xref: /freebsd/sys/geom/raid/md_ddf.c (revision 724b4bfdf1306e4f2c451b6d146fe0fe0353b2c8)
1 /*-
2  * Copyright (c) 2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/endian.h>
33 #include <sys/kernel.h>
34 #include <sys/kobj.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/systm.h>
40 #include <sys/time.h>
41 #include <sys/clock.h>
42 #include <geom/geom.h>
43 #include "geom/raid/g_raid.h"
44 #include "geom/raid/md_ddf.h"
45 #include "g_raid_md_if.h"
46 
47 static MALLOC_DEFINE(M_MD_DDF, "md_ddf_data", "GEOM_RAID DDF metadata");
48 
49 #define	DDF_MAX_DISKS_HARD	128
50 
51 #define	DDF_MAX_DISKS	16
52 #define	DDF_MAX_VDISKS	7
53 #define	DDF_MAX_PARTITIONS	1
54 
55 #define DECADE (3600*24*(365*10+2))	/* 10 years in seconds. */
56 
57 struct ddf_meta {
58 	u_int	sectorsize;
59 	u_int	bigendian;
60 	struct ddf_header *hdr;
61 	struct ddf_cd_record *cdr;
62 	struct ddf_pd_record *pdr;
63 	struct ddf_vd_record *vdr;
64 	void *cr;
65 	struct ddf_pdd_record *pdd;
66 	struct ddf_bbm_log *bbm;
67 };
68 
69 struct ddf_vol_meta {
70 	u_int	sectorsize;
71 	u_int	bigendian;
72 	struct ddf_header *hdr;
73 	struct ddf_cd_record *cdr;
74 	struct ddf_vd_entry *vde;
75 	struct ddf_vdc_record *vdc;
76 	struct ddf_vdc_record *bvdc[DDF_MAX_DISKS_HARD];
77 };
78 
79 struct g_raid_md_ddf_perdisk {
80 	struct ddf_meta	 pd_meta;
81 };
82 
83 struct g_raid_md_ddf_pervolume {
84 	struct ddf_vol_meta		 pv_meta;
85 	int				 pv_started;
86 	struct callout			 pv_start_co;	/* STARTING state timer. */
87 };
88 
89 struct g_raid_md_ddf_object {
90 	struct g_raid_md_object	 mdio_base;
91 	u_int			 mdio_bigendian;
92 	struct ddf_meta		 mdio_meta;
93 	int			 mdio_starting;
94 	struct callout		 mdio_start_co;	/* STARTING state timer. */
95 	int			 mdio_started;
96 	struct root_hold_token	*mdio_rootmount; /* Root mount delay token. */
97 };
98 
99 static g_raid_md_create_req_t g_raid_md_create_req_ddf;
100 static g_raid_md_taste_t g_raid_md_taste_ddf;
101 static g_raid_md_event_t g_raid_md_event_ddf;
102 static g_raid_md_volume_event_t g_raid_md_volume_event_ddf;
103 static g_raid_md_ctl_t g_raid_md_ctl_ddf;
104 static g_raid_md_write_t g_raid_md_write_ddf;
105 static g_raid_md_fail_disk_t g_raid_md_fail_disk_ddf;
106 static g_raid_md_free_disk_t g_raid_md_free_disk_ddf;
107 static g_raid_md_free_volume_t g_raid_md_free_volume_ddf;
108 static g_raid_md_free_t g_raid_md_free_ddf;
109 
110 static kobj_method_t g_raid_md_ddf_methods[] = {
111 	KOBJMETHOD(g_raid_md_create_req,	g_raid_md_create_req_ddf),
112 	KOBJMETHOD(g_raid_md_taste,	g_raid_md_taste_ddf),
113 	KOBJMETHOD(g_raid_md_event,	g_raid_md_event_ddf),
114 	KOBJMETHOD(g_raid_md_volume_event,	g_raid_md_volume_event_ddf),
115 	KOBJMETHOD(g_raid_md_ctl,	g_raid_md_ctl_ddf),
116 	KOBJMETHOD(g_raid_md_write,	g_raid_md_write_ddf),
117 	KOBJMETHOD(g_raid_md_fail_disk,	g_raid_md_fail_disk_ddf),
118 	KOBJMETHOD(g_raid_md_free_disk,	g_raid_md_free_disk_ddf),
119 	KOBJMETHOD(g_raid_md_free_volume,	g_raid_md_free_volume_ddf),
120 	KOBJMETHOD(g_raid_md_free,	g_raid_md_free_ddf),
121 	{ 0, 0 }
122 };
123 
124 static struct g_raid_md_class g_raid_md_ddf_class = {
125 	"DDF",
126 	g_raid_md_ddf_methods,
127 	sizeof(struct g_raid_md_ddf_object),
128 	.mdc_enable = 1,
129 	.mdc_priority = 100
130 };
131 
132 #define GET8(m, f)	((m)->f)
133 #define GET16(m, f)	((m)->bigendian ? be16dec(&(m)->f) : le16dec(&(m)->f))
134 #define GET32(m, f)	((m)->bigendian ? be32dec(&(m)->f) : le32dec(&(m)->f))
135 #define GET64(m, f)	((m)->bigendian ? be64dec(&(m)->f) : le64dec(&(m)->f))
136 #define GET8D(m, f)	(f)
137 #define GET16D(m, f)	((m)->bigendian ? be16dec(&f) : le16dec(&f))
138 #define GET32D(m, f)	((m)->bigendian ? be32dec(&f) : le32dec(&f))
139 #define GET64D(m, f)	((m)->bigendian ? be64dec(&f) : le64dec(&f))
140 #define GET8P(m, f)	(*(f))
141 #define GET16P(m, f)	((m)->bigendian ? be16dec(f) : le16dec(f))
142 #define GET32P(m, f)	((m)->bigendian ? be32dec(f) : le32dec(f))
143 #define GET64P(m, f)	((m)->bigendian ? be64dec(f) : le64dec(f))
144 
145 #define SET8P(m, f, v)							\
146 	(*(f) = (v))
147 #define SET16P(m, f, v)							\
148 	do {								\
149 		if ((m)->bigendian)					\
150 			be16enc((f), (v));				\
151 		else							\
152 			le16enc((f), (v));				\
153 	} while (0)
154 #define SET32P(m, f, v)							\
155 	do {								\
156 		if ((m)->bigendian)					\
157 			be32enc((f), (v));				\
158 		else							\
159 			le32enc((f), (v));				\
160 	} while (0)
161 #define SET64P(m, f, v)							\
162 	do {								\
163 		if ((m)->bigendian)					\
164 			be64enc((f), (v));				\
165 		else							\
166 			le64enc((f), (v));				\
167 	} while (0)
168 #define SET8(m, f, v)	SET8P((m), &((m)->f), (v))
169 #define SET16(m, f, v)	SET16P((m), &((m)->f), (v))
170 #define SET32(m, f, v)	SET32P((m), &((m)->f), (v))
171 #define SET64(m, f, v)	SET64P((m), &((m)->f), (v))
172 #define SET8D(m, f, v)	SET8P((m), &(f), (v))
173 #define SET16D(m, f, v)	SET16P((m), &(f), (v))
174 #define SET32D(m, f, v)	SET32P((m), &(f), (v))
175 #define SET64D(m, f, v)	SET64P((m), &(f), (v))
176 
177 #define GETCRNUM(m)	(GET32((m), hdr->cr_length) /			\
178 	GET16((m), hdr->Configuration_Record_Length))
179 
180 #define GETVDCPTR(m, n)	((struct ddf_vdc_record *)((uint8_t *)(m)->cr +	\
181 	(n) * GET16((m), hdr->Configuration_Record_Length) *		\
182 	(m)->sectorsize))
183 
184 #define GETSAPTR(m, n)	((struct ddf_sa_record *)((uint8_t *)(m)->cr +	\
185 	(n) * GET16((m), hdr->Configuration_Record_Length) *		\
186 	(m)->sectorsize))
187 
188 static int
189 isff(uint8_t *buf, int size)
190 {
191 	int i;
192 
193 	for (i = 0; i < size; i++)
194 		if (buf[i] != 0xff)
