xref: /freebsd/sys/geom/raid/md_ddf.c (revision 97cb52fa9aefd90fad38790fded50905aeeb9b9e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/kobj.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/systm.h>
42 #include <sys/time.h>
43 #include <sys/clock.h>
44 #include <geom/geom.h>
45 #include "geom/raid/g_raid.h"
46 #include "geom/raid/md_ddf.h"
47 #include "g_raid_md_if.h"
48 
49 static MALLOC_DEFINE(M_MD_DDF, "md_ddf_data", "GEOM_RAID DDF metadata");
50 
51 #define	DDF_MAX_DISKS_HARD	128
52 
53 #define	DDF_MAX_DISKS	16
54 #define	DDF_MAX_VDISKS	7
55 #define	DDF_MAX_PARTITIONS	1
56 
57 #define DECADE (3600*24*(365*10+2))	/* 10 years in seconds. */
58 
59 struct ddf_meta {
60 	u_int	sectorsize;
61 	u_int	bigendian;
62 	struct ddf_header *hdr;
63 	struct ddf_cd_record *cdr;
64 	struct ddf_pd_record *pdr;
65 	struct ddf_vd_record *vdr;
66 	void *cr;
67 	struct ddf_pdd_record *pdd;
68 	struct ddf_bbm_log *bbm;
69 };
70 
71 struct ddf_vol_meta {
72 	u_int	sectorsize;
73 	u_int	bigendian;
74 	struct ddf_header *hdr;
75 	struct ddf_cd_record *cdr;
76 	struct ddf_vd_entry *vde;
77 	struct ddf_vdc_record *vdc;
78 	struct ddf_vdc_record *bvdc[DDF_MAX_DISKS_HARD];
79 };
80 
81 struct g_raid_md_ddf_perdisk {
82 	struct ddf_meta	 pd_meta;
83 };
84 
85 struct g_raid_md_ddf_pervolume {
86 	struct ddf_vol_meta		 pv_meta;
87 	int				 pv_started;
88 	struct callout			 pv_start_co;	/* STARTING state timer. */
89 };
90 
91 struct g_raid_md_ddf_object {
92 	struct g_raid_md_object	 mdio_base;
93 	u_int			 mdio_bigendian;
94 	struct ddf_meta		 mdio_meta;
95 	int			 mdio_starting;
96 	struct callout		 mdio_start_co;	/* STARTING state timer. */
97 	int			 mdio_started;
98 	struct root_hold_token	*mdio_rootmount; /* Root mount delay token. */
99 };
100 
101 static g_raid_md_create_req_t g_raid_md_create_req_ddf;
102 static g_raid_md_taste_t g_raid_md_taste_ddf;
103 static g_raid_md_event_t g_raid_md_event_ddf;
104 static g_raid_md_volume_event_t g_raid_md_volume_event_ddf;
105 static g_raid_md_ctl_t g_raid_md_ctl_ddf;
106 static g_raid_md_write_t g_raid_md_write_ddf;
107 static g_raid_md_fail_disk_t g_raid_md_fail_disk_ddf;
108 static g_raid_md_free_disk_t g_raid_md_free_disk_ddf;
109 static g_raid_md_free_volume_t g_raid_md_free_volume_ddf;
110 static g_raid_md_free_t g_raid_md_free_ddf;
111 
112 static kobj_method_t g_raid_md_ddf_methods[] = {
113 	KOBJMETHOD(g_raid_md_create_req,	g_raid_md_create_req_ddf),
114 	KOBJMETHOD(g_raid_md_taste,	g_raid_md_taste_ddf),
115 	KOBJMETHOD(g_raid_md_event,	g_raid_md_event_ddf),
116 	KOBJMETHOD(g_raid_md_volume_event,	g_raid_md_volume_event_ddf),
117 	KOBJMETHOD(g_raid_md_ctl,	g_raid_md_ctl_ddf),
118 	KOBJMETHOD(g_raid_md_write,	g_raid_md_write_ddf),
119 	KOBJMETHOD(g_raid_md_fail_disk,	g_raid_md_fail_disk_ddf),
120 	KOBJMETHOD(g_raid_md_free_disk,	g_raid_md_free_disk_ddf),
121 	KOBJMETHOD(g_raid_md_free_volume,	g_raid_md_free_volume_ddf),
122 	KOBJMETHOD(g_raid_md_free,	g_raid_md_free_ddf),
123 	{ 0, 0 }
124 };
125 
126 static struct g_raid_md_class g_raid_md_ddf_class = {
127 	"DDF",
128 	g_raid_md_ddf_methods,
129 	sizeof(struct g_raid_md_ddf_object),
130 	.mdc_enable = 1,
131 	.mdc_priority = 100
132 };
133 
134 #define GET8(m, f)	((m)->f)
135 #define GET16(m, f)	((m)->bigendian ? be16dec(&(m)->f) : le16dec(&(m)->f))
136 #define GET32(m, f)	((m)->bigendian ? be32dec(&(m)->f) : le32dec(&(m)->f))
137 #define GET64(m, f)	((m)->bigendian ? be64dec(&(m)->f) : le64dec(&(m)->f))
138 #define GET8D(m, f)	(f)
139 #define GET16D(m, f)	((m)->bigendian ? be16dec(&f) : le16dec(&f))
140 #define GET32D(m, f)	((m)->bigendian ? be32dec(&f) : le32dec(&f))
141 #define GET64D(m, f)	((m)->bigendian ? be64dec(&f) : le64dec(&f))
142 #define GET8P(m, f)	(*(f))
143 #define GET16P(m, f)	((m)->bigendian ? be16dec(f) : le16dec(f))
144 #define GET32P(m, f)	((m)->bigendian ? be32dec(f) : le32dec(f))
145 #define GET64P(m, f)	((m)->bigendian ? be64dec(f) : le64dec(f))
146 
147 #define SET8P(m, f, v)							\
148 	(*(f) = (v))
149 #define SET16P(m, f, v)							\
150 	do {								\
151 		if ((m)->bigendian)					\
152 			be16enc((f), (v));				\
153 		else							\
154 			le16enc((f), (v));				\
155 	} while (0)
156 #define SET32P(m, f, v)							\
157 	do {								\
158 		if ((m)->bigendian)					\
159 			be32enc((f), (v));				\
160 		else							\
161 			le32enc((f), (v));				\
162 	} while (0)
163 #define SET64P(m, f, v)							\
164 	do {								\
165 		if ((m)->bigendian)					\
166 			be64enc((f), (v));				\
167 		else							\
168 			le64enc((f), (v));				\
169 	} while (0)
170 #define SET8(m, f, v)	SET8P((m), &((m)->f), (v))
171 #define SET16(m, f, v)	SET16P((m), &((m)->f), (v))
172 #define SET32(m, f, v)	SET32P((m), &((m)->f), (v))
173 #define SET64(m, f, v)	SET64P((m), &((m)->f), (v))
174 #define SET8D(m, f, v)	SET8P((m), &(f), (v))
175 #define SET16D(m, f, v)	SET16P((m), &(f), (v))
176 #define SET32D(m, f, v)	SET32P((m), &(f), (v))
177 #define SET64D(m, f, v)	SET64P((m), &(f), (v))
178 
179 #define GETCRNUM(m)	(GET32((m), hdr->cr_length) /			\
180 	GET16((m), hdr->Configuration_Record_Length))
181 
182 #define GETVDCPTR(m, n)	((struct ddf_vdc_record *)((uint8_t *)(m)->cr +	\
183 	(n) * GET16((m), hdr->Configuration_Record_Length) *		\
184 	(m)->sectorsize))
185 
186 #define GETSAPTR(m, n)	((struct ddf_sa_record *)((uint8_t *)(m)->cr +	\
187 	(n) * GET16((m), hdr->Configuration_Record_Length) *		\
188 	(m)->sectorsize))
189 
190 static int
191 isff(uint8_t *buf, int size)
192 {
193 	int i;
194 
195 	for (i = 0; i < size; i++)
196 		if (buf[i] != 0xff)
197 			return (0);
198 	return (1);
199 }
200 
201 static void
202 print_guid(uint8_t *buf)
203 {
204 	int i, ascii;
205 
206 	ascii = 1;
207 	for (i = 0; i < 24; i++) {
208 		if (buf[i] != 0 && (buf[i] < ' ' || buf[i] > 127)) {
209 			ascii = 0;
210 			break;
211 		}
212 	}
213 	if (ascii) {
214 		printf("'%.24s'", buf);
215 	} else {
216 		for (i = 0; i < 24; i++)
217 			printf("%02x", buf[i]);
218 	}
219 }
220 
221 static void
222 g_raid_md_ddf_print(struct ddf_meta *meta)
223 {
224 	struct ddf_vdc_record *vdc;
225 	struct ddf_vuc_record *vuc;
226 	struct ddf_sa_record *sa;
227 	uint64_t *val2;
228 	uint32_t val;
229 	int i, j, k, num, num2;
230 
231 	if (g_raid_debug < 1)
232 		return;
233 
234 	printf("********* DDF Metadata *********\n");
235 	printf("**** Header ****\n");
236 	printf("DDF_Header_GUID      ");
237 	print_guid(meta->hdr->DDF_Header_GUID);
238 	printf("\n");
239 	printf("DDF_rev              %8.8s\n", (char *)&meta->hdr->DDF_rev[0]);
240 	printf("Sequence_Number      0x%08x\n", GET32(meta, hdr->Sequence_Number));
241 	printf("TimeStamp            0x%08x\n", GET32(meta, hdr->TimeStamp));
242 	printf("Open_Flag            0x%02x\n", GET16(meta, hdr->Open_Flag));
243 	printf("Foreign_Flag         0x%02x\n", GET16(meta, hdr->Foreign_Flag));
244 	printf("Diskgrouping         0x%02x\n", GET16(meta, hdr->Diskgrouping));
245 	printf("Primary_Header_LBA   %ju\n", GET64(meta, hdr->Primary_Header_LBA));
246 	printf("Secondary_Header_LBA %ju\n", GET64(meta, hdr->Secondary_Header_LBA));
247 	printf("WorkSpace_Length     %u\n", GET32(meta, hdr->WorkSpace_Length));
248 	printf("WorkSpace_LBA        %ju\n", GET64(meta, hdr->WorkSpace_LBA));
249 	printf("Max_PD_Entries       %u\n", GET16(meta, hdr->Max_PD_Entries));
250 	printf("Max_VD_Entries       %u\n", GET16(meta, hdr->Max_VD_Entries));
251 	printf("Max_Partitions       %u\n", GET16(meta, hdr->Max_Partitions));
252 	printf("Configuration_Record_Length %u\n", GET16(meta, hdr->Configuration_Record_Length));
253 	printf("Max_Primary_Element_Entries %u\n", GET16(meta, hdr->Max_Primary_Element_Entries));
254 	printf("Controller Data      %u:%u\n", GET32(meta, hdr->cd_section), GET32(meta, hdr->cd_length));
255 	printf("Physical Disk        %u:%u\n", GET32(meta, hdr->pdr_section), GET32(meta, hdr->pdr_length));
256 	printf("Virtual Disk         %u:%u\n", GET32(meta, hdr->vdr_section), GET32(meta, hdr->vdr_length));
257 	printf("Configuration Recs   %u:%u\n", GET32(meta, hdr->cr_section), GET32(meta, hdr->cr_length));
258 	printf("Physical Disk Recs   %u:%u\n", GET32(meta, hdr->pdd_section), GET32(meta, hdr->pdd_length));
259 	printf("BBM Log              %u:%u\n", GET32(meta, hdr->bbmlog_section), GET32(meta, hdr->bbmlog_length));
260 	printf("Diagnostic Space     %u:%u\n", GET32(meta, hdr->Diagnostic_Space), GET32(meta, hdr->Diagnostic_Space_Length));
261 	printf("Vendor_Specific_Logs %u:%u\n", GET32(meta, hdr->Vendor_Specific_Logs), GET32(meta, hdr->Vendor_Specific_Logs_Length));
262 	printf("**** Controller Data ****\n");
263 	printf("Controller_GUID      ");
264 	print_guid(meta->cdr->Controller_GUID);
265 	printf("\n");
266 	printf("Controller_Type      0x%04x%04x 0x%04x%04x\n",
267 	    GET16(meta, cdr->Controller_Type.Vendor_ID),
268 	    GET16(meta, cdr->Controller_Type.Device_ID),
269 	    GET16(meta, cdr->Controller_Type.SubVendor_ID),
270 	    GET16(meta, cdr->Controller_Type.SubDevice_ID));
271 	printf("Product_ID           '%.16s'\n", (char *)&meta->cdr->Product_ID[0]);
272 	printf("**** Physical Disk Records ****\n");
273 	printf("Populated_PDEs       %u\n", GET16(meta, pdr->Populated_PDEs));
274 	printf("Max_PDE_Supported    %u\n", GET16(meta, pdr->Max_PDE_Supported));
275 	for (j = 0; j < GET16(meta, pdr->Populated_PDEs); j++) {
276 		if (isff(meta->pdr->entry[j].PD_GUID, 24))
277 			continue;
278 		if (GET32(meta, pdr->entry[j].PD_Reference) == 0xffffffff)
279 			continue;
280 		printf("PD_GUID              ");
281 		print_guid(meta->pdr->entry[j].PD_GUID);
282 		printf("\n");
283 		printf("PD_Reference         0x%08x\n",
284 		    GET32(meta, pdr->entry[j].PD_Reference));
285 		printf("PD_Type              0x%04x\n",
286 		    GET16(meta, pdr->entry[j].PD_Type));
287 		printf("PD_State             0x%04x\n",
288 		    GET16(meta, pdr->entry[j].PD_State));
289 		printf("Configured_Size      %ju\n",
290 		    GET64(meta, pdr->entry[j].Configured_Size));
291 		printf("Block_Size           %u\n",
292 		    GET16(meta, pdr->entry[j].Block_Size));
293 	}
294 	printf("**** Virtual Disk Records ****\n");
295 	printf("Populated_VDEs       %u\n", GET16(meta, vdr->Populated_VDEs));
296 	printf("Max_VDE_Supported    %u\n", GET16(meta, vdr->Max_VDE_Supported));
297 	for (j = 0; j < GET16(meta, vdr->Populated_VDEs); j++) {
298 		if (isff(meta->vdr->entry[j].VD_GUID, 24))
299 			continue;
300 		printf("VD_GUID              ");
301 		print_guid(meta->vdr->entry[j].VD_GUID);
302 		printf("\n");
303 		printf("VD_Number            0x%04x\n",
304 		    GET16(meta, vdr->entry[j].VD_Number));
305 		printf("VD_Type              0x%04x\n",
306 		    GET16(meta, vdr->entry[j].VD_Type));
307 		printf("VD_State             0x%02x\n",
308 		    GET8(meta, vdr->entry[j].VD_State));
309 		printf("Init_State           0x%02x\n",
310 		    GET8(meta, vdr->entry[j].Init_State));
311 		printf("Drive_Failures_Remaining %u\n",
312 		    GET8(meta, vdr->entry[j].Drive_Failures_Remaining));
313 		printf("VD_Name              '%.16s'\n",
314 		    (char *)&meta->vdr->entry[j].VD_Name);
315 	}
316 	printf("**** Configuration Records ****\n");
317 	num = GETCRNUM(meta);
318 	for (j = 0; j < num; j++) {
319 		vdc = GETVDCPTR(meta, j);
320 		val = GET32D(meta, vdc->Signature);
321 		switch (val) {
322 		case DDF_VDCR_SIGNATURE:
323 			printf("** Virtual Disk Configuration **\n");
324 			printf("VD_GUID              ");
325 			print_guid(vdc->VD_GUID);
326 			printf("\n");
327 			printf("Timestamp            0x%08x\n",
328 			    GET32D(meta, vdc->Timestamp));
329 			printf("Sequence_Number      0x%08x\n",
330 			    GET32D(meta, vdc->Sequence_Number));
331 			printf("Primary_Element_Count %u\n",
332 			    GET16D(meta, vdc->Primary_Element_Count));
333 			printf("Stripe_Size          %u\n",
334 			    GET8D(meta, vdc->Stripe_Size));
335 			printf("Primary_RAID_Level   0x%02x\n",
336 			    GET8D(meta, vdc->Primary_RAID_Level));
337 			printf("RLQ                  0x%02x\n",
338 			    GET8D(meta, vdc->RLQ));
339 			printf("Secondary_Element_Count %u\n",
340 			    GET8D(meta, vdc->Secondary_Element_Count));
341 			printf("Secondary_Element_Seq %u\n",
342 			    GET8D(meta, vdc->Secondary_Element_Seq));
343 			printf("Secondary_RAID_Level 0x%02x\n",
344 			    GET8D(meta, vdc->Secondary_RAID_Level));
345 			printf("Block_Count          %ju\n",
346 			    GET64D(meta, vdc->Block_Count));
347 			printf("VD_Size              %ju\n",
348 			    GET64D(meta, vdc->VD_Size));
349 			printf("Block_Size           %u\n",
350 			    GET16D(meta, vdc->Block_Size));
351 			printf("Rotate_Parity_count  %u\n",
352 			    GET8D(meta, vdc->Rotate_Parity_count));
353 			printf("Associated_Spare_Disks");
354 			for (i = 0; i < 8; i++) {
355 				if (GET32D(meta, vdc->Associated_Spares[i]) != 0xffffffff)
356 					printf(" 0x%08x", GET32D(meta, vdc->Associated_Spares[i]));
357 			}
358 			printf("\n");
359 			printf("Cache_Flags          %016jx\n",
360 			    GET64D(meta, vdc->Cache_Flags));
361 			printf("BG_Rate              %u\n",
362 			    GET8D(meta, vdc->BG_Rate));
363 			printf("MDF_Parity_Disks     %u\n",
364 			    GET8D(meta, vdc->MDF_Parity_Disks));
365 			printf("MDF_Parity_Generator_Polynomial 0x%04x\n",
