1 /*- 2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/endian.h> 33 #include <sys/kernel.h> 34 #include <sys/kobj.h> 35 #include <sys/limits.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mutex.h> 39 #include <sys/systm.h> 40 #include <sys/taskqueue.h> 41 #include <geom/geom.h> 42 #include "geom/raid/g_raid.h" 43 #include "g_raid_md_if.h" 44 45 static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata"); 46 47 struct intel_raid_map { 48 uint32_t offset; 49 uint32_t disk_sectors; 50 uint32_t stripe_count; 51 uint16_t strip_sectors; 52 uint8_t status; 53 #define INTEL_S_READY 0x00 54 #define INTEL_S_UNINITIALIZED 0x01 55 #define INTEL_S_DEGRADED 0x02 56 #define INTEL_S_FAILURE 0x03 57 58 uint8_t type; 59 #define INTEL_T_RAID0 0x00 60 #define INTEL_T_RAID1 0x01 61 #define INTEL_T_RAID5 0x05 62 63 uint8_t total_disks; 64 uint8_t total_domains; 65 uint8_t failed_disk_num; 66 uint8_t ddf; 67 uint32_t filler_2[7]; 68 uint32_t disk_idx[1]; /* total_disks entries. */ 69 #define INTEL_DI_IDX 0x00ffffff 70 #define INTEL_DI_RBLD 0x01000000 71 } __packed; 72 73 struct intel_raid_vol { 74 uint8_t name[16]; 75 u_int64_t total_sectors __packed; 76 uint32_t state; 77 #define INTEL_ST_BOOTABLE 0x00000001 78 #define INTEL_ST_BOOT_DEVICE 0x00000002 79 #define INTEL_ST_READ_COALESCING 0x00000004 80 #define INTEL_ST_WRITE_COALESCING 0x00000008 81 #define INTEL_ST_LAST_SHUTDOWN_DIRTY 0x00000010 82 #define INTEL_ST_HIDDEN_AT_BOOT 0x00000020 83 #define INTEL_ST_CURRENTLY_HIDDEN 0x00000040 84 #define INTEL_ST_VERIFY_AND_FIX 0x00000080 85 #define INTEL_ST_MAP_STATE_UNINIT 0x00000100 86 #define INTEL_ST_NO_AUTO_RECOVERY 0x00000200 87 #define INTEL_ST_CLONE_N_GO 0x00000400 88 #define INTEL_ST_CLONE_MAN_SYNC 0x00000800 89 #define INTEL_ST_CNG_MASTER_DISK_NUM 0x00001000 90 uint32_t reserved; 91 uint8_t migr_priority; 92 uint8_t num_sub_vols; 93 uint8_t tid; 94 uint8_t cng_master_disk; 95 uint16_t cache_policy; 96 uint8_t cng_state; 97 uint8_t cng_sub_state; 98 uint32_t filler_0[10]; 99 100 uint32_t curr_migr_unit; 101 uint32_t checkpoint_id; 102 uint8_t migr_state; 103 uint8_t migr_type; 104 #define INTEL_MT_INIT 0 105 #define INTEL_MT_REBUILD 1 106 #define INTEL_MT_VERIFY 2 107 #define INTEL_MT_GEN_MIGR 3 108 #define INTEL_MT_STATE_CHANGE 4 109 #define INTEL_MT_REPAIR 5 110 uint8_t dirty; 111 uint8_t fs_state; 112 uint16_t verify_errors; 113 uint16_t bad_blocks; 114 uint32_t filler_1[4]; 115 struct intel_raid_map map[1]; /* 2 entries if migr_state != 0. */ 116 } __packed; 117 118 struct intel_raid_disk { 119 #define INTEL_SERIAL_LEN 16 120 uint8_t serial[INTEL_SERIAL_LEN]; 121 uint32_t sectors; 122 uint32_t id; 123 uint32_t flags; 124 #define INTEL_F_SPARE 0x01 125 #define INTEL_F_ASSIGNED 0x02 126 #define INTEL_F_FAILED 0x04 127 #define INTEL_F_ONLINE 0x08 128 129 uint32_t filler[5]; 130 } __packed; 131 132 struct intel_raid_conf { 133 uint8_t intel_id[24]; 134 #define INTEL_MAGIC "Intel Raid ISM Cfg Sig. " 135 136 uint8_t version[6]; 137 #define INTEL_VERSION_1000 "1.0.00" /* RAID0 */ 138 #define INTEL_VERSION_1100 "1.1.00" /* RAID1 */ 139 #define INTEL_VERSION_1200 "1.2.00" /* Many volumes */ 140 #define INTEL_VERSION_1201 "1.2.01" /* 3 or 4 disks */ 141 #define INTEL_VERSION_1202 "1.2.02" /* RAID5 */ 142 #define INTEL_VERSION_1204 "1.2.04" /* 5 or 6 disks */ 143 #define INTEL_VERSION_1206 "1.2.06" /* CNG */ 144 #define INTEL_VERSION_1300 "1.3.00" /* Attributes */ 145 146 uint8_t dummy_0[2]; 147 uint32_t checksum; 148 uint32_t config_size; 149 uint32_t config_id; 150 uint32_t generation; 151 uint32_t error_log_size; 152 uint32_t attributes; 153 #define INTEL_ATTR_RAID0 0x00000001 154 #define INTEL_ATTR_RAID1 0x00000002 155 #define INTEL_ATTR_RAID10 0x00000004 156 #define INTEL_ATTR_RAID1E 0x00000008 157 #define INTEL_ATTR_RAID5 0x00000010 158 #define INTEL_ATTR_RAIDCNG 0x00000020 159 #define INTEL_ATTR_2TB 0x20000000 160 #define INTEL_ATTR_PM 0x40000000 161 #define INTEL_ATTR_CHECKSUM 0x80000000 162 163 uint8_t total_disks; 164 uint8_t total_volumes; 165 uint8_t dummy_2[2]; 166 uint32_t filler_0[39]; 167 struct intel_raid_disk disk[1]; /* total_disks entries. */ 168 /* Here goes total_volumes of struct intel_raid_vol. */ 169 } __packed; 170 171 #define INTEL_MAX_MD_SIZE(ndisks) \ 172 (sizeof(struct intel_raid_conf) + \ 173 sizeof(struct intel_raid_disk) * (ndisks - 1) + \ 174 sizeof(struct intel_raid_vol) * 2 + \ 175 sizeof(struct intel_raid_map) * 2 + \ 176 sizeof(uint32_t) * (ndisks - 1) * 4) 177 178 struct g_raid_md_intel_perdisk { 179 struct intel_raid_conf *pd_meta; 180 int pd_disk_pos; 181 struct intel_raid_disk pd_disk_meta; 182 }; 183 184 struct g_raid_md_intel_object { 185 struct g_raid_md_object mdio_base; 186 uint32_t mdio_config_id; 187 uint32_t mdio_generation; 188 struct intel_raid_conf *mdio_meta; 189 struct callout mdio_start_co; /* STARTING state timer. */ 190 int mdio_disks_present; 191 int mdio_started; 192 int mdio_incomplete; 193 struct root_hold_token *mdio_rootmount; /* Root mount delay token. */ 194 }; 195 196 static g_raid_md_create_t g_raid_md_create_intel; 197 static g_raid_md_taste_t g_raid_md_taste_intel; 198 static g_raid_md_event_t g_raid_md_event_intel; 199 static g_raid_md_ctl_t g_raid_md_ctl_intel; 200 static g_raid_md_write_t g_raid_md_write_intel; 201 static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel; 202 static g_raid_md_free_disk_t g_raid_md_free_disk_intel; 203 static g_raid_md_free_t g_raid_md_free_intel; 204 205 static kobj_method_t g_raid_md_intel_methods[] = { 206 KOBJMETHOD(g_raid_md_create, g_raid_md_create_intel), 207 KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_intel), 208 KOBJMETHOD(g_raid_md_event, g_raid_md_event_intel), 209 KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_intel), 210 KOBJMETHOD(g_raid_md_write, g_raid_md_write_intel), 211 KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_intel), 212 KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_intel), 213 KOBJMETHOD(g_raid_md_free, g_raid_md_free_intel), 214 { 0, 0 } 215 }; 216 217 static struct g_raid_md_class g_raid_md_intel_class = { 218 "Intel", 219 g_raid_md_intel_methods, 220 sizeof(struct g_raid_md_intel_object), 221 .mdc_priority = 100 222 }; 223 224 225 static struct intel_raid_map * 226 intel_get_map(struct intel_raid_vol *mvol, int i) 227 { 228 struct intel_raid_map *mmap; 229 230 if (i > (mvol->migr_state ? 1 : 0)) 231 return (NULL); 232 mmap = &mvol->map[0]; 233 for (; i > 0; i--) { 234 mmap = (struct intel_raid_map *) 235 &mmap->disk_idx[mmap->total_disks]; 236 } 237 return ((struct intel_raid_map *)mmap); 238 } 239 240 static struct intel_raid_vol * 241 intel_get_volume(struct intel_raid_conf *meta, int i) 242 { 243 struct intel_raid_vol *mvol; 244 struct intel_raid_map *mmap; 245 246 if (i > 1) 247 return (NULL); 248 mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks]; 249 for (; i > 0; i--) { 250 mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0); 251 mvol = (struct intel_raid_vol *) 252 &mmap->disk_idx[mmap->total_disks]; 253 } 254 return (mvol); 255 } 256 257 static void 258 g_raid_md_intel_print(struct intel_raid_conf *meta) 259 { 260 struct intel_raid_vol *mvol; 261 struct intel_raid_map *mmap; 262 int i, j, k; 263 264 if (g_raid_debug < 1) 265 return; 266 267 printf("********* ATA Intel MatrixRAID Metadata *********\n"); 268 printf("intel_id <%.24s>\n", meta->intel_id); 269 printf("version <%.6s>\n", meta->version); 270 printf("checksum 0x%08x\n", meta->checksum); 271 printf("config_size 0x%08x\n", meta->config_size); 272 printf("config_id 0x%08x\n", meta->config_id); 273 printf("generation 0x%08x\n", meta->generation); 274 printf("attributes 0x%08x\n", meta->attributes); 275 printf("total_disks %u\n", meta->total_disks); 276 printf("total_volumes %u\n", meta->total_volumes); 277 printf("DISK# serial disk_sectors disk_id flags\n"); 278 for (i = 0; i < meta->total_disks; i++ ) { 279 printf(" %d <%.16s> %u 0x%08x 0x%08x\n", i, 280 meta->disk[i].serial, meta->disk[i].sectors, 281 meta->disk[i].id, meta->disk[i].flags); 282 } 283 for (i = 0; i < meta->total_volumes; i++) { 284 mvol = intel_get_volume(meta, i); 285 printf(" ****** Volume %d ******\n", i); 286 printf(" name %.16s\n", mvol->name); 287 printf(" total_sectors %ju\n", mvol->total_sectors); 288 printf(" state %u\n", mvol->state); 289 printf(" reserved %u\n", mvol->reserved); 290 printf(" curr_migr_unit %u\n", mvol->curr_migr_unit); 291 printf(" checkpoint_id %u\n", mvol->checkpoint_id); 292 printf(" migr_state %u\n", mvol->migr_state); 293 printf(" migr_type %u\n", mvol->migr_type); 294 printf(" dirty %u\n", mvol->dirty); 295 296 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) { 297 printf(" *** Map %d ***\n", j); 298 mmap = intel_get_map(mvol, j); 299 printf(" offset %u\n", mmap->offset); 300 printf(" disk_sectors %u\n", mmap->disk_sectors); 301 printf(" stripe_count %u\n", mmap->stripe_count); 302 printf(" strip_sectors %u\n", mmap->strip_sectors); 303 printf(" status %u\n", mmap->status); 304 printf(" type %u\n", mmap->type); 305 printf(" total_disks %u\n", mmap->total_disks); 306 printf(" total_domains %u\n", mmap->total_domains); 307 printf(" failed_disk_num %u\n", mmap->failed_disk_num); 308 printf(" ddf %u\n", mmap->ddf); 309 printf(" disk_idx "); 310 for (k = 0; k < mmap->total_disks; k++) 311 printf(" 0x%08x", mmap->disk_idx[k]); 312 printf("\n"); 313 } 314 } 315 printf("=================================================\n"); 316 } 317 318 static struct intel_raid_conf * 319 intel_meta_copy(struct intel_raid_conf *meta) 320 { 321 struct intel_raid_conf *nmeta; 322 323 nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK); 324 memcpy(nmeta, meta, meta->config_size); 325 return (nmeta); 326 } 327 328 static int 329 intel_meta_find_disk(struct intel_raid_conf *meta, char *serial) 330 { 331 int pos; 332 333 for (pos = 0; pos < meta->total_disks; pos++) { 334 if (strncmp(meta->disk[pos].serial, 335 serial, INTEL_SERIAL_LEN) == 0) 336 return (pos); 337 } 338 return (-1); 339 } 340 341 static struct intel_raid_conf * 342 intel_meta_read(struct g_consumer *cp) 343 { 344 struct g_provider *pp; 345 struct intel_raid_conf *meta; 346 struct intel_raid_vol *mvol; 347 struct intel_raid_map *mmap; 348 char *buf; 349 int error, i, j, k, left, size; 350 uint32_t checksum, *ptr; 351 352 pp = cp->provider; 353 354 /* Read the anchor sector. */ 355 buf = g_read_data(cp, 356 pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error); 357 if (buf == NULL) { 358 G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).", 359 pp->name, error); 360 return (NULL); 361 } 362 meta = (struct intel_raid_conf *)buf; 363 364 /* Check if this is an Intel RAID struct */ 365 if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) { 366 G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name); 367 g_free(buf); 368 return (NULL); 369 } 370 if (meta->config_size > 65536 || 371 meta->config_size < sizeof(struct intel_raid_conf)) { 372 G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d", 373 meta->config_size); 374 g_free(buf); 375 return (NULL); 376 } 377 size = meta->config_size; 378 meta = malloc(size, M_MD_INTEL, M_WAITOK); 379 memcpy(meta, buf, min(size, pp->sectorsize)); 380 g_free(buf); 381 382 /* Read all the rest, if needed. */ 383 if (meta->config_size > pp->sectorsize) { 384 left = (meta->config_size - 1) / pp->sectorsize; 385 buf = g_read_data(cp, 386 pp->mediasize - pp->sectorsize * (2 + left), 387 pp->sectorsize * left, &error); 388 if (buf == NULL) { 389 G_RAID_DEBUG(1, "Cannot read remaining metadata" 390 " part from %s (error=%d).", 391 pp->name, error); 392 free(meta, M_MD_INTEL); 393 return (NULL); 394 } 395 memcpy(((char *)meta) + pp->sectorsize, buf, 396 pp->sectorsize * left); 397 g_free(buf); 398 } 399 400 /* Check metadata checksum. */ 401 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; 402 i < (meta->config_size / sizeof(uint32_t)); i++) { 403 checksum += *ptr++; 404 } 405 checksum -= meta->checksum; 406 if (checksum != meta->checksum) { 407 G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name); 408 free(meta, M_MD_INTEL); 409 return (NULL); 410 } 411 412 /* Validate metadata size. */ 413 size = sizeof(struct intel_raid_conf) + 414 sizeof(struct intel_raid_disk) * (meta->total_disks - 1) + 415 sizeof(struct intel_raid_vol) * meta->total_volumes; 416 if (size > meta->config_size) { 417 badsize: 418 G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d", 419 meta->config_size, size); 420 free(meta, M_MD_INTEL); 421 return (NULL); 422 } 423 for (i = 0; i < meta->total_volumes; i++) { 424 mvol = intel_get_volume(meta, i); 425 mmap = intel_get_map(mvol, 0); 426 size += 4 * (mmap->total_disks - 1); 427 if (size > meta->config_size) 428 goto badsize; 429 if (mvol->migr_state) { 430 size += sizeof(struct intel_raid_map); 431 if (size > meta->config_size) 432 goto badsize; 433 mmap = intel_get_map(mvol, 1); 434 size += 4 * (mmap->total_disks - 1); 435 if (size > meta->config_size) 436 goto badsize; 437 } 438 } 439 440 /* Validate disk indexes. */ 441 for (i = 0; i < meta->total_volumes; i++) { 442 mvol = intel_get_volume(meta, i); 443 for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) { 444 mmap = intel_get_map(mvol, j); 445 for (k = 0; k < mmap->total_disks; k++) { 446 if ((mmap->disk_idx[k] & INTEL_DI_IDX) > 447 meta->total_disks) { 448 G_RAID_DEBUG(1, "Intel metadata disk" 449 " index %d too big (>%d)", 450 mmap->disk_idx[k] & INTEL_DI_IDX, 451 meta->total_disks); 452 free(meta, M_MD_INTEL); 453 return (NULL); 454 } 455 } 456 } 457 } 458 459 /* Validate migration types. */ 460 for (i = 0; i < meta->total_volumes; i++) { 461 mvol = intel_get_volume(meta, i); 462 if (mvol->migr_state && 463 mvol->migr_type != INTEL_MT_INIT && 464 mvol->migr_type != INTEL_MT_REBUILD && 465 mvol->migr_type != INTEL_MT_VERIFY && 466 mvol->migr_type != INTEL_MT_REPAIR) { 467 G_RAID_DEBUG(1, "Intel metadata has unsupported" 468 " migration type %d", mvol->migr_type); 469 free(meta, M_MD_INTEL); 470 return (NULL); 471 } 472 } 473 474 return (meta); 475 } 476 477 static int 478 intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta) 479 { 480 struct g_provider *pp; 481 char *buf; 482 int error, i, sectors; 483 uint32_t checksum, *ptr; 484 485 pp = cp->provider; 486 487 /* Recalculate checksum for case if metadata were changed. */ 488 meta->checksum = 0; 489 for (checksum = 0, ptr = (uint32_t *)meta, i = 0; 490 i < (meta->config_size / sizeof(uint32_t)); i++) { 491 checksum += *ptr++; 492 } 493 meta->checksum = checksum; 494 495 /* Create and fill buffer. */ 496 sectors = (meta->config_size + pp->sectorsize - 1) / pp->sectorsize; 497 buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO); 498 if (sectors > 1) { 499 memcpy(buf, ((char *)meta) + pp->sectorsize, 500 (sectors - 1) * pp->sectorsize); 501 } 502 memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize); 503 504 error = g_write_data(cp, 505 pp->mediasize - pp->sectorsize * (1 + sectors), 506 buf, pp->sectorsize * sectors); 507 if (error != 0) { 508 G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).", 509 pp->name, error); 510 } 511 512 free(buf, M_MD_INTEL); 513 return (error); 514 } 515 516 static int 517 intel_meta_erase(struct g_consumer *cp) 518 { 519 struct g_provider *pp; 520 char *buf; 521 int error; 522 523 pp = cp->provider; 524 buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO); 525 error = g_write_data(cp, 526 pp->mediasize - 2 * pp->sectorsize, 527 buf, pp->sectorsize); 528 if (error != 0) { 529 G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).", 530 pp->name, error); 531 } 532 free(buf, M_MD_INTEL); 533 return (error); 534 } 535 536 static int 537 intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d) 538 { 539 struct intel_raid_conf *meta; 540 int error; 541 542 /* Fill anchor and single disk. */ 543 meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO); 544 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1); 545 memcpy(&meta->version[0], INTEL_VERSION_1000, 546 sizeof(INTEL_VERSION_1000) - 1); 547 meta->config_size = INTEL_MAX_MD_SIZE(1); 548 meta->config_id = arc4random(); 549 meta->generation = 1; 550 meta->total_disks = 1; 551 meta->disk[0] = *d; 552 error = intel_meta_write(cp, meta); 553 free(meta, M_MD_INTEL); 554 return (error); 555 } 556 557 static struct g_raid_disk * 558 g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id) 559 { 560 struct g_raid_disk *disk; 561 struct g_raid_md_intel_perdisk *pd; 562 563 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 564 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 565 if (pd->pd_disk_pos == id) 566 break; 567 } 568 return (disk); 569 } 570 571 static int 572 g_raid_md_intel_supported(int level, int qual, int disks, int force) 573 { 574 575 switch (level) { 576 case G_RAID_VOLUME_RL_RAID0: 577 if (disks < 1) 578 return (0); 579 if (!force && (disks < 2 || disks > 6)) 580 return (0); 581 break; 582 case G_RAID_VOLUME_RL_RAID1: 583 if (disks < 1) 584 return (0); 585 if (!force && (disks != 2)) 586 return (0); 587 break; 588 case G_RAID_VOLUME_RL_RAID1E: 589 if (disks < 2) 590 return (0); 591 if (!force && (disks != 4)) 592 return (0); 593 break; 594 case G_RAID_VOLUME_RL_RAID5: 595 if (disks < 3) 596 return (0); 597 if (!force && disks > 6) 598 return (0); 599 break; 600 default: 601 return (0); 602 } 603 if (qual != G_RAID_VOLUME_RLQ_NONE) 604 return (0); 605 return (1); 606 } 607 608 static struct g_raid_volume * 609 g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id) 610 { 611 struct g_raid_volume *mvol; 612 613 TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) { 614 if ((intptr_t)(mvol->v_md_data) == id) 615 break; 616 } 617 return (mvol); 618 } 619 620 static int 621 g_raid_md_intel_start_disk(struct g_raid_disk *disk) 622 { 623 struct g_raid_softc *sc; 624 struct g_raid_subdisk *sd, *tmpsd; 625 struct g_raid_disk *olddisk, *tmpdisk; 626 struct g_raid_md_object *md; 627 struct g_raid_md_intel_object *mdi; 628 struct g_raid_md_intel_perdisk *pd, *oldpd; 629 struct intel_raid_conf *meta; 630 struct intel_raid_vol *mvol; 631 struct intel_raid_map *mmap0, *mmap1; 632 int disk_pos, resurrection = 0; 633 634 sc = disk->d_softc; 635 md = sc->sc_md; 636 mdi = (struct g_raid_md_intel_object *)md; 637 meta = mdi->mdio_meta; 638 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 639 olddisk = NULL; 640 641 /* Find disk position in metadata by it's serial. */ 642 disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial); 643 if (disk_pos < 0) { 644 G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk"); 645 /* Failed stale disk is useless for us. */ 646 if (pd->pd_disk_meta.flags & INTEL_F_FAILED) { 647 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED); 648 return (0); 649 } 650 /* If we are in the start process, that's all for now. */ 651 if (!mdi->mdio_started) 652 goto nofit; 653 /* 654 * If we have already started - try to get use of the disk. 655 * Try to replace OFFLINE disks first, then FAILED. 