195 			return (0);
196 	return (1);
197 }
198 
199 static void
200 print_guid(uint8_t *buf)
201 {
202 	int i, ascii;
203 
204 	ascii = 1;
205 	for (i = 0; i < 24; i++) {
206 		if (buf[i] != 0 && (buf[i] < ' ' || buf[i] > 127)) {
207 			ascii = 0;
208 			break;
209 		}
210 	}
211 	if (ascii) {
212 		printf("'%.24s'", buf);
213 	} else {
214 		for (i = 0; i < 24; i++)
215 			printf("%02x", buf[i]);
216 	}
217 }
218 
219 static void
220 g_raid_md_ddf_print(struct ddf_meta *meta)
221 {
222 	struct ddf_vdc_record *vdc;
223 	struct ddf_vuc_record *vuc;
224 	struct ddf_sa_record *sa;
225 	uint64_t *val2;
226 	uint32_t val;
227 	int i, j, k, num, num2;
228 
229 	if (g_raid_debug < 1)
230 		return;
231 
232 	printf("********* DDF Metadata *********\n");
233 	printf("**** Header ****\n");
234 	printf("DDF_Header_GUID      ");
235 	print_guid(meta->hdr->DDF_Header_GUID);
236 	printf("\n");
237 	printf("DDF_rev              %8.8s\n", (char *)&meta->hdr->DDF_rev[0]);
238 	printf("Sequence_Number      0x%08x\n", GET32(meta, hdr->Sequence_Number));
239 	printf("TimeStamp            0x%08x\n", GET32(meta, hdr->TimeStamp));
240 	printf("Open_Flag            0x%02x\n", GET16(meta, hdr->Open_Flag));
241 	printf("Foreign_Flag         0x%02x\n", GET16(meta, hdr->Foreign_Flag));
242 	printf("Diskgrouping         0x%02x\n", GET16(meta, hdr->Diskgrouping));
243 	printf("Primary_Header_LBA   %ju\n", GET64(meta, hdr->Primary_Header_LBA));
244 	printf("Secondary_Header_LBA %ju\n", GET64(meta, hdr->Secondary_Header_LBA));
245 	printf("WorkSpace_Length     %u\n", GET32(meta, hdr->WorkSpace_Length));
246 	printf("WorkSpace_LBA        %ju\n", GET64(meta, hdr->WorkSpace_LBA));
247 	printf("Max_PD_Entries       %u\n", GET16(meta, hdr->Max_PD_Entries));
248 	printf("Max_VD_Entries       %u\n", GET16(meta, hdr->Max_VD_Entries));
249 	printf("Max_Partitions       %u\n", GET16(meta, hdr->Max_Partitions));
250 	printf("Configuration_Record_Length %u\n", GET16(meta, hdr->Configuration_Record_Length));
251 	printf("Max_Primary_Element_Entries %u\n", GET16(meta, hdr->Max_Primary_Element_Entries));
252 	printf("Controller Data      %u:%u\n", GET32(meta, hdr->cd_section), GET32(meta, hdr->cd_length));
253 	printf("Physical Disk        %u:%u\n", GET32(meta, hdr->pdr_section), GET32(meta, hdr->pdr_length));
254 	printf("Virtual Disk         %u:%u\n", GET32(meta, hdr->vdr_section), GET32(meta, hdr->vdr_length));
255 	printf("Configuration Recs   %u:%u\n", GET32(meta, hdr->cr_section), GET32(meta, hdr->cr_length));
256 	printf("Physical Disk Recs   %u:%u\n", GET32(meta, hdr->pdd_section), GET32(meta, hdr->pdd_length));
257 	printf("BBM Log              %u:%u\n", GET32(meta, hdr->bbmlog_section), GET32(meta, hdr->bbmlog_length));
258 	printf("Diagnostic Space     %u:%u\n", GET32(meta, hdr->Diagnostic_Space), GET32(meta, hdr->Diagnostic_Space_Length));
259 	printf("Vendor_Specific_Logs %u:%u\n", GET32(meta, hdr->Vendor_Specific_Logs), GET32(meta, hdr->Vendor_Specific_Logs_Length));
260 	printf("**** Controler Data ****\n");
261 	printf("Controller_GUID      ");
262 	print_guid(meta->cdr->Controller_GUID);
263 	printf("\n");
264 	printf("Controller_Type      0x%04x%04x 0x%04x%04x\n",
265 	    GET16(meta, cdr->Controller_Type.Vendor_ID),
266 	    GET16(meta, cdr->Controller_Type.Device_ID),
267 	    GET16(meta, cdr->Controller_Type.SubVendor_ID),
268 	    GET16(meta, cdr->Controller_Type.SubDevice_ID));
269 	printf("Product_ID           '%.16s'\n", (char *)&meta->cdr->Product_ID[0]);
270 	printf("**** Physical Disk Records ****\n");
271 	printf("Populated_PDEs       %u\n", GET16(meta, pdr->Populated_PDEs));
272 	printf("Max_PDE_Supported    %u\n", GET16(meta, pdr->Max_PDE_Supported));
273 	for (j = 0; j < GET16(meta, pdr->Populated_PDEs); j++) {
274 		if (isff(meta->pdr->entry[j].PD_GUID, 24))
275 			continue;
276 		if (GET32(meta, pdr->entry[j].PD_Reference) == 0xffffffff)
277 			continue;
278 		printf("PD_GUID              ");
279 		print_guid(meta->pdr->entry[j].PD_GUID);
280 		printf("\n");
281 		printf("PD_Reference         0x%08x\n",
282 		    GET32(meta, pdr->entry[j].PD_Reference));
283 		printf("PD_Type              0x%04x\n",
284 		    GET16(meta, pdr->entry[j].PD_Type));
285 		printf("PD_State             0x%04x\n",
286 		    GET16(meta, pdr->entry[j].PD_State));
287 		printf("Configured_Size      %ju\n",
288 		    GET64(meta, pdr->entry[j].Configured_Size));
289 		printf("Block_Size           %u\n",
290 		    GET16(meta, pdr->entry[j].Block_Size));
291 	}
292 	printf("**** Virtual Disk Records ****\n");
293 	printf("Populated_VDEs       %u\n", GET16(meta, vdr->Populated_VDEs));
294 	printf("Max_VDE_Supported    %u\n", GET16(meta, vdr->Max_VDE_Supported));
295 	for (j = 0; j < GET16(meta, vdr->Populated_VDEs); j++) {
296 		if (isff(meta->vdr->entry[j].VD_GUID, 24))
297 			continue;
298 		printf("VD_GUID              ");
299 		print_guid(meta->vdr->entry[j].VD_GUID);
300 		printf("\n");
301 		printf("VD_Number            0x%04x\n",
302 		    GET16(meta, vdr->entry[j].VD_Number));
303 		printf("VD_Type              0x%04x\n",
304 		    GET16(meta, vdr->entry[j].VD_Type));
305 		printf("VD_State             0x%02x\n",
306 		    GET8(meta, vdr->entry[j].VD_State));
307 		printf("Init_State           0x%02x\n",
308 		    GET8(meta, vdr->entry[j].Init_State));
309 		printf("Drive_Failures_Remaining %u\n",
310 		    GET8(meta, vdr->entry[j].Drive_Failures_Remaining));
311 		printf("VD_Name              '%.16s'\n",
312 		    (char *)&meta->vdr->entry[j].VD_Name);
313 	}
314 	printf("**** Configuration Records ****\n");
315 	num = GETCRNUM(meta);