366 			    GET16D(meta, vdc->MDF_Parity_Generator_Polynomial));
367 			printf("MDF_Constant_Generation_Method 0x%02x\n",
368 			    GET8D(meta, vdc->MDF_Constant_Generation_Method));
369 			printf("Physical_Disks      ");
370 			num2 = GET16D(meta, vdc->Primary_Element_Count);
371 			val2 = (uint64_t *)&(vdc->Physical_Disk_Sequence[GET16(meta, hdr->Max_Primary_Element_Entries)]);
372 			for (i = 0; i < num2; i++)
373 				printf(" 0x%08x @ %ju",
374 				    GET32D(meta, vdc->Physical_Disk_Sequence[i]),
375 				    GET64P(meta, val2 + i));
376 			printf("\n");
377 			break;
378 		case DDF_VUCR_SIGNATURE:
379 			printf("** Vendor Unique Configuration **\n");
380 			vuc = (struct ddf_vuc_record *)vdc;
381 			printf("VD_GUID              ");
382 			print_guid(vuc->VD_GUID);
383 			printf("\n");
384 			break;
385 		case DDF_SA_SIGNATURE:
386 			printf("** Spare Assignment Configuration **\n");
387 			sa = (struct ddf_sa_record *)vdc;
388 			printf("Timestamp            0x%08x\n",
389 			    GET32D(meta, sa->Timestamp));
390 			printf("Spare_Type           0x%02x\n",
391 			    GET8D(meta, sa->Spare_Type));
392 			printf("Populated_SAEs       %u\n",
393 			    GET16D(meta, sa->Populated_SAEs));
394 			printf("MAX_SAE_Supported    %u\n",
395 			    GET16D(meta, sa->MAX_SAE_Supported));
396 			for (i = 0; i < GET16D(meta, sa->Populated_SAEs); i++) {
397 				if (isff(sa->entry[i].VD_GUID, 24))
398 					continue;
399 				printf("VD_GUID             ");
400 				for (k = 0; k < 24; k++)
401 					printf("%02x", sa->entry[i].VD_GUID[k]);
402 				printf("\n");
403 				printf("Secondary_Element   %u\n",
404 				    GET16D(meta, sa->entry[i].Secondary_Element));
405 			}
406 			break;
407 		case 0x00000000:
408 		case 0xFFFFFFFF:
409 			break;
410 		default:
411 			printf("Unknown configuration signature %08x\n", val);
412 			break;
413 		}
414 	}
415 	printf("**** Physical Disk Data ****\n");
416 	printf("PD_GUID              ");
417 	print_guid(meta->pdd->PD_GUID);
418 	printf("\n");
419 	printf("PD_Reference         0x%08x\n",
420 	    GET32(meta, pdd->PD_Reference));
421 	printf("Forced_Ref_Flag      0x%02x\n",
422 	    GET8(meta, pdd->Forced_Ref_Flag));
423 	printf("Forced_PD_GUID_Flag  0x%02x\n",
424 	    GET8(meta, pdd->Forced_PD_GUID_Flag));
425 }
426 
427 static int
428 ddf_meta_find_pd(struct ddf_meta *meta, uint8_t *GUID, uint32_t PD_Reference)
429 {
430 	int i;
431 
432 	for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
433 		if (GUID != NULL) {
434 			if (memcmp(meta->pdr->entry[i].PD_GUID, GUID, 24) == 0)
435 				return (i);
436 		} else if (PD_Reference != 0xffffffff) {
437 			if (GET32(meta, pdr->entry[i].PD_Reference) == PD_Reference)
438 				return (i);
439 		} else
440 			if (isff(meta->pdr->entry[i].PD_GUID, 24))
441 				return (i);
442 	}
443 	if (GUID == NULL && PD_Reference == 0xffffffff) {
444 		if (i >= GET16(meta, pdr->Max_PDE_Supported))
445 			return (-1);
446 		SET16(meta, pdr->Populated_PDEs, i + 1);
447 		return (i);
448 	}
449 	return (-1);
450 }
451 
452 static int
453 ddf_meta_find_vd(struct ddf_meta *meta, uint8_t *GUID)
454 {
455 	int i;
456 
457 	for (i = 0; i < GET16(meta, vdr->Populated_VDEs); i++) {
458 		if (GUID != NULL) {
459 			if (memcmp(meta->vdr->entry[i].VD_GUID, GUID, 24) == 0)
460 				return (i);
461 		} else
462 			if (isff(meta->vdr->entry[i].VD_GUID, 24))
463 				return (i);
464 	}
465 	if (GUID == NULL) {
466 		if (i >= GET16(meta, vdr->Max_VDE_Supported))
467 			return (-1);
468 		SET16(meta, vdr->Populated_VDEs, i + 1);
469 		return (i);
470 	}
471 	return (-1);
472 }
473 
474 static struct ddf_vdc_record *
475 ddf_meta_find_vdc(struct ddf_meta *meta, uint8_t *GUID)
476 {
477 	struct ddf_vdc_record *vdc;
478 	int i, num;
479 
480 	num = GETCRNUM(meta);
481 	for (i = 0; i < num; i++) {
482 		vdc = GETVDCPTR(meta, i);
483 		if (GUID != NULL) {
484 			if (GET32D(meta, vdc->Signature) == DDF_VDCR_SIGNATURE &&
485 			    memcmp(vdc->VD_GUID, GUID, 24) == 0)
486 				return (vdc);
487 		} else
488 			if (GET32D(meta, vdc->Signature) == 0xffffffff ||
489 			    GET32D(meta, vdc->Signature) == 0)
490 				return (vdc);
491 	}
492 	return (NULL);
493 }
494 
495 static int
496 ddf_meta_count_vdc(struct ddf_meta *meta, uint8_t *GUID)
497 {
498 	struct ddf_vdc_record *vdc;
499 	int i, num, cnt;
500 
501 	cnt = 0;
502 	num = GETCRNUM(meta);
503 	for (i = 0; i < num; i++) {
504 		vdc = GETVDCPTR(meta, i);
505 		if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
506 			continue;
507 		if (GUID == NULL || memcmp(vdc->VD_GUID, GUID, 24) == 0)
508 			cnt++;
509 	}
510 	return (cnt);
511 }
512 
513 static int
514 ddf_meta_find_disk(struct ddf_vol_meta *vmeta, uint32_t PD_Reference,
515     int *bvdp, int *posp)
516 {
517 	int i, bvd, pos;
518 
519 	i = 0;
520 	for (bvd = 0; bvd < GET8(vmeta, vdc->Secondary_Element_Count); bvd++) {
521 		if (vmeta->bvdc[bvd] == NULL) {
522 			i += GET16(vmeta, vdc->Primary_Element_Count); // XXX
523 			continue;
524 		}
525 		for (pos = 0; pos < GET16(vmeta, bvdc[bvd]->Primary_Element_Count);
526 		    pos++, i++) {
527 			if (GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]) ==
528 			    PD_Reference) {
529 				if (bvdp != NULL)
530 					*bvdp = bvd;
531 				if (posp != NULL)
532 					*posp = pos;
533 				return (i);
534 			}
535 		}
536 	}
537 	return (-1);
538 }
539 
540 static struct ddf_sa_record *
541 ddf_meta_find_sa(struct ddf_meta *meta, int create)
542 {
543 	struct ddf_sa_record *sa;
544 	int i, num;
545 
546 	num = GETCRNUM(meta);
547 	for (i = 0; i < num; i++) {
548 		sa = GETSAPTR(meta, i);
549 		if (GET32D(meta, sa->Signature) == DDF_SA_SIGNATURE)
550 			return (sa);
551 	}
552 	if (create) {
553 		for (i = 0; i < num; i++) {
554 			sa = GETSAPTR(meta, i);
555 			if (GET32D(meta, sa->Signature) == 0xffffffff ||
556 			    GET32D(meta, sa->Signature) == 0)
557 				return (sa);
558 		}
559 	}
560 	return (NULL);
561 }
562 
563 static void
564 ddf_meta_create(struct g_raid_disk *disk, struct ddf_meta *sample)
565 {
566 	struct timespec ts;
567 	struct clocktime ct;
568 	struct g_raid_md_ddf_perdisk *pd;
569 	struct g_raid_md_ddf_object *mdi;
570 	struct ddf_meta *meta;
571 	struct ddf_pd_entry *pde;
572 	off_t anchorlba;
573 	u_int ss, pos, size;
574 	int len, error;
575 	char serial_buffer[24];
576 
577 	if (sample->hdr == NULL)
578 		sample = NULL;
579 
580 	mdi = (struct g_raid_md_ddf_object *)disk->d_softc->sc_md;
581 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
582 	meta = &pd->pd_meta;
583 	ss = disk->d_consumer->provider->sectorsize;
584 	anchorlba = disk->d_consumer->provider->mediasize / ss - 1;
585 
586 	meta->sectorsize = ss;
587 	meta->bigendian = sample ? sample->bigendian : mdi->mdio_bigendian;
588 	getnanotime(&ts);
589 	clock_ts_to_ct(&ts, &ct);
590 
591 	/* Header */
592 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
593 	memset(meta->hdr, 0xff, ss);
594 	if (sample) {
595 		memcpy(meta->hdr, sample->hdr, sizeof(struct ddf_header));
596 		if (ss != sample->sectorsize) {
597 			SET32(meta, hdr->WorkSpace_Length,
598 			    howmany(GET32(sample, hdr->WorkSpace_Length) *
599 			        sample->sectorsize, ss));
600 			SET16(meta, hdr->Configuration_Record_Length,
601 			    howmany(GET16(sample,
602 			        hdr->Configuration_Record_Length) *
603 				sample->sectorsize, ss));
604 			SET32(meta, hdr->cd_length,
605 			    howmany(GET32(sample, hdr->cd_length) *
606 			        sample->sectorsize, ss));
607 			SET32(meta, hdr->pdr_length,
608 			    howmany(GET32(sample, hdr->pdr_length) *
609 			        sample->sectorsize, ss));
610 			SET32(meta, hdr->vdr_length,
611 			    howmany(GET32(sample, hdr->vdr_length) *
612 			        sample->sectorsize, ss));
613 			SET32(meta, hdr->cr_length,
614 			    howmany(GET32(sample, hdr->cr_length) *
615 			        sample->sectorsize, ss));
616 			SET32(meta, hdr->pdd_length,
617 			    howmany(GET32(sample, hdr->pdd_length) *
618 			        sample->sectorsize, ss));
619 			SET32(meta, hdr->bbmlog_length,
620 			    howmany(GET32(sample, hdr->bbmlog_length) *
621 			        sample->sectorsize, ss));
622 			SET32(meta, hdr->Diagnostic_Space,
623 			    howmany(GET32(sample, hdr->bbmlog_length) *
624 			        sample->sectorsize, ss));
625 			SET32(meta, hdr->Vendor_Specific_Logs,
626 			    howmany(GET32(sample, hdr->bbmlog_length) *
627 			        sample->sectorsize, ss));
628 		}
629 	} else {
630 		SET32(meta, hdr->Signature, DDF_HEADER_SIGNATURE);
631 		snprintf(meta->hdr->DDF_Header_GUID, 25, "FreeBSD %08x%08x",
632 		    (u_int)(ts.tv_sec - DECADE), arc4random());
633 		memcpy(meta->hdr->DDF_rev, "02.00.00", 8);
634 		SET32(meta, hdr->TimeStamp, (ts.tv_sec - DECADE));
635 		SET32(meta, hdr->WorkSpace_Length, 16 * 1024 * 1024 / ss);
636 		SET16(meta, hdr->Max_PD_Entries, DDF_MAX_DISKS - 1);
637 		SET16(meta, hdr->Max_VD_Entries, DDF_MAX_VDISKS);
638 		SET16(meta, hdr->Max_Partitions, DDF_MAX_PARTITIONS);
639 		SET16(meta, hdr->Max_Primary_Element_Entries, DDF_MAX_DISKS);
640 		SET16(meta, hdr->Configuration_Record_Length,
641 		    howmany(sizeof(struct ddf_vdc_record) + (4 + 8) *
642 		        GET16(meta, hdr->Max_Primary_Element_Entries), ss));
643 		SET32(meta, hdr->cd_length,
644 		    howmany(sizeof(struct ddf_cd_record), ss));
645 		SET32(meta, hdr->pdr_length,
646 		    howmany(sizeof(struct ddf_pd_record) +
647 		        sizeof(struct ddf_pd_entry) * GET16(meta,
648 			hdr->Max_PD_Entries), ss));
649 		SET32(meta, hdr->vdr_length,
650 		    howmany(sizeof(struct ddf_vd_record) +
651 		        sizeof(struct ddf_vd_entry) *
652 			GET16(meta, hdr->Max_VD_Entries), ss));
653 		SET32(meta, hdr->cr_length,
654 		    GET16(meta, hdr->Configuration_Record_Length) *
655 		    (GET16(meta, hdr->Max_Partitions) + 1));
656 		SET32(meta, hdr->pdd_length,
657 		    howmany(sizeof(struct ddf_pdd_record), ss));
658 		SET32(meta, hdr->bbmlog_length, 0);
659 		SET32(meta, hdr->Diagnostic_Space_Length, 0);
660 		SET32(meta, hdr->Vendor_Specific_Logs_Length, 0);
661 	}
662 	pos = 1;
663 	SET32(meta, hdr->cd_section, pos);
664 	pos += GET32(meta, hdr->cd_length);
665 	SET32(meta, hdr->pdr_section, pos);
666 	pos += GET32(meta, hdr->pdr_length);
667 	SET32(meta, hdr->vdr_section, pos);
668 	pos += GET32(meta, hdr->vdr_length);
669 	SET32(meta, hdr->cr_section, pos);
670 	pos += GET32(meta, hdr->cr_length);
671 	SET32(meta, hdr->pdd_section, pos);
672 	pos += GET32(meta, hdr->pdd_length);
673 	SET32(meta, hdr->bbmlog_section,
674 	    GET32(meta, hdr->bbmlog_length) != 0 ? pos : 0xffffffff);
675 	pos += GET32(meta, hdr->bbmlog_length);
676 	SET32(meta, hdr->Diagnostic_Space,
677 	    GET32(meta, hdr->Diagnostic_Space_Length) != 0 ? pos : 0xffffffff);
678 	pos += GET32(meta, hdr->Diagnostic_Space_Length);
679 	SET32(meta, hdr->Vendor_Specific_Logs,
680 	    GET32(meta, hdr->Vendor_Specific_Logs_Length) != 0 ? pos : 0xffffffff);
681 	pos += min(GET32(meta, hdr->Vendor_Specific_Logs_Length), 1);
682 	SET64(meta, hdr->Primary_Header_LBA,
683 	    anchorlba - pos);
684 	SET64(meta, hdr->Secondary_Header_LBA,
685 	    0xffffffffffffffffULL);
686 	SET64(meta, hdr->WorkSpace_LBA,
687 	    anchorlba + 1 - 32 * 1024 * 1024 / ss);
688 
689 	/* Controller Data */
690 	size = GET32(meta, hdr->cd_length) * ss;
691 	meta->cdr = malloc(size, M_MD_DDF, M_WAITOK);
692 	memset(meta->cdr, 0xff, size);
693 	SET32(meta, cdr->Signature, DDF_CONTROLLER_DATA_SIGNATURE);
694 	memcpy(meta->cdr->Controller_GUID, "FreeBSD GEOM RAID SERIAL", 24);
695 	memcpy(meta->cdr->Product_ID, "FreeBSD GEOMRAID", 16);
696 
697 	/* Physical Drive Records. */
698 	size = GET32(meta, hdr->pdr_length) * ss;
699 	meta->pdr = malloc(size, M_MD_DDF, M_WAITOK);
700 	memset(meta->pdr, 0xff, size);
701 	SET32(meta, pdr->Signature, DDF_PDR_SIGNATURE);
702 	SET16(meta, pdr->Populated_PDEs, 1);
703 	SET16(meta, pdr->Max_PDE_Supported,
704 	    GET16(meta, hdr->Max_PD_Entries));
705 
706 	pde = &meta->pdr->entry[0];
707 	len = sizeof(serial_buffer);
708 	error = g_io_getattr("GEOM::ident", disk->d_consumer, &len, serial_buffer);
709 	if (error == 0 && (len = strlen (serial_buffer)) >= 6 && len <= 20)
710 		snprintf(pde->PD_GUID, 25, "DISK%20s", serial_buffer);
711 	else
712 		snprintf(pde->PD_GUID, 25, "DISK%04d%02d%02d%08x%04x",
713 		    ct.year, ct.mon, ct.day,
714 		    arc4random(), arc4random() & 0xffff);
715 	SET32D(meta, pde->PD_Reference, arc4random());
716 	SET16D(meta, pde->PD_Type, DDF_PDE_GUID_FORCE);
717 	SET16D(meta, pde->PD_State, 0);
718 	SET64D(meta, pde->Configured_Size,
719 	    anchorlba + 1 - 32 * 1024 * 1024 / ss);
720 	SET16D(meta, pde->Block_Size, ss);
721 
722 	/* Virtual Drive Records. */
723 	size = GET32(meta, hdr->vdr_length) * ss;
724 	meta->vdr = malloc(size, M_MD_DDF, M_WAITOK);
725 	memset(meta->vdr, 0xff, size);
726 	SET32(meta, vdr->Signature, DDF_VD_RECORD_SIGNATURE);
727 	SET32(meta, vdr->Populated_VDEs, 0);
728 	SET16(meta, vdr->Max_VDE_Supported,
729 	    GET16(meta, hdr->Max_VD_Entries));
730 
731 	/* Configuration Records. */
732 	size = GET32(meta, hdr->cr_length) * ss;
733 	meta->cr = malloc(size, M_MD_DDF, M_WAITOK);
734 	memset(meta->cr, 0xff, size);
735 
736 	/* Physical Disk Data. */
737 	size = GET32(meta, hdr->pdd_length) * ss;
738 	meta->pdd = malloc(size, M_MD_DDF, M_WAITOK);