656 */ 657 TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) { 658 if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE && 659 tmpdisk->d_state != G_RAID_DISK_S_FAILED) 660 continue; 661 /* Make sure this disk is big enough. */ 662 TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) { 663 if (sd->sd_offset + sd->sd_size + 4096 > 664 (off_t)pd->pd_disk_meta.sectors * 512) { 665 G_RAID_DEBUG1(1, sc, 666 "Disk too small (%llu < %llu)", 667 ((unsigned long long) 668 pd->pd_disk_meta.sectors) * 512, 669 (unsigned long long) 670 sd->sd_offset + sd->sd_size + 4096); 671 break; 672 } 673 } 674 if (sd != NULL) 675 continue; 676 if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) { 677 olddisk = tmpdisk; 678 break; 679 } else if (olddisk == NULL) 680 olddisk = tmpdisk; 681 } 682 if (olddisk == NULL) { 683 nofit: 684 if (pd->pd_disk_meta.flags & INTEL_F_SPARE) { 685 g_raid_change_disk_state(disk, 686 G_RAID_DISK_S_SPARE); 687 return (1); 688 } else { 689 g_raid_change_disk_state(disk, 690 G_RAID_DISK_S_STALE); 691 return (0); 692 } 693 } 694 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data; 695 disk_pos = oldpd->pd_disk_pos; 696 resurrection = 1; 697 } 698 699 if (olddisk == NULL) { 700 /* Find placeholder by position. */ 701 olddisk = g_raid_md_intel_get_disk(sc, disk_pos); 702 if (olddisk == NULL) 703 panic("No disk at position %d!", disk_pos); 704 if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) { 705 G_RAID_DEBUG1(1, sc, "More then one disk for pos %d", 706 disk_pos); 707 g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE); 708 return (0); 709 } 710 oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data; 711 } 712 713 /* Replace failed disk or placeholder with new disk. */ 714 TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) { 715 TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next); 716 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 717 sd->sd_disk = disk; 718 } 719 oldpd->pd_disk_pos = -2; 720 pd->pd_disk_pos = disk_pos; 721 722 /* If it was placeholder -- destroy it. */ 723 if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) { 724 g_raid_destroy_disk(olddisk); 725 } else { 726 /* Otherwise, make it STALE_FAILED. */ 727 g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED); 728 /* Update global metadata just in case. */ 729 memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta, 730 sizeof(struct intel_raid_disk)); 731 } 732 733 /* Welcome the new disk. */ 734 if (resurrection) 735 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 736 else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) 737 g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED); 738 else if (meta->disk[disk_pos].flags & INTEL_F_SPARE) 739 g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE); 740 else 741 g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); 742 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 743 mvol = intel_get_volume(meta, 744 (uintptr_t)(sd->sd_volume->v_md_data)); 745 mmap0 = intel_get_map(mvol, 0); 746 if (mvol->migr_state) 747 mmap1 = intel_get_map(mvol, 1); 748 else 749 mmap1 = mmap0; 750 751 if (resurrection) { 752 /* Stale disk, almost same as new. */ 753 g_raid_change_subdisk_state(sd, 754 G_RAID_SUBDISK_S_NEW); 755 } else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) { 756 /* Failed disk, almost useless. */ 757 g_raid_change_subdisk_state(sd, 758 G_RAID_SUBDISK_S_FAILED); 759 } else if (mvol->migr_state == 0) { 760 if (mmap0->status == INTEL_S_UNINITIALIZED) { 761 /* Freshly created uninitialized volume. */ 762 g_raid_change_subdisk_state(sd, 763 G_RAID_SUBDISK_S_UNINITIALIZED); 764 } else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 765 /* Freshly inserted disk. */ 766 g_raid_change_subdisk_state(sd, 767 G_RAID_SUBDISK_S_NEW); 768 } else if (mvol->dirty) { 769 /* Dirty volume (unclean shutdown). */ 770 g_raid_change_subdisk_state(sd, 771 G_RAID_SUBDISK_S_STALE); 772 } else { 773 /* Up to date disk. */ 774 g_raid_change_subdisk_state(sd, 775 G_RAID_SUBDISK_S_ACTIVE); 776 } 777 } else if (mvol->migr_type == INTEL_MT_INIT || 778 mvol->migr_type == INTEL_MT_REBUILD) { 779 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 780 /* Freshly inserted disk. */ 781 g_raid_change_subdisk_state(sd, 782 G_RAID_SUBDISK_S_NEW); 783 } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 784 /* Rebuilding disk. */ 785 g_raid_change_subdisk_state(sd, 786 G_RAID_SUBDISK_S_REBUILD); 787 if (mvol->dirty) { 788 sd->sd_rebuild_pos = 0; 789 } else { 790 sd->sd_rebuild_pos = 791 (off_t)mvol->curr_migr_unit * 792 sd->sd_volume->v_strip_size * 793 mmap0->total_domains; 794 } 795 } else if (mvol->dirty) { 796 /* Dirty volume (unclean shutdown). */ 797 g_raid_change_subdisk_state(sd, 798 G_RAID_SUBDISK_S_STALE); 799 } else { 800 /* Up to date disk. */ 801 g_raid_change_subdisk_state(sd, 802 G_RAID_SUBDISK_S_ACTIVE); 803 } 804 } else if (mvol->migr_type == INTEL_MT_VERIFY || 805 mvol->migr_type == INTEL_MT_REPAIR) { 806 if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 807 /* Freshly inserted disk. */ 808 g_raid_change_subdisk_state(sd, 809 G_RAID_SUBDISK_S_NEW); 810 } else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) { 811 /* Resyncing disk. */ 812 g_raid_change_subdisk_state(sd, 813 G_RAID_SUBDISK_S_RESYNC); 814 if (mvol->dirty) { 815 sd->sd_rebuild_pos = 0; 816 } else { 817 sd->sd_rebuild_pos = 818 (off_t)mvol->curr_migr_unit * 819 sd->sd_volume->v_strip_size * 820 mmap0->total_domains; 821 } 822 } else if (mvol->dirty) { 823 /* Dirty volume (unclean shutdown). */ 824 g_raid_change_subdisk_state(sd, 825 G_RAID_SUBDISK_S_STALE); 826 } else { 827 /* Up to date disk. */ 828 g_raid_change_subdisk_state(sd, 829 G_RAID_SUBDISK_S_ACTIVE); 830 } 831 } 832 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 833 G_RAID_EVENT_SUBDISK); 834 } 835 836 /* Update status of our need for spare. */ 837 if (mdi->mdio_started) { 838 mdi->mdio_incomplete = 839 (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) < 840 meta->total_disks); 841 } 842 843 return (resurrection); 844 } 845 846 static void 847 g_disk_md_intel_retaste(void *arg, int pending) 848 { 849 850 G_RAID_DEBUG(1, "Array is not complete, trying to retaste."); 851 g_retaste(&g_raid_class); 852 free(arg, M_MD_INTEL); 853 } 854 855 static void 856 g_raid_md_intel_refill(struct g_raid_softc *sc) 857 { 858 struct g_raid_md_object *md; 859 struct g_raid_md_intel_object *mdi; 860 struct intel_raid_conf *meta; 861 struct g_raid_disk *disk; 862 struct task *task; 863 int update, na; 864 865 md = sc->sc_md; 866 mdi = (struct g_raid_md_intel_object *)md; 867 meta = mdi->mdio_meta; 868 update = 0; 869 do { 870 /* Make sure we miss anything. */ 871 na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE); 872 if (na == meta->total_disks) 873 break; 874 875 G_RAID_DEBUG1(1, md->mdo_softc, 876 "Array is not complete (%d of %d), " 877 "trying to refill.", na, meta->total_disks); 878 879 /* Try to get use some of STALE disks. */ 880 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 881 if (disk->d_state == G_RAID_DISK_S_STALE) { 882 update += g_raid_md_intel_start_disk(disk); 883 if (disk->d_state == G_RAID_DISK_S_ACTIVE) 884 break; 885 } 886 } 887 if (disk != NULL) 888 continue; 889 890 /* Try to get use some of SPARE disks. */ 891 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 892 if (disk->d_state == G_RAID_DISK_S_SPARE) { 893 update += g_raid_md_intel_start_disk(disk); 894 if (disk->d_state == G_RAID_DISK_S_ACTIVE) 895 break; 896 } 897 } 898 } while (disk != NULL); 899 900 /* Write new metadata if we changed something. */ 901 if (update) { 902 g_raid_md_write_intel(md, NULL, NULL, NULL); 903 meta = mdi->mdio_meta; 904 } 905 906 /* Update status of our need for spare. */ 907 mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) < 908 meta->total_disks); 909 910 /* Request retaste hoping to find spare. */ 911 if (mdi->mdio_incomplete) { 912 task = malloc(sizeof(struct task), 913 M_MD_INTEL, M_WAITOK | M_ZERO); 914 TASK_INIT(task, 0, g_disk_md_intel_retaste, task); 915 taskqueue_enqueue(taskqueue_swi, task); 916 } 917 } 918 919 static void 920 g_raid_md_intel_start(struct g_raid_softc *sc) 921 { 922 struct g_raid_md_object *md; 923 struct g_raid_md_intel_object *mdi; 924 struct g_raid_md_intel_perdisk *pd; 925 struct intel_raid_conf *meta; 926 struct intel_raid_vol *mvol; 927 struct intel_raid_map *mmap; 928 struct g_raid_volume *vol; 929 struct g_raid_subdisk *sd; 930 struct g_raid_disk *disk; 931 int i, j, disk_pos; 932 933 md = sc->sc_md; 934 mdi = (struct g_raid_md_intel_object *)md; 935 meta = mdi->mdio_meta; 936 937 /* Create volumes and subdisks. */ 938 for (i = 0; i < meta->total_volumes; i++) { 939 mvol = intel_get_volume(meta, i); 940 mmap = intel_get_map(mvol, 0); 941 vol = g_raid_create_volume(sc, mvol->name, -1); 942 vol->v_md_data = (void *)(intptr_t)i; 943 if (mmap->type == INTEL_T_RAID0) 944 vol->v_raid_level = G_RAID_VOLUME_RL_RAID0; 945 else if (mmap->type == INTEL_T_RAID1 && 946 mmap->total_domains >= 2 && 947 mmap->total_domains <= mmap->total_disks) { 948 /* Assume total_domains is correct. */ 949 if (mmap->total_domains == mmap->total_disks) 950 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; 951 else 952 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; 953 } else if (mmap->type == INTEL_T_RAID1) { 954 /* total_domains looks wrong. */ 955 if (mmap->total_disks <= 2) 956 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; 957 else 958 vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; 959 } else if (mmap->type == INTEL_T_RAID5) 960 vol->v_raid_level = G_RAID_VOLUME_RL_RAID5; 961 else 962 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 963 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; 964 vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ 965 vol->v_disks_count = mmap->total_disks; 966 vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ 967 vol->v_sectorsize = 512; //ZZZ 968 for (j = 0; j < vol->v_disks_count; j++) { 969 sd = &vol->v_subdisks[j]; 970 sd->sd_offset = (off_t)mmap->offset * 512; //ZZZ 971 sd->sd_size = (off_t)mmap->disk_sectors * 512; //ZZZ 972 } 973 g_raid_start_volume(vol); 974 } 975 976 /* Create disk placeholders to store data for later writing. */ 977 for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) { 978 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 979 pd->pd_disk_pos = disk_pos; 980 pd->pd_disk_meta = meta->disk[disk_pos]; 981 disk = g_raid_create_disk(sc); 982 disk->d_md_data = (void *)pd; 983 disk->d_state = G_RAID_DISK_S_OFFLINE; 984 for (i = 0; i < meta->total_volumes; i++) { 985 mvol = intel_get_volume(meta, i); 986 mmap = intel_get_map(mvol, 0); 987 for (j = 0; j < mmap->total_disks; j++) { 988 if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos) 989 break; 990 } 991 if (j == mmap->total_disks) 992 continue; 993 vol = g_raid_md_intel_get_volume(sc, i); 994 sd = &vol->v_subdisks[j]; 995 sd->sd_disk = disk; 996 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 997 } 998 } 999 1000 /* Make all disks found till the moment take their places. */ 1001 do { 1002 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1003 if (disk->d_state == G_RAID_DISK_S_NONE) { 1004 g_raid_md_intel_start_disk(disk); 1005 break; 1006 } 1007 } 1008 } while (disk != NULL); 1009 1010 mdi->mdio_started = 1; 1011 G_RAID_DEBUG1(0, sc, "Array started."); 1012 g_raid_md_write_intel(md, NULL, NULL, NULL); 1013 1014 /* Pickup any STALE/SPARE disks to refill array if needed. */ 1015 g_raid_md_intel_refill(sc); 1016 1017 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1018 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1019 G_RAID_EVENT_VOLUME); 1020 } 1021 1022 callout_stop(&mdi->mdio_start_co); 1023 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount); 1024 root_mount_rel(mdi->mdio_rootmount); 1025 mdi->mdio_rootmount = NULL; 1026 } 1027 1028 static void 1029 g_raid_md_intel_new_disk(struct g_raid_disk *disk) 1030 { 1031 struct g_raid_softc *sc; 1032 struct g_raid_md_object *md; 1033 struct g_raid_md_intel_object *mdi; 1034 struct intel_raid_conf *pdmeta; 1035 struct g_raid_md_intel_perdisk *pd; 1036 1037 sc = disk->d_softc; 1038 md = sc->sc_md; 1039 mdi = (struct g_raid_md_intel_object *)md; 1040 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1041 pdmeta = pd->pd_meta; 1042 1043 if (mdi->mdio_started) { 1044 if (g_raid_md_intel_start_disk(disk)) 1045 g_raid_md_write_intel(md, NULL, NULL, NULL); 1046 } else { 1047 /* If we haven't started yet - check metadata freshness. */ 1048 if (mdi->mdio_meta == NULL || 1049 ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) { 1050 G_RAID_DEBUG1(1, sc, "Newer disk"); 1051 if (mdi->mdio_meta != NULL) 1052 free(mdi->mdio_meta, M_MD_INTEL); 1053 mdi->mdio_meta = intel_meta_copy(pdmeta); 1054 mdi->mdio_generation = mdi->mdio_meta->generation; 1055 mdi->mdio_disks_present = 1; 1056 } else if (pdmeta->generation == mdi->mdio_generation) { 1057 mdi->mdio_disks_present++; 1058 G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)", 1059 mdi->mdio_disks_present, 1060 mdi->mdio_meta->total_disks); 1061 } else { 1062 G_RAID_DEBUG1(1, sc, "Older disk"); 1063 } 1064 /* If we collected all needed disks - start array. */ 1065 if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks) 1066 g_raid_md_intel_start(sc); 1067 } 1068 } 1069 1070 static void 1071 g_raid_intel_go(void *arg) 1072 { 1073 struct g_raid_softc *sc; 1074 struct g_raid_md_object *md; 1075 struct g_raid_md_intel_object *mdi; 1076 1077 sc = arg; 1078 md = sc->sc_md; 1079 mdi = (struct g_raid_md_intel_object *)md; 1080 if (!mdi->mdio_started) { 1081 G_RAID_DEBUG1(0, sc, "Force array start due to timeout."); 1082 g_raid_event_send(sc, G_RAID_NODE_E_START, 0); 1083 } 1084 } 1085 1086 static int 1087 g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp, 1088 struct g_geom **gp) 1089 { 1090 struct g_raid_softc *sc; 1091 struct g_raid_md_intel_object *mdi; 1092 char name[16]; 1093 1094 mdi = (struct g_raid_md_intel_object *)md; 1095 mdi->mdio_config_id = arc4random(); 1096 mdi->mdio_generation = 0; 1097 snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id); 1098 sc = g_raid_create_node(mp, name, md); 1099 if (sc == NULL) 1100 return (G_RAID_MD_TASTE_FAIL); 1101 md->mdo_softc = sc; 1102 *gp = sc->sc_geom; 1103 return (G_RAID_MD_TASTE_NEW); 1104 } 1105 1106 /* 1107 * Return the last N characters of the serial label. The Linux and 1108 * ataraid(7) code always uses the last 16 characters of the label to 1109 * store into the Intel meta format. Generalize this to N characters 1110 * since that's easy. Labels can be up to 20 characters for SATA drives 1111 * and up 251 characters for SAS drives. Since intel controllers don't 1112 * support SAS drives, just stick with the SATA limits for stack friendliness. 1113 */ 1114 static int 1115 g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen) 1116 { 1117 char serial_buffer[24]; 1118 int len, error; 1119 1120 len = sizeof(serial_buffer); 1121 error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer); 1122 if (error != 0) 1123 return (error); 1124 len = strlen(serial_buffer); 1125 if (len > serlen) 1126 len -= serlen; 1127 else 1128 len = 0; 1129 strncpy(serial, serial_buffer + len, serlen); 1130 return (0); 1131 } 1132 1133 static int 1134 g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp, 1135 struct g_consumer *cp, struct g_geom **gp) 1136 { 1137 struct g_consumer *rcp; 1138 struct g_provider *pp; 1139 struct g_raid_md_intel_object *mdi, *mdi1; 1140 struct g_raid_softc *sc; 1141 struct g_raid_disk *disk; 1142 struct intel_raid_conf *meta; 1143 struct g_raid_md_intel_perdisk *pd; 1144 struct g_geom *geom; 1145 int error, disk_pos, result, spare, len; 1146 char serial[INTEL_SERIAL_LEN]; 1147 char name[16]; 1148 uint16_t vendor; 1149 1150 G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name); 1151 mdi = (struct g_raid_md_intel_object *)md; 1152 pp = cp->provider; 1153 1154 /* Read metadata from device. */ 1155 meta = NULL; 1156 vendor = 0xffff; 1157 disk_pos = 0; 1158 if (g_access(cp, 1, 0, 0) != 0) 1159 return (G_RAID_MD_TASTE_FAIL); 1160 g_topology_unlock(); 1161 error = g_raid_md_get_label(cp, serial, sizeof(serial)); 1162 if (error != 0) { 1163 G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).", 1164 pp->name, error); 1165 goto fail2; 1166 } 1167 len = 2; 1168 if (pp->geom->rank == 1) 1169 g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor); 1170 meta = intel_meta_read(cp); 1171 g_topology_lock(); 1172 g_access(cp, -1, 0, 0); 1173 if (meta == NULL) { 1174 if (g_raid_aggressive_spare) { 1175 if (vendor != 0x8086) { 1176 G_RAID_DEBUG(1, 1177 "Intel vendor mismatch 0x%04x != 0x8086", 1178 vendor); 1179 } else if (pp->mediasize / pp->sectorsize > UINT32_MAX) { 1180 G_RAID_DEBUG(1, 1181 "Intel disk '%s' is too big.", pp->name); 1182 } else { 1183 G_RAID_DEBUG(1, 1184 "No Intel metadata, forcing spare."); 1185 spare = 2; 1186 goto search; 1187 } 1188 } 1189 return (G_RAID_MD_TASTE_FAIL); 1190 } 1191 1192 /* Check this disk position in obtained metadata. */ 1193 disk_pos = intel_meta_find_disk(meta, serial); 1194 if (disk_pos < 0) { 1195 G_RAID_DEBUG(1, "Intel serial '%s' not found", serial); 1196 goto fail1; 1197 } 1198 if (meta->disk[disk_pos].sectors != 1199 (pp->mediasize / pp->sectorsize)) { 1200 G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju", 1201 (off_t)meta->disk[disk_pos].sectors, 1202 (off_t)(pp->mediasize / pp->sectorsize)); 1203 goto fail1; 1204 } 1205 1206 /* Metadata valid. Print it. */ 1207 g_raid_md_intel_print(meta); 1208 G_RAID_DEBUG(1, "Intel disk position %d", disk_pos); 1209 spare = meta->disk[disk_pos].flags & INTEL_F_SPARE; 1210 1211 search: 1212 /* Search for matching node. */ 1213 sc = NULL; 1214 mdi1 = NULL; 1215 LIST_FOREACH(geom, &mp->geom, geom) { 1216 sc = geom->softc; 1217 if (sc == NULL) 1218 continue; 1219 if (sc->sc_stopping != 0) 1220 continue; 1221 if (sc->sc_md->mdo_class != md->mdo_class) 1222 continue; 1223 mdi1 = (struct g_raid_md_intel_object *)sc->sc_md; 1224 if (spare) { 1225 if (mdi1->mdio_incomplete) 1226 break; 1227 } else { 1228 if (mdi1->mdio_config_id == meta->config_id) 1229 break; 1230 } 1231 } 1232 1233 /* Found matching node. */ 1234 if (geom != NULL) { 1235 G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name); 1236 result = G_RAID_MD_TASTE_EXISTING; 1237 1238 } else if (spare) { /* Not found needy node -- left for later. */ 1239 G_RAID_DEBUG(1, "Spare is not needed at this time"); 1240 goto fail1; 1241 1242 } else { /* Not found matching node -- create one. */ 1243 result = G_RAID_MD_TASTE_NEW; 1244 mdi->mdio_config_id = meta->config_id; 1245 snprintf(name, sizeof(name), "Intel-%08x", meta->config_id); 1246 sc = g_raid_create_node(mp, name, md); 1247 md->mdo_softc = sc; 1248 geom = sc->sc_geom; 1249 callout_init(&mdi->mdio_start_co, 1); 1250 callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz, 1251 g_raid_intel_go, sc); 1252 mdi->mdio_rootmount = root_mount_hold("GRAID-Intel"); 1253 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount); 1254 } 1255 1256 rcp = g_new_consumer(geom); 1257 g_attach(rcp, pp); 1258 if (g_access(rcp, 1, 1, 1) != 0) 1259 ; //goto fail1; 1260 1261 g_topology_unlock(); 1262 sx_xlock(&sc->sc_lock); 1263 1264 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1265 pd->pd_meta = meta; 1266 pd->pd_disk_pos = -1; 1267 if (spare == 2) { 1268 memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN); 1269 pd->pd_disk_meta.sectors = pp->mediasize / pp->sectorsize; 1270 pd->pd_disk_meta.id = 0; 1271 pd->pd_disk_meta.flags = INTEL_F_SPARE; 1272 } else { 1273 pd->pd_disk_meta = meta->disk[disk_pos]; 1274 } 1275 disk = g_raid_create_disk(sc); 1276 disk->d_md_data = (void *)pd; 1277 disk->d_consumer = rcp; 1278 rcp->private = disk; 1279 1280 /* Read kernel dumping information. */ 1281 disk->d_kd.offset = 0; 1282 disk->d_kd.length = OFF_MAX; 1283 len = sizeof(disk->d_kd); 1284 error = g_io_getattr("GEOM::kerneldump", rcp, &len, &disk->d_kd); 1285 if (disk->d_kd.di.dumper == NULL) 1286 G_RAID_DEBUG1(2, sc, "Dumping not supported by %s: %d.", 1287 rcp->provider->name, error); 1288 1289 g_raid_md_intel_new_disk(disk); 1290 1291 sx_xunlock(&sc->sc_lock); 1292 g_topology_lock(); 1293 *gp = geom; 1294 return (result); 1295 fail2: 1296 g_topology_lock(); 1297 g_access(cp, -1, 0, 0); 1298 fail1: 1299 free(meta, M_MD_INTEL); 1300 return (G_RAID_MD_TASTE_FAIL); 1301 } 1302 1303 static int 1304 g_raid_md_event_intel(struct g_raid_md_object *md, 1305 struct g_raid_disk *disk, u_int event) 1306 { 1307 struct g_raid_softc *sc; 1308 struct g_raid_subdisk *sd; 1309 struct g_raid_md_intel_object *mdi; 1310 struct g_raid_md_intel_perdisk *pd; 1311 1312 sc = md->mdo_softc; 1313 mdi = (struct g_raid_md_intel_object *)md; 1314 if (disk == NULL) { 1315 switch (event) { 1316 case G_RAID_NODE_E_START: 1317 if (!mdi->mdio_started) 1318 g_raid_md_intel_start(sc); 1319 return (0); 1320 } 1321 return (-1); 1322 } 1323 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1324 switch (event) { 1325 case G_RAID_DISK_E_DISCONNECTED: 1326 /* If disk was assigned, just update statuses. */ 1327 if (pd->pd_disk_pos >= 0) { 1328 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 1329 if (disk->d_consumer) { 1330 g_raid_kill_consumer(sc, disk->d_consumer); 1331 disk->d_consumer = NULL; 1332 } 1333 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 1334 g_raid_change_subdisk_state(sd, 1335 G_RAID_SUBDISK_S_NONE); 1336 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 1337 G_RAID_EVENT_SUBDISK); 1338 } 1339 } else { 1340 /* Otherwise -- delete. */ 1341 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); 1342 g_raid_destroy_disk(disk); 1343 } 1344 1345 /* Write updated metadata to all disks. */ 1346 g_raid_md_write_intel(md, NULL, NULL, NULL); 1347 1348 /* Check if anything left except placeholders. */ 1349 if (g_raid_ndisks(sc, -1) == 1350 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 1351 g_raid_destroy_node(sc, 0); 1352 else 1353 g_raid_md_intel_refill(sc); 1354 return (0); 1355 } 1356 return (-2); 1357 } 1358 1359 static int 1360 g_raid_md_ctl_intel(struct g_raid_md_object *md, 1361 struct gctl_req *req) 1362 { 1363 struct g_raid_softc *sc; 1364 struct g_raid_volume *vol, *vol1; 1365 struct g_raid_subdisk *sd; 1366 struct g_raid_disk *disk; 1367 struct g_raid_md_intel_object *mdi; 1368 struct g_raid_md_intel_perdisk *pd; 1369 struct g_consumer *cp; 1370 struct g_provider *pp; 1371 char arg[16], serial[INTEL_SERIAL_LEN]; 1372 const char *verb, *volname, *levelname, *diskname; 1373 char *tmp; 1374 int *nargs, *force; 1375 off_t off, size, sectorsize, strip; 1376 intmax_t *sizearg, *striparg; 1377 int numdisks, i, len, level, qual, update; 1378 int error; 1379 1380 sc = md->mdo_softc; 1381 mdi = (struct g_raid_md_intel_object *)md; 1382 verb = gctl_get_param(req, "verb", NULL); 1383 nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); 1384 error = 0; 1385 if (strcmp(verb, "label") == 0) { 1386 1387 if (*nargs < 4) { 1388 gctl_error(req, "Invalid number of arguments."); 1389 return (-1); 1390 } 1391 volname = gctl_get_asciiparam(req, "arg1"); 1392 if (volname == NULL) { 1393 gctl_error(req, "No volume name."); 1394 return (-2); 1395 } 1396 levelname = gctl_get_asciiparam(req, "arg2"); 1397 if (levelname == NULL) { 1398 gctl_error(req, "No RAID level."); 1399 return (-3); 1400 } 1401 if (g_raid_volume_str2level(levelname, &level, &qual)) { 1402 gctl_error(req, "Unknown RAID level '%s'.", levelname); 1403 return (-4); 1404 } 1405 numdisks = *nargs - 3; 1406 force = gctl_get_paraml(req, "force", sizeof(*force)); 1407 if (!g_raid_md_intel_supported(level, qual, numdisks, 1408 force ? *force : 0)) { 1409 gctl_error(req, "Unsupported RAID level " 1410 "(0x%02x/0x%02x), or number of disks (%d).", 1411 level, qual, numdisks); 1412 return (-5); 1413 } 1414 1415 /* Search for disks, connect them and probe. */ 1416 size = 0x7fffffffffffffffllu; 1417 sectorsize = 0; 1418 for (i = 0; i < numdisks; i++) { 1419 snprintf(arg, sizeof(arg), "arg%d", i + 3); 1420 diskname = gctl_get_asciiparam(req, arg); 1421 if (diskname == NULL) { 1422 gctl_error(req, "No disk name (%s).", arg); 1423 error = -6; 1424 break; 1425 } 1426 if (strcmp(diskname, "NONE") == 0) { 1427 cp = NULL; 1428 pp = NULL; 1429 } else { 1430 g_topology_lock(); 1431 cp = g_raid_open_consumer(sc, diskname); 1432 if (cp == NULL) { 1433 gctl_error(req, "Can't open disk '%s'.", 1434 diskname); 1435 g_topology_unlock(); 1436 error = -7; 1437 break; 1438 } 1439 pp = cp->provider; 1440 } 1441 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1442 pd->pd_disk_pos = i; 1443 disk = g_raid_create_disk(sc); 1444 disk->d_md_data = (void *)pd; 1445 disk->d_consumer = cp; 1446 if (cp == NULL) { 1447 strcpy(&pd->pd_disk_meta.serial[0], "NONE"); 1448 pd->pd_disk_meta.id = 0xffffffff; 1449 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED; 1450 continue; 1451 } 1452 cp->private = disk; 1453 g_topology_unlock(); 1454 1455 if (pp->mediasize / pp->sectorsize > UINT32_MAX) { 1456 gctl_error(req, 1457 "Disk '%s' is too big.", diskname); 1458 error = -8; 1459 break; 1460 } 1461 1462 error = g_raid_md_get_label(cp, 1463 &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN); 1464 if (error != 0) { 1465 gctl_error(req, 1466 "Can't get serial for provider '%s'.", 1467 diskname); 1468 error = -8; 1469 break; 1470 } 1471 1472 /* Read kernel dumping information. */ 1473 disk->d_kd.offset = 0; 1474 disk->d_kd.length = OFF_MAX; 1475 len = sizeof(disk->d_kd); 1476 g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 1477 if (disk->d_kd.di.dumper == NULL) 1478 G_RAID_DEBUG1(2, sc, 1479 "Dumping not supported by %s.", 1480 cp->provider->name); 1481 1482 pd->pd_disk_meta.sectors = pp->mediasize / pp->sectorsize; 1483 if (size > pp->mediasize) 1484 size = pp->mediasize; 1485 if (sectorsize < pp->sectorsize) 1486 sectorsize = pp->sectorsize; 1487 pd->pd_disk_meta.id = 0; 1488 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE; 1489 } 1490 if (error != 0) 1491 return (error); 1492 1493 if (sectorsize <= 0) { 1494 gctl_error(req, "Can't get sector size."); 1495 return (-8); 1496 } 1497 1498 /* Reserve some space for metadata. */ 1499 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize; 1500 1501 /* Handle size argument. */ 1502 len = sizeof(*sizearg); 1503 sizearg = gctl_get_param(req, "size", &len); 1504 if (sizearg != NULL && len == sizeof(*sizearg) && 1505 *sizearg > 0) { 1506 if (*sizearg > size) { 1507 gctl_error(req, "Size too big %lld > %lld.", 1508 (long long)*sizearg, (long long)size); 1509 return (-9); 1510 } 1511 size = *sizearg; 1512 } 1513 1514 /* Handle strip argument. */ 1515 strip = 131072; 1516 len = sizeof(*striparg); 1517 striparg = gctl_get_param(req, "strip", &len); 1518 if (striparg != NULL && len == sizeof(*striparg) && 1519 *striparg > 0) { 1520 if (*striparg < sectorsize) { 1521 gctl_error(req, "Strip size too small."); 1522 return (-10); 1523 } 1524 if (*striparg % sectorsize != 0) { 1525 gctl_error(req, "Incorrect strip size."); 1526 return (-11); 1527 } 1528 if (strip > 65535 * sectorsize) { 1529 gctl_error(req, "Strip size too big."); 1530 return (-12); 1531 } 1532 strip = *striparg; 1533 } 1534 1535 /* Round size down to strip or sector. */ 1536 if (level == G_RAID_VOLUME_RL_RAID1) 1537 size -= (size % sectorsize); 1538 else if (level == G_RAID_VOLUME_RL_RAID1E && 1539 (numdisks & 1) != 0) 1540 size -= (size % (2 * strip)); 1541 else 1542 size -= (size % strip); 1543 if (size <= 0) { 1544 gctl_error(req, "Size too small."); 1545 return (-13); 1546 } 1547 if (size > 0xffffffffllu * sectorsize) { 1548 gctl_error(req, "Size too big."); 1549 return (-14); 1550 } 1551 1552 /* We have all we need, create things: volume, ... */ 1553 mdi->mdio_started = 1; 1554 vol = g_raid_create_volume(sc, volname, -1); 1555 vol->v_md_data = (void *)(intptr_t)0; 1556 vol->v_raid_level = level; 1557 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; 1558 vol->v_strip_size = strip; 1559 vol->v_disks_count = numdisks; 1560 if (level == G_RAID_VOLUME_RL_RAID0) 1561 vol->v_mediasize = size * numdisks; 1562 else if (level == G_RAID_VOLUME_RL_RAID1) 1563 vol->v_mediasize = size; 1564 else if (level == G_RAID_VOLUME_RL_RAID5) 1565 vol->v_mediasize = size * (numdisks - 1); 1566 else { /* RAID1E */ 1567 vol->v_mediasize = ((size * numdisks) / strip / 2) * 1568 strip; 1569 } 1570 vol->v_sectorsize = sectorsize; 1571 g_raid_start_volume(vol); 1572 1573 /* , and subdisks. */ 1574 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1575 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1576 sd = &vol->v_subdisks[pd->pd_disk_pos]; 1577 sd->sd_disk = disk; 1578 sd->sd_offset = 0; 1579 sd->sd_size = size; 1580 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1581 if (sd->sd_disk->d_consumer != NULL) { 1582 g_raid_change_disk_state(disk, 1583 G_RAID_DISK_S_ACTIVE); 1584 g_raid_change_subdisk_state(sd, 1585 G_RAID_SUBDISK_S_ACTIVE); 1586 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1587 G_RAID_EVENT_SUBDISK); 1588 } else { 1589 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 1590 } 1591 } 1592 1593 /* Write metadata based on created entities. */ 1594 G_RAID_DEBUG1(0, sc, "Array started."); 1595 g_raid_md_write_intel(md, NULL, NULL, NULL); 1596 1597 /* Pickup any STALE/SPARE disks to refill array if needed. */ 1598 g_raid_md_intel_refill(sc); 1599 1600 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1601 G_RAID_EVENT_VOLUME); 1602 return (0); 1603 } 1604 if (strcmp(verb, "add") == 0) { 1605 1606 if (*nargs != 3) { 1607 gctl_error(req, "Invalid number of arguments."); 1608 return (-1); 1609 } 1610 volname = gctl_get_asciiparam(req, "arg1"); 1611 if (volname == NULL) { 1612 gctl_error(req, "No volume name."); 1613 return (-2); 1614 } 1615 levelname = gctl_get_asciiparam(req, "arg2"); 1616 if (levelname == NULL) { 1617 gctl_error(req, "No RAID level."); 1618 return (-3); 1619 } 1620 if (g_raid_volume_str2level(levelname, &level, &qual)) { 1621 gctl_error(req, "Unknown RAID level '%s'.", levelname); 1622 return (-4); 1623 } 1624 1625 /* Look for existing volumes. */ 1626 i = 0; 1627 vol1 = NULL; 1628 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1629 vol1 = vol; 1630 i++; 1631 } 1632 if (i > 1) { 1633 gctl_error(req, "Maximum two volumes supported."); 1634 return (-6); 1635 } 1636 if (vol1 == NULL) { 1637 gctl_error(req, "At least one volume must exist."); 1638 return (-7); 1639 } 1640 1641 numdisks = vol1->v_disks_count; 1642 force = gctl_get_paraml(req, "force", sizeof(*force)); 1643 if (!g_raid_md_intel_supported(level, qual, numdisks, 1644 force ? *force : 0)) { 1645 gctl_error(req, "Unsupported RAID level " 1646 "(0x%02x/0x%02x), or number of disks (%d).", 1647 level, qual, numdisks); 1648 return (-5); 1649 } 1650 1651 /* Collect info about present disks. */ 1652 size = 0x7fffffffffffffffllu; 1653 sectorsize = 512; 1654 for (i = 0; i < numdisks; i++) { 1655 disk = vol1->v_subdisks[i].sd_disk; 1656 pd = (struct g_raid_md_intel_perdisk *) 1657 disk->d_md_data; 1658 if ((off_t)pd->pd_disk_meta.sectors * 512 < size) 1659 size = (off_t)pd->pd_disk_meta.sectors * 512; 1660 if (disk->d_consumer != NULL && 1661 disk->d_consumer->provider != NULL && 1662 disk->d_consumer->provider->sectorsize > 1663 sectorsize) { 1664 sectorsize = 1665 disk->d_consumer->provider->sectorsize; 1666 } 1667 } 1668 1669 /* Reserve some space for metadata. */ 1670 size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize; 1671 1672 /* Decide insert before or after. */ 1673 sd = &vol1->v_subdisks[0]; 1674 if (sd->sd_offset > 1675 size - (sd->sd_offset + sd->sd_size)) { 1676 off = 0; 1677 size = sd->sd_offset; 1678 } else { 1679 off = sd->sd_offset + sd->sd_size; 1680 size = size - (sd->sd_offset + sd->sd_size); 1681 } 1682 1683 /* Handle strip argument. */ 1684 strip = 131072; 1685 len = sizeof(*striparg); 1686 striparg = gctl_get_param(req, "strip", &len); 1687 if (striparg != NULL && len == sizeof(*striparg) && 1688 *striparg > 0) { 1689 if (*striparg < sectorsize) { 1690 gctl_error(req, "Strip size too small."); 1691 return (-10); 1692 } 1693 if (*striparg % sectorsize != 0) { 1694 gctl_error(req, "Incorrect strip size."); 1695 return (-11); 1696 } 1697 if (strip > 65535 * sectorsize) { 1698 gctl_error(req, "Strip size too big."); 1699 return (-12); 1700 } 1701 strip = *striparg; 1702 } 1703 1704 /* Round offset up to strip. */ 1705 if (off % strip != 0) { 1706 size -= strip - off % strip; 1707 off += strip - off % strip; 1708 } 1709 1710 /* Handle size argument. */ 1711 len = sizeof(*sizearg); 1712 sizearg = gctl_get_param(req, "size", &len); 1713 if (sizearg != NULL && len == sizeof(*sizearg) && 1714 *sizearg > 0) { 1715 if (*sizearg > size) { 1716 gctl_error(req, "Size too big %lld > %lld.", 1717 (long long)*sizearg, (long long)size); 1718 return (-9); 1719 } 1720 size = *sizearg; 1721 } 1722 1723 /* Round size down to strip or sector. */ 1724 if (level == G_RAID_VOLUME_RL_RAID1) 1725 size -= (size % sectorsize); 1726 else 1727 size -= (size % strip); 1728 if (size <= 0) { 1729 gctl_error(req, "Size too small."); 1730 return (-13); 1731 } 1732 if (size > 0xffffffffllu * sectorsize) { 1733 gctl_error(req, "Size too big."); 1734 return (-14); 1735 } 1736 1737 /* We have all we need, create things: volume, ... */ 1738 vol = g_raid_create_volume(sc, volname, -1); 1739 vol->v_md_data = (void *)(intptr_t)i; 1740 vol->v_raid_level = level; 1741 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; 1742 vol->v_strip_size = strip; 1743 vol->v_disks_count = numdisks; 1744 if (level == G_RAID_VOLUME_RL_RAID0) 1745 vol->v_mediasize = size * numdisks; 1746 else if (level == G_RAID_VOLUME_RL_RAID1) 1747 vol->v_mediasize = size; 1748 else if (level == G_RAID_VOLUME_RL_RAID5) 1749 vol->v_mediasize = size * (numdisks - 1); 1750 else { /* RAID1E */ 1751 vol->v_mediasize = ((size * numdisks) / strip / 2) * 1752 strip; 1753 } 1754 vol->v_sectorsize = sectorsize; 1755 g_raid_start_volume(vol); 1756 1757 /* , and subdisks. */ 1758 for (i = 0; i < numdisks; i++) { 1759 disk = vol1->v_subdisks[i].sd_disk; 1760 sd = &vol->v_subdisks[i]; 1761 sd->sd_disk = disk; 1762 sd->sd_offset = off; 1763 sd->sd_size = size; 1764 TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); 1765 if (disk->d_state == G_RAID_DISK_S_ACTIVE) { 1766 g_raid_change_subdisk_state(sd, 1767 G_RAID_SUBDISK_S_ACTIVE); 1768 g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, 1769 G_RAID_EVENT_SUBDISK); 1770 } 1771 } 1772 1773 /* Write metadata based on created entities. */ 1774 g_raid_md_write_intel(md, NULL, NULL, NULL); 1775 1776 g_raid_event_send(vol, G_RAID_VOLUME_E_START, 1777 G_RAID_EVENT_VOLUME); 1778 return (0); 1779 } 1780 if (strcmp(verb, "delete") == 0) { 