316 	for (j = 0; j < num; j++) {
317 		vdc = GETVDCPTR(meta, j);
318 		val = GET32D(meta, vdc->Signature);
319 		switch (val) {
320 		case DDF_VDCR_SIGNATURE:
321 			printf("** Virtual Disk Configuration **\n");
322 			printf("VD_GUID              ");
323 			print_guid(vdc->VD_GUID);
324 			printf("\n");
325 			printf("Timestamp            0x%08x\n",
326 			    GET32D(meta, vdc->Timestamp));
327 			printf("Sequence_Number      0x%08x\n",
328 			    GET32D(meta, vdc->Sequence_Number));
329 			printf("Primary_Element_Count %u\n",
330 			    GET16D(meta, vdc->Primary_Element_Count));
331 			printf("Stripe_Size          %u\n",
332 			    GET8D(meta, vdc->Stripe_Size));
333 			printf("Primary_RAID_Level   0x%02x\n",
334 			    GET8D(meta, vdc->Primary_RAID_Level));
335 			printf("RLQ                  0x%02x\n",
336 			    GET8D(meta, vdc->RLQ));
337 			printf("Secondary_Element_Count %u\n",
338 			    GET8D(meta, vdc->Secondary_Element_Count));
339 			printf("Secondary_Element_Seq %u\n",
340 			    GET8D(meta, vdc->Secondary_Element_Seq));
341 			printf("Secondary_RAID_Level 0x%02x\n",
342 			    GET8D(meta, vdc->Secondary_RAID_Level));
343 			printf("Block_Count          %ju\n",
344 			    GET64D(meta, vdc->Block_Count));
345 			printf("VD_Size              %ju\n",
346 			    GET64D(meta, vdc->VD_Size));
347 			printf("Block_Size           %u\n",
348 			    GET16D(meta, vdc->Block_Size));
349 			printf("Rotate_Parity_count  %u\n",
350 			    GET8D(meta, vdc->Rotate_Parity_count));
351 			printf("Associated_Spare_Disks");
352 			for (i = 0; i < 8; i++) {
353 				if (GET32D(meta, vdc->Associated_Spares[i]) != 0xffffffff)
354 					printf(" 0x%08x", GET32D(meta, vdc->Associated_Spares[i]));
355 			}
356 			printf("\n");
357 			printf("Cache_Flags          %016jx\n",
358 			    GET64D(meta, vdc->Cache_Flags));
359 			printf("BG_Rate              %u\n",
360 			    GET8D(meta, vdc->BG_Rate));
361 			printf("MDF_Parity_Disks     %u\n",
362 			    GET8D(meta, vdc->MDF_Parity_Disks));
363 			printf("MDF_Parity_Generator_Polynomial 0x%04x\n",
364 			    GET16D(meta, vdc->MDF_Parity_Generator_Polynomial));
365 			printf("MDF_Constant_Generation_Method 0x%02x\n",
366 			    GET8D(meta, vdc->MDF_Constant_Generation_Method));
367 			printf("Physical_Disks      ");
368 			num2 = GET16D(meta, vdc->Primary_Element_Count);
369 			val2 = (uint64_t *)&(vdc->Physical_Disk_Sequence[GET16(meta, hdr->Max_Primary_Element_Entries)]);
370 			for (i = 0; i < num2; i++)
371 				printf(" 0x%08x @ %ju",
372 				    GET32D(meta, vdc->Physical_Disk_Sequence[i]),
373 				    GET64P(meta, val2 + i));
374 			printf("\n");
375 			break;
376 		case DDF_VUCR_SIGNATURE:
377 			printf("** Vendor Unique Configuration **\n");
378 			vuc = (struct ddf_vuc_record *)vdc;
379 			printf("VD_GUID              ");
380 			print_guid(vuc->VD_GUID);
381 			printf("\n");
382 			break;
383 		case DDF_SA_SIGNATURE:
384 			printf("** Spare Assignment Configuration **\n");
385 			sa = (struct ddf_sa_record *)vdc;
386 			printf("Timestamp            0x%08x\n",
387 			    GET32D(meta, sa->Timestamp));
388 			printf("Spare_Type           0x%02x\n",
389 			    GET8D(meta, sa->Spare_Type));
390 			printf("Populated_SAEs       %u\n",
391 			    GET16D(meta, sa->Populated_SAEs));
392 			printf("MAX_SAE_Supported    %u\n",
393 			    GET16D(meta, sa->MAX_SAE_Supported));
394 			for (i = 0; i < GET16D(meta, sa->Populated_SAEs); i++) {
395 				if (isff(sa->entry[i].VD_GUID, 24))
396 					continue;
397 				printf("VD_GUID             ");
398 				for (k = 0; k < 24; k++)
399 					printf("%02x", sa->entry[i].VD_GUID[k]);
400 				printf("\n");
401 				printf("Secondary_Element   %u\n",
402 				    GET16D(meta, sa->entry[i].Secondary_Element));
403 			}
404 			break;
405 		case 0x00000000:
406 		case 0xFFFFFFFF:
407 			break;
408 		default:
409 			printf("Unknown configuration signature %08x\n", val);
410 			break;
411 		}
412 	}
413 	printf("**** Physical Disk Data ****\n");
414 	printf("PD_GUID              ");
415 	print_guid(meta->pdd->PD_GUID);
416 	printf("\n");
417 	printf("PD_Reference         0x%08x\n",
418 	    GET32(meta, pdd->PD_Reference));
419 	printf("Forced_Ref_Flag      0x%02x\n",
420 	    GET8(meta, pdd->Forced_Ref_Flag));
421 	printf("Forced_PD_GUID_Flag  0x%02x\n",
422 	    GET8(meta, pdd->Forced_PD_GUID_Flag));
423 }
424 
425 static int
426 ddf_meta_find_pd(struct ddf_meta *meta, uint8_t *GUID, uint32_t PD_Reference)
427 {
428 	int i;
429 
430 	for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
431 		if (GUID != NULL) {
432 			if (memcmp(meta->pdr->entry[i].PD_GUID, GUID, 24) == 0)
433 				return (i);
434 		} else if (PD_Reference != 0xffffffff) {
435 			if (GET32(meta, pdr->entry[i].PD_Reference) == PD_Reference)
436 				return (i);
437 		} else
438 			if (isff(meta->pdr->entry[i].PD_GUID, 24))
439 				return (i);
440 	}
441 	if (GUID == NULL && PD_Reference == 0xffffffff) {
442 		if (i >= GET16(meta, pdr->Max_PDE_Supported))
443 			return (-1);
444 		SET16(meta, pdr->Populated_PDEs, i + 1);
445 		return (i);
446 	}
447 	return (-1);
448 }
449 
450 static int
451 ddf_meta_find_vd(struct ddf_meta *meta, uint8_t *GUID)
452 {
453 	int i;
454 
455 	for (i = 0; i < GET16(meta, vdr->Populated_VDEs); i++) {
456 		if (GUID != NULL) {
457 			if (memcmp(meta->vdr->entry[i].VD_GUID, GUID, 24) == 0)
458 				return (i);
459 		} else
460 			if (isff(meta->vdr->entry[i].VD_GUID, 24))
461 				return (i);
462 	}
463 	if (GUID == NULL) {
464 		if (i >= GET16(meta, vdr->Max_VDE_Supported))
465 			return (-1);
466 		SET16(meta, vdr->Populated_VDEs, i + 1);
467 		return (i);
468 	}