739 	memset(meta->pdd, 0xff, size);
740 	SET32(meta, pdd->Signature, DDF_PDD_SIGNATURE);
741 	memcpy(meta->pdd->PD_GUID, pde->PD_GUID, 24);
742 	SET32(meta, pdd->PD_Reference, GET32D(meta, pde->PD_Reference));
743 	SET8(meta, pdd->Forced_Ref_Flag, DDF_PDD_FORCED_REF);
744 	SET8(meta, pdd->Forced_PD_GUID_Flag, DDF_PDD_FORCED_GUID);
745 
746 	/* Bad Block Management Log. */
747 	if (GET32(meta, hdr->bbmlog_length) != 0) {
748 		size = GET32(meta, hdr->bbmlog_length) * ss;
749 		meta->bbm = malloc(size, M_MD_DDF, M_WAITOK);
750 		memset(meta->bbm, 0xff, size);
751 		SET32(meta, bbm->Signature, DDF_BBML_SIGNATURE);
752 		SET32(meta, bbm->Entry_Count, 0);
753 		SET32(meta, bbm->Spare_Block_Count, 0);
754 	}
755 }
756 
757 static void
758 ddf_meta_copy(struct ddf_meta *dst, struct ddf_meta *src)
759 {
760 	struct ddf_header *hdr;
761 	u_int ss;
762 
763 	hdr = src->hdr;
764 	dst->bigendian = src->bigendian;
765 	ss = dst->sectorsize = src->sectorsize;
766 	dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
767 	memcpy(dst->hdr, src->hdr, ss);
768 	dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
769 	memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
770 	dst->pdr = malloc(GET32(src, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
771 	memcpy(dst->pdr, src->pdr, GET32(src, hdr->pdr_length) * ss);
772 	dst->vdr = malloc(GET32(src, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
773 	memcpy(dst->vdr, src->vdr, GET32(src, hdr->vdr_length) * ss);
774 	dst->cr = malloc(GET32(src, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
775 	memcpy(dst->cr, src->cr, GET32(src, hdr->cr_length) * ss);
776 	dst->pdd = malloc(GET32(src, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
777 	memcpy(dst->pdd, src->pdd, GET32(src, hdr->pdd_length) * ss);
778 	if (src->bbm != NULL) {
779 		dst->bbm = malloc(GET32(src, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
780 		memcpy(dst->bbm, src->bbm, GET32(src, hdr->bbmlog_length) * ss);
781 	}
782 }
783 
784 static void
785 ddf_meta_update(struct ddf_meta *meta, struct ddf_meta *src)
786 {
787 	struct ddf_pd_entry *pde, *spde;
788 	int i, j;
789 
790 	for (i = 0; i < GET16(src, pdr->Populated_PDEs); i++) {
791 		spde = &src->pdr->entry[i];
792 		if (isff(spde->PD_GUID, 24))
793 			continue;
794 		j = ddf_meta_find_pd(meta, NULL,
795 		    GET32(src, pdr->entry[i].PD_Reference));
796 		if (j < 0) {
797 			j = ddf_meta_find_pd(meta, NULL, 0xffffffff);
798 			pde = &meta->pdr->entry[j];
799 			memcpy(pde, spde, sizeof(*pde));
800 		} else {
801 			pde = &meta->pdr->entry[j];
802 			SET16D(meta, pde->PD_State,
803 			    GET16D(meta, pde->PD_State) |
804 			    GET16D(src, pde->PD_State));
805 		}
806 	}
807 }
808 
809 static void
810 ddf_meta_free(struct ddf_meta *meta)
811 {
812 
813 	if (meta->hdr != NULL) {
814 		free(meta->hdr, M_MD_DDF);
815 		meta->hdr = NULL;
816 	}
817 	if (meta->cdr != NULL) {
818 		free(meta->cdr, M_MD_DDF);
819 		meta->cdr = NULL;
820 	}
821 	if (meta->pdr != NULL) {
822 		free(meta->pdr, M_MD_DDF);
823 		meta->pdr = NULL;
824 	}
825 	if (meta->vdr != NULL) {
826 		free(meta->vdr, M_MD_DDF);
827 		meta->vdr = NULL;
828 	}
829 	if (meta->cr != NULL) {
830 		free(meta->cr, M_MD_DDF);
831 		meta->cr = NULL;
832 	}
833 	if (meta->pdd != NULL) {
834 		free(meta->pdd, M_MD_DDF);
835 		meta->pdd = NULL;
836 	}
837 	if (meta->bbm != NULL) {
838 		free(meta->bbm, M_MD_DDF);
839 		meta->bbm = NULL;
840 	}
841 }
842 
843 static void
844 ddf_vol_meta_create(struct ddf_vol_meta *meta, struct ddf_meta *sample)
845 {
846 	struct timespec ts;
847 	struct clocktime ct;
848 	struct ddf_header *hdr;
849 	u_int ss, size;
850 
851 	hdr = sample->hdr;
852 	meta->bigendian = sample->bigendian;
853 	ss = meta->sectorsize = sample->sectorsize;
854 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
855 	memcpy(meta->hdr, sample->hdr, ss);
856 	meta->cdr = malloc(GET32(sample, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
857 	memcpy(meta->cdr, sample->cdr, GET32(sample, hdr->cd_length) * ss);
858 	meta->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
859 	memset(meta->vde, 0xff, sizeof(struct ddf_vd_entry));
860 	getnanotime(&ts);
861 	clock_ts_to_ct(&ts, &ct);
862 	snprintf(meta->vde->VD_GUID, 25, "FreeBSD%04d%02d%02d%08x%01x",
863 	    ct.year, ct.mon, ct.day,
864 	    arc4random(), arc4random() & 0xf);
865 	size = GET16(sample, hdr->Configuration_Record_Length) * ss;
866 	meta->vdc = malloc(size, M_MD_DDF, M_WAITOK);
867 	memset(meta->vdc, 0xff, size);
868 	SET32(meta, vdc->Signature, DDF_VDCR_SIGNATURE);
869 	memcpy(meta->vdc->VD_GUID, meta->vde->VD_GUID, 24);
870 	SET32(meta, vdc->Sequence_Number, 0);
871 }
872 
873 static void
874 ddf_vol_meta_update(struct ddf_vol_meta *dst, struct ddf_meta *src,
875     uint8_t *GUID, int started)
876 {
877 	struct ddf_header *hdr;
878 	struct ddf_vd_entry *vde;
879 	struct ddf_vdc_record *vdc;
880 	int vnew, bvnew, bvd, size;
881 	u_int ss;
882 
883 	hdr = src->hdr;
884 	vde = &src->vdr->entry[ddf_meta_find_vd(src, GUID)];
885 	vdc = ddf_meta_find_vdc(src, GUID);
886 	if (GET8D(src, vdc->Secondary_Element_Count) == 1)
887 		bvd = 0;
888 	else
889 		bvd = GET8D(src, vdc->Secondary_Element_Seq);
890 	size = GET16(src, hdr->Configuration_Record_Length) * src->sectorsize;
891 
892 	if (dst->vdc == NULL ||
893 	    (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
894 	    GET32(dst, vdc->Sequence_Number))) > 0))
895 		vnew = 1;
896 	else
897 		vnew = 0;
898 
899 	if (dst->bvdc[bvd] == NULL ||
900 	    (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
901 	    GET32(dst, bvdc[bvd]->Sequence_Number))) > 0))
902 		bvnew = 1;
903 	else
904 		bvnew = 0;
905 
906 	if (vnew) {
907 		dst->bigendian = src->bigendian;
908 		ss = dst->sectorsize = src->sectorsize;
909 		if (dst->hdr != NULL)
910 			free(dst->hdr, M_MD_DDF);
911 		dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
912 		memcpy(dst->hdr, src->hdr, ss);
913 		if (dst->cdr != NULL)
914 			free(dst->cdr, M_MD_DDF);
915 		dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
916 		memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
917 		if (dst->vde != NULL)
918 			free(dst->vde, M_MD_DDF);
919 		dst->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
920 		memcpy(dst->vde, vde, sizeof(struct ddf_vd_entry));
921 		if (dst->vdc != NULL)
922 			free(dst->vdc, M_MD_DDF);
923 		dst->vdc = malloc(size, M_MD_DDF, M_WAITOK);
924 		memcpy(dst->vdc, vdc, size);
925 	}
926 	if (bvnew) {
927 		if (dst->bvdc[bvd] != NULL)
928 			free(dst->bvdc[bvd], M_MD_DDF);
929 		dst->bvdc[bvd] = malloc(size, M_MD_DDF, M_WAITOK);
930 		memcpy(dst->bvdc[bvd], vdc, size);
931 	}
932 }
933 
934 static void
935 ddf_vol_meta_free(struct ddf_vol_meta *meta)
936 {
937 	int i;
938 
939 	if (meta->hdr != NULL) {
940 		free(meta->hdr, M_MD_DDF);
941 		meta->hdr = NULL;
942 	}
943 	if (meta->cdr != NULL) {
944 		free(meta->cdr, M_MD_DDF);
945 		meta->cdr = NULL;
946 	}
947 	if (meta->vde != NULL) {
948 		free(meta->vde, M_MD_DDF);
949 		meta->vde = NULL;
950 	}
951 	if (meta->vdc != NULL) {
952 		free(meta->vdc, M_MD_DDF);
953 		meta->vdc = NULL;
954 	}
955 	for (i = 0; i < DDF_MAX_DISKS_HARD; i++) {
956 		if (meta->bvdc[i] != NULL) {
957 			free(meta->bvdc[i], M_MD_DDF);
958 			meta->bvdc[i] = NULL;
959 		}
960 	}
961 }
962 
963 static int
964 ddf_meta_unused_range(struct ddf_meta *meta, off_t *off, off_t *size)
965 {
966 	struct ddf_vdc_record *vdc;
967 	off_t beg[32], end[32], beg1, end1;
968 	uint64_t *offp;
969 	int i, j, n, num, pos;
970 	uint32_t ref;
971 
972 	*off = 0;
973 	*size = 0;
974 	ref = GET32(meta, pdd->PD_Reference);
975 	pos = ddf_meta_find_pd(meta, NULL, ref);
976 	beg[0] = 0;
977 	end[0] = GET64(meta, pdr->entry[pos].Configured_Size);
978 	n = 1;
979 	num = GETCRNUM(meta);
980 	for (i = 0; i < num; i++) {
981 		vdc = GETVDCPTR(meta, i);
982 		if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
983 			continue;
984 		for (pos = 0; pos < GET16D(meta, vdc->Primary_Element_Count); pos++)
985 			if (GET32D(meta, vdc->Physical_Disk_Sequence[pos]) == ref)
986 				break;
987 		if (pos == GET16D(meta, vdc->Primary_Element_Count))
988 			continue;
989 		offp = (uint64_t *)&(vdc->Physical_Disk_Sequence[
990 		    GET16(meta, hdr->Max_Primary_Element_Entries)]);
991 		beg1 = GET64P(meta, offp + pos);
992 		end1 = beg1 + GET64D(meta, vdc->Block_Count);
993 		for (j = 0; j < n; j++) {
994 			if (beg[j] >= end1 || end[j] <= beg1 )
995 				continue;
996 			if (beg[j] < beg1 && end[j] > end1) {
997 				beg[n] = end1;
998 				end[n] = end[j];
999 				end[j] = beg1;
1000 				n++;
1001 			} else if (beg[j] < beg1)
1002 				end[j] = beg1;
1003 			else
1004 				beg[j] = end1;
1005 		}
1006 	}
1007 	for (j = 0; j < n; j++) {
1008 		if (end[j] - beg[j] > *size) {
1009 			*off = beg[j];
1010 			*size = end[j] - beg[j];
1011 		}
1012 	}
1013 	return ((*size > 0) ? 1 : 0);
1014 }
1015 
1016 static void
1017 ddf_meta_get_name(struct ddf_meta *meta, int num, char *buf)
1018 {
1019 	const char *b;
1020 	int i;
1021 
1022 	b = meta->vdr->entry[num].VD_Name;
1023 	for (i = 15; i >= 0; i--)
1024 		if (b[i] != 0x20)
1025 			break;
1026 	memcpy(buf, b, i + 1);
1027 	buf[i + 1] = 0;
1028 }
1029 
1030 static void
1031 ddf_meta_put_name(struct ddf_vol_meta *meta, char *buf)
1032 {
1033 	int len;
1034 
1035 	len = min(strlen(buf), 16);
1036 	memset(meta->vde->VD_Name, 0x20, 16);
1037 	memcpy(meta->vde->VD_Name, buf, len);
1038 }
1039 
1040 static int
1041 ddf_meta_read(struct g_consumer *cp, struct ddf_meta *meta)
1042 {
1043 	struct g_provider *pp;
1044 	struct ddf_header *ahdr, *hdr;
1045 	char *abuf, *buf;
1046 	off_t plba, slba, lba;
1047 	int error, len, i;
1048 	u_int ss;
1049 	uint32_t val;
1050 
1051 	ddf_meta_free(meta);
1052 	pp = cp->provider;
1053 	ss = meta->sectorsize = pp->sectorsize;
1054 	/* Read anchor block. */
1055 	abuf = g_read_data(cp, pp->mediasize - ss, ss, &error);
1056 	if (abuf == NULL) {
1057 		G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
1058 		    pp->name, error);
1059 		return (error);
1060 	}
1061 	ahdr = (struct ddf_header *)abuf;
1062 
1063 	/* Check if this is an DDF RAID struct */
1064 	if (be32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1065 		meta->bigendian = 1;
1066 	else if (le32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1067 		meta->bigendian = 0;
1068 	else {
1069 		G_RAID_DEBUG(1, "DDF signature check failed on %s", pp->name);
1070 		error = EINVAL;
1071 		goto done;
1072 	}
1073 	if (ahdr->Header_Type != DDF_HEADER_ANCHOR) {
1074 		G_RAID_DEBUG(1, "DDF header type check failed on %s", pp->name);
1075 		error = EINVAL;
1076 		goto done;
1077 	}
1078 	meta->hdr = ahdr;
1079 	plba = GET64(meta, hdr->Primary_Header_LBA);
1080 	slba = GET64(meta, hdr->Secondary_Header_LBA);
1081 	val = GET32(meta, hdr->CRC);
1082 	SET32(meta, hdr->CRC, 0xffffffff);
1083 	meta->hdr = NULL;
1084 	if (crc32(ahdr, ss) != val) {
1085 		G_RAID_DEBUG(1, "DDF CRC mismatch on %s", pp->name);
1086 		error = EINVAL;
1087 		goto done;
1088 	}
1089 	if ((plba + 6) * ss >= pp->mediasize) {
1090 		G_RAID_DEBUG(1, "DDF primary header LBA is wrong on %s", pp->name);
1091 		error = EINVAL;
1092 		goto done;
1093 	}
1094 	if (slba != -1 && (slba + 6) * ss >= pp->mediasize) {
1095 		G_RAID_DEBUG(1, "DDF secondary header LBA is wrong on %s", pp->name);
1096 		error = EINVAL;
1097 		goto done;
1098 	}
1099 	lba = plba;
1100 
1101 doread:
1102 	error = 0;
1103 	ddf_meta_free(meta);
1104 
1105 	/* Read header block. */
1106 	buf = g_read_data(cp, lba * ss, ss, &error);
1107 	if (buf == NULL) {
1108 readerror:
1109 		G_RAID_DEBUG(1, "DDF %s metadata read error on %s (error=%d).",
1110 		    (lba == plba) ? "primary" : "secondary", pp->name, error);
1111 		if (lba == plba && slba != -1) {
1112 			lba = slba;
1113 			goto doread;
1114 		}
1115 		G_RAID_DEBUG(1, "DDF metadata read error on %s.", pp->name);
1116 		goto done;
1117 	}
1118 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
1119 	memcpy(meta->hdr, buf, ss);
1120 	g_free(buf);
1121 	hdr = meta->hdr;
1122 	val = GET32(meta, hdr->CRC);
1123 	SET32(meta, hdr->CRC, 0xffffffff);
1124 	if (hdr->Signature != ahdr->Signature ||
1125 	    crc32(meta->hdr, ss) != val ||
1126 	    memcmp(hdr->DDF_Header_GUID, ahdr->DDF_Header_GUID, 24) ||
1127 	    GET64(meta, hdr->Primary_Header_LBA) != plba ||
1128 	    GET64(meta, hdr->Secondary_Header_LBA) != slba) {
1129 hdrerror:
1130 		G_RAID_DEBUG(1, "DDF %s metadata check failed on %s",
1131 		    (lba == plba) ? "primary" : "secondary", pp->name);
1132 		if (lba == plba && slba != -1) {
1133 			lba = slba;
1134 			goto doread;
1135 		}
1136 		G_RAID_DEBUG(1, "DDF metadata check failed on %s", pp->name);
1137 		error = EINVAL;
1138 		goto done;
1139 	}
1140 	if ((lba == plba && hdr->Header_Type != DDF_HEADER_PRIMARY) ||
1141 	    (lba == slba && hdr->Header_Type != DDF_HEADER_SECONDARY))
1142 		goto hdrerror;
1143 	len = 1;
1144 	len = max(len, GET32(meta, hdr->cd_section) + GET32(meta, hdr->cd_length));
1145 	len = max(len, GET32(meta, hdr->pdr_section) + GET32(meta, hdr->pdr_length));
1146 	len = max(len, GET32(meta, hdr->vdr_section) + GET32(meta, hdr->vdr_length));
1147 	len = max(len, GET32(meta, hdr->cr_section) + GET32(meta, hdr->cr_length));
