta->config_size > pp->sectorsize) { 517 left = (meta->config_size - 1) / pp->sectorsize; 518 buf = g_read_data(cp, 519 pp->mediasize - pp->sectorsize * (2 + left), 520 pp->sectorsize * left, &error); 521 if (buf == NULL) { 522 G_RAID_DEBUG(1, "Cannot read remaining metadata" 523 " part from %s (error=%d).", 524 pp->name, error); 525 free(meta, M_MD_INTEL); 526 return (NULL); 527 } 528 memcpy(((char *)meta) + pp->sectorsize, buf, 529 pp->sectorsize * left); 530 g_free(buf); 531 } 532 533 /* Check metadata checksum. */ 534 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; 535 i < (meta->config_size / sizeof(uint32_t)); i++) { 536 checksum += *ptr++; 537 } 538 checksum -= meta->checksum; 539 if (checksum != meta->checksum) { 540 G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name); 541 free(meta, M_MD_INTEL); 542 return (NULL); 543 } 544 545 /* Validate metadata size. */ 546 size = sizeof(struct intel_raid_conf) + 547 sizeof(struct intel_raid_disk) * (meta->total_disks - 1) + 548 sizeof(struct intel_raid_vol) * meta->total_volumes; 549 if (size > meta->config_size) { 550 badsize: 551 G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d", 552 meta->config_size, size); 553 free(meta, M_MD_INTEL); 554 return (NULL); 555 } 556 for (i = 0; i < meta->total_volumes; i++) { 557 mvol = intel_get_volume(meta, i); 558 mmap = intel_get_map(mvol, 0); 559 size += 4 * (mmap->total_disks - 1); 560 if (size > meta->config_size) 561 goto badsize; 562 if (mvol->migr_state) { 563 size += sizeof(struct intel_raid_map); 564 if (size > meta->config_size) 565 goto badsize; 566 mmap = intel_get_map(mvol, 1); 567 size += 4 * (mmap->total_disks - 1); 568 if (size > meta->config_size) 569 goto badsize; 570 } 571 } 572 573 g_raid_md_intel_print(meta); 574 575 if (strncmp(meta->version, INTEL_VERSION_1300, 6) > 0) { 576 G_RAID_DEBUG(1, "Intel unsupported version: '%.6s'", 577 meta->version); 578 free(meta, M_MD_INTEL); 579 return (NULL); 580 } 581 582 if (strncmp(meta->version, INTEL_VERSION_1300, 6) >= 0 && 583 (meta->attributes & ~INTEL_ATTR_SUPPORTED) != 0) { 584 G_RAID_DEBUG(1, "Intel unsupported attributes: 0x%08x", 585 meta->attributes & ~INTEL_ATTR_SUPPORTED); 586 free(meta, M_MD_INTEL); 587 return (NULL); 588 } 589 590 /* Validate disk indexes. */ 591 for (i = 0; i < meta->total_volumes; i++) { 592 mvol = intel_get_volume(meta, i); 593 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) { 594 mmap = intel_get_map(mvol, j); 595 for (k = 0; k < mmap->total_disks; k++) { 596 if ((mmap->disk_idx[k] & INTEL_DI_IDX) > 597 meta->total_disks) { 598 G_RAID_DEBUG(1, "Intel metadata disk" 599 " index %d too big (>%d)", 600 mmap->disk_idx[k] & INTEL_DI_IDX, 601 meta->total_disks); 602 free(meta, M_MD_INTEL); 603 return (NULL); 604 } 605 } 606 } 607 } 608 609 /* Validate migration types. */ 610 for (i = 0; i < meta->total_volumes; i++) { 611 mvol = intel_get_volume(meta, i); 612 /* Deny unknown migration types. */ 613 if (mvol->migr_state && 614 mvol->migr_type != INTEL_MT_INIT && 615 mvol->migr_type != INTEL_MT_REBUILD && 616 mvol->migr_type != INTEL_MT_VERIFY && 617 mvol->migr_type != INTEL_MT_GEN_MIGR && 618 mvol->migr_type != INTEL_MT_REPAIR) { 619 G_RAID_DEBUG(1, "Intel metadata has unsupported" 620 " migration type %d", mvol->migr_type); 621 free(meta, M_MD_INTEL); 622 return (NULL); 623 } 624 /* Deny general migrations except SINGLE->RAID1. */ 625 if (mvol->migr_state && 626 mvol->migr_type == INTEL_MT_GEN_MIGR) { 627 mmap = intel_get_map(mvol, 0); 628 mmap1 = intel_get_map(mvol, 1); 629 if (mmap1->total_disks != 1 || 630 mmap->type != INTEL_T_RAID1 || 631 mmap->total_disks != 2 || 632 mmap->offset != mmap1->offset || 633 mmap->disk_sectors != mmap1->disk_sectors || 634 mmap->total_domains != mmap->total_disks || 635 mmap->offset_hi != mmap1->offset_hi || 636 mmap->disk_sectors_hi != mmap1->disk_sectors_hi || 637 (mmap->disk_idx[0] != mmap1->disk_idx[0] && 638 mmap->disk_idx[0] != mmap1->disk_idx[1])) { 639 G_RAID_DEBUG(1, "Intel metadata has unsupported" 640 " variant of general migration"); 641 free(meta, M_MD_INTEL); 642 return (NULL); 643 } 644 } 645 } 646 647 return (meta); 648 } 649 650 static int 651 intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta) 652 { 653 struct g_provider *pp; 654 char *buf; 655 int error, i, sectors; 656 uint32_t checksum, *ptr; 657 658 pp = cp->provider; 659 660 /* Recalculate checksum for case if metadata were changed. */ 661 meta->checksum = 0; 662 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; 663 i < (meta->config_size / sizeof(uint32_t)); i++) { 664 checksum += *ptr++; 665 } 666 meta->checksum = checksum; 667 668 /* Create and fill buffer. */ 669 sectors = (meta->config_size + pp->sectorsize - 1) / pp->sectorsize; 670 buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO); 671 if (sectors > 1) { 672 memcpy(buf, ((char *)meta) + pp->sectorsize, 673 (sectors - 1) * pp->sectorsize); 674 } 675 memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize); 676 677 error = g_write_data(cp, 678 pp->mediasize - pp->sectorsize * (1 + sectors), 679 buf, pp->sectorsize * sectors); 680 if (error != 0) { 681 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).", 682 pp->name, error); 683 } 684 685 free(buf, M_MD_INTEL); 686 return (error); 687 } 688 689 static int 690 intel_meta_erase(struct g_consumer *cp) 691 { 692 struct g_provider *pp; 693 char *buf; 694 int error; 695 696 pp = cp->provider; 697 buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO); 698 error = g_write_data(cp, 699 pp->mediasize - 2 * pp->sectorsize, 700 buf, pp->sectorsize); 701 if (error != 0) { 702 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).", 703 pp->name, error); 704 } 705 free(buf, M_MD_INTEL); 706 return (error); 707 } 708 709 static int 710 intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d) 711 { 712 struct intel_raid_conf *meta; 713 int error; 714 715 /* Fill anchor and single disk. */ 716 meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO); 717 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1); 718 memcpy(&meta->version[0], INTEL_VERSION_1000, 719 sizeof(INTEL_VERSION_1000) - 1); 720 meta->config_size = INTEL_MAX_MD_SIZE(1); 721 meta->config_id = meta->orig_config_id = arc4random(); 722 meta->generation = 1; 723 meta->total_disks = 1; 724 meta->disk[0] = *d; 725 error = intel_meta_write(cp, meta); 726 free(meta, M_MD_INTEL); 727 return (error); 728 } 729 730 static struct g_raid_disk * 731 g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id) 732 { 733 struct g_raid_disk *disk; 734 struct g_raid_md_intel_perdisk *pd; 735 736 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 737 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 738 if (pd->pd_disk_pos == id) 739 break; 740 } 741 return (disk); 742 } 743 744 static int 745 g_raid_md_intel_supported(int level, int qual, int disks, int force) 746 { 747 748 switch (level) { 749 case G_RAID_VOLUME_RL_RAID0: 750 if (disks < 1) 751 return (0); 752 if (!force && (disks < 2 || disks > 6)) 753 return (0); 754 break; 755 case G_RAID_VOLUME_RL_RAID1: 756 if (disks < 1) 757 return (0); 758 if (!force && (disks != 2)) 759 return (0); 760 break; 761 case G_RAID_VOLUME_RL_RAID1E: 762 if (disks < 2) 763 return (0); 764 if (!force && (disks != 4)) 765 return (0); 766 break; 767 case G_RAID_VOLUME_RL_RAID5: 768 if (disks < 3) 769 return (0); 770 if (!force && disks > 6) 771 return (0); 772 if (qual != G_RAID_VOLUME_RLQ_R5LA) 773 return (0); 774 break; 775 default: 776 return (0); 777 } 778 if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE) 779 return (0); 780 return (1); 781 } 782 783 static struct g_raid_volume * 784 g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id) 785 { 786 struct g_raid_volume *mvol; 787 struct g_raid_md_intel_pervolume *pv; 788 789 TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) { 790 pv = mvol->v_md_data; 791 if (pv->pv_volume_pos == id) 792 break; 793 } 794 return (mvol); 795 } 796 797 static int 798 g_raid_md_intel_start_disk(struct g_raid_disk *disk) 799 { 800 struct g_raid_softc *sc; 801 struct g_raid_subdisk *sd, *tmpsd; 802 struct g_raid_disk *olddisk, *tmpdisk; 803 struct g_raid_md_object *md; 804 struct g_raid_md_intel_object *mdi; 805 struct g_raid_md_intel_pervolume *pv; 806 struct g_raid_md_intel_perdisk *pd, *oldpd; 807 struct intel_raid_conf *meta; 808 struct intel_raid_vol *mvol; 809 struct intel_raid_map *mmap0, *mmap1; 810 int disk_pos, resurrection = 0, migr_global, i; 811 812 sc = disk->d_softc; 813 md = sc->sc_md; 814 mdi = (struct g_raid_md_intel_object *)md; 815 meta = mdi->mdio_meta; 816 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 817 olddisk = NULL; 818 819 /* Find disk position in metadata by it's serial. */ 820 disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial); 821 if (disk_pos < 0) { 822 G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk"); 823 /* Failed stale disk is useless for us. */ 824 if ((pd->pd_disk_meta.flags & INTEL_F_FAILED) && 825 !