469 	return (-1);
470 }
471 
472 static struct ddf_vdc_record *
473 ddf_meta_find_vdc(struct ddf_meta *meta, uint8_t *GUID)
474 {
475 	struct ddf_vdc_record *vdc;
476 	int i, num;
477 
478 	num = GETCRNUM(meta);
479 	for (i = 0; i < num; i++) {
480 		vdc = GETVDCPTR(meta, i);
481 		if (GUID != NULL) {
482 			if (GET32D(meta, vdc->Signature) == DDF_VDCR_SIGNATURE &&
483 			    memcmp(vdc->VD_GUID, GUID, 24) == 0)
484 				return (vdc);
485 		} else
486 			if (GET32D(meta, vdc->Signature) == 0xffffffff ||
487 			    GET32D(meta, vdc->Signature) == 0)
488 				return (vdc);
489 	}
490 	return (NULL);
491 }
492 
493 static int
494 ddf_meta_count_vdc(struct ddf_meta *meta, uint8_t *GUID)
495 {
496 	struct ddf_vdc_record *vdc;
497 	int i, num, cnt;
498 
499 	cnt = 0;
500 	num = GETCRNUM(meta);
501 	for (i = 0; i < num; i++) {
502 		vdc = GETVDCPTR(meta, i);
503 		if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
504 			continue;
505 		if (GUID == NULL || memcmp(vdc->VD_GUID, GUID, 24) == 0)
506 			cnt++;
507 	}
508 	return (cnt);
509 }
510 
511 static int
512 ddf_meta_find_disk(struct ddf_vol_meta *vmeta, uint32_t PD_Reference,
513     int *bvdp, int *posp)
514 {
515 	int i, bvd, pos;
516 
517 	i = 0;
518 	for (bvd = 0; bvd < GET16(vmeta, vdc->Secondary_Element_Count); bvd++) {
519 		if (vmeta->bvdc[bvd] == NULL) {
520 			i += GET16(vmeta, vdc->Primary_Element_Count); // XXX
521 			continue;
522 		}
523 		for (pos = 0; pos < GET16(vmeta, bvdc[bvd]->Primary_Element_Count);
524 		    pos++, i++) {
525 			if (GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]) ==
526 			    PD_Reference) {
527 				if (bvdp != NULL)
528 					*bvdp = bvd;
529 				if (posp != NULL)
530 					*posp = pos;
531 				return (i);
532 			}
533 		}
534 	}
535 	return (-1);
536 }
537 
538 static struct ddf_sa_record *
539 ddf_meta_find_sa(struct ddf_meta *meta, int create)
540 {
541 	struct ddf_sa_record *sa;
542 	int i, num;
543 
544 	num = GETCRNUM(meta);
545 	for (i = 0; i < num; i++) {
546 		sa = GETSAPTR(meta, i);
547 		if (GET32D(meta, sa->Signature) == DDF_SA_SIGNATURE)
548 			return (sa);
549 	}
550 	if (create) {
551 		for (i = 0; i < num; i++) {
552 			sa = GETSAPTR(meta, i);
553 			if (GET32D(meta, sa->Signature) == 0xffffffff ||
554 			    GET32D(meta, sa->Signature) == 0)
555 				return (sa);
556 		}
557 	}
558 	return (NULL);
559 }
560 
561 static void
562 ddf_meta_create(struct g_raid_disk *disk, struct ddf_meta *sample)
563 {
564 	struct timespec ts;
565 	struct clocktime ct;
566 	struct g_raid_md_ddf_perdisk *pd;
567 	struct g_raid_md_ddf_object *mdi;
568 	struct ddf_meta *meta;
569 	struct ddf_pd_entry *pde;
570 	off_t anchorlba;
571 	u_int ss, pos, size;
572 	int len, error;
573 	char serial_buffer[24];
574 
575 	if (sample->hdr == NULL)
576 		sample = NULL;
577 
578 	mdi = (struct g_raid_md_ddf_object *)disk->d_softc->sc_md;
579 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
580 	meta = &pd->pd_meta;
581 	ss = disk->d_consumer->provider->sectorsize;
582 	anchorlba = disk->d_consumer->provider->mediasize / ss - 1;
583 
584 	meta->sectorsize = ss;
585 	meta->bigendian = sample ? sample->bigendian : mdi->mdio_bigendian;
586 	getnanotime(&ts);
587 	clock_ts_to_ct(&ts, &ct);
588 
589 	/* Header */
590 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
591 	memset(meta->hdr, 0xff, ss);
592 	if (sample) {
593 		memcpy(meta->hdr, sample->hdr, sizeof(struct ddf_header));
594 		if (ss != sample->sectorsize) {
595 			SET32(meta, hdr->WorkSpace_Length,
596 			    (GET32(sample, hdr->WorkSpace_Length) *
597 			    sample->sectorsize + ss - 1) / ss);
598 			SET16(meta, hdr->Configuration_Record_Length,
599 			    (GET16(sample, hdr->Configuration_Record_Length) *
600 			    sample->sectorsize + ss - 1) / ss);
601 			SET32(meta, hdr->cd_length,
602 			    (GET32(sample, hdr->cd_length) *
603 			    sample->sectorsize + ss - 1) / ss);
604 			SET32(meta, hdr->pdr_length,
605 			    (GET32(sample, hdr->pdr_length) *
606 			    sample->sectorsize + ss - 1) / ss);
607 			SET32(meta, hdr->vdr_length,
608 			    (GET32(sample, hdr->vdr_length) *
609 			    sample->sectorsize + ss - 1) / ss);
610 			SET32(meta, hdr->cr_length,
611 			    (GET32(sample, hdr->cr_length) *
612 			    sample->sectorsize + ss - 1) / ss);
613 			SET32(meta, hdr->pdd_length,
614 			    (GET32(sample, hdr->pdd_length) *
615 			    sample->sectorsize + ss - 1) / ss);
616 			SET32(meta, hdr->bbmlog_length,
617 			    (GET32(sample, hdr->bbmlog_length) *
618 			    sample->sectorsize + ss - 1) / ss);
619 			SET32(meta, hdr->Diagnostic_Space,
620 			    (GET32(sample, hdr->bbmlog_length) *
621 			    sample->sectorsize + ss - 1) / ss);
622 			SET32(meta, hdr->Vendor_Specific_Logs,
623 			    (GET32(sample, hdr->bbmlog_length) *
624 			    sample->sectorsize + ss - 1) / ss);
625 		}
626 	} else {
627 		SET32(meta, hdr->Signature, DDF_HEADER_SIGNATURE);
628 		snprintf(meta->hdr->DDF_Header_GUID, 25, "FreeBSD %08x%08x",
629 		    (u_int)(ts.tv_sec - DECADE), arc4random());
630 		memcpy(meta->hdr->DDF_rev, "02.00.00", 8);
631 		SET32(meta, hdr->TimeStamp, (ts.tv_sec - DECADE));
632 		SET32(meta, hdr->WorkSpace_Length, 16 * 1024 * 1024 / ss);
633 		SET16(meta, hdr->Max_PD_Entries, DDF_MAX_DISKS - 1);
634 		SET16(meta, hdr->Max_VD_Entries, DDF_MAX_VDISKS);
635 		SET16(meta, hdr->Max_Partitions, DDF_MAX_PARTITIONS);
636 		SET16(meta, hdr->Max_Primary_Element_Entries, DDF_MAX_DISKS);
637 		SET16(meta, hdr->Configuration_Record_Length,
638 		    (sizeof(struct ddf_vdc_record) +
639 		     (4 + 8) * GET16(meta, hdr->Max_Primary_Element_Entries) +
640 		     ss - 1) / ss);