1148 	len = max(len, GET32(meta, hdr->pdd_section) + GET32(meta, hdr->pdd_length));
1149 	if ((val = GET32(meta, hdr->bbmlog_section)) != 0xffffffff)
1150 		len = max(len, val + GET32(meta, hdr->bbmlog_length));
1151 	if ((val = GET32(meta, hdr->Diagnostic_Space)) != 0xffffffff)
1152 		len = max(len, val + GET32(meta, hdr->Diagnostic_Space_Length));
1153 	if ((val = GET32(meta, hdr->Vendor_Specific_Logs)) != 0xffffffff)
1154 		len = max(len, val + GET32(meta, hdr->Vendor_Specific_Logs_Length));
1155 	if ((plba + len) * ss >= pp->mediasize)
1156 		goto hdrerror;
1157 	if (slba != -1 && (slba + len) * ss >= pp->mediasize)
1158 		goto hdrerror;
1159 	/* Workaround for Adaptec implementation. */
1160 	if (GET16(meta, hdr->Max_Primary_Element_Entries) == 0xffff) {
1161 		SET16(meta, hdr->Max_Primary_Element_Entries,
1162 		    min(GET16(meta, hdr->Max_PD_Entries),
1163 		    (GET16(meta, hdr->Configuration_Record_Length) * ss - 512) / 12));
1164 	}
1165 
1166 	if (GET32(meta, hdr->cd_length) * ss >= MAXPHYS ||
1167 	    GET32(meta, hdr->pdr_length) * ss >= MAXPHYS ||
1168 	    GET32(meta, hdr->vdr_length) * ss >= MAXPHYS ||
1169 	    GET32(meta, hdr->cr_length) * ss >= MAXPHYS ||
1170 	    GET32(meta, hdr->pdd_length) * ss >= MAXPHYS ||
1171 	    GET32(meta, hdr->bbmlog_length) * ss >= MAXPHYS) {
1172 		G_RAID_DEBUG(1, "%s: Blocksize is too big.", pp->name);
1173 		goto hdrerror;
1174 	}
1175 
1176 	/* Read controller data. */
1177 	buf = g_read_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1178 	    GET32(meta, hdr->cd_length) * ss, &error);
1179 	if (buf == NULL)
1180 		goto readerror;
1181 	meta->cdr = malloc(GET32(meta, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
1182 	memcpy(meta->cdr, buf, GET32(meta, hdr->cd_length) * ss);
1183 	g_free(buf);
1184 	if (GET32(meta, cdr->Signature) != DDF_CONTROLLER_DATA_SIGNATURE)
1185 		goto hdrerror;
1186 
1187 	/* Read physical disk records. */
1188 	buf = g_read_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1189 	    GET32(meta, hdr->pdr_length) * ss, &error);
1190 	if (buf == NULL)
1191 		goto readerror;
1192 	meta->pdr = malloc(GET32(meta, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
1193 	memcpy(meta->pdr, buf, GET32(meta, hdr->pdr_length) * ss);
1194 	g_free(buf);
1195 	if (GET32(meta, pdr->Signature) != DDF_PDR_SIGNATURE)
1196 		goto hdrerror;
1197 	/*
1198 	 * Workaround for reading metadata corrupted due to graid bug.
1199 	 * XXX: Remove this before we have disks above 128PB. :)
1200 	 */
1201 	if (meta->bigendian) {
1202 		for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
1203 			if (isff(meta->pdr->entry[i].PD_GUID, 24))
1204 				continue;
1205 			if (GET32(meta, pdr->entry[i].PD_Reference) ==
1206 			    0xffffffff)
1207 				continue;
1208 			if (GET64(meta, pdr->entry[i].Configured_Size) >=
1209 			     (1ULL << 48)) {
1210 				SET16(meta, pdr->entry[i].PD_State,
1211 				    GET16(meta, pdr->entry[i].PD_State) &
1212 				    ~DDF_PDE_FAILED);
1213 				SET64(meta, pdr->entry[i].Configured_Size,
1214 				    GET64(meta, pdr->entry[i].Configured_Size) &
1215 				    ((1ULL << 48) - 1));
1216 			}
1217 		}
1218 	}
1219 
1220 	/* Read virtual disk records. */
1221 	buf = g_read_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1222 	    GET32(meta, hdr->vdr_length) * ss, &error);
1223 	if (buf == NULL)
1224 		goto readerror;
1225 	meta->vdr = malloc(GET32(meta, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
1226 	memcpy(meta->vdr, buf, GET32(meta, hdr->vdr_length) * ss);
1227 	g_free(buf);
1228 	if (GET32(meta, vdr->Signature) != DDF_VD_RECORD_SIGNATURE)
1229 		goto hdrerror;
1230 
1231 	/* Read configuration records. */
1232 	buf = g_read_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1233 	    GET32(meta, hdr->cr_length) * ss, &error);
1234 	if (buf == NULL)
1235 		goto readerror;
1236 	meta->cr = malloc(GET32(meta, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
1237 	memcpy(meta->cr, buf, GET32(meta, hdr->cr_length) * ss);
1238 	g_free(buf);
1239 
1240 	/* Read physical disk data. */
1241 	buf = g_read_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1242 	    GET32(meta, hdr->pdd_length) * ss, &error);
1243 	if (buf == NULL)
1244 		goto readerror;
1245 	meta->pdd = malloc(GET32(meta, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
1246 	memcpy(meta->pdd, buf, GET32(meta, hdr->pdd_length) * ss);
1247 	g_free(buf);
1248 	if (GET32(meta, pdd->Signature) != DDF_PDD_SIGNATURE)
1249 		goto hdrerror;
1250 	i = ddf_meta_find_pd(meta, NULL, GET32(meta, pdd->PD_Reference));
1251 	if (i < 0)
1252 		goto hdrerror;
1253 
1254 	/* Read BBM Log. */
1255 	if (GET32(meta, hdr->bbmlog_section) != 0xffffffff &&
1256 	    GET32(meta, hdr->bbmlog_length) != 0) {
1257 		buf = g_read_data(cp, (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1258 		    GET32(meta, hdr->bbmlog_length) * ss, &error);
1259 		if (buf == NULL)
1260 			goto readerror;
1261 		meta->bbm = malloc(GET32(meta, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
1262 		memcpy(meta->bbm, buf, GET32(meta, hdr->bbmlog_length) * ss);
1263 		g_free(buf);
1264 		if (GET32(meta, bbm->Signature) != DDF_BBML_SIGNATURE)
1265 			goto hdrerror;
1266 	}
1267 
1268 done:
1269 	g_free(abuf);
1270 	if (error != 0)
1271 		ddf_meta_free(meta);
1272 	return (error);
1273 }
1274 
1275 static int
1276 ddf_meta_write(struct g_consumer *cp, struct ddf_meta *meta)
1277 {
1278 	struct g_provider *pp;
1279 	struct ddf_vdc_record *vdc;
1280 	off_t alba, plba, slba, lba;
1281 	u_int ss, size;
1282 	int error, i, num;
1283 
1284 	pp = cp->provider;
1285 	ss = pp->sectorsize;
1286 	lba = alba = pp->mediasize / ss - 1;
1287 	plba = GET64(meta, hdr->Primary_Header_LBA);
1288 	slba = GET64(meta, hdr->Secondary_Header_LBA);
1289 
1290 next:
1291 	SET8(meta, hdr->Header_Type, (lba == alba) ? DDF_HEADER_ANCHOR :
1292 	    (lba == plba) ? DDF_HEADER_PRIMARY : DDF_HEADER_SECONDARY);
1293 	SET32(meta, hdr->CRC, 0xffffffff);
1294 	SET32(meta, hdr->CRC, crc32(meta->hdr, ss));
1295 	error = g_write_data(cp, lba * ss, meta->hdr, ss);
1296 	if (error != 0) {
1297 err:
1298 		G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
1299 		    pp->name, error);
1300 		if (lba != alba)
1301 			goto done;
1302 	}
1303 	if (lba == alba) {
1304 		lba = plba;
1305 		goto next;
1306 	}
1307 
1308 	size = GET32(meta, hdr->cd_length) * ss;
1309 	SET32(meta, cdr->CRC, 0xffffffff);
1310 	SET32(meta, cdr->CRC, crc32(meta->cdr, size));
1311 	error = g_write_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1312 	    meta->cdr, size);
1313 	if (error != 0)
1314 		goto err;
1315 
1316 	size = GET32(meta, hdr->pdr_length) * ss;
1317 	SET32(meta, pdr->CRC, 0xffffffff);
1318 	SET32(meta, pdr->CRC, crc32(meta->pdr, size));
1319 	error = g_write_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1320 	    meta->pdr, size);
1321 	if (error != 0)
1322 		goto err;
1323 
1324 	size = GET32(meta, hdr->vdr_length) * ss;
1325 	SET32(meta, vdr->CRC, 0xffffffff);
1326 	SET32(meta, vdr->CRC, crc32(meta->vdr, size));
1327 	error = g_write_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1328 	    meta->vdr, size);
1329 	if (error != 0)
1330 		goto err;
1331 
1332 	size = GET16(meta, hdr->Configuration_Record_Length) * ss;
1333 	num = GETCRNUM(meta);
1334 	for (i = 0; i < num; i++) {
1335 		vdc = GETVDCPTR(meta, i);
1336 		SET32D(meta, vdc->CRC, 0xffffffff);
1337 		SET32D(meta, vdc->CRC, crc32(vdc, size));
1338 	}
1339 	error = g_write_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1340 	    meta->cr, size * num);
1341 	if (error != 0)
1342 		goto err;
1343 
1344 	size = GET32(meta, hdr->pdd_length) * ss;
1345 	SET32(meta, pdd->CRC, 0xffffffff);
1346 	SET32(meta, pdd->CRC, crc32(meta->pdd, size));
1347 	error = g_write_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1348 	    meta->pdd, size);
1349 	if (error != 0)
1350 		goto err;
1351 
1352 	if (GET32(meta, hdr->bbmlog_length) != 0) {
1353 		size = GET32(meta, hdr->bbmlog_length) * ss;
1354 		SET32(meta, bbm->CRC, 0xffffffff);
1355 		SET32(meta, bbm->CRC, crc32(meta->bbm, size));
1356 		error = g_write_data(cp,
1357 		    (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1358 		    meta->bbm, size);
1359 		if (error != 0)
1360 			goto err;
1361 	}
1362 
1363 done:
1364 	if (lba == plba && slba != -1) {
1365 		lba = slba;
1366 		goto next;
1367 	}
1368 
1369 	return (error);
1370 }
1371 
1372 static int
1373 ddf_meta_erase(struct g_consumer *cp)
1374 {
1375 	struct g_provider *pp;
1376 	char *buf;
1377 	int error;
1378 
1379 	pp = cp->provider;
1380 	buf = malloc(pp->sectorsize, M_MD_DDF, M_WAITOK | M_ZERO);
1381 	error = g_write_data(cp, pp->mediasize - pp->sectorsize,
1382 	    buf, pp->sectorsize);
1383 	if (error != 0) {
1384 		G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
1385 		    pp->name, error);
1386 	}
1387 	free(buf, M_MD_DDF);
1388 	return (error);
1389 }
1390 
1391 static struct g_raid_volume *
1392 g_raid_md_ddf_get_volume(struct g_raid_softc *sc, uint8_t *GUID)
1393 {
1394 	struct g_raid_volume	*vol;
1395 	struct g_raid_md_ddf_pervolume *pv;
1396 
1397 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1398 		pv = vol->v_md_data;
1399 		if (memcmp(pv->pv_meta.vde->VD_GUID, GUID, 24) == 0)
1400 			break;
1401 	}
1402 	return (vol);
1403 }
1404 
1405 static struct g_raid_disk *
1406 g_raid_md_ddf_get_disk(struct g_raid_softc *sc, uint8_t *GUID, uint32_t id)
1407 {
1408 	struct g_raid_disk	*disk;
1409 	struct g_raid_md_ddf_perdisk *pd;
1410 	struct ddf_meta *meta;
1411 
1412 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1413 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1414 		meta = &pd->pd_meta;
1415 		if (GUID != NULL) {
1416 			if (memcmp(meta->pdd->PD_GUID, GUID, 24) == 0)
1417 				break;
1418 		} else {
1419 			if (GET32(meta, pdd->PD_Reference) == id)
1420 				break;
1421 		}
1422 	}
1423 	return (disk);
1424 }
1425 
1426 static int
1427 g_raid_md_ddf_purge_volumes(struct g_raid_softc *sc)
1428 {
1429 	struct g_raid_volume	*vol, *tvol;
1430 	struct g_raid_md_ddf_pervolume *pv;
1431 	int i, res;
1432 
1433 	res = 0;
1434 	TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) {
1435 		pv = vol->v_md_data;
1436 		if (vol->v_stopping)
1437 			continue;
1438 		for (i = 0; i < vol->v_disks_count; i++) {
1439 			if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE)
1440 				break;
1441 		}
1442 		if (i >= vol->v_disks_count) {
1443 			g_raid_destroy_volume(vol);
1444 			res = 1;
1445 		}
1446 	}
1447 	return (res);
1448 }
1449 
1450 static int
1451 g_raid_md_ddf_purge_disks(struct g_raid_softc *sc)
1452 {
1453 #if 0
1454 	struct g_raid_disk	*disk, *tdisk;
1455 	struct g_raid_volume	*vol;
1456 	struct g_raid_md_ddf_perdisk *pd;
1457 	int i, j, res;
1458 
1459 	res = 0;
1460 	TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
1461 		if (disk->d_state == G_RAID_DISK_S_SPARE)
1462 			continue;
1463 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1464 
1465 		/* Scan for deleted volumes. */
1466 		for (i = 0; i < pd->pd_subdisks; ) {
1467 			vol = g_raid_md_ddf_get_volume(sc,
1468 			    pd->pd_meta[i]->volume_id);
1469 			if (vol != NULL && !vol->v_stopping) {
1470 				i++;
1471 				continue;
1472 			}
1473 			free(pd->pd_meta[i], M_MD_DDF);
1474 			for (j = i; j < pd->pd_subdisks - 1; j++)
1475 				pd->pd_meta[j] = pd->pd_meta[j + 1];
1476 			pd->pd_meta[DDF_MAX_SUBDISKS - 1] = NULL;
1477 			pd->pd_subdisks--;
1478 			pd->pd_updated = 1;
1479 		}
1480 
1481 		/* If there is no metadata left - erase and delete disk. */
1482 		if (pd->pd_subdisks == 0) {
1483 			ddf_meta_erase(disk->d_consumer);
1484 			g_raid_destroy_disk(disk);
1485 			res = 1;
1486 		}
1487 	}
1488 	return (res);
1489 #endif
1490 	return (0);
1491 }
1492 
1493 static int
1494 g_raid_md_ddf_supported(int level, int qual, int disks, int force)
1495 {
1496 
1497 	if (disks > DDF_MAX_DISKS_HARD)
1498 		return (0);
1499 	switch (level) {
1500 	case G_RAID_VOLUME_RL_RAID0:
1501 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1502 			return (0);
1503 		if (disks < 1)
1504 			return (0);
1505 		if (!force && disks < 2)
1506 			return (0);
1507 		break;
1508 	case G_RAID_VOLUME_RL_RAID1:
1509 		if (disks < 1)
1510 			return (0);
1511 		if (qual == G_RAID_VOLUME_RLQ_R1SM) {
1512 			if (!force && disks != 2)
1513 				return (0);
1514 		} else if (qual == G_RAID_VOLUME_RLQ_R1MM) {
1515 			if (!force && disks != 3)
1516 				return (0);
1517 		} else
1518 			return (0);
1519 		break;
1520 	case G_RAID_VOLUME_RL_RAID3:
1521 		if (qual != G_RAID_VOLUME_RLQ_R3P0 &&
1522 		    qual != G_RAID_VOLUME_RLQ_R3PN)
1523 			return (0);
1524 		if (disks < 3)
1525 			return (0);
1526 		break;
1527 	case G_RAID_VOLUME_RL_RAID4:
1528 		if (qual != G_RAID_VOLUME_RLQ_R4P0 &&
1529 		    qual != G_RAID_VOLUME_RLQ_R4PN)
1530 			return (0);
1531 		if (disks < 3)
1532 			return (0);
1533 		break;
1534 	case G_RAID_VOLUME_RL_RAID5:
1535 		if (qual != G_RAID_VOLUME_RLQ_R5RA &&
1536 		    qual != G_RAID_VOLUME_RLQ_R5RS &&
1537 		    qual != G_RAID_VOLUME_RLQ_R5LA &&
1538 		    qual != G_RAID_VOLUME_RLQ_R5LS)
1539 			return (0);
1540 		if (disks < 3)
1541 			return (0);
1542 		break;