(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) { 826 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED); 827 return (0); 828 } 829 /* If we are in the start process, that's all for now. */ 830 if (!mdi->mdio_started) 831 goto nofit; 832 /* 833 * If we have already started - try to get use of the disk. 834 * Try to replace OFFLINE disks first, then FAILED. 835 */ 836 TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) { 837 if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE && 838 tmpdisk->d_state != G_RAID_DISK_S_FAILED) 839 continue; 840 /* Make sure this disk is big enough. */ 841 TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) { 842 off_t disk_sectors = 843 intel_get_disk_sectors(&pd->pd_disk_meta); 844 845 if (sd->sd_offset + sd->sd_size + 4096 > 846 disk_sectors * 512) { 847 G_RAID_DEBUG1(1, sc, 848 "Disk too small (%llu < %llu)", 849 (unsigned long long) 850 disk_sectors * 512, 851 (unsigned long long) 852 sd->sd_offset + sd->sd_size + 4096); 853 break; 854 } 855 } 856 if (sd != NULL) 857 continue; 858 if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) { 859 olddisk = tmpdisk; 860 break; 861 } else if (olddisk == NULL) 862 olddisk = tmpdisk; 863 } 864 if (olddisk == NULL) { 865 nofit: 866 if (pd->pd_disk_meta.flags & INTEL_F_SPARE) { 867 g_raid_change_disk_state(disk, 868 G_RAID_DISK_S_SPARE); 869 return (1); 870 } else { 871 g_raid_change_disk_state(disk, 872 G_RAID_DISK_S_STALE); 873 return (0); 874 } 875 } 876 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data; 877 disk_pos = oldpd->pd_disk_pos; 878 resurrection = 1; 879 } 880 881 if (olddisk == NULL) { 882 /* Find placeholder by position. */ 883 olddisk = g_raid_md_intel_get_disk(sc, disk_pos); 884 if (olddisk == NULL) 885 panic("No disk at position %d!", disk_pos); 886 if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) { 887 G_RAID_DEBUG1(1, sc, "More then one disk for pos %d", 888 disk_pos); 889 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE); 890 return (0); 891 } 892 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data; 893 } 894 895 /* Replace failed disk or placeholder with new disk. */ 896 TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) { 897 TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next); 898 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 899 sd->sd_disk = disk; 900 } 901 oldpd->pd_disk_pos = -2; 902 pd->pd_disk_pos = disk_pos; 903 904 /* If it was placeholder -- destroy it. */ 905 if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) { 906 g_raid_destroy_disk(olddisk); 907 } else { 908 /* Otherwise, make it STALE_FAILED. */ 909 g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED); 910 /* Update global metadata just in case. */ 911 memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta, 912 sizeof(struct intel_raid_disk)); 913 } 914 915 /* Welcome the new disk. */ 916 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) && 917 !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) 918 g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED); 919 else if (resurrection) 920 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 921 else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) 922 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED); 923 else if (meta->disk[disk_pos].flags & INTEL_F_SPARE) 924 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE); 925 else 926 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 927 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 928 pv = sd->sd_volume->v_md_data; 929 mvol = intel_get_volume(meta, pv->pv_volume_pos); 930 mmap0 = intel_get_map(mvol, 0); 931 if (mvol->migr_state) 932 mmap1 = intel_get_map(mvol, 1); 933 else 934 mmap1 = mmap0; 935 936 migr_global = 1; 937 for (i = 0; i < mmap0->total_disks; i++) { 938 if ((mmap0->disk_idx[i] & INTEL_DI_RBLD) == 0 && 939 (mmap1->disk_idx[i] & INTEL_DI_RBLD) != 0) 940 migr_global = 0; 941 } 942 943 if ((meta->disk[disk_pos].flags & INTEL_F_DISABLED) && 944 !(pd->pd_disk_meta.flags & INTEL_F_SPARE)) { 945 /* Disabled disk, useless. */ 946 g_raid_change_subdisk_state(sd, 947 G_RAID_SUBDISK_S_NONE); 948 } else if (resurrection) { 949 /* Stale disk, almost same as new. */ 950 g_raid_change_subdisk_state(sd, 951 G_RAID_SUBDISK_S_NEW); 952 } else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) { 953 /* Failed disk, almost useless. */ 954 g_raid_change_subdisk_state(sd, 955 G_RAID_SUBDISK_S_FAILED); 956 } else if (mvol->migr_state == 0) { 957 if (mmap0->status == INTEL_S_UNINITIALIZED && 958 (!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) { 959 /* Freshly created uninitialized volume. */ 960 g_raid_change_subdisk_state(sd, 961 G_RAID_SUBDISK_S_UNINITIALIZED); 962 } else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 963 /* Freshly inserted disk. */ 964 g_raid_change_subdisk_state(sd, 965 G_RAID_SUBDISK_S_NEW); 966 } else if (mvol->dirty && (!pv->pv_cng || 967 pv->pv_cng_master_disk != disk_pos)) { 968 /* Dirty volume (unclean shutdown). */ 969 g_raid_change_subdisk_state(sd, 970 G_RAID_SUBDISK_S_STALE); 971 } else { 972 /* Up to date disk. */ 973 g_raid_change_subdisk_state(sd, 974 G_RAID_SUBDISK_S_ACTIVE); 975 } 976 } else if (mvol->migr_type == INTEL_MT_INIT || 977 mvol->migr_type == INTEL_MT_REBUILD) { 978 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 979 /* Freshly inserted disk. */ 980 g_raid_change_subdisk_state(sd, 981 G_RAID_SUBDISK_S_NEW); 982 } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 983 /* Rebuilding disk. */ 984 g_raid_change_subdisk_state(sd, 985 G_RAID_SUBDISK_S_REBUILD); 986 if (mvol->dirty) { 987 sd->sd_rebuild_pos = 0; 988 } else { 989 sd->sd_rebuild_pos = 990 intel_get_vol_curr_migr_unit(mvol) * 991 sd->sd_volume->v_strip_size * 992 mmap0->total_domains; 993 } 994 } else if (mvol->migr_type == INTEL_MT_INIT && 995 migr_global) { 996 /* Freshly created uninitialized volume. */ 997 g_raid_change_subdisk_state(sd, 998 G_RAID_SUBDISK_S_UNINITIALIZED); 999 } else if (mvol->dirty && (!pv->pv_cng || 1000 pv->pv_cng_master_disk != disk_pos)) { 1001 /* Dirty volume (unclean shutdown). */ 1002 g_raid_change_subdisk_state(sd, 1003 G_RAID_SUBDISK_S_STALE); 1004 } else { 1005 /* Up to date disk. */ 1006 g_raid_change_subdisk_state(sd, 1007 G_RAID_SUBDISK_S_ACTIVE); 1008 } 1009 } else if (mvol->migr_type == INTEL_MT_VERIFY || 1010 mvol->migr_type == INTEL_MT_REPAIR) { 1011 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 1012 /* Freshly inserted disk. */ 1013 g_raid_change_subdisk_state(sd, 1014 G_RAID_SUBDISK_S_NEW); 1015 } else if ((mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) || 1016 migr_global) { 1017 /* Resyncing disk. */ 1018 g_raid_change_subdisk_state(sd, 1019 G_RAID_SUBDISK_S_RESYNC); 1020 if (mvol->dirty) { 1021 sd->sd_rebuild_pos = 0; 1022 } else { 1023 sd->sd_rebuild_pos = 1024 intel_get_vol_curr_migr_unit(mvol) * 1025 sd->sd_volume->v_strip_size * 1026 mmap0->total_domains; 1027 } 1028 } else if (mvol->dirty) { 1029 /* Dirty volume (unclean shutdown). */ 1030 g_raid_change_subdisk_state(sd, 1031 G_RAID_SUBDISK_S_STALE); 1032 } else { 1033 /* Up to date disk. */ 1034 g_raid_change_subdisk_state(sd, 1035 G_RAID_SUBDISK_S_ACTIVE); 1036 } 1037 } else if (mvol->migr_type == INTEL_MT_GEN_MIGR) { 1038 if ((mmap1->disk_idx[0] & INTEL_DI_IDX) != disk_pos) { 1039 /* Freshly inserted disk. */ 1040 g_raid_change_subdisk_state(sd, 1041 G_RAID_SUBDISK_S_NEW); 1042 } else { 1043 /* Up to date disk. */ 