641 		SET32(meta, hdr->cd_length,
642 		    (sizeof(struct ddf_cd_record) + ss - 1) / ss);
643 		SET32(meta, hdr->pdr_length,
644 		    (sizeof(struct ddf_pd_record) +
645 		     sizeof(struct ddf_pd_entry) *
646 		     GET16(meta, hdr->Max_PD_Entries) + ss - 1) / ss);
647 		SET32(meta, hdr->vdr_length,
648 		    (sizeof(struct ddf_vd_record) +
649 		     sizeof(struct ddf_vd_entry) *
650 		     GET16(meta, hdr->Max_VD_Entries) + ss - 1) / ss);
651 		SET32(meta, hdr->cr_length,
652 		    GET16(meta, hdr->Configuration_Record_Length) *
653 		    (GET16(meta, hdr->Max_Partitions) + 1));
654 		SET32(meta, hdr->pdd_length,
655 		    (sizeof(struct ddf_pdd_record) + ss - 1) / ss);
656 		SET32(meta, hdr->bbmlog_length, 0);
657 		SET32(meta, hdr->Diagnostic_Space_Length, 0);
658 		SET32(meta, hdr->Vendor_Specific_Logs_Length, 0);
659 	}
660 	pos = 1;
661 	SET32(meta, hdr->cd_section, pos);
662 	pos += GET32(meta, hdr->cd_length);
663 	SET32(meta, hdr->pdr_section, pos);
664 	pos += GET32(meta, hdr->pdr_length);
665 	SET32(meta, hdr->vdr_section, pos);
666 	pos += GET32(meta, hdr->vdr_length);
667 	SET32(meta, hdr->cr_section, pos);
668 	pos += GET32(meta, hdr->cr_length);
669 	SET32(meta, hdr->pdd_section, pos);
670 	pos += GET32(meta, hdr->pdd_length);
671 	SET32(meta, hdr->bbmlog_section,
672 	    GET32(meta, hdr->bbmlog_length) != 0 ? pos : 0xffffffff);
673 	pos += GET32(meta, hdr->bbmlog_length);
674 	SET32(meta, hdr->Diagnostic_Space,
675 	    GET32(meta, hdr->Diagnostic_Space_Length) != 0 ? pos : 0xffffffff);
676 	pos += GET32(meta, hdr->Diagnostic_Space_Length);
677 	SET32(meta, hdr->Vendor_Specific_Logs,
678 	    GET32(meta, hdr->Vendor_Specific_Logs_Length) != 0 ? pos : 0xffffffff);
679 	pos += min(GET32(meta, hdr->Vendor_Specific_Logs_Length), 1);
680 	SET64(meta, hdr->Primary_Header_LBA,
681 	    anchorlba - pos);
682 	SET64(meta, hdr->Secondary_Header_LBA,
683 	    0xffffffffffffffffULL);
684 	SET64(meta, hdr->WorkSpace_LBA,
685 	    anchorlba + 1 - 32 * 1024 * 1024 / ss);
686 
687 	/* Controller Data */
688 	size = GET32(meta, hdr->cd_length) * ss;
689 	meta->cdr = malloc(size, M_MD_DDF, M_WAITOK);
690 	memset(meta->cdr, 0xff, size);
691 	SET32(meta, cdr->Signature, DDF_CONTROLLER_DATA_SIGNATURE);
692 	memcpy(meta->cdr->Controller_GUID, "FreeBSD GEOM RAID SERIAL", 24);
693 	memcpy(meta->cdr->Product_ID, "FreeBSD GEOMRAID", 16);
694 
695 	/* Physical Drive Records. */
696 	size = GET32(meta, hdr->pdr_length) * ss;
697 	meta->pdr = malloc(size, M_MD_DDF, M_WAITOK);
698 	memset(meta->pdr, 0xff, size);
699 	SET32(meta, pdr->Signature, DDF_PDR_SIGNATURE);
700 	SET16(meta, pdr->Populated_PDEs, 1);
701 	SET16(meta, pdr->Max_PDE_Supported,
702 	    GET16(meta, hdr->Max_PD_Entries));
703 
704 	pde = &meta->pdr->entry[0];
705 	len = sizeof(serial_buffer);
706 	error = g_io_getattr("GEOM::ident", disk->d_consumer, &len, serial_buffer);
707 	if (error == 0 && (len = strlen (serial_buffer)) >= 6 && len <= 20)
708 		snprintf(pde->PD_GUID, 25, "DISK%20s", serial_buffer);
709 	else
710 		snprintf(pde->PD_GUID, 25, "DISK%04d%02d%02d%08x%04x",
711 		    ct.year, ct.mon, ct.day,
712 		    arc4random(), arc4random() & 0xffff);
713 	SET32D(meta, pde->PD_Reference, arc4random());
714 	SET16D(meta, pde->PD_Type, DDF_PDE_GUID_FORCE);
715 	SET16D(meta, pde->PD_State, 0);
716 	SET64D(meta, pde->Configured_Size,
717 	    anchorlba + 1 - 32 * 1024 * 1024 / ss);
718 	SET16D(meta, pde->Block_Size, ss);
719 
720 	/* Virtual Drive Records. */
721 	size = GET32(meta, hdr->vdr_length) * ss;
722 	meta->vdr = malloc(size, M_MD_DDF, M_WAITOK);
723 	memset(meta->vdr, 0xff, size);
724 	SET32(meta, vdr->Signature, DDF_VD_RECORD_SIGNATURE);
725 	SET32(meta, vdr->Populated_VDEs, 0);
726 	SET16(meta, vdr->Max_VDE_Supported,
727 	    GET16(meta, hdr->Max_VD_Entries));
728 
729 	/* Configuration Records. */
730 	size = GET32(meta, hdr->cr_length) * ss;
731 	meta->cr = malloc(size, M_MD_DDF, M_WAITOK);
732 	memset(meta->cr, 0xff, size);
733 
734 	/* Physical Disk Data. */
735 	size = GET32(meta, hdr->pdd_length) * ss;
736 	meta->pdd = malloc(size, M_MD_DDF, M_WAITOK);
737 	memset(meta->pdd, 0xff, size);
738 	SET32(meta, pdd->Signature, DDF_PDD_SIGNATURE);
739 	memcpy(meta->pdd->PD_GUID, pde->PD_GUID, 24);
740 	SET32(meta, pdd->PD_Reference, GET32D(meta, pde->PD_Reference));
741 	SET8(meta, pdd->Forced_Ref_Flag, DDF_PDD_FORCED_REF);
742 	SET8(meta, pdd->Forced_PD_GUID_Flag, DDF_PDD_FORCED_GUID);
743 
744 	/* Bad Block Management Log. */
745 	if (GET32(meta, hdr->bbmlog_length) != 0) {
746 		size = GET32(meta, hdr->bbmlog_length) * ss;
747 		meta->bbm = malloc(size, M_MD_DDF, M_WAITOK);
748 		memset(meta->bbm, 0xff, size);
749 		SET32(meta, bbm->Signature, DDF_BBML_SIGNATURE);
750 		SET32(meta, bbm->Entry_Count, 0);
751 		SET32(meta, bbm->Spare_Block_Count, 0);
752 	}
753 }
754 
755 static void
756 ddf_meta_copy(struct ddf_meta *dst, struct ddf_meta *src)
757 {
758 	struct ddf_header *hdr;
759 	u_int ss;
760 
761 	hdr = src->hdr;
762 	dst->bigendian = src->bigendian;
763 	ss = dst->sectorsize = src->sectorsize;
764 	dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
765 	memcpy(dst->hdr, src->hdr, ss);
766 	dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
767 	memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
768 	dst->pdr = malloc(GET32(src, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
769 	memcpy(dst->pdr, src->pdr, GET32(src, hdr->pdr_length) * ss);
770 	dst->vdr = malloc(GET32(src, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
771 	memcpy(dst->vdr, src->vdr, GET32(src, hdr->vdr_length) * ss);