1543 	case G_RAID_VOLUME_RL_RAID6:
1544 		if (qual != G_RAID_VOLUME_RLQ_R6RA &&
1545 		    qual != G_RAID_VOLUME_RLQ_R6RS &&
1546 		    qual != G_RAID_VOLUME_RLQ_R6LA &&
1547 		    qual != G_RAID_VOLUME_RLQ_R6LS)
1548 			return (0);
1549 		if (disks < 4)
1550 			return (0);
1551 		break;
1552 	case G_RAID_VOLUME_RL_RAIDMDF:
1553 		if (qual != G_RAID_VOLUME_RLQ_RMDFRA &&
1554 		    qual != G_RAID_VOLUME_RLQ_RMDFRS &&
1555 		    qual != G_RAID_VOLUME_RLQ_RMDFLA &&
1556 		    qual != G_RAID_VOLUME_RLQ_RMDFLS)
1557 			return (0);
1558 		if (disks < 4)
1559 			return (0);
1560 		break;
1561 	case G_RAID_VOLUME_RL_RAID1E:
1562 		if (qual != G_RAID_VOLUME_RLQ_R1EA &&
1563 		    qual != G_RAID_VOLUME_RLQ_R1EO)
1564 			return (0);
1565 		if (disks < 3)
1566 			return (0);
1567 		break;
1568 	case G_RAID_VOLUME_RL_SINGLE:
1569 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1570 			return (0);
1571 		if (disks != 1)
1572 			return (0);
1573 		break;
1574 	case G_RAID_VOLUME_RL_CONCAT:
1575 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1576 			return (0);
1577 		if (disks < 2)
1578 			return (0);
1579 		break;
1580 	case G_RAID_VOLUME_RL_RAID5E:
1581 		if (qual != G_RAID_VOLUME_RLQ_R5ERA &&
1582 		    qual != G_RAID_VOLUME_RLQ_R5ERS &&
1583 		    qual != G_RAID_VOLUME_RLQ_R5ELA &&
1584 		    qual != G_RAID_VOLUME_RLQ_R5ELS)
1585 			return (0);
1586 		if (disks < 4)
1587 			return (0);
1588 		break;
1589 	case G_RAID_VOLUME_RL_RAID5EE:
1590 		if (qual != G_RAID_VOLUME_RLQ_R5EERA &&
1591 		    qual != G_RAID_VOLUME_RLQ_R5EERS &&
1592 		    qual != G_RAID_VOLUME_RLQ_R5EELA &&
1593 		    qual != G_RAID_VOLUME_RLQ_R5EELS)
1594 			return (0);
1595 		if (disks < 4)
1596 			return (0);
1597 		break;
1598 	case G_RAID_VOLUME_RL_RAID5R:
1599 		if (qual != G_RAID_VOLUME_RLQ_R5RRA &&
1600 		    qual != G_RAID_VOLUME_RLQ_R5RRS &&
1601 		    qual != G_RAID_VOLUME_RLQ_R5RLA &&
1602 		    qual != G_RAID_VOLUME_RLQ_R5RLS)
1603 			return (0);
1604 		if (disks < 3)
1605 			return (0);
1606 		break;
1607 	default:
1608 		return (0);
1609 	}
1610 	return (1);
1611 }
1612 
1613 static int
1614 g_raid_md_ddf_start_disk(struct g_raid_disk *disk, struct g_raid_volume *vol)
1615 {
1616 	struct g_raid_softc *sc;
1617 	struct g_raid_subdisk *sd;
1618 	struct g_raid_md_ddf_perdisk *pd;
1619 	struct g_raid_md_ddf_pervolume *pv;
1620 	struct g_raid_md_ddf_object *mdi;
1621 	struct ddf_vol_meta *vmeta;
1622 	struct ddf_meta *pdmeta, *gmeta;
1623 	struct ddf_vdc_record *vdc1;
1624 	struct ddf_sa_record *sa;
1625 	off_t size, eoff = 0, esize = 0;
1626 	uint64_t *val2;
1627 	int disk_pos, md_disk_bvd = -1, md_disk_pos = -1, md_pde_pos;
1628 	int i, resurrection = 0;
1629 	uint32_t reference;
1630 
1631 	sc = disk->d_softc;
1632 	mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
1633 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1634 	pdmeta = &pd->pd_meta;
1635 	reference = GET32(&pd->pd_meta, pdd->PD_Reference);
1636 
1637 	pv = vol->v_md_data;
1638 	vmeta = &pv->pv_meta;
1639 	gmeta = &mdi->mdio_meta;
1640 
1641 	/* Find disk position in metadata by its reference. */
1642 	disk_pos = ddf_meta_find_disk(vmeta, reference,
1643 	    &md_disk_bvd, &md_disk_pos);
1644 	md_pde_pos = ddf_meta_find_pd(gmeta, NULL, reference);
1645 
1646 	if (disk_pos < 0) {
1647 		G_RAID_DEBUG1(1, sc,
1648 		    "Disk %s is not a present part of the volume %s",
1649 		    g_raid_get_diskname(disk), vol->v_name);
1650 
1651 		/* Failed stale disk is useless for us. */
1652 		if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) != 0) {
1653 			g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
1654 			return (0);
1655 		}
1656 
1657 		/* If disk has some metadata for this volume - erase. */
1658 		if ((vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL)
1659 			SET32D(pdmeta, vdc1->Signature, 0xffffffff);
1660 
1661 		/* If we are in the start process, that's all for now. */
1662 		if (!pv->pv_started)
1663 			goto nofit;
1664 		/*
1665 		 * If we have already started - try to get use of the disk.
1666 		 * Try to replace OFFLINE disks first, then FAILED.
1667 		 */
1668 		if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
1669 			GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1670 			G_RAID_DEBUG1(1, sc, "No free partitions on disk %s",
1671 			    g_raid_get_diskname(disk));
1672 			goto nofit;
1673 		}
1674 		ddf_meta_unused_range(&pd->pd_meta, &eoff, &esize);
1675 		if (esize == 0) {
1676 			G_RAID_DEBUG1(1, sc, "No free space on disk %s",
1677 			    g_raid_get_diskname(disk));
1678 			goto nofit;
1679 		}
1680 		eoff *= pd->pd_meta.sectorsize;
1681 		esize *= pd->pd_meta.sectorsize;
1682 		size = INT64_MAX;
1683 		for (i = 0; i < vol->v_disks_count; i++) {
1684 			sd = &vol->v_subdisks[i];
1685 			if (sd->sd_state != G_RAID_SUBDISK_S_NONE)
1686 				size = sd->sd_size;
1687 			if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED &&
1688 			    (disk_pos < 0 ||
1689 			     vol->v_subdisks[i].sd_state < sd->sd_state))
1690 				disk_pos = i;
1691 		}
1692 		if (disk_pos >= 0 &&
1693 		    vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT &&
1694 		    esize < size) {
1695 			G_RAID_DEBUG1(1, sc, "Disk %s free space "
1696 			    "is too small (%ju < %ju)",
1697 			    g_raid_get_diskname(disk), esize, size);
1698 			disk_pos = -1;
1699 		}
1700 		if (disk_pos >= 0) {
1701 			if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT)
1702 				esize = size;
1703 			md_disk_bvd = disk_pos / GET16(vmeta, vdc->Primary_Element_Count); // XXX
1704 			md_disk_pos = disk_pos % GET16(vmeta, vdc->Primary_Element_Count); // XXX
1705 		} else {
1706 nofit:
1707 			if (disk->d_state == G_RAID_DISK_S_NONE)
1708 				g_raid_change_disk_state(disk,
1709 				    G_RAID_DISK_S_STALE);
1710 			return (0);
1711 		}
1712 
1713 		/*
1714 		 * If spare is committable, delete spare record.
1715 		 * Othersize, mark it active and leave there.
1716 		 */
1717 		sa = ddf_meta_find_sa(&pd->pd_meta, 0);
1718 		if (sa != NULL) {
1719 			if ((GET8D(&pd->pd_meta, sa->Spare_Type) &
1720 			    DDF_SAR_TYPE_REVERTIBLE) == 0) {
1721 				SET32D(&pd->pd_meta, sa->Signature, 0xffffffff);
1722 			} else {
1723 				SET8D(&pd->pd_meta, sa->Spare_Type,
1724 				    GET8D(&pd->pd_meta, sa->Spare_Type) |
1725 				    DDF_SAR_TYPE_ACTIVE);
1726 			}
1727 		}
1728 
1729 		G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s",
1730 		    g_raid_get_diskname(disk), disk_pos, vol->v_name);
1731 		resurrection = 1;
1732 	}
1733 
1734 	sd = &vol->v_subdisks[disk_pos];
1735 
1736 	if (resurrection && sd->sd_disk != NULL) {
1737 		g_raid_change_disk_state(sd->sd_disk,
1738 		    G_RAID_DISK_S_STALE_FAILED);
1739 		TAILQ_REMOVE(&sd->sd_disk->d_subdisks,
1740 		    sd, sd_next);
1741 	}
1742 	vol->v_subdisks[disk_pos].sd_disk = disk;
1743 	TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1744 
1745 	/* Welcome the new disk. */
1746 	if (resurrection)
1747 		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1748 	else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA)
1749 		g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1750 	else
1751 		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1752 
1753 	if (resurrection) {
1754 		sd->sd_offset = eoff;
1755 		sd->sd_size = esize;
1756 	} else if (pdmeta->cr != NULL &&
1757 	    (vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL) {
1758 		val2 = (uint64_t *)&(vdc1->Physical_Disk_Sequence[GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1759 		sd->sd_offset = (off_t)GET64P(pdmeta, val2 + md_disk_pos) * 512;
1760 		sd->sd_size = (off_t)GET64D(pdmeta, vdc1->Block_Count) * 512;
1761 	}
1762 
1763 	if (resurrection) {
1764 		/* Stale disk, almost same as new. */
1765 		g_raid_change_subdisk_state(sd,
1766 		    G_RAID_SUBDISK_S_NEW);
1767 	} else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) {
1768 		/* Failed disk. */
1769 		g_raid_change_subdisk_state(sd,
1770 		    G_RAID_SUBDISK_S_FAILED);
1771 	} else if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) &
1772 	     (DDF_PDE_FAILED | DDF_PDE_REBUILD)) != 0) {
1773 		/* Rebuilding disk. */
1774 		g_raid_change_subdisk_state(sd,
1775 		    G_RAID_SUBDISK_S_REBUILD);
1776 		sd->sd_rebuild_pos = 0;
1777 	} else if ((GET8(vmeta, vde->VD_State) & DDF_VDE_DIRTY) != 0 ||
1778 	    (GET8(vmeta, vde->Init_State) & DDF_VDE_INIT_MASK) !=
1779 	     DDF_VDE_INIT_FULL) {
1780 		/* Stale disk or dirty volume (unclean shutdown). */
1781 		g_raid_change_subdisk_state(sd,
1782 		    G_RAID_SUBDISK_S_STALE);
1783 	} else {
1784 		/* Up to date disk. */
1785 		g_raid_change_subdisk_state(sd,
1786 		    G_RAID_SUBDISK_S_ACTIVE);
1787 	}
1788 	g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1789 	    G_RAID_EVENT_SUBDISK);
1790 
1791 	return (resurrection);
1792 }
1793 
1794 static void
1795 g_raid_md_ddf_refill(struct g_raid_softc *sc)
1796 {
1797 	struct g_raid_volume *vol;
1798 	struct g_raid_subdisk *sd;
1799 	struct g_raid_disk *disk;
1800 	struct g_raid_md_object *md;
1801 	struct g_raid_md_ddf_perdisk *pd;
1802 	struct g_raid_md_ddf_pervolume *pv;
1803 	int update, updated, i, bad;
1804 
1805 	md = sc->sc_md;
1806 restart:
1807 	updated = 0;
1808 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1809 		pv = vol->v_md_data;
1810 		if (!pv->pv_started || vol->v_stopping)
1811 			continue;
1812 
1813 		/* Search for subdisk that needs replacement. */
1814 		bad = 0;
1815 		for (i = 0; i < vol->v_disks_count; i++) {
1816 			sd = &vol->v_subdisks[i];
1817 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
1818 			    sd->sd_state == G_RAID_SUBDISK_S_FAILED)
1819 			        bad = 1;
1820 		}
1821 		if (!bad)
1822 			continue;
1823 
1824 		G_RAID_DEBUG1(1, sc, "Volume %s is not complete, "
1825 		    "trying to refill.", vol->v_name);
1826 
1827 		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1828 			/* Skip failed. */
1829 			if (disk->d_state < G_RAID_DISK_S_SPARE)
1830 				continue;
1831 			/* Skip already used by this volume. */
1832 			for (i = 0; i < vol->v_disks_count; i++) {
1833 				sd = &vol->v_subdisks[i];
1834 				if (sd->sd_disk == disk)
1835 					break;
1836 			}
1837 			if (i < vol->v_disks_count)
1838 				continue;
1839 
1840 			/* Try to use disk if it has empty extents. */
1841 			pd = disk->d_md_data;
1842 			if (ddf_meta_count_vdc(&pd->pd_meta, NULL) <
1843 			    GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1844 				update = g_raid_md_ddf_start_disk(disk, vol);
1845 			} else
1846 				update = 0;
1847 			if (update) {
1848 				updated = 1;
1849 				g_raid_md_write_ddf(md, vol, NULL, disk);
1850 				break;
1851 			}
1852 		}
1853 	}
1854 	if (updated)
1855 		goto restart;
1856 }
1857 
1858 static void
1859 g_raid_md_ddf_start(struct g_raid_volume *vol)
1860 {
1861 	struct g_raid_softc *sc;
1862 	struct g_raid_subdisk *sd;
1863 	struct g_raid_disk *disk;
1864 	struct g_raid_md_object *md;
1865 	struct g_raid_md_ddf_perdisk *pd;
1866 	struct g_raid_md_ddf_pervolume *pv;
1867 	struct g_raid_md_ddf_object *mdi;
1868 	struct ddf_vol_meta *vmeta;
1869 	struct ddf_vdc_record *vdc;
1870 	uint64_t *val2;
1871 	int i, j, bvd;
1872 
1873 	sc = vol->v_softc;
1874 	md = sc->sc_md;
1875 	mdi = (struct g_raid_md_ddf_object *)md;
1876 	pv = vol->v_md_data;
1877 	vmeta = &pv->pv_meta;
1878 	vdc = vmeta->vdc;
1879 
1880 	vol->v_raid_level = GET8(vmeta, vdc->Primary_RAID_Level);
1881 	vol->v_raid_level_qualifier = GET8(vmeta, vdc->RLQ);
1882 	if (GET8(vmeta, vdc->Secondary_Element_Count) > 1 &&
1883 	    vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 &&
1884 	    GET8(vmeta, vdc->Secondary_RAID_Level) == 0)
1885 		vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1886 	vol->v_sectorsize = GET16(vmeta, vdc->Block_Size);
1887 	if (vol->v_sectorsize == 0xffff)
1888 		vol->v_sectorsize = vmeta->sectorsize;
1889 	vol->v_strip_size = vol->v_sectorsize << GET8(vmeta, vdc->Stripe_Size);
1890 	vol->v_disks_count = GET16(vmeta, vdc->Primary_Element_Count) *
1891 	    GET8(vmeta, vdc->Secondary_Element_Count);
1892 	vol->v_mdf_pdisks = GET8(vmeta, vdc->MDF_Parity_Disks);
1893 	vol->v_mdf_polynomial = GET16(vmeta, vdc->MDF_Parity_Generator_Polynomial);
1894 	vol->v_mdf_method = GET8(vmeta, vdc->MDF_Constant_Generation_Method);
1895 	if (GET8(vmeta, vdc->Rotate_Parity_count) > 31)
1896 		vol->v_rotate_parity = 1;
1897 	else
1898 		vol->v_rotate_parity = 1 << GET8(vmeta, vdc->Rotate_Parity_count);
1899 	vol->v_mediasize = GET64(vmeta, vdc->VD_Size) * vol->v_sectorsize;
1900 	for (i = 0, j = 0, bvd = 0; i < vol->v_disks_count; i++, j++) {
1901 		if (j == GET16(vmeta, vdc->Primary_Element_Count)) {
1902 			j = 0;
1903 			bvd++;
1904 		}
1905 		sd = &vol->v_subdisks[i];
1906 		if (vmeta->bvdc[bvd] == NULL) {
1907 			sd->sd_offset = 0;
1908 			sd->sd_size = GET64(vmeta, vdc->Block_Count) *
1909 			    vol->v_sectorsize;
1910 			continue;
1911 		}
1912 		val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
1913 		    GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1914 		sd->sd_offset = GET64P(vmeta, val2 + j) * vol->v_sectorsize;
1915 		sd->sd_size = GET64(vmeta, bvdc[bvd]->Block_Count) *
1916 		    vol->v_sectorsize;
1917 	}
1918 	g_raid_start_volume(vol);
1919 
1920 	/* Make all disks found till the moment take their places. */