1044 g_raid_change_subdisk_state(sd, 1045 G_RAID_SUBDISK_S_ACTIVE); 1046 } 1047 } 1048 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1049 G_RAID_EVENT_SUBDISK); 1050 } 1051 1052 /* Update status of our need for spare. */ 1053 if (mdi->mdio_started) { 1054 mdi->mdio_incomplete = 1055 (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) + 1056 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < 1057 meta->total_disks); 1058 } 1059 1060 return (resurrection); 1061 } 1062 1063 static void 1064 g_disk_md_intel_retaste(void *arg, int pending) 1065 { 1066 1067 G_RAID_DEBUG(1, "Array is not complete, trying to retaste."); 1068 g_retaste(&g_raid_class); 1069 free(arg, M_MD_INTEL); 1070 } 1071 1072 static void 1073 g_raid_md_intel_refill(struct g_raid_softc *sc) 1074 { 1075 struct g_raid_md_object *md; 1076 struct g_raid_md_intel_object *mdi; 1077 struct intel_raid_conf *meta; 1078 struct g_raid_disk *disk; 1079 struct task *task; 1080 int update, na; 1081 1082 md = sc->sc_md; 1083 mdi = (struct g_raid_md_intel_object *)md; 1084 meta = mdi->mdio_meta; 1085 update = 0; 1086 do { 1087 /* Make sure we miss anything. */ 1088 na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) + 1089 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED); 1090 if (na == meta->total_disks) 1091 break; 1092 1093 G_RAID_DEBUG1(1, md->mdo_softc, 1094 "Array is not complete (%d of %d), " 1095 "trying to refill.", na, meta->total_disks); 1096 1097 /* Try to get use some of STALE disks. */ 1098 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1099 if (disk->d_state == G_RAID_DISK_S_STALE) { 1100 update += g_raid_md_intel_start_disk(disk); 1101 if (disk->d_state == G_RAID_DISK_S_ACTIVE || 1102 disk->d_state == G_RAID_DISK_S_DISABLED) 1103 break; 1104 } 1105 } 1106 if (disk != NULL) 1107 continue; 1108 1109 /* Try to get use some of SPARE disks. */ 1110 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1111 if (disk->d_state == G_RAID_DISK_S_SPARE) { 1112 update += g_raid_md_intel_start_disk(disk); 1113 if (disk->d_state == G_RAID_DISK_S_ACTIVE) 1114 break; 1115 } 1116 } 1117 } while (disk != NULL); 1118 1119 /* Write new metadata if we changed something. */ 1120 if (update) { 1121 g_raid_md_write_intel(md, NULL, NULL, NULL); 1122 meta = mdi->mdio_meta; 1123 } 1124 1125 /* Update status of our need for spare. */ 1126 mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) + 1127 g_raid_ndisks(sc, G_RAID_DISK_S_DISABLED) < meta->total_disks); 1128 1129 /* Request retaste hoping to find spare. */ 1130 if (mdi->mdio_incomplete) { 1131 task = malloc(sizeof(struct task), 1132 M_MD_INTEL, M_WAITOK | M_ZERO); 1133 TASK_INIT(task, 0, g_disk_md_intel_retaste, task); 1134 taskqueue_enqueue(taskqueue_swi, task); 1135 } 1136 } 1137 1138 static void 1139 g_raid_md_intel_start(struct g_raid_softc *sc) 1140 { 1141 struct g_raid_md_object *md; 1142 struct g_raid_md_intel_object *mdi; 1143 struct g_raid_md_intel_pervolume *pv; 1144 struct g_raid_md_intel_perdisk *pd; 1145 struct intel_raid_conf *meta; 1146 struct intel_raid_vol *mvol; 1147 struct intel_raid_map *mmap; 1148 struct g_raid_volume *vol; 1149 struct g_raid_subdisk *sd; 1150 struct g_raid_disk *disk; 1151 int i, j, disk_pos; 1152 1153 md = sc->sc_md; 1154 mdi = (struct g_raid_md_intel_object *)md; 1155 meta = mdi->mdio_meta; 1156 1157 /* Create volumes and subdisks. */ 1158 for (i = 0; i < meta->total_volumes; i++) { 1159 mvol = intel_get_volume(meta, i); 1160 mmap = intel_get_map(mvol, 0); 1161 vol = g_raid_create_volume(sc, mvol->name, mvol->tid - 1); 1162 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO); 1163 pv->pv_volume_pos = i; 1164 pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0; 1165 pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0; 1166 if (mvol->cng_master_disk < mmap->total_disks) 1167 pv->pv_cng_master_disk = mvol->cng_master_disk; 1168 vol->v_md_data = pv; 1169 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; 1170 if (mmap->type == INTEL_T_RAID0) 1171 vol->v_raid_level = G_RAID_VOLUME_RL_RAID0; 1172 else if (mmap->type == INTEL_T_RAID1 && 1173 mmap->total_domains >= 2 && 1174 mmap->total_domains <= mmap->total_disks) { 1175 /* Assume total_domains is correct. */ 1176 if (mmap->total_domains == mmap->total_disks) 1177 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; 1178 else 1179 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; 1180 } else if (mmap->type == INTEL_T_RAID1) { 1181 /* total_domains looks wrong. */ 1182 if (mmap->total_disks <= 2) 1183 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; 1184 else 1185 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; 1186 } else if (mmap->type == INTEL_T_RAID5) { 1187 vol->v_raid_level = G_RAID_VOLUME_RL_RAID5; 1188 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA; 1189 } else 1190 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1191 vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ 1192 vol->v_disks_count = mmap->total_disks; 1193 vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ 1194 vol->v_sectorsize = 512; //ZZZ 1195 for (j = 0; j < vol->v_disks_count; j++) { 1196 sd = &vol->v_subdisks[j]; 1197 sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ 1198 sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ 1199 } 1200 g_raid_start_volume(vol); 1201 } 1202 1203 /* Create disk placeholders to store data for later writing. */ 1204 for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) { 1205 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1206 pd->pd_disk_pos = disk_pos; 1207 pd->pd_disk_meta = meta->disk[disk_pos]; 1208 disk = g_raid_create_disk(sc); 1209 disk->d_md_data = (void *)pd; 1210 disk->d_state = G_RAID_DISK_S_OFFLINE; 1211 for (i = 0; i < meta->total_volumes; i++) { 1212 mvol = intel_get_volume(meta, i); 1213 mmap = intel_get_map(mvol, 0); 1214 for (j = 0; j < mmap->total_disks; j++) { 1215 if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos) 1216 break; 1217 } 1218 if (j == mmap->total_disks) 1219 continue; 1220 vol = g_raid_md_intel_get_volume(sc, i); 1221 sd = &vol->v_subdisks[j]; 1222 sd->sd_disk = disk; 1223 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1224 } 1225 } 1226 1227 /* Make all disks found till the moment take their places. */ 1228 do { 1229 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1230 if (disk->d_state == G_RAID_DISK_S_NONE) { 1231 g_raid_md_intel_start_disk(disk); 1232 break; 1233 } 1234 } 1235 } while (disk != NULL); 1236 1237 mdi->mdio_started = 1; 1238 G_RAID_DEBUG1(0, sc, "Array started."); 1239 g_raid_md_write_intel(md, NULL, NULL, NULL); 1240 1241 /* Pickup any STALE/SPARE disks to refill array if needed. */ 1242 g_raid_md_intel_refill(sc); 1243 1244 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1245 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1246 G_RAID_EVENT_VOLUME); 1247 } 1248 1249 callout_stop(&mdi->mdio_start_co); 1250 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount); 1251 root_mount_rel(mdi->mdio_rootmount); 1252 mdi->mdio_rootmount = NULL; 1253 } 1254 1255 static void 1256 g_raid_md_intel_new_disk(struct g_raid_disk *disk) 1257 { 1258 struct g_raid_softc *sc; 1259 struct g_raid_md_object *md; 1260 struct g_raid_md_intel_object *mdi; 1261 struct intel_raid_conf *pdmeta; 1262 struct g_raid_md_intel_perdisk *pd; 1263 1264 sc = disk->d_softc; 1265 md = sc->sc_md; 1266 mdi = (struct g_raid_md_intel_object *)md; 1267 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1268 pdmeta = pd->pd_meta; 1269 1270 if (mdi->mdio_started) { 1271 if (g_raid_md_intel_start_disk(disk)) 1272 g_raid_md_write_intel(md, NULL, NULL, NULL); 1273 } else { 1274 /* If we haven't started yet - check metadata freshness. */ 1275 if (mdi->mdio_meta == NULL || 1276 ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) { 1277 G_RAID_DEBUG1(1, sc, "Newer disk"); 1278 if (mdi->mdio_meta != NULL) 1279 free(mdi->mdio_meta, M_MD_INTEL); 1280 mdi->mdio_meta = intel_meta_copy(pdmeta); 1281 mdi->mdio_generation = mdi->mdio_meta->generation; 1282 mdi->mdio_disks_present = 1; 1283 } else if (pdmeta->generation == mdi->mdio_generation) { 1284 mdi->mdio_disks_present++; 1285 G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)", 1286 mdi->mdio_disks_present, 