1781 1782 /* Full node destruction. */ 1783 if (*nargs == 1) { 1784 /* Check if some volume is still open. */ 1785 force = gctl_get_paraml(req, "force", sizeof(*force)); 1786 if (force != NULL && *force == 0 && 1787 g_raid_nopens(sc) != 0) { 1788 gctl_error(req, "Some volume is still open."); 1789 return (-4); 1790 } 1791 1792 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1793 if (disk->d_consumer) 1794 intel_meta_erase(disk->d_consumer); 1795 } 1796 g_raid_destroy_node(sc, 0); 1797 return (0); 1798 } 1799 1800 /* Destroy specified volume. If it was last - all node. */ 1801 if (*nargs != 2) { 1802 gctl_error(req, "Invalid number of arguments."); 1803 return (-1); 1804 } 1805 volname = gctl_get_asciiparam(req, "arg1"); 1806 if (volname == NULL) { 1807 gctl_error(req, "No volume name."); 1808 return (-2); 1809 } 1810 1811 /* Search for volume. */ 1812 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1813 if (strcmp(vol->v_name, volname) == 0) 1814 break; 1815 } 1816 if (vol == NULL) { 1817 i = strtol(volname, &tmp, 10); 1818 if (verb != volname && tmp[0] == 0) { 1819 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1820 if (vol->v_global_id == i) 1821 break; 1822 } 1823 } 1824 } 1825 if (vol == NULL) { 1826 gctl_error(req, "Volume '%s' not found.", volname); 1827 return (-3); 1828 } 1829 1830 /* Check if volume is still open. */ 1831 force = gctl_get_paraml(req, "force", sizeof(*force)); 1832 if (force != NULL && *force == 0 && 1833 vol->v_provider_open != 0) { 1834 gctl_error(req, "Volume is still open."); 1835 return (-4); 1836 } 1837 1838 /* Destroy volume and potentially node. */ 1839 i = 0; 1840 TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next) 1841 i++; 1842 if (i >= 2) { 1843 g_raid_destroy_volume(vol); 1844 g_raid_md_write_intel(md, NULL, NULL, NULL); 1845 } else { 1846 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1847 if (disk->d_consumer) 1848 intel_meta_erase(disk->d_consumer); 1849 } 1850 g_raid_destroy_node(sc, 0); 1851 } 1852 return (0); 1853 } 1854 if (strcmp(verb, "remove") == 0 || 1855 strcmp(verb, "fail") == 0) { 1856 if (*nargs < 2) { 1857 gctl_error(req, "Invalid number of arguments."); 1858 return (-1); 1859 } 1860 for (i = 1; i < *nargs; i++) { 1861 snprintf(arg, sizeof(arg), "arg%d", i); 1862 diskname = gctl_get_asciiparam(req, arg); 1863 if (diskname == NULL) { 1864 gctl_error(req, "No disk name (%s).", arg); 1865 error = -2; 1866 break; 1867 } 1868 if (strncmp(diskname, "/dev/", 5) == 0) 1869 diskname += 5; 1870 1871 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 1872 if (disk->d_consumer != NULL && 1873 disk->d_consumer->provider != NULL && 1874 strcmp(disk->d_consumer->provider->name, 1875 diskname) == 0) 1876 break; 1877 } 1878 if (disk == NULL) { 1879 gctl_error(req, "Disk '%s' not found.", 1880 diskname); 1881 error = -3; 1882 break; 1883 } 1884 1885 if (strcmp(verb, "fail") == 0) { 1886 g_raid_md_fail_disk_intel(md, NULL, disk); 1887 continue; 1888 } 1889 1890 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 1891 1892 /* Erase metadata on deleting disk. */ 1893 intel_meta_erase(disk->d_consumer); 1894 1895 /* If disk was assigned, just update statuses. */ 1896 if (pd->pd_disk_pos >= 0) { 1897 g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); 1898 g_raid_kill_consumer(sc, disk->d_consumer); 1899 disk->d_consumer = NULL; 1900 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 1901 g_raid_change_subdisk_state(sd, 1902 G_RAID_SUBDISK_S_NONE); 1903 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 1904 G_RAID_EVENT_SUBDISK); 1905 } 1906 } else { 1907 /* Otherwise -- delete. */ 1908 g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); 1909 g_raid_destroy_disk(disk); 1910 } 1911 } 1912 1913 /* Write updated metadata to remaining disks. */ 1914 g_raid_md_write_intel(md, NULL, NULL, NULL); 1915 1916 /* Check if anything left except placeholders. */ 1917 if (g_raid_ndisks(sc, -1) == 1918 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 1919 g_raid_destroy_node(sc, 0); 1920 else 1921 g_raid_md_intel_refill(sc); 1922 return (error); 1923 } 1924 if (strcmp(verb, "insert") == 0) { 1925 if (*nargs < 2) { 1926 gctl_error(req, "Invalid number of arguments."); 1927 return (-1); 1928 } 1929 update = 0; 1930 for (i = 1; i < *nargs; i++) { 1931 /* Get disk name. */ 1932 snprintf(arg, sizeof(arg), "arg%d", i); 1933 diskname = gctl_get_asciiparam(req, arg); 1934 if (diskname == NULL) { 1935 gctl_error(req, "No disk name (%s).", arg); 1936 error = -3; 1937 break; 1938 } 1939 1940 /* Try to find provider with specified name. */ 1941 g_topology_lock(); 1942 cp = g_raid_open_consumer(sc, diskname); 1943 if (cp == NULL) { 1944 gctl_error(req, "Can't open disk '%s'.", 1945 diskname); 1946 g_topology_unlock(); 1947 error = -4; 1948 break; 1949 } 1950 pp = cp->provider; 1951 g_topology_unlock(); 1952 1953 if (pp->mediasize / pp->sectorsize > UINT32_MAX) { 1954 gctl_error(req, 1955 "Disk '%s' is too big.", diskname); 1956 g_raid_kill_consumer(sc, cp); 1957 error = -8; 1958 break; 1959 } 1960 1961 /* Read disk serial. */ 1962 error = g_raid_md_get_label(cp, 1963 &serial[0], INTEL_SERIAL_LEN); 1964 if (error != 0) { 1965 gctl_error(req, 1966 "Can't get serial for provider '%s'.", 1967 diskname); 1968 g_raid_kill_consumer(sc, cp); 1969 error = -7; 1970 break; 1971 } 1972 1973 pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO); 1974 pd->pd_disk_pos = -1; 1975 1976 disk = g_raid_create_disk(sc); 1977 disk->d_consumer = cp; 1978 disk->d_md_data = (void *)pd; 1979 cp->private = disk; 1980 1981 /* Read kernel dumping information. */ 1982 disk->d_kd.offset = 0; 1983 disk->d_kd.length = OFF_MAX; 1984 len = sizeof(disk->d_kd); 1985 g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 1986 if (disk->d_kd.di.dumper == NULL) 1987 G_RAID_DEBUG1(2, sc, 1988 "Dumping not supported by %s.", 1989 cp->provider->name); 1990 1991 memcpy(&pd->pd_disk_meta.serial[0], &serial[0], 1992 INTEL_SERIAL_LEN); 1993 pd->pd_disk_meta.sectors = pp->mediasize / pp->sectorsize; 1994 pd->pd_disk_meta.id = 0; 1995 pd->pd_disk_meta.flags = INTEL_F_SPARE; 1996 1997 /* Welcome the "new" disk. */ 1998 update += g_raid_md_intel_start_disk(disk); 1999 if (disk->d_state == G_RAID_DISK_S_SPARE) { 2000 intel_meta_write_spare(cp, &pd->pd_disk_meta); 2001 g_raid_destroy_disk(disk); 2002 } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2003 gctl_error(req, "Disk '%s' doesn't fit.", 2004 diskname); 2005 g_raid_destroy_disk(disk); 2006 error = -8; 2007 break; 2008 } 2009 } 2010 2011 /* Write new metadata if we changed something. */ 2012 if (update) 2013 g_raid_md_write_intel(md, NULL, NULL, NULL); 2014 return (error); 2015 } 2016 return (-100); 2017 } 2018 2019 static int 2020 g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol, 2021 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 2022 { 2023 struct g_raid_softc *sc; 2024 struct g_raid_volume *vol; 2025 struct g_raid_subdisk *sd; 2026 struct g_raid_disk *disk; 2027 struct g_raid_md_intel_object *mdi; 2028 struct g_raid_md_intel_perdisk *pd; 2029 struct intel_raid_conf *meta; 2030 struct intel_raid_vol *mvol; 2031 struct intel_raid_map *mmap0, *mmap1; 2032 off_t sectorsize = 512, pos; 2033 const char *version, *cv; 2034 int vi, sdi, numdisks, len, state, stale; 2035 2036 sc = md->mdo_softc; 2037 mdi = (struct g_raid_md_intel_object *)md; 2038 2039 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2040 return (0); 2041 2042 /* Bump generation. Newly written metadata may differ from previous. */ 2043 mdi->mdio_generation++; 2044 2045 /* Count number of disks. */ 2046 numdisks = 0; 2047 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2048 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2049 if (pd->pd_disk_pos < 0) 2050 continue; 2051 numdisks++; 2052 if (disk->d_state == G_RAID_DISK_S_ACTIVE) { 2053 pd->pd_disk_meta.flags = 2054 INTEL_F_ONLINE | INTEL_F_ASSIGNED; 2055 } else if (disk->d_state == G_RAID_DISK_S_FAILED) { 2056 pd->pd_disk_meta.flags = INTEL_F_FAILED | INTEL_F_ASSIGNED; 2057 } else { 2058 pd->pd_disk_meta.flags = INTEL_F_ASSIGNED; 2059 if (pd->pd_disk_meta.id != 0xffffffff) { 2060 pd->pd_disk_meta.id = 0xffffffff; 2061 len = strlen(pd->pd_disk_meta.serial); 2062 len = min(len, INTEL_SERIAL_LEN - 3); 2063 strcpy(pd->pd_disk_meta.serial + len, ":0"); 2064 } 2065 } 2066 } 2067 2068 /* Fill anchor and disks. */ 2069 meta = malloc(INTEL_MAX_MD_SIZE(numdisks), 2070 M_MD_INTEL, M_WAITOK | M_ZERO); 2071 memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1); 2072 meta->config_size = INTEL_MAX_MD_SIZE(numdisks); 2073 meta->config_id = mdi->mdio_config_id; 2074 meta->generation = mdi->mdio_generation; 2075 meta->attributes = INTEL_ATTR_CHECKSUM; 2076 meta->total_disks = numdisks; 2077 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2078 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2079 if (pd->pd_disk_pos < 0) 2080 continue; 2081 meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta; 