1921 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1922 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1923 		if (ddf_meta_find_vdc(&pd->pd_meta, vmeta->vdc->VD_GUID) != NULL)
1924 			g_raid_md_ddf_start_disk(disk, vol);
1925 	}
1926 
1927 	pv->pv_started = 1;
1928 	mdi->mdio_starting--;
1929 	callout_stop(&pv->pv_start_co);
1930 	G_RAID_DEBUG1(0, sc, "Volume started.");
1931 	g_raid_md_write_ddf(md, vol, NULL, NULL);
1932 
1933 	/* Pickup any STALE/SPARE disks to refill array if needed. */
1934 	g_raid_md_ddf_refill(sc);
1935 
1936 	g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
1937 }
1938 
1939 static void
1940 g_raid_ddf_go(void *arg)
1941 {
1942 	struct g_raid_volume *vol;
1943 	struct g_raid_softc *sc;
1944 	struct g_raid_md_ddf_pervolume *pv;
1945 
1946 	vol = arg;
1947 	pv = vol->v_md_data;
1948 	sc = vol->v_softc;
1949 	if (!pv->pv_started) {
1950 		G_RAID_DEBUG1(0, sc, "Force volume start due to timeout.");
1951 		g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD,
1952 		    G_RAID_EVENT_VOLUME);
1953 	}
1954 }
1955 
1956 static void
1957 g_raid_md_ddf_new_disk(struct g_raid_disk *disk)
1958 {
1959 	struct g_raid_softc *sc;
1960 	struct g_raid_md_object *md;
1961 	struct g_raid_md_ddf_perdisk *pd;
1962 	struct g_raid_md_ddf_pervolume *pv;
1963 	struct g_raid_md_ddf_object *mdi;
1964 	struct g_raid_volume *vol;
1965 	struct ddf_meta *pdmeta;
1966 	struct ddf_vol_meta *vmeta;
1967 	struct ddf_vdc_record *vdc;
1968 	struct ddf_vd_entry *vde;
1969 	int i, j, k, num, have, need, cnt, spare;
1970 	uint32_t val;
1971 	char buf[17];
1972 
1973 	sc = disk->d_softc;
1974 	md = sc->sc_md;
1975 	mdi = (struct g_raid_md_ddf_object *)md;
1976 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1977 	pdmeta = &pd->pd_meta;
1978 	spare = -1;
1979 
1980 	if (mdi->mdio_meta.hdr == NULL)
1981 		ddf_meta_copy(&mdi->mdio_meta, pdmeta);
1982 	else
1983 		ddf_meta_update(&mdi->mdio_meta, pdmeta);
1984 
1985 	num = GETCRNUM(pdmeta);
1986 	for (j = 0; j < num; j++) {
1987 		vdc = GETVDCPTR(pdmeta, j);
1988 		val = GET32D(pdmeta, vdc->Signature);
1989 
1990 		if (val == DDF_SA_SIGNATURE && spare == -1)
1991 			spare = 1;
1992 
1993 		if (val != DDF_VDCR_SIGNATURE)
1994 			continue;
1995 		spare = 0;
1996 		k = ddf_meta_find_vd(pdmeta, vdc->VD_GUID);
1997 		if (k < 0)
1998 			continue;
1999 		vde = &pdmeta->vdr->entry[k];
2000 
2001 		/* Look for volume with matching ID. */
2002 		vol = g_raid_md_ddf_get_volume(sc, vdc->VD_GUID);
2003 		if (vol == NULL) {
2004 			ddf_meta_get_name(pdmeta, k, buf);
2005 			vol = g_raid_create_volume(sc, buf,
2006 			    GET16D(pdmeta, vde->VD_Number));
2007 			pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2008 			vol->v_md_data = pv;
2009 			callout_init(&pv->pv_start_co, 1);
2010 			callout_reset(&pv->pv_start_co,
2011 			    g_raid_start_timeout * hz,
2012 			    g_raid_ddf_go, vol);
2013 			mdi->mdio_starting++;
2014 		} else
2015 			pv = vol->v_md_data;
2016 
2017 		/* If we haven't started yet - check metadata freshness. */
2018 		vmeta = &pv->pv_meta;
2019 		ddf_vol_meta_update(vmeta, pdmeta, vdc->VD_GUID, pv->pv_started);
2020 	}
2021 
2022 	if (spare == 1) {
2023 		g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2024 		g_raid_md_ddf_refill(sc);
2025 	}
2026 
2027 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2028 		pv = vol->v_md_data;
2029 		vmeta = &pv->pv_meta;
2030 
2031 		if (ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID) == NULL)
2032 			continue;
2033 
2034 		if (pv->pv_started) {
2035 			if (g_raid_md_ddf_start_disk(disk, vol))
2036 				g_raid_md_write_ddf(md, vol, NULL, NULL);
2037 			continue;
2038 		}
2039 
2040 		/* If we collected all needed disks - start array. */
2041 		need = 0;
2042 		have = 0;
2043 		for (k = 0; k < GET8(vmeta, vdc->Secondary_Element_Count); k++) {
2044 			if (vmeta->bvdc[k] == NULL) {
2045 				need += GET16(vmeta, vdc->Primary_Element_Count);
2046 				continue;
2047 			}
2048 			cnt = GET16(vmeta, bvdc[k]->Primary_Element_Count);
2049 			need += cnt;
2050 			for (i = 0; i < cnt; i++) {
2051 				val = GET32(vmeta, bvdc[k]->Physical_Disk_Sequence[i]);
2052 				if (g_raid_md_ddf_get_disk(sc, NULL, val) != NULL)
2053 					have++;
2054 			}
2055 		}
2056 		G_RAID_DEBUG1(1, sc, "Volume %s now has %d of %d disks",
2057 		    vol->v_name, have, need);
2058 		if (have == need)
2059 			g_raid_md_ddf_start(vol);
2060 	}
2061 }
2062 
2063 static int
2064 g_raid_md_create_req_ddf(struct g_raid_md_object *md, struct g_class *mp,
2065     struct gctl_req *req, struct g_geom **gp)
2066 {
2067 	struct g_geom *geom;
2068 	struct g_raid_softc *sc;
2069 	struct g_raid_md_ddf_object *mdi, *mdi1;
2070 	char name[16];
2071 	const char *fmtopt;
2072 	int be = 1;
2073 
2074 	mdi = (struct g_raid_md_ddf_object *)md;
2075 	fmtopt = gctl_get_asciiparam(req, "fmtopt");
2076 	if (fmtopt == NULL || strcasecmp(fmtopt, "BE") == 0)
2077 		be = 1;
2078 	else if (strcasecmp(fmtopt, "LE") == 0)
2079 		be = 0;
2080 	else {
2081 		gctl_error(req, "Incorrect fmtopt argument.");
2082 		return (G_RAID_MD_TASTE_FAIL);
2083 	}
2084 
2085 	/* Search for existing node. */
2086 	LIST_FOREACH(geom, &mp->geom, geom) {
2087 		sc = geom->softc;
2088 		if (sc == NULL)
2089 			continue;
2090 		if (sc->sc_stopping != 0)
2091 			continue;
2092 		if (sc->sc_md->mdo_class != md->mdo_class)
2093 			continue;
2094 		mdi1 = (struct g_raid_md_ddf_object *)sc->sc_md;
2095 		if (mdi1->mdio_bigendian != be)
2096 			continue;
2097 		break;
2098 	}
2099 	if (geom != NULL) {
2100 		*gp = geom;
2101 		return (G_RAID_MD_TASTE_EXISTING);
2102 	}
2103 
2104 	/* Create new one if not found. */
2105 	mdi->mdio_bigendian = be;
2106 	snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2107 	sc = g_raid_create_node(mp, name, md);
2108 	if (sc == NULL)
2109 		return (G_RAID_MD_TASTE_FAIL);
2110 	md->mdo_softc = sc;
2111 	*gp = sc->sc_geom;
2112 	return (G_RAID_MD_TASTE_NEW);
2113 }
2114 
2115 static int
2116 g_raid_md_taste_ddf(struct g_raid_md_object *md, struct g_class *mp,
2117                               struct g_consumer *cp, struct g_geom **gp)
2118 {
2119 	struct g_consumer *rcp;
2120 	struct g_provider *pp;
2121 	struct g_raid_softc *sc;
2122 	struct g_raid_disk *disk;
2123 	struct ddf_meta meta;
2124 	struct g_raid_md_ddf_perdisk *pd;
2125 	struct g_raid_md_ddf_object *mdi;
2126 	struct g_geom *geom;
2127 	int error, result, be;
2128 	char name[16];
2129 
2130 	G_RAID_DEBUG(1, "Tasting DDF on %s", cp->provider->name);
2131 	mdi = (struct g_raid_md_ddf_object *)md;
2132 	pp = cp->provider;
2133 
2134 	/* Read metadata from device. */
2135 	g_topology_unlock();
2136 	bzero(&meta, sizeof(meta));
2137 	error = ddf_meta_read(cp, &meta);
2138 	g_topology_lock();
2139 	if (error != 0)
2140 		return (G_RAID_MD_TASTE_FAIL);
2141 	be = meta.bigendian;
2142 
2143 	/* Metadata valid. Print it. */
2144 	g_raid_md_ddf_print(&meta);
2145 
2146 	/* Search for matching node. */
2147 	sc = NULL;
2148 	LIST_FOREACH(geom, &mp->geom, geom) {
2149 		sc = geom->softc;
2150 		if (sc == NULL)
2151 			continue;
2152 		if (sc->sc_stopping != 0)
2153 			continue;
2154 		if (sc->sc_md->mdo_class != md->mdo_class)
2155 			continue;
2156 		mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
2157 		if (mdi->mdio_bigendian != be)
2158 			continue;
2159 		break;
2160 	}
2161 
2162 	/* Found matching node. */
2163 	if (geom != NULL) {
2164 		G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
2165 		result = G_RAID_MD_TASTE_EXISTING;
2166 
2167 	} else { /* Not found matching node -- create one. */
2168 		result = G_RAID_MD_TASTE_NEW;
2169 		mdi->mdio_bigendian = be;
2170 		snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2171 		sc = g_raid_create_node(mp, name, md);
2172 		md->mdo_softc = sc;
2173 		geom = sc->sc_geom;
2174 	}
2175 
2176 	/* There is no return after this point, so we close passed consumer. */
2177 	g_access(cp, -1, 0, 0);
2178 
2179 	rcp = g_new_consumer(geom);
2180 	rcp->flags |= G_CF_DIRECT_RECEIVE;
2181 	g_attach(rcp, pp);
2182 	if (g_access(rcp, 1, 1, 1) != 0)
2183 		; //goto fail1;
2184 
2185 	g_topology_unlock();
2186 	sx_xlock(&sc->sc_lock);
2187 
2188 	pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2189 	pd->pd_meta = meta;
2190 	disk = g_raid_create_disk(sc);
2191 	disk->d_md_data = (void *)pd;
2192 	disk->d_consumer = rcp;
2193 	rcp->private = disk;
2194 
2195 	g_raid_get_disk_info(disk);
2196 
2197 	g_raid_md_ddf_new_disk(disk);
2198 
2199 	sx_xunlock(&sc->sc_lock);
2200 	g_topology_lock();
2201 	*gp = geom;
2202 	return (result);
2203 }
2204 
2205 static int
2206 g_raid_md_event_ddf(struct g_raid_md_object *md,
2207     struct g_raid_disk *disk, u_int event)
2208 {
2209 	struct g_raid_softc *sc;
2210 
2211 	sc = md->mdo_softc;
2212 	if (disk == NULL)
2213 		return (-1);
2214 	switch (event) {
2215 	case G_RAID_DISK_E_DISCONNECTED:
2216 		/* Delete disk. */
2217 		g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2218 		g_raid_destroy_disk(disk);
2219 		g_raid_md_ddf_purge_volumes(sc);
2220 
2221 		/* Write updated metadata to all disks. */
2222 		g_raid_md_write_ddf(md, NULL, NULL, NULL);
2223 
2224 		/* Check if anything left. */
2225 		if (g_raid_ndisks(sc, -1) == 0)
2226 			g_raid_destroy_node(sc, 0);
2227 		else
2228 			g_raid_md_ddf_refill(sc);
2229 		return (0);
2230 	}
2231 	return (-2);
2232 }
2233 
2234 static int
2235 g_raid_md_volume_event_ddf(struct g_raid_md_object *md,
2236     struct g_raid_volume *vol, u_int event)
2237 {
2238 	struct g_raid_md_ddf_pervolume *pv;
2239 
2240 	pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2241 	switch (event) {
2242 	case G_RAID_VOLUME_E_STARTMD:
2243 		if (!pv->pv_started)
2244 			g_raid_md_ddf_start(vol);
2245 		return (0);
2246 	}
2247 	return (-2);
2248 }
2249 
2250 static int
2251 g_raid_md_ctl_ddf(struct g_raid_md_object *md,
2252     struct gctl_req *req)
2253 {
2254 	struct g_raid_softc *sc;
2255 	struct g_raid_volume *vol, *vol1;
2256 	struct g_raid_subdisk *sd;
2257 	struct g_raid_disk *disk, *disks[DDF_MAX_DISKS_HARD];
2258 	struct g_raid_md_ddf_perdisk *pd;
2259 	struct g_raid_md_ddf_pervolume *pv;
2260 	struct g_raid_md_ddf_object *mdi;
2261 	struct ddf_sa_record *sa;
2262 	struct g_consumer *cp;
2263 	struct g_provider *pp;
2264 	char arg[16];
2265 	const char *nodename, *verb, *volname, *levelname, *diskname;
2266 	char *tmp;
2267 	int *nargs, *force;
2268 	off_t size, sectorsize, strip, offs[DDF_MAX_DISKS_HARD], esize;
2269 	intmax_t *sizearg, *striparg;
2270 	int i, numdisks, len, level, qual;
2271 	int error;
2272 
2273 	sc = md->mdo_softc;
2274 	mdi = (struct g_raid_md_ddf_object *)md;
2275 	verb = gctl_get_param(req, "verb", NULL);
2276 	nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
2277 	error = 0;
2278 
2279 	if (strcmp(verb, "label") == 0) {
2280 
2281 		if (*nargs < 4) {
2282 			gctl_error(req, "Invalid number of arguments.");
2283 			return (-1);
2284 		}
2285 		volname = gctl_get_asciiparam(req, "arg1");
2286 		if (volname == NULL) {
2287 			gctl_error(req, "No volume name.");
2288 			return (-2);
2289 		}
2290 		levelname = gctl_get_asciiparam(req, "arg2");
2291 		if (levelname == NULL) {
2292 			gctl_error(req, "No RAID level.");
2293 			return (-3);
2294 		}
2295 		if (g_raid_volume_str2level(levelname, &level, &qual)) {
2296 			gctl_error(req, "Unknown RAID level '%s'.", levelname);
2297 			return (-4);
2298 		}
2299 		numdisks = *nargs - 3;
2300 		force = gctl_get_paraml(req, "force", sizeof(*force));
2301 		if (!g_raid_md_ddf_supported(level, qual, numdisks,
2302 		    force ? *force : 0)) {
2303 			gctl_error(req, "Unsupported RAID level "
2304 			    "(0x%02x/0x%02x), or number of disks (%d).",
2305 			    level, qual, numdisks);
2306 			return (-5);
2307 		}
2308 
2309 		/* Search for disks, connect them and probe. */
2310 		size = INT64_MAX;
2311 		sectorsize = 0;
2312 		bzero(disks, sizeof(disks));
2313 		bzero(offs, sizeof(offs));
2314 		for (i = 0; i < numdisks; i++) {
2315 			snprintf(arg, sizeof(arg), "arg%d", i + 3);
2316 			diskname = gctl_get_asciiparam(req, arg);
2317 			if (diskname == NULL) {
2318 				gctl_error(req, "No disk name (%s).", arg);
2319 				error = -6;
2320 				break;
2321 			}
2322 			if (strcmp(diskname, "NONE") == 0)
2323 				continue;
2324 
2325 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2326 				if (disk->d_consumer != NULL &&
2327 				    disk->d_consumer->provider != NULL &&
2328 				    strcmp(disk->d_consumer->provider->name,
2329 				     diskname) == 0)
2330 					break;
2331 			}
2332 			if (disk != NULL) {
2333 				if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2334 					gctl_error(req, "Disk '%s' is in a "
2335 					    "wrong state (%s).", diskname,
2336 					    g_raid_disk_state2str(disk->d_state));
2337 					error = -7;
2338 					break;
2339 				}
2340 				pd = disk->d_md_data;
2341 				if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
2342 				    GET16(&pd->pd_meta, hdr->Max_Partitions)) {
2343 					gctl_error(req, "No free partitions "
2344 					    "on disk '%s'.",
2345 					    diskname);
2346 					error = -7;
2347 					break;
2348 				}
2349 				pp = disk->d_consumer->provider;
2350 				disks[i] = disk;