1287 mdi->mdio_meta->total_disks); 1288 } else { 1289 G_RAID_DEBUG1(1, sc, "Older disk"); 1290 } 1291 /* If we collected all needed disks - start array. */ 1292 if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks) 1293 g_raid_md_intel_start(sc); 1294 } 1295 } 1296 1297 static void 1298 g_raid_intel_go(void *arg) 1299 { 1300 struct g_raid_softc *sc; 1301 struct g_raid_md_object *md; 1302 struct g_raid_md_intel_object *mdi; 1303 1304 sc = arg; 1305 md = sc->sc_md; 1306 mdi = (struct g_raid_md_intel_object *)md; 1307 if (!mdi->mdio_started) { 1308 G_RAID_DEBUG1(0, sc, "Force array start due to timeout."); 1309 g_raid_event_send(sc, G_RAID_NODE_E_START, 0); 1310 } 1311 } 1312 1313 static int 1314 g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp, 1315 struct g_geom **gp) 1316 { 1317 struct g_raid_softc *sc; 1318 struct g_raid_md_intel_object *mdi; 1319 char name[16]; 1320 1321 mdi = (struct g_raid_md_intel_object *)md; 1322 mdi->mdio_config_id = mdi->mdio_orig_config_id = arc4random(); 1323 mdi->mdio_generation = 0; 1324 snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id); 1325 sc = g_raid_create_node(mp, name, md); 1326 if (sc == NULL) 1327 return (G_RAID_MD_TASTE_FAIL); 1328 md->mdo_softc = sc; 1329 *gp = sc->sc_geom; 1330 return (G_RAID_MD_TASTE_NEW); 1331 } 1332 1333 /* 1334 * Return the last N characters of the serial label. The Linux and 1335 * ataraid(7) code always uses the last 16 characters of the label to 1336 * store into the Intel meta format. Generalize this to N characters 1337 * since that's easy. Labels can be up to 20 characters for SATA drives 1338 * and up 251 characters for SAS drives. Since intel controllers don't 1339 * support SAS drives, just stick with the SATA limits for stack friendliness. 1340 */ 1341 static int 1342 g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen) 1343 { 1344 char serial_buffer[24]; 1345 int len, error; 1346 1347 len = sizeof(serial_buffer); 1348 error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer); 1349 if (error != 0) 1350 return (error); 1351 len = strlen(serial_buffer); 1352 if (len > serlen) 1353 len -= serlen; 1354 else 1355 len = 0; 1356 strncpy(serial, serial_buffer + len, serlen); 1357 return (0); 1358 } 1359 1360 static int 1361 g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp, 1362 struct g_consumer *cp, struct g_geom **gp) 1363 { 1364 struct g_consumer *rcp; 1365 struct g_provider *pp; 1366 struct g_raid_md_intel_object *mdi, *mdi1; 1367 struct g_raid_softc *sc; 1368 struct g_raid_disk *disk; 1369 struct intel_raid_conf *meta; 1370 struct g_raid_md_intel_perdisk *pd; 1371 struct g_geom *geom; 1372 int error, disk_pos, result, spare, len; 1373 char serial[INTEL_SERIAL_LEN]; 1374 char name[16]; 1375 uint16_t vendor; 1376 1377 G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name); 1378 mdi = (struct g_raid_md_intel_object *)md; 1379 pp = cp->provider; 1380 1381 /* Read metadata from device. */ 1382 meta = NULL; 1383 vendor = 0xffff; 1384 disk_pos = 0; 1385 g_topology_unlock(); 1386 error = g_raid_md_get_label(cp, serial, sizeof(serial)); 1387 if (error != 0) { 1388 G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).", 1389 pp->name, error); 1390 goto fail2; 1391 } 1392 len = 2; 1393 if (pp->geom->rank == 1) 1394 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor); 1395 meta = intel_meta_read(cp); 1396 g_topology_lock(); 1397 if (meta == NULL) { 1398 if (g_raid_aggressive_spare) { 1399 if (vendor != 0x8086) { 1400 G_RAID_DEBUG(1, 1401 "Intel vendor mismatch 0x%04x != 0x8086", 1402 vendor); 1403 } else { 1404 G_RAID_DEBUG(1, 1405 "No Intel metadata, forcing spare."); 1406 spare = 2; 1407 goto search; 1408 } 1409 } 1410 return (G_RAID_MD_TASTE_FAIL); 1411 } 1412 1413 /* Check this disk position in obtained metadata. */ 1414 disk_pos = intel_meta_find_disk(meta, serial); 1415 if (disk_pos < 0) { 1416 G_RAID_DEBUG(1, "Intel serial '%s' not found", serial); 1417 goto fail1; 1418 } 1419 if (intel_get_disk_sectors(&meta->disk[disk_pos]) != 1420 (pp->mediasize / pp->sectorsize)) { 1421 G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju", 1422 intel_get_disk_sectors(&meta->disk[disk_pos]), 1423 (off_t)(pp->mediasize / pp->sectorsize)); 1424 goto fail1; 1425 } 1426 1427 G_RAID_DEBUG(1, "Intel disk position %d", disk_pos); 1428 spare = meta->disk[disk_pos].flags & INTEL_F_SPARE; 1429 1430 search: 1431 /* Search for matching node. */ 1432 sc = NULL; 1433 mdi1 = NULL; 1434 LIST_FOREACH(geom, &mp->geom, geom) { 1435 sc = geom->softc; 1436 if (sc == NULL) 1437 continue; 1438 if (sc->sc_stopping != 0) 1439 continue; 1440 if (sc->sc_md->mdo_class != md->mdo_class) 1441 continue; 1442 mdi1 = (struct g_raid_md_intel_object *)sc->sc_md; 1443 if (spare) { 1444 if (mdi1->mdio_incomplete) 1445 break; 1446 } else { 1447 if (mdi1->mdio_config_id == meta->config_id) 1448 break; 1449 } 1450 } 1451 1452 /* Found matching node. */ 1453 if (geom != NULL) { 1454 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name); 1455 result = G_RAID_MD_TASTE_EXISTING; 1456 1457 } else if (spare) { /* Not found needy node -- left for later. */ 1458 G_RAID_DEBUG(1, "Spare is not needed at this time"); 1459 goto fail1; 1460 1461 } else { /* Not found matching node -- create one. */ 1462 result = G_RAID_MD_TASTE_NEW; 1463 mdi->mdio_config_id = meta->config_id; 1464 mdi->mdio_orig_config_id = meta->orig_config_id; 1465 snprintf(name, sizeof(name), "Intel-%08x", meta->config_id); 1466 sc = g_raid_create_node(mp, name, md); 1467 md->mdo_softc = sc; 1468 geom = sc->sc_geom; 1469 callout_init(&mdi->mdio_start_co, 1); 1470 callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz, 1471 g_raid_intel_go, sc); 1472 mdi->mdio_rootmount = root_mount_hold("GRAID-Intel"); 1473 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount); 1474 } 1475 1476 /* There is no return after this point, so we close passed consumer. */ 1477 g_access(cp, -1, 0, 0); 1478 1479 rcp = g_new_consumer(geom); 1480 rcp->flags |= G_CF_DIRECT_RECEIVE; 1481 g_attach(rcp, pp); 1482 if (g_access(rcp, 1, 1, 1) != 0) 1483 ; //goto fail1; 1484 1485 g_topology_unlock(); 1486 sx_xlock(&sc->sc_lock); 1487 1488 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1489 pd->pd_meta = meta; 1490 pd->pd_disk_pos = -1; 1491 if (spare == 2) { 1492 memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN); 1493 intel_set_disk_sectors(&pd->pd_disk_meta, 1494 pp->mediasize / pp->sectorsize); 1495 pd->pd_disk_meta.id = 0; 1496 pd->pd_disk_meta.flags = INTEL_F_SPARE; 1497 } else { 1498 pd->pd_disk_meta = meta->disk[disk_pos]; 1499 } 1500 disk = g_raid_create_disk(sc); 1501 disk->d_md_data = (void *)pd; 1502 disk->d_consumer = rcp; 1503 rcp->private = disk; 1504 1505 g_raid_get_disk_info(disk); 1506 1507 g_raid_md_intel_new_disk(disk); 1508 1509 sx_xunlock(&sc->sc_lock); 1510 g_topology_lock(); 1511 *gp = geom; 1512 return (result); 1513 fail2: 1514 g_topology_lock(); 1515 fail1: 1516 free(meta, M_MD_INTEL); 1517 return (G_RAID_MD_TASTE_FAIL); 1518 } 1519 1520 static int 1521 g_raid_md_event_intel(struct g_raid_md_object *md, 1522 struct g_raid_disk *disk, u_int event) 1523 { 1524 struct g_raid_softc *sc; 1525 struct g_raid_subdisk *sd; 1526 struct g_raid_md_intel_object *mdi; 1527 struct g_raid_md_intel_perdisk *pd; 1528 1529 sc = md->mdo_softc; 1530 mdi = (struct g_raid_md_intel_object *)md; 1531 if (disk == NULL) { 1532 switch (event) { 1533 case G_RAID_NODE_E_START: 1534 if (!mdi->mdio_started) 1535 g_raid_md_intel_start(sc); 1536 return (0); 1537 } 1538 return (-1); 1539 } 1540 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1541 switch (event) { 1542 case G_RAID_DISK_E_DISCONNECTED: 1543 /* If disk was assigned, just update statuses. */ 1544 if (pd->pd_disk_pos >= 0) { 1545 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 1546 if (disk->d_consumer) { 1547 g_raid_kill_consumer(sc, disk->d_consumer); 1548 disk->d_consumer = NULL; 1549 } 1550 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 1551 g_raid_change_subdisk_state(sd, 1552 G_RAID_SUBDISK_S_NONE); 1553 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 1554 G_RAID_EVENT_SUBDISK); 1555 } 1556 } else { 1557 /* Otherwise -- delete. */ 1558 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); 