772 	dst->cr = malloc(GET32(src, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
773 	memcpy(dst->cr, src->cr, GET32(src, hdr->cr_length) * ss);
774 	dst->pdd = malloc(GET32(src, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
775 	memcpy(dst->pdd, src->pdd, GET32(src, hdr->pdd_length) * ss);
776 	if (src->bbm != NULL) {
777 		dst->bbm = malloc(GET32(src, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
778 		memcpy(dst->bbm, src->bbm, GET32(src, hdr->bbmlog_length) * ss);
779 	}
780 }
781 
782 static void
783 ddf_meta_update(struct ddf_meta *meta, struct ddf_meta *src)
784 {
785 	struct ddf_pd_entry *pde, *spde;
786 	int i, j;
787 
788 	for (i = 0; i < GET16(src, pdr->Populated_PDEs); i++) {
789 		spde = &src->pdr->entry[i];
790 		if (isff(spde->PD_GUID, 24))
791 			continue;
792 		j = ddf_meta_find_pd(meta, NULL,
793 		    GET32(src, pdr->entry[i].PD_Reference));
794 		if (j < 0) {
795 			j = ddf_meta_find_pd(meta, NULL, 0xffffffff);
796 			pde = &meta->pdr->entry[j];
797 			memcpy(pde, spde, sizeof(*pde));
798 		} else {
799 			pde = &meta->pdr->entry[j];
800 			SET16D(meta, pde->PD_State,
801 			    GET16D(meta, pde->PD_State) |
802 			    GET16D(src, pde->PD_State));
803 		}
804 	}
805 }
806 
807 static void
808 ddf_meta_free(struct ddf_meta *meta)
809 {
810 
811 	if (meta->hdr != NULL) {
812 		free(meta->hdr, M_MD_DDF);
813 		meta->hdr = NULL;
814 	}
815 	if (meta->cdr != NULL) {
816 		free(meta->cdr, M_MD_DDF);
817 		meta->cdr = NULL;
818 	}
819 	if (meta->pdr != NULL) {
820 		free(meta->pdr, M_MD_DDF);
821 		meta->pdr = NULL;
822 	}
823 	if (meta->vdr != NULL) {
824 		free(meta->vdr, M_MD_DDF);
825 		meta->vdr = NULL;
826 	}
827 	if (meta->cr != NULL) {
828 		free(meta->cr, M_MD_DDF);
829 		meta->cr = NULL;
830 	}
831 	if (meta->pdd != NULL) {
832 		free(meta->pdd, M_MD_DDF);
833 		meta->pdd = NULL;
834 	}
835 	if (meta->bbm != NULL) {
836 		free(meta->bbm, M_MD_DDF);
837 		meta->bbm = NULL;
838 	}
839 }
840 
841 static void
842 ddf_vol_meta_create(struct ddf_vol_meta *meta, struct ddf_meta *sample)
843 {
844 	struct timespec ts;
845 	struct clocktime ct;
846 	struct ddf_header *hdr;
847 	u_int ss, size;
848 
849 	hdr = sample->hdr;
850 	meta->bigendian = sample->bigendian;
851 	ss = meta->sectorsize = sample->sectorsize;
852 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
853 	memcpy(meta->hdr, sample->hdr, ss);
854 	meta->cdr = malloc(GET32(sample, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
855 	memcpy(meta->cdr, sample->cdr, GET32(sample, hdr->cd_length) * ss);
856 	meta->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
857 	memset(meta->vde, 0xff, sizeof(struct ddf_vd_entry));
858 	getnanotime(&ts);
859 	clock_ts_to_ct(&ts, &ct);
860 	snprintf(meta->vde->VD_GUID, 25, "FreeBSD%04d%02d%02d%08x%01x",
861 	    ct.year, ct.mon, ct.day,
862 	    arc4random(), arc4random() & 0xf);
863 	size = GET16(sample, hdr->Configuration_Record_Length) * ss;
864 	meta->vdc = malloc(size, M_MD_DDF, M_WAITOK);
865 	memset(meta->vdc, 0xff, size);
866 	SET32(meta, vdc->Signature, DDF_VDCR_SIGNATURE);
867 	memcpy(meta->vdc->VD_GUID, meta->vde->VD_GUID, 24);
868 	SET32(meta, vdc->Sequence_Number, 0);
869 }
870 
871 static void
872 ddf_vol_meta_update(struct ddf_vol_meta *dst, struct ddf_meta *src,
873     uint8_t *GUID, int started)
874 {
875 	struct ddf_header *hdr;
876 	struct ddf_vd_entry *vde;
877 	struct ddf_vdc_record *vdc;
878 	int vnew, bvnew, bvd, size;
879 	u_int ss;
880 
881 	hdr = src->hdr;
882 	vde = &src->vdr->entry[ddf_meta_find_vd(src, GUID)];
883 	vdc = ddf_meta_find_vdc(src, GUID);
884 	bvd = GET8D(src, vdc->Secondary_Element_Seq);
885 	size = GET16(src, hdr->Configuration_Record_Length) * src->sectorsize;
886 
887 	if (dst->vdc == NULL ||
888 	    (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
889 	    GET32(dst, vdc->Sequence_Number))) > 0))
890 		vnew = 1;
891 	else
892 		vnew = 0;
893 
894 	if (dst->bvdc[bvd] == NULL ||
895 	    (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
896 	    GET32(dst, bvdc[bvd]->Sequence_Number))) > 0))
897 		bvnew = 1;
898 	else
899 		bvnew = 0;
900 
901 	if (vnew) {
902 		dst->bigendian = src->bigendian;
903 		ss = dst->sectorsize = src->sectorsize;
904 		if (dst->hdr != NULL)
905 			free(dst->hdr, M_MD_DDF);
906 		dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
907 		memcpy(dst->hdr, src->hdr, ss);
908 		if (dst->cdr != NULL)
909 			free(dst->cdr, M_MD_DDF);
910 		dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
911 		memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
912 		if (dst->vde != NULL)
913 			free(dst->vde, M_MD_DDF);
914 		dst->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
915 		memcpy(dst->vde, vde, sizeof(struct ddf_vd_entry));
916 		if (dst->vdc != NULL)
917 			free(dst->vdc, M_MD_DDF);
918 		dst->vdc = malloc(size, M_MD_DDF, M_WAITOK);
919 		memcpy(dst->vdc, vdc, size);
920 	}
921 	if (bvnew) {
922 		if (dst->bvdc[bvd] != NULL)
923 			free(dst->bvdc[bvd], M_MD_DDF);
924 		dst->bvdc[bvd] = malloc(size, M_MD_DDF, M_WAITOK);
925 		memcpy(dst->bvdc[bvd], vdc, size);
926 	}
927 }
928 
929 static void
930 ddf_vol_meta_free(struct ddf_vol_meta *meta)
931 {
932 	int i;
933 
934 	if (meta->hdr != NULL) {
935 		free(meta->hdr, M_MD_DDF);
936 		meta->hdr = NULL;
937 	}
938 	if (meta->cdr != NULL) {
939 		free(meta->cdr, M_MD_DDF);
940 		meta->cdr = NULL;
941 	}
942 	if (meta->vde != NULL) {
943 		free(meta->vde, M_MD_DDF);
944 		meta->vde = NULL;
945 	}
946 	if (meta->vdc != NULL) {
947 		free(meta->vdc, M_MD_DDF);
948 		meta->vdc = NULL;
949 	}
950 	for (i = 0; i < DDF_MAX_DISKS_HARD; i++) {
951 		if (meta->bvdc[i] != NULL) {