2351 				ddf_meta_unused_range(&pd->pd_meta,
2352 				    &offs[i], &esize);
2353 				offs[i] *= pp->sectorsize;
2354 				size = MIN(size, (off_t)esize * pp->sectorsize);
2355 				sectorsize = MAX(sectorsize, pp->sectorsize);
2356 				continue;
2357 			}
2358 
2359 			g_topology_lock();
2360 			cp = g_raid_open_consumer(sc, diskname);
2361 			if (cp == NULL) {
2362 				gctl_error(req, "Can't open disk '%s'.",
2363 				    diskname);
2364 				g_topology_unlock();
2365 				error = -8;
2366 				break;
2367 			}
2368 			pp = cp->provider;
2369 			pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2370 			disk = g_raid_create_disk(sc);
2371 			disk->d_md_data = (void *)pd;
2372 			disk->d_consumer = cp;
2373 			disks[i] = disk;
2374 			cp->private = disk;
2375 			ddf_meta_create(disk, &mdi->mdio_meta);
2376 			if (mdi->mdio_meta.hdr == NULL)
2377 				ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2378 			else
2379 				ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2380 			g_topology_unlock();
2381 
2382 			g_raid_get_disk_info(disk);
2383 
2384 			/* Reserve some space for metadata. */
2385 			size = MIN(size, GET64(&pd->pd_meta,
2386 			    pdr->entry[0].Configured_Size) * pp->sectorsize);
2387 			sectorsize = MAX(sectorsize, pp->sectorsize);
2388 		}
2389 		if (error != 0) {
2390 			for (i = 0; i < numdisks; i++) {
2391 				if (disks[i] != NULL &&
2392 				    disks[i]->d_state == G_RAID_DISK_S_NONE)
2393 					g_raid_destroy_disk(disks[i]);
2394 			}
2395 			return (error);
2396 		}
2397 
2398 		if (sectorsize <= 0) {
2399 			gctl_error(req, "Can't get sector size.");
2400 			return (-8);
2401 		}
2402 
2403 		/* Handle size argument. */
2404 		len = sizeof(*sizearg);
2405 		sizearg = gctl_get_param(req, "size", &len);
2406 		if (sizearg != NULL && len == sizeof(*sizearg) &&
2407 		    *sizearg > 0) {
2408 			if (*sizearg > size) {
2409 				gctl_error(req, "Size too big %lld > %lld.",
2410 				    (long long)*sizearg, (long long)size);
2411 				return (-9);
2412 			}
2413 			size = *sizearg;
2414 		}
2415 
2416 		/* Handle strip argument. */
2417 		strip = 131072;
2418 		len = sizeof(*striparg);
2419 		striparg = gctl_get_param(req, "strip", &len);
2420 		if (striparg != NULL && len == sizeof(*striparg) &&
2421 		    *striparg > 0) {
2422 			if (*striparg < sectorsize) {
2423 				gctl_error(req, "Strip size too small.");
2424 				return (-10);
2425 			}
2426 			if (*striparg % sectorsize != 0) {
2427 				gctl_error(req, "Incorrect strip size.");
2428 				return (-11);
2429 			}
2430 			strip = *striparg;
2431 		}
2432 
2433 		/* Round size down to strip or sector. */
2434 		if (level == G_RAID_VOLUME_RL_RAID1 ||
2435 		    level == G_RAID_VOLUME_RL_RAID3 ||
2436 		    level == G_RAID_VOLUME_RL_SINGLE ||
2437 		    level == G_RAID_VOLUME_RL_CONCAT)
2438 			size -= (size % sectorsize);
2439 		else if (level == G_RAID_VOLUME_RL_RAID1E &&
2440 		    (numdisks & 1) != 0)
2441 			size -= (size % (2 * strip));
2442 		else
2443 			size -= (size % strip);
2444 		if (size <= 0) {
2445 			gctl_error(req, "Size too small.");
2446 			return (-13);
2447 		}
2448 
2449 		/* We have all we need, create things: volume, ... */
2450 		pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2451 		ddf_vol_meta_create(&pv->pv_meta, &mdi->mdio_meta);
2452 		pv->pv_started = 1;
2453 		vol = g_raid_create_volume(sc, volname, -1);
2454 		vol->v_md_data = pv;
2455 		vol->v_raid_level = level;
2456 		vol->v_raid_level_qualifier = qual;
2457 		vol->v_strip_size = strip;
2458 		vol->v_disks_count = numdisks;
2459 		if (level == G_RAID_VOLUME_RL_RAID0 ||
2460 		    level == G_RAID_VOLUME_RL_CONCAT ||
2461 		    level == G_RAID_VOLUME_RL_SINGLE)
2462 			vol->v_mediasize = size * numdisks;
2463 		else if (level == G_RAID_VOLUME_RL_RAID1)
2464 			vol->v_mediasize = size;
2465 		else if (level == G_RAID_VOLUME_RL_RAID3 ||
2466 		    level == G_RAID_VOLUME_RL_RAID4 ||
2467 		    level == G_RAID_VOLUME_RL_RAID5)
2468 			vol->v_mediasize = size * (numdisks - 1);
2469 		else if (level == G_RAID_VOLUME_RL_RAID5R) {
2470 			vol->v_mediasize = size * (numdisks - 1);
2471 			vol->v_rotate_parity = 1024;
2472 		} else if (level == G_RAID_VOLUME_RL_RAID6 ||
2473 		    level == G_RAID_VOLUME_RL_RAID5E ||
2474 		    level == G_RAID_VOLUME_RL_RAID5EE)
2475 			vol->v_mediasize = size * (numdisks - 2);
2476 		else if (level == G_RAID_VOLUME_RL_RAIDMDF) {
2477 			if (numdisks < 5)
2478 				vol->v_mdf_pdisks = 2;
2479 			else
2480 				vol->v_mdf_pdisks = 3;
2481 			vol->v_mdf_polynomial = 0x11d;
2482 			vol->v_mdf_method = 0x00;
2483 			vol->v_mediasize = size * (numdisks - vol->v_mdf_pdisks);
2484 		} else { /* RAID1E */
2485 			vol->v_mediasize = ((size * numdisks) / strip / 2) *
2486 			    strip;
2487 		}
2488 		vol->v_sectorsize = sectorsize;
2489 		g_raid_start_volume(vol);
2490 
2491 		/* , and subdisks. */
2492 		for (i = 0; i < numdisks; i++) {
2493 			disk = disks[i];
2494 			sd = &vol->v_subdisks[i];
2495 			sd->sd_disk = disk;
2496 			sd->sd_offset = offs[i];
2497 			sd->sd_size = size;
2498 			if (disk == NULL)
2499 				continue;
2500 			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2501 			g_raid_change_disk_state(disk,
2502 			    G_RAID_DISK_S_ACTIVE);
2503 			g_raid_change_subdisk_state(sd,
2504 			    G_RAID_SUBDISK_S_ACTIVE);
2505 			g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2506 			    G_RAID_EVENT_SUBDISK);
2507 		}
2508 
2509 		/* Write metadata based on created entities. */
2510 		G_RAID_DEBUG1(0, sc, "Array started.");
2511 		g_raid_md_write_ddf(md, vol, NULL, NULL);
2512 
2513 		/* Pickup any STALE/SPARE disks to refill array if needed. */
2514 		g_raid_md_ddf_refill(sc);
2515 
2516 		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2517 		    G_RAID_EVENT_VOLUME);
2518 		return (0);
2519 	}
2520 	if (strcmp(verb, "add") == 0) {
2521 
2522 		gctl_error(req, "`add` command is not applicable, "
2523 		    "use `label` instead.");
2524 		return (-99);
2525 	}
2526 	if (strcmp(verb, "delete") == 0) {
2527 
2528 		nodename = gctl_get_asciiparam(req, "arg0");
2529 		if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2530 			nodename = NULL;
2531 
2532 		/* Full node destruction. */
2533 		if (*nargs == 1 && nodename != NULL) {
2534 			/* Check if some volume is still open. */
2535 			force = gctl_get_paraml(req, "force", sizeof(*force));
2536 			if (force != NULL && *force == 0 &&
2537 			    g_raid_nopens(sc) != 0) {
2538 				gctl_error(req, "Some volume is still open.");
2539 				return (-4);
2540 			}
2541 
2542 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2543 				if (disk->d_consumer)
2544 					ddf_meta_erase(disk->d_consumer);
2545 			}
2546 			g_raid_destroy_node(sc, 0);
2547 			return (0);
2548 		}
2549 
2550 		/* Destroy specified volume. If it was last - all node. */
2551 		if (*nargs > 2) {
2552 			gctl_error(req, "Invalid number of arguments.");
2553 			return (-1);
2554 		}
2555 		volname = gctl_get_asciiparam(req,
2556 		    nodename != NULL ? "arg1" : "arg0");
2557 		if (volname == NULL) {
2558 			gctl_error(req, "No volume name.");
2559 			return (-2);
2560 		}
2561 
2562 		/* Search for volume. */
2563 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2564 			if (strcmp(vol->v_name, volname) == 0)
2565 				break;
2566 			pp = vol->v_provider;
2567 			if (pp == NULL)
2568 				continue;
2569 			if (strcmp(pp->name, volname) == 0)
2570 				break;
2571 			if (strncmp(pp->name, "raid/", 5) == 0 &&
2572 			    strcmp(pp->name + 5, volname) == 0)
2573 				break;
2574 		}
2575 		if (vol == NULL) {
2576 			i = strtol(volname, &tmp, 10);
2577 			if (verb != volname && tmp[0] == 0) {
2578 				TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2579 					if (vol->v_global_id == i)
2580 						break;
2581 				}
2582 			}
2583 		}
2584 		if (vol == NULL) {
2585 			gctl_error(req, "Volume '%s' not found.", volname);
2586 			return (-3);
2587 		}
2588 
2589 		/* Check if volume is still open. */
2590 		force = gctl_get_paraml(req, "force", sizeof(*force));
2591 		if (force != NULL && *force == 0 &&
2592 		    vol->v_provider_open != 0) {
2593 			gctl_error(req, "Volume is still open.");
2594 			return (-4);
2595 		}
2596 
2597 		/* Destroy volume and potentially node. */
2598 		i = 0;
2599 		TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2600 			i++;
2601 		if (i >= 2) {
2602 			g_raid_destroy_volume(vol);
2603 			g_raid_md_ddf_purge_disks(sc);
2604 			g_raid_md_write_ddf(md, NULL, NULL, NULL);
2605 		} else {
2606 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2607 				if (disk->d_consumer)
2608 					ddf_meta_erase(disk->d_consumer);
2609 			}
2610 			g_raid_destroy_node(sc, 0);
2611 		}
2612 		return (0);
2613 	}
2614 	if (strcmp(verb, "remove") == 0 ||
2615 	    strcmp(verb, "fail") == 0) {
2616 		if (*nargs < 2) {
2617 			gctl_error(req, "Invalid number of arguments.");
2618 			return (-1);
2619 		}
2620 		for (i = 1; i < *nargs; i++) {
2621 			snprintf(arg, sizeof(arg), "arg%d", i);
2622 			diskname = gctl_get_asciiparam(req, arg);
2623 			if (diskname == NULL) {
2624 				gctl_error(req, "No disk name (%s).", arg);
2625 				error = -2;
2626 				break;
2627 			}
2628 			if (strncmp(diskname, "/dev/", 5) == 0)
2629 				diskname += 5;
2630 
2631 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2632 				if (disk->d_consumer != NULL &&
2633 				    disk->d_consumer->provider != NULL &&
2634 				    strcmp(disk->d_consumer->provider->name,
2635 				     diskname) == 0)
2636 					break;
2637 			}
2638 			if (disk == NULL) {
2639 				gctl_error(req, "Disk '%s' not found.",
2640 				    diskname);
2641 				error = -3;
2642 				break;
2643 			}
2644 
2645 			if (strcmp(verb, "fail") == 0) {
2646 				g_raid_md_fail_disk_ddf(md, NULL, disk);
2647 				continue;
2648 			}
2649 
2650 			/* Erase metadata on deleting disk and destroy it. */
2651 			ddf_meta_erase(disk->d_consumer);
2652 			g_raid_destroy_disk(disk);
2653 		}
2654 		g_raid_md_ddf_purge_volumes(sc);
2655 
2656 		/* Write updated metadata to remaining disks. */
2657 		g_raid_md_write_ddf(md, NULL, NULL, NULL);
2658 
2659 		/* Check if anything left. */
2660 		if (g_raid_ndisks(sc, -1) == 0)
2661 			g_raid_destroy_node(sc, 0);
2662 		else
2663 			g_raid_md_ddf_refill(sc);
2664 		return (error);
2665 	}
2666 	if (strcmp(verb, "insert") == 0) {
2667 		if (*nargs < 2) {
2668 			gctl_error(req, "Invalid number of arguments.");
2669 			return (-1);
2670 		}
2671 		for (i = 1; i < *nargs; i++) {
2672 			/* Get disk name. */
2673 			snprintf(arg, sizeof(arg), "arg%d", i);
2674 			diskname = gctl_get_asciiparam(req, arg);
2675 			if (diskname == NULL) {
2676 				gctl_error(req, "No disk name (%s).", arg);
2677 				error = -3;
2678 				break;
2679 			}
2680 
2681 			/* Try to find provider with specified name. */
2682 			g_topology_lock();
2683 			cp = g_raid_open_consumer(sc, diskname);
2684 			if (cp == NULL) {
2685 				gctl_error(req, "Can't open disk '%s'.",
2686 				    diskname);
2687 				g_topology_unlock();
2688 				error = -4;
2689 				break;
2690 			}
2691 			pp = cp->provider;
2692 			g_topology_unlock();
2693 
2694 			pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2695 
2696 			disk = g_raid_create_disk(sc);
2697 			disk->d_consumer = cp;
2698 			disk->d_md_data = (void *)pd;
2699 			cp->private = disk;
2700 
2701 			g_raid_get_disk_info(disk);
2702 
2703 			/* Welcome the "new" disk. */
2704 			g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2705 			ddf_meta_create(disk, &mdi->mdio_meta);
2706 			sa = ddf_meta_find_sa(&pd->pd_meta, 1);
2707 			if (sa != NULL) {
2708 				SET32D(&pd->pd_meta, sa->Signature,
2709 				    DDF_SA_SIGNATURE);
2710 				SET8D(&pd->pd_meta, sa->Spare_Type, 0);
2711 				SET16D(&pd->pd_meta, sa->Populated_SAEs, 0);
2712 				SET16D(&pd->pd_meta, sa->MAX_SAE_Supported,
2713 				    (GET16(&pd->pd_meta, hdr->Configuration_Record_Length) *
2714 				     pd->pd_meta.sectorsize -
2715 				     sizeof(struct ddf_sa_record)) /
2716 				    sizeof(struct ddf_sa_entry));
2717 			}
2718 			if (mdi->mdio_meta.hdr == NULL)
2719 				ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2720 			else
2721 				ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2722 			g_raid_md_write_ddf(md, NULL, NULL, NULL);
2723 			g_raid_md_ddf_refill(sc);
2724 		}
2725 		return (error);
2726 	}
2727 	return (-100);
2728 }
2729 
2730 static int
2731 g_raid_md_write_ddf(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2732     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2733 {
2734 	struct g_raid_softc *sc;
2735 	struct g_raid_volume *vol;
2736 	struct g_raid_subdisk *sd;
2737 	struct g_raid_disk *disk;
2738 	struct g_raid_md_ddf_perdisk *pd;
2739 	struct g_raid_md_ddf_pervolume *pv;
2740 	struct g_raid_md_ddf_object *mdi;
2741 	struct ddf_meta *gmeta;
2742 	struct ddf_vol_meta *vmeta;
2743 	struct ddf_vdc_record *vdc;
2744 	struct ddf_sa_record *sa;
2745 	uint64_t *val2;
2746 	int i, j, pos, bvd, size;
2747 
2748 	sc = md->mdo_softc;
2749 	mdi = (struct g_raid_md_ddf_object *)md;
2750 	gmeta = &mdi->mdio_meta;
2751 
2752 	if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2753 		return (0);
2754 
2755 	/*
2756 	 * Clear disk flags to let only really needed ones to be reset.