1559 g_raid_destroy_disk(disk); 1560 } 1561 1562 /* Write updated metadata to all disks. */ 1563 g_raid_md_write_intel(md, NULL, NULL, NULL); 1564 1565 /* Check if anything left except placeholders. */ 1566 if (g_raid_ndisks(sc, -1) == 1567 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 1568 g_raid_destroy_node(sc, 0); 1569 else 1570 g_raid_md_intel_refill(sc); 1571 return (0); 1572 } 1573 return (-2); 1574 } 1575 1576 static int 1577 g_raid_md_ctl_intel(struct g_raid_md_object *md, 1578 struct gctl_req *req) 1579 { 1580 struct g_raid_softc *sc; 1581 struct g_raid_volume *vol, *vol1; 1582 struct g_raid_subdisk *sd; 1583 struct g_raid_disk *disk; 1584 struct g_raid_md_intel_object *mdi; 1585 struct g_raid_md_intel_pervolume *pv; 1586 struct g_raid_md_intel_perdisk *pd; 1587 struct g_consumer *cp; 1588 struct g_provider *pp; 1589 char arg[16], serial[INTEL_SERIAL_LEN]; 1590 const char *nodename, *verb, *volname, *levelname, *diskname; 1591 char *tmp; 1592 int *nargs, *force; 1593 off_t off, size, sectorsize, strip, disk_sectors; 1594 intmax_t *sizearg, *striparg; 1595 int numdisks, i, len, level, qual, update; 1596 int error; 1597 1598 sc = md->mdo_softc; 1599 mdi = (struct g_raid_md_intel_object *)md; 1600 verb = gctl_get_param(req, "verb", NULL); 1601 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); 1602 error = 0; 1603 if (strcmp(verb, "label") == 0) { 1604 1605 if (*nargs < 4) { 1606 gctl_error(req, "Invalid number of arguments."); 1607 return (-1); 1608 } 1609 volname = gctl_get_asciiparam(req, "arg1"); 1610 if (volname == NULL) { 1611 gctl_error(req, "No volume name."); 1612 return (-2); 1613 } 1614 levelname = gctl_get_asciiparam(req, "arg2"); 1615 if (levelname == NULL) { 1616 gctl_error(req, "No RAID level."); 1617 return (-3); 1618 } 1619 if (strcasecmp(levelname, "RAID5") == 0) 1620 levelname = "RAID5-LA"; 1621 if (g_raid_volume_str2level(levelname, &level, &qual)) { 1622 gctl_error(req, "Unknown RAID level '%s'.", levelname); 1623 return (-4); 1624 } 1625 numdisks = *nargs - 3; 1626 force = gctl_get_paraml(req, "force", sizeof(*force)); 1627 if (!g_raid_md_intel_supported(level, qual, numdisks, 1628 force ? *force : 0)) { 1629 gctl_error(req, "Unsupported RAID level " 1630 "(0x%02x/0x%02x), or number of disks (%d).", 1631 level, qual, numdisks); 1632 return (-5); 1633 } 1634 1635 /* Search for disks, connect them and probe. */ 1636 size = 0x7fffffffffffffffllu; 1637 sectorsize = 0; 1638 for (i = 0; i < numdisks; i++) { 1639 snprintf(arg, sizeof(arg), "arg%d", i + 3); 1640 diskname = gctl_get_asciiparam(req, arg); 1641 if (diskname == NULL) { 1642 gctl_error(req, "No disk name (%s).", arg); 1643 error = -6; 1644 break; 1645 } 1646 if (strcmp(diskname, "NONE") == 0) { 1647 cp = NULL; 1648 pp = NULL; 1649 } else { 1650 g_topology_lock(); 1651 cp = g_raid_open_consumer(sc, diskname); 1652 if (cp == NULL) { 1653 gctl_error(req, "Can't open disk '%s'.", 1654 diskname); 1655 g_topology_unlock(); 1656 error = -7; 1657 break; 1658 } 1659 pp = cp->provider; 1660 } 1661 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1662 pd->pd_disk_pos = i; 1663 disk = g_raid_create_disk(sc); 1664 disk->d_md_data = (void *)pd; 1665 disk->d_consumer = cp; 1666 if (cp == NULL) { 1667 strcpy(&pd->pd_disk_meta.serial[0], "NONE"); 1668 pd->pd_disk_meta.id = 0xffffffff; 1669 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED; 1670 continue; 1671 } 1672 cp->private = disk; 1673 g_topology_unlock(); 1674 1675 error = g_raid_md_get_label(cp, 1676 &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN); 1677 if (error != 0) { 1678 gctl_error(req, 1679 "Can't get serial for provider '%s'.", 1680 diskname); 1681 error = -8; 1682 break; 1683 } 1684 1685 g_raid_get_disk_info(disk); 1686 1687 intel_set_disk_sectors(&pd->pd_disk_meta, 1688 pp->mediasize / pp->sectorsize); 1689 if (size > pp->mediasize) 1690 size = pp->mediasize; 1691 if (sectorsize < pp->sectorsize) 1692 sectorsize = pp->sectorsize; 1693 pd->pd_disk_meta.id = 0; 1694 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE; 1695 } 1696 if (error != 0) 1697 return (error); 1698 1699 if (sectorsize <= 0) { 1700 gctl_error(req, "Can't get sector size."); 1701 return (-8); 1702 } 1703 1704 /* Reserve some space for metadata. */ 1705 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize; 1706 1707 /* Handle size argument. */ 1708 len = sizeof(*sizearg); 1709 sizearg = gctl_get_param(req, "size", &len); 1710 if (sizearg != NULL && len == sizeof(*sizearg) && 1711 *sizearg > 0) { 1712 if (*sizearg > size) { 1713 gctl_error(req, "Size too big %lld > %lld.", 1714 (long long)*sizearg, (long long)size); 1715 return (-9); 1716 } 1717 size = *sizearg; 1718 } 1719 1720 /* Handle strip argument. */ 1721 strip = 131072; 1722 len = sizeof(*striparg); 1723 striparg = gctl_get_param(req, "strip", &len); 1724 if (striparg != NULL && len == sizeof(*striparg) && 1725 *striparg > 0) { 1726 if (*striparg < sectorsize) { 1727 gctl_error(req, "Strip size too small."); 1728 return (-10); 1729 } 1730 if (*striparg % sectorsize != 0) { 1731 gctl_error(req, "Incorrect strip size."); 1732 return (-11); 1733 } 1734 if (strip > 65535 * sectorsize) { 1735 gctl_error(req, "Strip size too big."); 1736 return (-12); 1737 } 1738 strip = *striparg; 1739 } 1740 1741 /* Round size down to strip or sector. */ 1742 if (level == G_RAID_VOLUME_RL_RAID1) 1743 size -= (size % sectorsize); 1744 else if (level == G_RAID_VOLUME_RL_RAID1E && 1745 (numdisks & 1) != 0) 1746 size -= (size % (2 * strip)); 1747 else 1748 size -= (size % strip); 1749 if (size <= 0) { 1750 gctl_error(req, "Size too small."); 1751 return (-13); 1752 } 1753 1754 /* We have all we need, create things: volume, ... */ 1755 mdi->mdio_started = 1; 1756 vol = g_raid_create_volume(sc, volname, -1); 1757 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO); 1758 pv->pv_volume_pos = 0; 1759 vol->v_md_data = pv; 1760 vol->v_raid_level = level; 1761 vol->v_raid_level_qualifier = qual; 1762 vol->v_strip_size = strip; 1763 vol->v_disks_count = numdisks; 1764 if (level == G_RAID_VOLUME_RL_RAID0) 1765 vol->v_mediasize = size * numdisks; 1766 else if (level == G_RAID_VOLUME_RL_RAID1) 1767 vol->v_mediasize = size; 1768 else if (level == G_RAID_VOLUME_RL_RAID5) 1769 vol->v_mediasize = size * (numdisks - 1); 1770 else { /* RAID1E */ 1771 vol->v_mediasize = ((size * numdisks) / strip / 2) * 1772 strip; 1773 } 1774 vol->v_sectorsize = sectorsize; 1775 g_raid_start_volume(vol); 1776 1777 /* , and subdisks. */ 1778 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1779 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1780 sd = &vol->v_subdisks[pd->pd_disk_pos]; 1781 sd->sd_disk = disk; 1782 sd->sd_offset = 0; 1783 sd->sd_size = size; 1784 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1785 if (sd->sd_disk->d_consumer != NULL) { 1786 g_raid_change_disk_state(disk, 1787 G_RAID_DISK_S_ACTIVE); 1788 if (level == G_RAID_VOLUME_RL_RAID5) 1789 g_raid_change_subdisk_state(sd, 1790 G_RAID_SUBDISK_S_UNINITIALIZED); 1791 else 1792 g_raid_change_subdisk_state(sd, 1793 G_RAID_SUBDISK_S_ACTIVE); 1794 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1795 G_RAID_EVENT_SUBDISK); 1796 } else { 1797 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 1798 } 1799 } 1800 1801 /* Write metadata based on created entities. */ 1802 G_RAID_DEBUG1(0, sc, "Array started."); 1803 g_raid_md_write_intel(md, NULL, NULL, NULL); 1804 1805 /* Pickup any STALE/SPARE disks to refill array if needed. */ 1806 g_raid_md_intel_refill(sc); 1807 1808 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1809 G_RAID_EVENT_VOLUME); 1810 return (0); 1811 } 1812 if (strcmp(verb, "add") == 0) { 1813 1814 if (*nargs != 3) { 1815 gctl_error(req, "Invalid number of arguments."); 1816 return (-1); 1817 } 1818 volname = gctl_get_asciiparam(req, "arg1"); 1819 if (volname == NULL) { 1820 gctl_error(req, "No volume name."); 1821 return (-2); 1822 } 1823 levelname = gctl_get_asciiparam(req, "arg2"); 1824 if (levelname == NULL) { 1825 gctl_error(req, "No RAID level."); 1826 return (-3); 1827 } 1828 if (strcasecmp(levelname, "RAID5") == 0) 1829 levelname = "RAID5-LA"; 1830 if (g_raid_volume_str2level(levelname, &level, &qual)) { 1831 gctl_error(req, "Unknown