2082 } 2083 2084 /* Fill volumes and maps. */ 2085 vi = 0; 2086 version = INTEL_VERSION_1000; 2087 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2088 if (vol->v_stopping) 2089 continue; 2090 mvol = intel_get_volume(meta, vi); 2091 2092 /* New metadata may have different volumes order. */ 2093 vol->v_md_data = (void *)(intptr_t)vi; 2094 2095 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2096 sd = &vol->v_subdisks[sdi]; 2097 if (sd->sd_disk != NULL) 2098 break; 2099 } 2100 if (sdi >= vol->v_disks_count) 2101 panic("No any filled subdisk in volume"); 2102 if (vol->v_mediasize >= 0x20000000000llu) 2103 meta->attributes |= INTEL_ATTR_2TB; 2104 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) 2105 meta->attributes |= INTEL_ATTR_RAID0; 2106 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2107 meta->attributes |= INTEL_ATTR_RAID1; 2108 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) 2109 meta->attributes |= INTEL_ATTR_RAID5; 2110 else 2111 meta->attributes |= INTEL_ATTR_RAID10; 2112 2113 if (meta->attributes & INTEL_ATTR_2TB) 2114 cv = INTEL_VERSION_1300; 2115 // else if (dev->status == DEV_CLONE_N_GO) 2116 // cv = INTEL_VERSION_1206; 2117 else if (vol->v_disks_count > 4) 2118 cv = INTEL_VERSION_1204; 2119 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) 2120 cv = INTEL_VERSION_1202; 2121 else if (vol->v_disks_count > 2) 2122 cv = INTEL_VERSION_1201; 2123 else if (vi > 0) 2124 cv = INTEL_VERSION_1200; 2125 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2126 cv = INTEL_VERSION_1100; 2127 else 2128 cv = INTEL_VERSION_1000; 2129 if (strcmp(cv, version) > 0) 2130 version = cv; 2131 2132 strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name)); 2133 mvol->total_sectors = vol->v_mediasize / sectorsize; 2134 2135 /* Check for any recovery in progress. */ 2136 state = G_RAID_SUBDISK_S_ACTIVE; 2137 pos = 0x7fffffffffffffffllu; 2138 stale = 0; 2139 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2140 sd = &vol->v_subdisks[sdi]; 2141 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) 2142 state = G_RAID_SUBDISK_S_REBUILD; 2143 else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC && 2144 state != G_RAID_SUBDISK_S_REBUILD) 2145 state = G_RAID_SUBDISK_S_RESYNC; 2146 else if (sd->sd_state == G_RAID_SUBDISK_S_STALE) 2147 stale = 1; 2148 if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2149 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) && 2150 sd->sd_rebuild_pos < pos) 2151 pos = sd->sd_rebuild_pos; 2152 } 2153 if (state == G_RAID_SUBDISK_S_REBUILD) { 2154 mvol->migr_state = 1; 2155 mvol->migr_type = INTEL_MT_REBUILD; 2156 } else if (state == G_RAID_SUBDISK_S_RESYNC) { 2157 mvol->migr_state = 1; 2158 /* mvol->migr_type = INTEL_MT_REPAIR; */ 2159 mvol->migr_type = INTEL_MT_VERIFY; 2160 mvol->state |= INTEL_ST_VERIFY_AND_FIX; 2161 } else 2162 mvol->migr_state = 0; 2163 mvol->dirty = (vol->v_dirty || stale); 2164 2165 mmap0 = intel_get_map(mvol, 0); 2166 2167 /* Write map / common part of two maps. */ 2168 mmap0->offset = sd->sd_offset / sectorsize; 2169 mmap0->disk_sectors = sd->sd_size / sectorsize; 2170 mmap0->strip_sectors = vol->v_strip_size / sectorsize; 2171 if (vol->v_state == G_RAID_VOLUME_S_BROKEN) 2172 mmap0->status = INTEL_S_FAILURE; 2173 else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED) 2174 mmap0->status = INTEL_S_DEGRADED; 2175 else 2176 mmap0->status = INTEL_S_READY; 2177 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) 2178 mmap0->type = INTEL_T_RAID0; 2179 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 2180 vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 2181 mmap0->type = INTEL_T_RAID1; 2182 else 2183 mmap0->type = INTEL_T_RAID5; 2184 mmap0->total_disks = vol->v_disks_count; 2185 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) 2186 mmap0->total_domains = vol->v_disks_count; 2187 else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) 2188 mmap0->total_domains = 2; 2189 else 2190 mmap0->total_domains = 1; 2191 mmap0->stripe_count = sd->sd_size / vol->v_strip_size / 2192 mmap0->total_domains; 2193 mmap0->failed_disk_num = 0xff; 2194 mmap0->ddf = 1; 2195 2196 /* If there are two maps - copy common and update. */ 2197 if (mvol->migr_state) { 2198 mvol->curr_migr_unit = pos / 2199 vol->v_strip_size / mmap0->total_domains; 2200 mmap1 = intel_get_map(mvol, 1); 2201 memcpy(mmap1, mmap0, sizeof(struct intel_raid_map)); 2202 mmap0->status = INTEL_S_READY; 2203 } else 2204 mmap1 = NULL; 2205 2206 /* Write disk indexes and put rebuild flags. */ 2207 for (sdi = 0; sdi < vol->v_disks_count; sdi++) { 2208 sd = &vol->v_subdisks[sdi]; 2209 pd = (struct g_raid_md_intel_perdisk *) 2210 sd->sd_disk->d_md_data; 2211 mmap0->disk_idx[sdi] = pd->pd_disk_pos; 2212 if (mvol->migr_state) 2213 mmap1->disk_idx[sdi] = pd->pd_disk_pos; 2214 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2215 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2216 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD; 2217 } else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE && 2218 sd->sd_state != G_RAID_SUBDISK_S_STALE) { 2219 mmap0->disk_idx[sdi] |= INTEL_DI_RBLD; 2220 if (mvol->migr_state) 2221 mmap1->disk_idx[sdi] |= INTEL_DI_RBLD; 2222 } 2223 if ((sd->sd_state == G_RAID_SUBDISK_S_NONE || 2224 sd->sd_state == G_RAID_SUBDISK_S_FAILED) && 2225 mmap0->failed_disk_num == 0xff) { 2226 mmap0->failed_disk_num = sdi; 2227 if (mvol->migr_state) 2228 mmap1->failed_disk_num = sdi; 2229 } 2230 } 2231 vi++; 2232 } 2233 meta->total_volumes = vi; 2234 if (strcmp(version, INTEL_VERSION_1300) != 0) 2235 meta->attributes &= INTEL_ATTR_CHECKSUM; 2236 memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1); 2237 2238 /* We are done. Print meta data and store them to disks. */ 2239 g_raid_md_intel_print(meta); 2240 if (mdi->mdio_meta != NULL) 2241 free(mdi->mdio_meta, M_MD_INTEL); 2242 mdi->mdio_meta = meta; 2243 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 2244 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2245 if (disk->d_state != G_RAID_DISK_S_ACTIVE) 2246 continue; 2247 if (pd->pd_meta != NULL) { 2248 free(pd->pd_meta, M_MD_INTEL); 2249 pd->pd_meta = NULL; 2250 } 2251 pd->pd_meta = intel_meta_copy(meta); 2252 intel_meta_write(disk->d_consumer, meta); 2253 } 2254 return (0); 2255 } 2256 2257 static int 2258 g_raid_md_fail_disk_intel(struct g_raid_md_object *md, 2259 struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) 2260 { 2261 struct g_raid_softc *sc; 2262 struct g_raid_md_intel_object *mdi; 2263 struct g_raid_md_intel_perdisk *pd; 2264 struct g_raid_subdisk *sd; 2265 2266 sc = md->mdo_softc; 2267 mdi = (struct g_raid_md_intel_object *)md; 2268 pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data; 2269 2270 /* We can't fail disk that is not a part of array now. */ 2271 if (pd->pd_disk_pos < 0) 2272 return (-1); 2273 2274 /* 2275 * Mark disk as failed in metadata and try to write that metadata 2276 * to the disk itself to prevent it's later resurrection as STALE. 2277 */ 2278 mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED; 2279 pd->pd_disk_meta.flags = INTEL_F_FAILED; 2280 g_raid_md_intel_print(mdi->mdio_meta); 2281 if (tdisk->d_consumer) 2282 intel_meta_write(tdisk->d_consumer, mdi->mdio_meta); 2283 2284 /* Change states. */ 2285 g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED); 2286 TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) { 2287 g_raid_change_subdisk_state(sd, 2288 G_RAID_SUBDISK_S_FAILED); 2289 g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED, 2290 G_RAID_EVENT_SUBDISK); 2291 } 2292 2293 /* Write updated metadata to remaining disks. */ 2294 g_raid_md_write_intel(md, NULL, NULL, tdisk); 2295 2296 /* Check if anything left except placeholders. */ 2297 if (g_raid_ndisks(sc, -1) == 2298 g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) 2299 g_raid_destroy_node(sc, 0); 2300 else 2301 g_raid_md_intel_refill(sc); 2302 return (0); 2303 } 2304 2305 static int 2306 g_raid_md_free_disk_intel(struct g_raid_md_object *md, 2307 struct g_raid_disk *disk) 2308 { 2309 struct g_raid_md_intel_perdisk *pd; 2310 2311 pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data; 2312 if (pd->pd_meta != NULL) { 2313 free(pd->pd_meta, M_MD_INTEL); 2314 pd->pd_meta = NULL; 2315 } 2316 free(pd, M_MD_INTEL); 2317 disk->d_md_data = NULL; 2318 return (0); 2319 } 2320 2321 static int 2322 g_raid_md_free_intel(struct g_raid_md_object *md) 2323 { 2324 struct g_raid_md_intel_object *mdi; 2325 2326 mdi = (struct g_raid_md_intel_object *)md; 2327 if (!mdi->mdio_started) { 2328 mdi->mdio_started = 0; 2329 callout_stop(&mdi->mdio_start_co); 2330 G_RAID_DEBUG1(1, md->mdo_softc, 2331 "root_mount_rel %p", mdi->mdio_rootmount); 2332 root_mount_rel(mdi->mdio_rootmount); 2333 mdi->mdio_rootmount = NULL; 2334 } 2335 if (mdi->mdio_meta != NULL) { 2336 free(mdi->mdio_meta, M_MD_INTEL); 2337 mdi->mdio_meta = NULL; 2338 } 2339 return (0); 2340 } 2341 2342 G_RAID_MD_DECLARE(g_raid_md_intel); 2343