2757 	 * Do it only if there are no volumes in starting state now,
2758 	 * as they can update disk statuses yet and we may kill innocent.
2759 	 */
2760 	if (mdi->mdio_starting == 0) {
2761 		for (i = 0; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2762 			if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2763 				continue;
2764 			SET16(gmeta, pdr->entry[i].PD_Type,
2765 			    GET16(gmeta, pdr->entry[i].PD_Type) &
2766 			    ~(DDF_PDE_PARTICIPATING |
2767 			      DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE));
2768 			if ((GET16(gmeta, pdr->entry[i].PD_State) &
2769 			    DDF_PDE_PFA) == 0)
2770 				SET16(gmeta, pdr->entry[i].PD_State, 0);
2771 		}
2772 	}
2773 
2774 	/* Generate/update new per-volume metadata. */
2775 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2776 		pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2777 		if (vol->v_stopping || !pv->pv_started)
2778 			continue;
2779 		vmeta = &pv->pv_meta;
2780 
2781 		SET32(vmeta, vdc->Sequence_Number,
2782 		    GET32(vmeta, vdc->Sequence_Number) + 1);
2783 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2784 		    vol->v_disks_count % 2 == 0)
2785 			SET16(vmeta, vdc->Primary_Element_Count, 2);
2786 		else
2787 			SET16(vmeta, vdc->Primary_Element_Count,
2788 			    vol->v_disks_count);
2789 		SET8(vmeta, vdc->Stripe_Size,
2790 		    ffs(vol->v_strip_size / vol->v_sectorsize) - 1);
2791 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2792 		    vol->v_disks_count % 2 == 0) {
2793 			SET8(vmeta, vdc->Primary_RAID_Level,
2794 			    DDF_VDCR_RAID1);
2795 			SET8(vmeta, vdc->RLQ, 0);
2796 			SET8(vmeta, vdc->Secondary_Element_Count,
2797 			    vol->v_disks_count / 2);
2798 			SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2799 		} else {
2800 			SET8(vmeta, vdc->Primary_RAID_Level,
2801 			    vol->v_raid_level);
2802 			SET8(vmeta, vdc->RLQ,
2803 			    vol->v_raid_level_qualifier);
2804 			SET8(vmeta, vdc->Secondary_Element_Count, 1);
2805 			SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2806 		}
2807 		SET8(vmeta, vdc->Secondary_Element_Seq, 0);
2808 		SET64(vmeta, vdc->Block_Count, 0);
2809 		SET64(vmeta, vdc->VD_Size, vol->v_mediasize / vol->v_sectorsize);
2810 		SET16(vmeta, vdc->Block_Size, vol->v_sectorsize);
2811 		SET8(vmeta, vdc->Rotate_Parity_count,
2812 		    fls(vol->v_rotate_parity) - 1);
2813 		SET8(vmeta, vdc->MDF_Parity_Disks, vol->v_mdf_pdisks);
2814 		SET16(vmeta, vdc->MDF_Parity_Generator_Polynomial,
2815 		    vol->v_mdf_polynomial);
2816 		SET8(vmeta, vdc->MDF_Constant_Generation_Method,
2817 		    vol->v_mdf_method);
2818 
2819 		SET16(vmeta, vde->VD_Number, vol->v_global_id);
2820 		if (vol->v_state <= G_RAID_VOLUME_S_BROKEN)
2821 			SET8(vmeta, vde->VD_State, DDF_VDE_FAILED);
2822 		else if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED)
2823 			SET8(vmeta, vde->VD_State, DDF_VDE_DEGRADED);
2824 		else if (vol->v_state <= G_RAID_VOLUME_S_SUBOPTIMAL)
2825 			SET8(vmeta, vde->VD_State, DDF_VDE_PARTIAL);
2826 		else
2827 			SET8(vmeta, vde->VD_State, DDF_VDE_OPTIMAL);
2828 		if (vol->v_dirty ||
2829 		    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) > 0 ||
2830 		    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC) > 0)
2831 			SET8(vmeta, vde->VD_State,
2832 			    GET8(vmeta, vde->VD_State) | DDF_VDE_DIRTY);
2833 		SET8(vmeta, vde->Init_State, DDF_VDE_INIT_FULL); // XXX
2834 		ddf_meta_put_name(vmeta, vol->v_name);
2835 
2836 		for (i = 0; i < vol->v_disks_count; i++) {
2837 			sd = &vol->v_subdisks[i];
2838 			bvd = i / GET16(vmeta, vdc->Primary_Element_Count);
2839 			pos = i % GET16(vmeta, vdc->Primary_Element_Count);
2840 			disk = sd->sd_disk;
2841 			if (disk != NULL) {
2842 				pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2843 				if (vmeta->bvdc[bvd] == NULL) {
2844 					size = GET16(vmeta,
2845 					    hdr->Configuration_Record_Length) *
2846 					    vmeta->sectorsize;
2847 					vmeta->bvdc[bvd] = malloc(size,
2848 					    M_MD_DDF, M_WAITOK);
2849 					memset(vmeta->bvdc[bvd], 0xff, size);
2850 				}
2851 				memcpy(vmeta->bvdc[bvd], vmeta->vdc,
2852 				    sizeof(struct ddf_vdc_record));
2853 				SET8(vmeta, bvdc[bvd]->Secondary_Element_Seq, bvd);
2854 				SET64(vmeta, bvdc[bvd]->Block_Count,
2855 				    sd->sd_size / vol->v_sectorsize);
2856 				SET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos],
2857 				    GET32(&pd->pd_meta, pdd->PD_Reference));
2858 				val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
2859 				    GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
2860 				SET64P(vmeta, val2 + pos,
2861 				    sd->sd_offset / vol->v_sectorsize);
2862 			}
2863 			if (vmeta->bvdc[bvd] == NULL)
2864 				continue;
2865 
2866 			j = ddf_meta_find_pd(gmeta, NULL,
2867 			    GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]));
2868 			if (j < 0)
2869 				continue;
2870 			SET16(gmeta, pdr->entry[j].PD_Type,
2871 			    GET16(gmeta, pdr->entry[j].PD_Type) |
2872 			    DDF_PDE_PARTICIPATING);
2873 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
2874 				SET16(gmeta, pdr->entry[j].PD_State,
2875 				    GET16(gmeta, pdr->entry[j].PD_State) |
2876 				    (DDF_PDE_FAILED | DDF_PDE_MISSING));
2877 			else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED)
2878 				SET16(gmeta, pdr->entry[j].PD_State,
2879 				    GET16(gmeta, pdr->entry[j].PD_State) |
2880 				    (DDF_PDE_FAILED | DDF_PDE_PFA));
2881 			else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD)
2882 				SET16(gmeta, pdr->entry[j].PD_State,
2883 				    GET16(gmeta, pdr->entry[j].PD_State) |
2884 				    DDF_PDE_REBUILD);
2885 			else
2886 				SET16(gmeta, pdr->entry[j].PD_State,
2887 				    GET16(gmeta, pdr->entry[j].PD_State) |
2888 				    DDF_PDE_ONLINE);
2889 		}
2890 	}
2891 
2892 	/* Mark spare and failed disks as such. */
2893 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2894 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2895 		i = ddf_meta_find_pd(gmeta, NULL,
2896 		    GET32(&pd->pd_meta, pdd->PD_Reference));
2897 		if (i < 0)
2898 			continue;
2899 		if (disk->d_state == G_RAID_DISK_S_FAILED) {
2900 			SET16(gmeta, pdr->entry[i].PD_State,
2901 			    GET16(gmeta, pdr->entry[i].PD_State) |
2902 			    (DDF_PDE_FAILED | DDF_PDE_PFA));
2903 		}
2904 		if (disk->d_state != G_RAID_DISK_S_SPARE)
2905 			continue;
2906 		sa = ddf_meta_find_sa(&pd->pd_meta, 0);
2907 		if (sa == NULL ||
2908 		    (GET8D(&pd->pd_meta, sa->Spare_Type) &
2909 		     DDF_SAR_TYPE_DEDICATED) == 0) {
2910 			SET16(gmeta, pdr->entry[i].PD_Type,
2911 			    GET16(gmeta, pdr->entry[i].PD_Type) |
2912 			    DDF_PDE_GLOBAL_SPARE);
2913 		} else {
2914 			SET16(gmeta, pdr->entry[i].PD_Type,
2915 			    GET16(gmeta, pdr->entry[i].PD_Type) |
2916 			    DDF_PDE_CONFIG_SPARE);
2917 		}
2918 		SET16(gmeta, pdr->entry[i].PD_State,
2919 		    GET16(gmeta, pdr->entry[i].PD_State) |
2920 		    DDF_PDE_ONLINE);
2921 	}
2922 
2923 	/* Remove disks without "participating" flag (unused). */
2924 	for (i = 0, j = -1; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2925 		if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2926 			continue;
2927 		if ((GET16(gmeta, pdr->entry[i].PD_Type) &
2928 		    (DDF_PDE_PARTICIPATING |
2929 		     DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE)) != 0 ||
2930 		    g_raid_md_ddf_get_disk(sc,
2931 		     NULL, GET32(gmeta, pdr->entry[i].PD_Reference)) != NULL)
2932 			j = i;
2933 		else
2934 			memset(&gmeta->pdr->entry[i], 0xff,
2935 			    sizeof(struct ddf_pd_entry));
2936 	}
2937 	SET16(gmeta, pdr->Populated_PDEs, j + 1);
2938 
2939 	/* Update per-disk metadata and write them. */
2940 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2941 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2942 		if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
2943 		    disk->d_state != G_RAID_DISK_S_SPARE)
2944 			continue;
2945 		/* Update PDR. */
2946 		memcpy(pd->pd_meta.pdr, gmeta->pdr,
2947 		    GET32(&pd->pd_meta, hdr->pdr_length) *
2948 		    pd->pd_meta.sectorsize);
2949 		/* Update VDR. */
2950 		SET16(&pd->pd_meta, vdr->Populated_VDEs, 0);
2951 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2952 			if (vol->v_stopping)
2953 				continue;
2954 			pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2955 			i = ddf_meta_find_vd(&pd->pd_meta,
2956 			    pv->pv_meta.vde->VD_GUID);
2957 			if (i < 0)
2958 				i = ddf_meta_find_vd(&pd->pd_meta, NULL);
2959 			if (i >= 0)
2960 				memcpy(&pd->pd_meta.vdr->entry[i],
2961 				    pv->pv_meta.vde,
2962 				    sizeof(struct ddf_vd_entry));
2963 		}
2964 		/* Update VDC. */
2965 		if (mdi->mdio_starting == 0) {
2966 			/* Remove all VDCs to restore needed later. */
2967 			j = GETCRNUM(&pd->pd_meta);
2968 			for (i = 0; i < j; i++) {
2969 				vdc = GETVDCPTR(&pd->pd_meta, i);
2970 				if (GET32D(&pd->pd_meta, vdc->Signature) !=
2971 				    DDF_VDCR_SIGNATURE)
2972 					continue;
2973 				SET32D(&pd->pd_meta, vdc->Signature, 0xffffffff);
2974 			}
2975 		}
2976 		TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2977 			vol = sd->sd_volume;
2978 			if (vol->v_stopping)
2979 				continue;
2980 			pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2981 			vmeta = &pv->pv_meta;
2982 			vdc = ddf_meta_find_vdc(&pd->pd_meta,
2983 			    vmeta->vde->VD_GUID);
2984 			if (vdc == NULL)
2985 				vdc = ddf_meta_find_vdc(&pd->pd_meta, NULL);
2986 			if (vdc != NULL) {
2987 				bvd = sd->sd_pos / GET16(vmeta,
2988 				    vdc->Primary_Element_Count);
2989 				memcpy(vdc, vmeta->bvdc[bvd],
2990 				    GET16(&pd->pd_meta,
2991 				    hdr->Configuration_Record_Length) *
2992 				    pd->pd_meta.sectorsize);
2993 			}
2994 		}
2995 		G_RAID_DEBUG(1, "Writing DDF metadata to %s",
2996 		    g_raid_get_diskname(disk));
2997 		g_raid_md_ddf_print(&pd->pd_meta);
2998 		ddf_meta_write(disk->d_consumer, &pd->pd_meta);
2999 	}
3000 	return (0);
3001 }
3002 
3003 static int
3004 g_raid_md_fail_disk_ddf(struct g_raid_md_object *md,
3005     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
3006 {
3007 	struct g_raid_softc *sc;
3008 	struct g_raid_md_ddf_perdisk *pd;
3009 	struct g_raid_subdisk *sd;
3010 	int i;
3011 
3012 	sc = md->mdo_softc;
3013 	pd = (struct g_raid_md_ddf_perdisk *)tdisk->d_md_data;
3014 
3015 	/* We can't fail disk that is not a part of array now. */
3016 	if (tdisk->d_state != G_RAID_DISK_S_ACTIVE)
3017 		return (-1);
3018 
3019 	/*
3020 	 * Mark disk as failed in metadata and try to write that metadata
3021 	 * to the disk itself to prevent it's later resurrection as STALE.
3022 	 */
3023 	G_RAID_DEBUG(1, "Writing DDF metadata to %s",
3024 	    g_raid_get_diskname(tdisk));
3025 	i = ddf_meta_find_pd(&pd->pd_meta, NULL, GET32(&pd->pd_meta, pdd->PD_Reference));
3026 	SET16(&pd->pd_meta, pdr->entry[i].PD_State, DDF_PDE_FAILED | DDF_PDE_PFA);
3027 	if (tdisk->d_consumer != NULL)
3028 		ddf_meta_write(tdisk->d_consumer, &pd->pd_meta);
3029 
3030 	/* Change states. */
3031 	g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
3032 	TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
3033 		g_raid_change_subdisk_state(sd,
3034 		    G_RAID_SUBDISK_S_FAILED);
3035 		g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
3036 		    G_RAID_EVENT_SUBDISK);
3037 	}
3038 
3039 	/* Write updated metadata to remaining disks. */
3040 	g_raid_md_write_ddf(md, NULL, NULL, tdisk);
3041 
3042 	g_raid_md_ddf_refill(sc);
3043 	return (0);
3044 }
3045 
3046 static int
3047 g_raid_md_free_disk_ddf(struct g_raid_md_object *md,
3048     struct g_raid_disk *disk)
3049 {
3050 	struct g_raid_md_ddf_perdisk *pd;
3051 
3052 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
3053 	ddf_meta_free(&pd->pd_meta);
3054 	free(pd, M_MD_DDF);
3055 	disk->d_md_data = NULL;
3056 	return (0);
3057 }
3058 
3059 static int
3060 g_raid_md_free_volume_ddf(struct g_raid_md_object *md,
3061     struct g_raid_volume *vol)
3062 {
3063 	struct g_raid_md_ddf_object *mdi;
3064 	struct g_raid_md_ddf_pervolume *pv;
3065 
3066 	mdi = (struct g_raid_md_ddf_object *)md;
3067 	pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
3068 	ddf_vol_meta_free(&pv->pv_meta);
3069 	if (!pv->pv_started) {
3070 		pv->pv_started = 1;
3071 		mdi->mdio_starting--;
3072 		callout_stop(&pv->pv_start_co);
3073 	}
3074 	free(pv, M_MD_DDF);
3075 	vol->v_md_data = NULL;
3076 	return (0);
3077 }
3078 
3079 static int
3080 g_raid_md_free_ddf(struct g_raid_md_object *md)
3081 {
3082 	struct g_raid_md_ddf_object *mdi;
3083 
3084 	mdi = (struct g_raid_md_ddf_object *)md;
3085 	if (!mdi->mdio_started) {
3086 		mdi->mdio_started = 0;
3087 		callout_stop(&mdi->mdio_start_co);
3088 		G_RAID_DEBUG1(1, md->mdo_softc,
3089 		    "root_mount_rel %p", mdi->mdio_rootmount);
3090 		root_mount_rel(mdi->mdio_rootmount);
3091 		mdi->mdio_rootmount = NULL;
3092 	}
3093 	ddf_meta_free(&mdi->mdio_meta);
3094 	return (0);
3095 }
3096 
3097 G_RAID_MD_DECLARE(ddf, "DDF");
3098