RAID level '%s'.", levelname); 1832 return (-4); 1833 } 1834 1835 /* Look for existing volumes. */ 1836 i = 0; 1837 vol1 = NULL; 1838 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1839 vol1 = vol; 1840 i++; 1841 } 1842 if (i > 1) { 1843 gctl_error(req, "Maximum two volumes supported."); 1844 return (-6); 1845 } 1846 if (vol1 == NULL) { 1847 gctl_error(req, "At least one volume must exist."); 1848 return (-7); 1849 } 1850 1851 numdisks = vol1->v_disks_count; 1852 force = gctl_get_paraml(req, "force", sizeof(*force)); 1853 if (!g_raid_md_intel_supported(level, qual, numdisks, 1854 force ? *force : 0)) { 1855 gctl_error(req, "Unsupported RAID level " 1856 "(0x%02x/0x%02x), or number of disks (%d).", 1857 level, qual, numdisks); 1858 return (-5); 1859 } 1860 1861 /* Collect info about present disks. */ 1862 size = 0x7fffffffffffffffllu; 1863 sectorsize = 512; 1864 for (i = 0; i < numdisks; i++) { 1865 disk = vol1->v_subdisks[i].sd_disk; 1866 pd = (struct g_raid_md_intel_perdisk *) 1867 disk->d_md_data; 1868 disk_sectors = 1869 intel_get_disk_sectors(&pd->pd_disk_meta); 1870 1871 if (disk_sectors * 512 < size) 1872 size = disk_sectors * 512; 1873 if (disk->d_consumer != NULL && 1874 disk->d_consumer->provider != NULL && 1875 disk->d_consumer->provider->sectorsize > 1876 sectorsize) { 1877 sectorsize = 1878 disk->d_consumer->provider->sectorsize; 1879 } 1880 } 1881 1882 /* Reserve some space for metadata. */ 1883 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize; 1884 1885 /* Decide insert before or after. */ 1886 sd = &vol1->v_subdisks[0]; 1887 if (sd->sd_offset > 1888 size - (sd->sd_offset + sd->sd_size)) { 1889 off = 0; 1890 size = sd->sd_offset; 1891 } else { 1892 off = sd->sd_offset + sd->sd_size; 1893 size = size - (sd->sd_offset + sd->sd_size); 1894 } 1895 1896 /* Handle strip argument. */ 1897 strip = 131072; 1898 len = sizeof(*striparg); 1899 striparg = gctl_get_param(req, "strip", &len); 1900 if (striparg != NULL && len == sizeof(*striparg) && 1901 *striparg > 0) { 1902 if (*striparg < sectorsize) { 1903 gctl_error(req, "Strip size too small."); 1904 return (-10); 1905 } 1906 if (*striparg % sectorsize != 0) { 1907 gctl_error(req, "Incorrect strip size."); 1908 return (-11); 1909 } 1910 if (strip > 65535 * sectorsize) { 1911 gctl_error(req, "Strip size too big."); 1912 return (-12); 1913 } 1914 strip = *striparg; 1915 } 1916 1917 /* Round offset up to strip. */ 1918 if (off % strip != 0) { 1919 size -= strip - off % strip; 1920 off += strip - off % strip; 1921 } 1922 1923 /* Handle size argument. */ 1924 len = sizeof(*sizearg); 1925 sizearg = gctl_get_param(req, "size", &len); 1926 if (sizearg != NULL && len == sizeof(*sizearg) && 1927 *sizearg > 0) { 1928 if (*sizearg > size) { 1929 gctl_error(req, "Size too big %lld > %lld.", 1930 (long long)*sizearg, (long long)size); 1931 return (-9); 1932 } 1933 size = *sizearg; 1934 } 1935 1936 /* Round size down to strip or sector. */ 1937 if (level == G_RAID_VOLUME_RL_RAID1) 1938 size -= (size % sectorsize); 1939 else 1940 size -= (size % strip); 1941 if (size <= 0) { 1942 gctl_error(req, "Size too small."); 1943 return (-13); 1944 } 1945 if (size > 0xffffffffllu * sectorsize) { 1946 gctl_error(req, "Size too big."); 1947 return (-14); 1948 } 1949 1950 /* We have all we need, create things: volume, ... */ 1951 vol = g_raid_create_volume(sc, volname, -1); 1952 pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO); 1953 pv->pv_volume_pos = i; 1954 vol->v_md_data = pv; 1955 vol->v_raid_level = level; 1956 vol->v_raid_level_qualifier = qual; 1957 vol->v_strip_size = strip; 1958 vol->v_disks_count = numdisks; 1959 if (level == G_RAID_VOLUME_RL_RAID0) 1960 vol->v_mediasize = size * numdisks; 1961 else if (level == G_RAID_VOLUME_RL_RAID1) 1962 vol->v_mediasize = size; 1963 else if (level == G_RAID_VOLUME_RL_RAID5) 1964 vol->v_mediasize = size * (numdisks - 1); 1965 else { /* RAID1E */ 1966 vol->v_mediasize = ((size * numdisks) / strip / 2) * 1967 strip; 1968 } 1969 vol->v_sectorsize = sectorsize; 1970 g_raid_start_volume(vol); 1971 1972 /* , and subdisks. */ 1973 for (i = 0; i < numdisks; i++) { 1974 disk = vol1->v_subdisks[i].sd_disk; 1975 sd = &vol->v_subdisks[i]; 1976 sd->sd_disk = disk; 1977 sd->sd_offset = off; 1978 sd->sd_size = size; 1979 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1980 if (disk->d_state == G_RAID_DISK_S_ACTIVE) { 1981 if (level == G_RAID_VOLUME_RL_RAID5) 1982 g_raid_change_subdisk_state(sd, 1983 G_RAID_SUBDISK_S_UNINITIALIZED); 1984 else 1985 g_raid_change_subdisk_state(sd, 1986 G_RAID_SUBDISK_S_ACTIVE); 1987 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1988 G_RAID_EVENT_SUBDISK); 1989 } 1990 } 1991 1992 /* Write metadata based on created entities. */ 1993 g_raid_md_write_intel(md, NULL, NULL, NULL); 1994 1995 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1996 G_RAID_EVENT_VOLUME); 1997 return (0); 1998 } 1999 if (strcmp(verb, "delete") == 0) { 2000 2001 nodename = gctl_get_asciiparam(req, "arg0"); 2002 if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0) 2003 nodename = NULL; 2004 2005 /* Full node destruction. */ 2006 if (*nargs == 1 && nodename != NULL) { 2007 /* Check if some volume is still open. */ 2008 force = gctl_get_paraml(req, "force", sizeof(*force)); 2009 if (force != NULL && *force == 0 && 2010 g_raid_nopens(sc) != 0) { 2011 gctl_error(req, "Some volume is still open."); 2012 return (-4); 2013 } 2014 2015 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2016 if (disk->d_consumer) 2017 intel_meta_erase(disk->d_consumer); 2018 } 2019 g_raid_destroy_node(sc, 0); 2020 return (0); 2021 } 2022 2023 /* Destroy specified volume. If it was last - all node. */ 2024 if (*nargs > 2) { 2025 gctl_error(req, "Invalid number of arguments."); 2026 return (-1); 2027 } 2028 volname = gctl_get_asciiparam(req, 2029 nodename != NULL ? "arg1" : "arg0"); 2030 if (volname == NULL) { 2031 gctl_error(req, "No volume name."); 2032 return (-2); 2033 } 2034 2035 /* Search for volume. */ 2036 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2037 if (strcmp(vol->v_name, volname) == 0) 2038 break; 2039 pp = vol->v_provider; 2040 if (pp == NULL) 2041 continue; 2042 if (strcmp(pp->name, volname) == 0) 2043 break; 2044 if (strncmp(pp->name, "raid/", 5) == 0 && 2045 strcmp(pp->name + 5, volname) == 0) 2046 break; 2047 } 2048 if (vol == NULL) { 2049 i = strtol(volname, &tmp, 10); 2050 if (verb != volname && tmp[0] == 0) { 2051 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2052 if (vol->v_global_id == i) 2053 break; 2054 } 2055 } 2056 } 2057 if (vol == NULL) { 2058 gctl_error(req, "Volume '%s' not found.", volname); 2059 return (-3); 2060 } 2061 2062 /* Check if volume is still open. */ 2063 force = gctl_get_paraml(req, "force", sizeof(*force)); 2064 if (force != NULL && *force == 0 && 2065 vol->v_provider_open != 0) { 2066 gctl_error(req, "Volume is still open."); 2067 return (-4); 2068 } 2069 2070 /* Destroy volume and potentially node. */ 2071 i = 0; 2072 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next) 2073 i++; 2074 if (i >= 2) { 2075 g_raid_destroy_volume(vol); 2076 g_raid_md_write_intel(md, NULL, NULL, NULL); 2077 } else { 2078 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2079 if (disk->d_consumer) 2080 intel_meta_erase(disk->d_consumer); 2081 } 2082 g_raid_destroy_node(sc, 0); 2083 } 2084 return (0); 2085 } 2086 if (strcmp(verb, "remove") == 0 || 2087 strcmp(verb, "fail") == 0) { 2088 if (*nargs < 2) { 2089 gctl_error(req, "Invalid number of arguments."); 2090 return (-1); 2091 } 2092 for (i = 1; i < *nargs; i++) { 2093 snprintf(arg, sizeof(arg), "arg%d", i); 2094 diskname = gctl_get_asciiparam(req, arg); 2095 if (diskname == NULL) { 2096 gctl_error(req, "No disk name (%s).", arg); 2097 error = -2; 2098 break; 2099 } 2100 if (strncmp(diskname, "/dev/", 5) == 0) 2101 diskname += 5; 2102 2103 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2104 if (disk->d_consumer != NULL && 2105 disk->d_consumer->provider != NULL && 2106 strcmp(disk->d_consumer->provider->name, 2107 diskname) == 0) 2108 break; 2109 } 2110 if (disk == NULL) { 2111 gctl_error(req, "Disk '%s' not found.", 2112 diskname); 2113 error = -3; 2114 break; 2115 } 2116 2117 if (strcmp(verb, "fail") == 0) { 2118 g_raid_md_fail_disk_intel(md, NULL, disk); 2119 continue; 2120 } 2121 2122 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2123 2124 /* Erase metadata on deleting disk. */ 2125 intel_meta_erase(disk->d_consumer); 2126 2127 /* If disk was assigned, just update statuses. */ 2128 if (pd->pd_disk_pos >= 0) { 2129 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 2130 g_raid_kill_consumer(sc, disk->d_consumer); 2131 disk->d_consumer = NULL; 2132 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2133 g_raid_change_subdisk_state(sd, 2134 G_RAID_SUBDISK_S_NONE); 2135 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2136 G_RAID_EVENT_SUBDISK); 2137 } 2138 } else { 2139 /* Otherwise -- delete. */ 2140 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); 2141 g_raid_destroy_disk(disk); 2142 } 2143 } 2144 2145 /* Write updated metadata to remaining disks. */ 2146 g_raid_md_write_intel(md, NULL, NULL, NULL); 2147 2148 /* Check if anything left except placeholders. */ 2149 if (g_raid_ndisks(sc, -1) == 2150 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 2151 g_raid_destroy_node(sc, 0); 2152 else 2153 g_raid_md_intel_refill(sc); 2154 return (error); 2155 } 2156 if (strcmp(verb, "insert") == 0) { 2157 if (*nargs < 2) { 2158 gctl_error(req, "Invalid number of arguments."); 2159 return (-1); 2160 } 2161 update = 0; 2162 for (i = 1; i < *nargs; i++) { 2163 /* Get disk name. */ 2164 snprintf(arg, sizeof(arg), "arg%d", i); 2165 diskname = gctl_get_asciiparam(req, arg); 2166 if (diskname == NULL) { 2167 gctl_error(req, "No disk name (%s).", arg); 2168 error = -3; 2169 break; 2170 } 2171 2172 /* Try to find provider with specified name. */ 2173 g_topology_lock(); 2174 cp = g_raid_open_consumer(sc, diskname); 2175 if (cp == NULL) { 2176 gctl_error(req, "Can't open disk '%s'.", 2177 diskname); 2178 g_topology_unlock(); 2179 error = -4; 2180 break; 2181 } 2182 pp = cp->provider; 2183 g_topology_unlock(); 2184 2185 /* Read disk serial. */ 2186 error = g_raid_md_get_label(cp, 2187 &serial[0], INTEL_SERIAL_LEN); 2188 if (error != 0) { 2189 gctl_error(req, 2190 "Can't get serial for provider '%s'.", 2191 diskname); 2192 g_raid_kill_consumer(sc, cp); 2193 error = -7; 2194 break; 2195 } 2196 2197 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 2198 pd->pd_disk_pos = -1; 2199 2200 disk = g_raid_create_disk(sc); 2201 disk->d_consumer = cp; 2202 disk->d_md_data = (void *)pd; 2203 cp->private = disk; 2204 2205 g_raid_get_disk_info(disk); 2206 2207 memcpy(&pd->pd_disk_meta.serial[0], &serial[0], 2208 INTEL_SERIAL_LEN); 2209 intel_set_disk_sectors(&pd->pd_disk_meta, 2210 pp->mediasize / pp->sectorsize); 2211 pd->pd_disk_meta.id = 0; 2212 pd->pd_disk_meta.flags = INTEL_F_SPARE; 2213 2214 /* Welcome the "new" disk. */ 2215 update += g_raid_md_intel_start_disk(disk); 2216 if (disk->d_state == G_RAID_DISK_S_SPARE) { 2217 intel_meta_write_spare(cp, &pd->pd_disk_meta); 2218 g_raid_destroy_disk(disk); 2219 } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2220 gctl_error(req, "Disk '%s' doesn't fit.", 2221 diskname); 2222 g_raid_destroy_disk(disk); 2223 error = -8; 2224 break; 2225 } 2226 } 2227 2228 /* Write new metadata if we changed something. */ 2229 if (update) 2230 g_raid_md_write_intel(md, NULL, NULL, NULL); 2231 return (error); 2232 } 2233 return (-100); 2234 } 2235 2236 static int 2237 g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol, 2238 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 2239 { 2240 struct g_raid_softc *sc; 2241 struct g_raid_volume *vol; 2242 struct g_raid_subdisk *sd; 2243 struct g_raid_disk *disk; 2244 struct g_raid_md_intel_object *mdi; 2245 struct g_raid_md_intel_pervolume *pv; 2246 struct g_raid_md_intel_perdisk *pd; 2247 struct intel_raid_conf *meta; 2248 struct intel_raid_vol *mvol; 2249 struct intel_raid_map *mmap0, *mmap1; 2250 off_t sectorsize = 512, pos; 2251 const char *version, *cv; 2252 int vi, sdi, numdisks, len, state, stale; 2253 2254 sc = md->mdo_softc; 2255 mdi = (struct g_raid_md_intel_object *)md; 2256 2257 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2258 return (0); 2259 2260 /* Bump generation. Newly written metadata may differ from previous. */ 2261 mdi->mdio_generation++; 2262 2263 /* Count number of disks. */ 2264 numdisks = 0; 2265 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2266 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2267 if (pd->pd_disk_pos < 0) 2268 continue; 2269 numdisks++; 2270 if (disk->d_state == G_RAID_DISK_S_ACTIVE) { 2271 pd->pd_disk_meta.flags = 2272 INTEL_F_ONLINE | INTEL_F_ASSIGNED; 2273 } else if (disk->d_state == G_RAID_DISK_S_FAILED) { 2274 pd->pd_disk_meta.flags = INTEL_F_FAILED | 2275 INTEL_F_ASSIGNED; 2276 } else if (disk->d_state == G_RAID_DISK_S_DISABLED) { 2277 pd->pd_disk_meta.flags = INTEL_F_FAILED | 2278 INTEL_F_ASSIGNED | INTEL_F_DISABLED; 2279 } else { 2280 if (!(pd->pd_disk_meta.flags & INTEL_F_DISABLED)) 2281 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED; 2282 if (pd->pd_disk_meta.id != 0xffffffff) { 2283 pd->pd_disk_meta.id = 0xffffffff; 2284 len = strlen(pd->pd_disk_meta.serial); 2285 len = min(len, INTEL_SERIAL_LEN - 3); 2286 strcpy(pd->pd_disk_meta.serial + len, ":0"); 2287 } 2288 } 2289 } 2290 2291 /* Fill anchor and disks. */ 2292 meta = malloc(INTEL_MAX_MD_SIZE(numdisks), 2293 M_MD_INTEL, M_WAITOK | M_ZERO); 2294 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1); 2295 meta->config_size = INTEL_MAX_MD_SIZE(numdisks); 2296 meta->config_id = mdi->mdio_config_id; 2297 meta->orig_config_id = mdi->mdio_orig_config_id; 2298 meta->generation = mdi->mdio_generation; 2299 meta->attributes = INTEL_ATTR_CHECKSUM; 2300 meta->total_disks = numdisks; 2301 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2302 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2303 if (pd->pd_disk_pos < 0) 2304 continue; 2305 meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta; 2306 if (pd->pd_disk_meta.sectors_hi != 0) 2307 meta->attributes |= INTEL_ATTR_2TB_DISK; 2308 } 2309 2310 /* Fill volumes and maps. */ 2311 vi = 0; 2312 version = INTEL_VERSION_1000; 2313 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2314 pv = vol->v_md_data; 2315 if (vol->v_stopping) 2316 continue; 2317 mvol = intel_get_volume(meta, vi); 2318 2319 /* New metadata may have different volumes order. */ 2320 pv->pv_volume_pos = vi; 2321 2322 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2323 sd = &vol->v_subdisks[sdi]; 2324 if (sd->sd_disk != NULL) 2325 break; 2326 } 2327 if (sdi >= vol->v_disks_count) 2328 panic("No any filled subdisk in volume"); 2329 if (vol->v_mediasize >= 0x20000000000llu) 2330 meta->attributes |= INTEL_ATTR_2TB; 2331 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) 2332 meta->attributes |= INTEL_ATTR_RAID0; 2333 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2334 meta->attributes |= INTEL_ATTR_RAID1; 2335 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) 2336 meta->attributes |= INTEL_ATTR_RAID5; 2337 else if ((vol->v_disks_count & 1) == 0) 2338 meta->attributes |= INTEL_ATTR_RAID10; 2339 else 2340 meta->attributes |= INTEL_ATTR_RAID1E; 2341 if (pv->pv_cng) 2342 meta->attributes |= INTEL_ATTR_RAIDCNG; 2343 if (vol->v_strip_size > 131072) 2344 meta->attributes |= INTEL_ATTR_EXT_STRIP; 2345 2346 if (pv->pv_cng) 2347 cv = INTEL_VERSION_1206; 2348 else if (vol->v_disks_count > 4) 2349 cv = INTEL_VERSION_1204; 2350 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) 2351 cv = INTEL_VERSION_1202; 2352 else if (vol->v_disks_count > 2) 2353 cv = INTEL_VERSION_1201; 2354 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2355 cv = INTEL_VERSION_1100; 2356 else 2357 cv = INTEL_VERSION_1000; 2358 if (strcmp(cv, version) > 0) 2359 version = cv; 2360 2361 strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name)); 2362 mvol->total_sectors = vol->v_mediasize / sectorsize; 2363 mvol->state = (INTEL_ST_READ_COALESCING | 2364 INTEL_ST_WRITE_COALESCING); 2365 mvol->tid = vol->v_global_id + 1; 2366 if (pv->pv_cng) { 2367 mvol->state |= INTEL_ST_CLONE_N_GO; 2368 if (pv->pv_cng_man_sync) 2369 mvol->state |= INTEL_ST_CLONE_MAN_SYNC; 2370 mvol->cng_master_disk = pv->pv_cng_master_disk; 2371 if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state == 2372 G_RAID_SUBDISK_S_NONE) 2373 mvol->cng_state = INTEL_CNGST_MASTER_MISSING; 2374 else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL) 2375 mvol->cng_state = INTEL_CNGST_NEEDS_UPDATE; 2376 else 2377 mvol->cng_state = INTEL_CNGST_UPDATED; 2378 } 2379 2380 /* Check for any recovery in progress. */ 2381 state = G_RAID_SUBDISK_S_ACTIVE; 2382 pos = 0x7fffffffffffffffllu; 2383 stale = 0; 2384 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2385 sd = &vol->v_subdisks[sdi]; 2386 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) 2387 state = G_RAID_SUBDISK_S_REBUILD; 2388 else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC && 2389 state != G_RAID_SUBDISK_S_REBUILD) 2390 state = G_RAID_SUBDISK_S_RESYNC; 2391 else if (sd->sd_state == G_RAID_SUBDISK_S_STALE) 2392 stale = 1; 2393 if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2394 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) && 2395 sd->sd_rebuild_pos < pos) 2396 pos = sd->sd_rebuild_pos; 2397 } 2398 if (state == G_RAID_SUBDISK_S_REBUILD) { 2399 mvol->migr_state = 1; 2400 mvol->migr_type = INTEL_MT_REBUILD; 2401 } else if (state == G_RAID_SUBDISK_S_RESYNC) { 2402 mvol->migr_state = 1; 2403 /* mvol->migr_type = INTEL_MT_REPAIR; */ 2404 mvol->migr_type = INTEL_MT_VERIFY; 2405 mvol->state |= INTEL_ST_VERIFY_AND_FIX; 2406 } else 2407 mvol->migr_state = 0; 2408 mvol->dirty = (vol->v_dirty || stale); 2409 2410 mmap0 = intel_get_map(mvol, 0); 2411 2412 /* Write map / common part of two maps. */ 2413 intel_set_map_offset(mmap0, sd->sd_offset / sectorsize); 2414 intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize); 2415 mmap0->strip_sectors = vol->v_strip_size / sectorsize; 2416 if (vol->v_state == G_RAID_VOLUME_S_BROKEN) 2417 mmap0->status = INTEL_S_FAILURE; 2418 else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED) 2419 mmap0->status = INTEL_S_DEGRADED; 2420 else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED) 2421 == g_raid_nsubdisks(vol, -1)) 2422 mmap0->status = INTEL_S_UNINITIALIZED; 2423 else 2424 mmap0->status = INTEL_S_READY; 2425 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) 2426 mmap0->type = INTEL_T_RAID0; 2427 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 2428 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 2429 mmap0->type = INTEL_T_RAID1; 2430 else 2431 mmap0->type = INTEL_T_RAID5; 2432 mmap0->total_disks = vol->v_disks_count; 2433 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2434 mmap0->total_domains = vol->v_disks_count; 2435 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 2436 mmap0->total_domains = 2; 2437 else 2438 mmap0->total_domains = 1; 2439 intel_set_map_stripe_count(mmap0, 2440 sd->sd_size / vol->v_strip_size / mmap0->total_domains); 2441 mmap0->failed_disk_num = 0xff; 2442 mmap0->ddf = 1; 2443 2444 /* If there are two maps - copy common and update. */ 2445 if (mvol->migr_state) { 2446 intel_set_vol_curr_migr_unit(mvol, 2447 pos / vol->v_strip_size / mmap0->total_domains); 2448 mmap1 = intel_get_map(mvol, 1); 2449 memcpy(mmap1, mmap0, sizeof(struct intel_raid_map)); 2450 mmap0->status = INTEL_S_READY; 2451 } else 2452 mmap1 = NULL; 2453 2454 /* Write disk indexes and put rebuild flags. */ 2455 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2456 sd = &vol->v_subdisks[sdi]; 2457 pd = (struct g_raid_md_intel_perdisk *) 2458 sd->sd_disk->d_md_data; 2459 mmap0->disk_idx[sdi] = pd->pd_disk_pos; 2460 if (mvol->migr_state) 2461 mmap1->disk_idx[sdi] = pd->pd_disk_pos; 2462 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2463 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2464 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD; 2465 } else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE && 2466 sd->sd_state != G_RAID_SUBDISK_S_STALE && 2467 sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) { 2468 mmap0->disk_idx[sdi] |= INTEL_DI_RBLD; 2469 if (mvol->migr_state) 2470 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD; 2471 } 2472 if ((sd->sd_state == G_RAID_SUBDISK_S_NONE || 2473 sd->sd_state == G_RAID_SUBDISK_S_FAILED || 2474 sd->sd_state == G_RAID_SUBDISK_S_REBUILD) && 2475 mmap0->failed_disk_num == 0xff) { 2476 mmap0->failed_disk_num = sdi; 2477 if (mvol->migr_state) 2478 mmap1->failed_disk_num = sdi; 2479 } 2480 } 2481 vi++; 2482 } 2483 meta->total_volumes = vi; 2484 if (vi > 1 || meta->attributes & 2485 (INTEL_ATTR_EXT_STRIP | INTEL_ATTR_2TB_DISK | INTEL_ATTR_2TB)) 2486 version = INTEL_VERSION_1300; 2487 if (strcmp(version, INTEL_VERSION_1300) < 0) 2488 meta->attributes &= INTEL_ATTR_CHECKSUM; 2489 memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1); 2490 2491 /* We are done. Print meta data and store them to disks. */ 2492 g_raid_md_intel_print(meta); 2493 if (mdi->mdio_meta != NULL) 2494 free(mdi->mdio_meta, M_MD_INTEL); 2495 mdi->mdio_meta = meta; 2496 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2497 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2498 if (disk->d_state != G_RAID_DISK_S_ACTIVE) 2499 continue; 2500 if (pd->pd_meta != NULL) { 2501 free(pd->pd_meta, M_MD_INTEL); 2502 pd->pd_meta = NULL; 2503 } 2504 pd->pd_meta = intel_meta_copy(meta); 2505 intel_meta_write(disk->d_consumer, meta); 2506 } 2507 return (0); 2508 } 2509 2510 static int 2511 g_raid_md_fail_disk_intel(struct g_raid_md_object *md, 2512 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 2513 { 2514 struct g_raid_softc *sc; 2515 struct g_raid_md_intel_object *mdi; 2516 struct g_raid_md_intel_perdisk *pd; 2517 struct g_raid_subdisk *sd; 2518 2519 sc = md->mdo_softc; 2520 mdi = (struct g_raid_md_intel_object *)md; 2521 pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data; 2522 2523 /* We can't fail disk that is not a part of array now. */ 2524 if (pd->pd_disk_pos < 0) 2525 return (-1); 2526 2527 /* 2528 * Mark disk as failed in metadata and try to write that metadata 2529 * to the disk itself to prevent it's later resurrection as STALE. 2530 */ 2531 mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED; 2532 pd->pd_disk_meta.flags = INTEL_F_FAILED; 2533 g_raid_md_intel_print(mdi->mdio_meta); 2534 if (tdisk->d_consumer) 2535 intel_meta_write(tdisk->d_consumer, mdi->mdio_meta); 2536 2537 /* Change states. */ 2538 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED); 2539 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) { 2540 g_raid_change_subdisk_state(sd, 2541 G_RAID_SUBDISK_S_FAILED); 2542 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED, 2543 G_RAID_EVENT_SUBDISK); 2544 } 2545 2546 /* Write updated metadata to remaining disks. */ 2547 g_raid_md_write_intel(md, NULL, NULL, tdisk); 2548 2549 /* Check if anything left except placeholders. */ 2550 if (g_raid_ndisks(sc, -1) == 2551 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 2552 g_raid_destroy_node(sc, 0); 2553 else 2554 g_raid_md_intel_refill(sc); 2555 return (0); 2556 } 2557 2558 static int 2559 g_raid_md_free_disk_intel(struct g_raid_md_object *md, 2560 struct g_raid_disk *disk) 2561 { 2562 struct g_raid_md_intel_perdisk *pd; 2563 2564 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2565 if (pd->pd_meta != NULL) { 2566 free(pd->pd_meta, M_MD_INTEL); 2567 pd->pd_meta = NULL; 2568 } 2569 free(pd, M_MD_INTEL); 2570 disk->d_md_data = NULL; 2571 return (0); 2572 } 2573 2574 static int 2575 g_raid_md_free_volume_intel(struct g_raid_md_object *md, 2576 struct g_raid_volume *vol) 2577 { 2578 struct g_raid_md_intel_pervolume *pv; 2579 2580 pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data; 2581 free(pv, M_MD_INTEL); 2582 vol->v_md_data = NULL; 2583 return (0); 2584 } 2585 2586 static int 2587 g_raid_md_free_intel(struct g_raid_md_object *md) 2588 { 2589 struct g_raid_md_intel_object *mdi; 2590 2591 mdi = (struct g_raid_md_intel_object *)md; 2592 if (!mdi->mdio_started) { 2593 mdi->mdio_started = 0; 2594 callout_stop(&mdi->mdio_start_co); 2595 G_RAID_DEBUG1(1, md->mdo_softc, 2596 "root_mount_rel %p", mdi->mdio_rootmount); 2597 root_mount_rel(mdi->mdio_rootmount); 2598 mdi->mdio_rootmount = NULL; 2599 } 2600 if (mdi->mdio_meta != NULL) { 2601 free(mdi->mdio_meta, M_MD_INTEL); 2602 mdi->mdio_meta = NULL; 2603 } 2604 return (0); 2605 } 2606 2607 G_RAID_MD_DECLARE(intel, "Intel"); 2608