952 			free(meta->bvdc[i], M_MD_DDF);
953 			meta->bvdc[i] = NULL;
954 		}
955 	}
956 }
957 
958 static int
959 ddf_meta_unused_range(struct ddf_meta *meta, off_t *off, off_t *size)
960 {
961 	struct ddf_vdc_record *vdc;
962 	off_t beg[32], end[32], beg1, end1;
963 	uint64_t *offp;
964 	int i, j, n, num, pos;
965 	uint32_t ref;
966 
967 	*off = 0;
968 	*size = 0;
969 	ref = GET32(meta, pdd->PD_Reference);
970 	pos = ddf_meta_find_pd(meta, NULL, ref);
971 	beg[0] = 0;
972 	end[0] = GET64(meta, pdr->entry[pos].Configured_Size);
973 	n = 1;
974 	num = GETCRNUM(meta);
975 	for (i = 0; i < num; i++) {
976 		vdc = GETVDCPTR(meta, i);
977 		if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
978 			continue;
979 		for (pos = 0; pos < GET16D(meta, vdc->Primary_Element_Count); pos++)
980 			if (GET32D(meta, vdc->Physical_Disk_Sequence[pos]) == ref)
981 				break;
982 		if (pos == GET16D(meta, vdc->Primary_Element_Count))
983 			continue;
984 		offp = (uint64_t *)&(vdc->Physical_Disk_Sequence[
985 		    GET16(meta, hdr->Max_Primary_Element_Entries)]);
986 		beg1 = GET64P(meta, offp + pos);
987 		end1 = beg1 + GET64D(meta, vdc->Block_Count);
988 		for (j = 0; j < n; j++) {
989 			if (beg[j] >= end1 || end[j] <= beg1 )
990 				continue;
991 			if (beg[j] < beg1 && end[j] > end1) {
992 				beg[n] = end1;
993 				end[n] = end[j];
994 				end[j] = beg1;
995 				n++;
996 			} else if (beg[j] < beg1)
997 				end[j] = beg1;
998 			else
999 				beg[j] = end1;
1000 		}
1001 	}
1002 	for (j = 0; j < n; j++) {
1003 		if (end[j] - beg[j] > *size) {
1004 			*off = beg[j];
1005 			*size = end[j] - beg[j];
1006 		}
1007 	}
1008 	return ((*size > 0) ? 1 : 0);
1009 }
1010 
1011 static void
1012 ddf_meta_get_name(struct ddf_meta *meta, int num, char *buf)
1013 {
1014 	const char *b;
1015 	int i;
1016 
1017 	b = meta->vdr->entry[num].VD_Name;
1018 	for (i = 15; i >= 0; i--)
1019 		if (b[i] != 0x20)
1020 			break;
1021 	memcpy(buf, b, i + 1);
1022 	buf[i + 1] = 0;
1023 }
1024 
1025 static void
1026 ddf_meta_put_name(struct ddf_vol_meta *meta, char *buf)
1027 {
1028 	int len;
1029 
1030 	len = min(strlen(buf), 16);
1031 	memset(meta->vde->VD_Name, 0x20, 16);
1032 	memcpy(meta->vde->VD_Name, buf, len);
1033 }
1034 
1035 static int
1036 ddf_meta_read(struct g_consumer *cp, struct ddf_meta *meta)
1037 {
1038 	struct g_provider *pp;
1039 	struct ddf_header *ahdr, *hdr;
1040 	char *abuf, *buf;
1041 	off_t plba, slba, lba;
1042 	int error, len, i;
1043 	u_int ss;
1044 	uint32_t val;
1045 
1046 	ddf_meta_free(meta);
1047 	pp = cp->provider;
1048 	ss = meta->sectorsize = pp->sectorsize;
1049 	/* Read anchor block. */
1050 	abuf = g_read_data(cp, pp->mediasize - ss, ss, &error);
1051 	if (abuf == NULL) {
1052 		G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
1053 		    pp->name, error);
1054 		return (error);
1055 	}
1056 	ahdr = (struct ddf_header *)abuf;
1057 
1058 	/* Check if this is an DDF RAID struct */
1059 	if (be32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1060 		meta->bigendian = 1;
1061 	else if (le32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1062 		meta->bigendian = 0;
1063 	else {
1064 		G_RAID_DEBUG(1, "DDF signature check failed on %s", pp->name);
1065 		error = EINVAL;
1066 		goto done;
1067 	}
1068 	if (ahdr->Header_Type != DDF_HEADER_ANCHOR) {
1069 		G_RAID_DEBUG(1, "DDF header type check failed on %s", pp->name);
1070 		error = EINVAL;
1071 		goto done;
1072 	}
1073 	meta->hdr = ahdr;
1074 	plba = GET64(meta, hdr->Primary_Header_LBA);
1075 	slba = GET64(meta, hdr->Secondary_Header_LBA);
1076 	val = GET32(meta, hdr->CRC);
1077 	SET32(meta, hdr->CRC, 0xffffffff);
1078 	meta->hdr = NULL;
1079 	if (crc32(ahdr, ss) != val) {
1080 		G_RAID_DEBUG(1, "DDF CRC mismatch on %s", pp->name);
1081 		error = EINVAL;
1082 		goto done;
1083 	}
1084 	if ((plba + 6) * ss >= pp->mediasize) {
1085 		G_RAID_DEBUG(1, "DDF primary header LBA is wrong on %s", pp->name);
1086 		error = EINVAL;
1087 		goto done;
1088 	}
1089 	if (slba != -1 && (slba + 6) * ss >= pp->mediasize) {
1090 		G_RAID_DEBUG(1, "DDF secondary header LBA is wrong on %s", pp->name);
1091 		error = EINVAL;
1092 		goto done;
1093 	}
1094 	lba = plba;
1095 
1096 doread:
1097 	error = 0;
1098 	ddf_meta_free(meta);
1099 
1100 	/* Read header block. */
1101 	buf = g_read_data(cp, lba * ss, ss, &error);
1102 	if (buf == NULL) {
1103 readerror:
1104 		G_RAID_DEBUG(1, "DDF %s metadata read error on %s (error=%d).",
1105 		    (lba == plba) ? "primary" : "secondary", pp->name, error);
1106 		if (lba == plba && slba != -1) {
1107 			lba = slba;
1108 			goto doread;
1109 		}
1110 		G_RAID_DEBUG(1, "DDF metadata read error on %s.", pp->name);
1111 		goto done;
1112 	}
1113 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
1114 	memcpy(meta->hdr, buf, ss);
1115 	g_free(buf);
1116 	hdr = meta->hdr;
1117 	val = GET32(meta, hdr->CRC);
1118 	SET32(meta, hdr->CRC, 0xffffffff);
1119 	if (hdr->Signature != ahdr->Signature ||
1120 	    crc32(meta->hdr, ss) != val ||
1121 	    memcmp(hdr->DDF_Header_GUID, ahdr->DDF_Header_GUID, 24) ||
1122 	    GET64(meta, hdr->Primary_Header_LBA) != plba ||
1123 	    GET64(meta, hdr->Secondary_Header_LBA) != slba) {
1124 hdrerror:
1125 		G_RAID_DEBUG(1, "DDF %s metadata check failed on %s",
1126 		    (lba == plba) ? "primary" : "secondary", pp->name);
1127 		if (lba == plba && slba != -1) {
1128 			lba = slba;
1129 			goto doread;
1130 		}
1131 		G_RAID_DEBUG(1, "DDF metadata check failed on %s", pp->name);
1132 		error = EINVAL;
1133 		goto done;
1134 	}
1135 	if ((lba == plba && hdr->Header_Type != DDF_HEADER_PRIMARY) ||
1136 	    (lba == slba && hdr->Header_Type != DDF_HEADER_SECONDARY))
1137 		goto hdrerror;
1138 	len = 1;
1139 	len = max(len, GET32(meta, hdr->cd_section) + GET32(meta, hdr->cd_length));
1140 	len = max(len, GET32(meta, hdr->pdr_section) + GET32(meta, hdr->pdr_length));
1141 	len = max(len, GET32(meta, hdr->vdr_section) + GET32(meta, hdr->vdr_length));
1142 	len = max(len, GET32(meta, hdr->cr_section) + GET32(meta, hdr->cr_length));
1143 	len = max(len, GET32(meta, hdr->pdd_section) + GET32(meta, hdr->pdd_length));
1144 	if ((val = GET32(meta, hdr->bbmlog_section)) != 0xffffffff)
1145 		len = max(len, val + GET32(meta, hdr->bbmlog_length));
1146 	if ((val = GET32(meta, hdr->Diagnostic_Space)) != 0xffffffff)
1147 		len = max(len, val + GET32(meta, hdr->Diagnostic_Space_Length));
1148 	if ((val = GET32(meta, hdr->Vendor_Specific_Logs)) != 0xffffffff)
1149 		len = max(len, val + GET32(meta, hdr->Vendor_Specific_Logs_Length));
1150 	if ((plba + len) * ss >= pp->mediasize)
1151 		goto hdrerror;
1152 	if (slba != -1 && (slba + len) * ss >= pp->mediasize)
1153 		goto hdrerror;
1154 	/* Workaround for Adaptec implementation. */
1155 	if (GET16(meta, hdr->Max_Primary_Element_Entries) == 0xffff) {
1156 		SET16(meta, hdr->Max_Primary_Element_Entries,
1157 		    min(GET16(meta, hdr->Max_PD_Entries),
1158 		    (GET16(meta, hdr->Configuration_Record_Length) * ss - 512) / 12));
1159 	}
1160 
1161 	/* Read controller data. */
1162 	buf = g_read_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1163 	    GET32(meta, hdr->cd_length) * ss, &error);
1164 	if (buf == NULL)
1165 		goto readerror;
1166 	meta->cdr = malloc(GET32(meta, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
1167 	memcpy(meta->cdr, buf, GET32(meta, hdr->cd_length) * ss);
1168 	g_free(buf);
1169 	if (GET32(meta, cdr->Signature) != DDF_CONTROLLER_DATA_SIGNATURE)
1170 		goto hdrerror;
1171 
1172 	/* Read physical disk records. */
1173 	buf = g_read_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1174 	    GET32(meta, hdr->pdr_length) * ss, &error);
1175 	if (buf == NULL)
1176 		goto readerror;
1177 	meta->pdr = malloc(GET32(meta, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
1178 	memcpy(meta->pdr, buf, GET32(meta, hdr->pdr_length) * ss);
1179 	g_free(buf);
1180 	if (GET32(meta, pdr->Signature) != DDF_PDR_SIGNATURE)
1181 		goto hdrerror;
1182 
1183 	/* Read virtual disk records. */
1184 	buf = g_read_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1185 	    GET32(meta, hdr->vdr_length) * ss, &error);
1186 	if (buf == NULL)
1187 		goto readerror;
1188 	meta->vdr = malloc(GET32(meta, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
1189 	memcpy(meta->vdr, buf, GET32(meta, hdr->vdr_length) * ss);
1190 	g_free(buf);
1191 	if (GET32(meta, vdr->Signature) != DDF_VD_RECORD_SIGNATURE)
1192 		goto hdrerror;
1193 
1194 	/* Read configuration records. */
1195 	buf = g_read_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1196 	    GET32(meta, hdr->cr_length) * ss, &error);
1197 	if (buf == NULL)
1198 		goto readerror;
1199 	meta->cr = malloc(GET32(meta, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
1200 	memcpy(meta->cr, buf, GET32(meta, hdr->cr_length) * ss);
1201 	g_free(buf);
1202 
1203 	/* Read physical disk data. */
1204 	buf = g_read_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1205 	    GET32(meta, hdr->pdd_length) * ss, &error);
1206 	if (buf == NULL)
1207 		goto readerror;
1208 	meta->pdd = malloc(GET32(meta, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
1209 	memcpy(meta->pdd, buf, GET32(meta, hdr->pdd_length) * ss);
1210 	g_free(buf);
1211 	if (GET32(meta, pdd->Signature) != DDF_PDD_SIGNATURE)
1212 		goto hdrerror;
1213 	i = ddf_meta_find_pd(meta, NULL, GET32(meta, pdd->PD_Reference));
1214 	if (i < 0)
1215 		goto hdrerror;
1216 
1217 	/* Read BBM Log. */
1218 	if (GET32(meta, hdr->bbmlog_section) != 0xffffffff &&
1219 	    GET32(meta, hdr->bbmlog_length) != 0) {
1220 		buf = g_read_data(cp, (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1221 		    GET32(meta, hdr->bbmlog_length) * ss, &error);
1222 		if (buf == NULL)
1223 			goto readerror;
1224 		meta->bbm = malloc(GET32(meta, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
1225 		memcpy(meta->bbm, buf, GET32(meta, hdr->bbmlog_length) * ss);
1226 		g_free(buf);
1227 		if (GET32(meta, bbm->Signature) != DDF_BBML_SIGNATURE)
1228 			goto hdrerror;
1229 	}
1230 
1231 done:
1232 	g_free(abuf);
1233 	if (error != 0)
1234 		ddf_meta_free(meta);
1235 	return (error);
1236 }
1237 
1238 static int
1239 ddf_meta_write(struct g_consumer *cp, struct ddf_meta *meta)
1240 {
1241 	struct g_provider *pp;
1242 	struct ddf_vdc_record *vdc;
1243 	off_t alba, plba, slba, lba;
1244 	u_int ss, size;
1245 	int error, i, num;
1246 
1247 	pp = cp->provider;
1248 	ss = pp->sectorsize;
1249 	lba = alba = pp->mediasize / ss - 1;
1250 	plba = GET64(meta, hdr->Primary_Header_LBA);
1251 	slba = GET64(meta, hdr->Secondary_Header_LBA);
1252 
1253 next:
1254 	SET8(meta, hdr->Header_Type, (lba == alba) ? DDF_HEADER_ANCHOR :
1255 	    (lba == plba) ? DDF_HEADER_PRIMARY : DDF_HEADER_SECONDARY);
1256 	SET32(meta, hdr->CRC, 0xffffffff);
1257 	SET32(meta, hdr->CRC, crc32(meta->hdr, ss));
1258 	error = g_write_data(cp, lba * ss, meta->hdr, ss);
1259 	if (error != 0) {
1260 err:
1261 		G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
1262 		    pp->name, error);
1263 		if (lba != alba)
1264 			goto done;
1265 	}
1266 	if (lba == alba) {
1267 		lba = plba;
1268 		goto next;
1269 	}
1270 
1271 	size = GET32(meta, hdr->cd_length) * ss;
1272 	SET32(meta, cdr->CRC, 0xffffffff);
1273 	SET32(meta, cdr->CRC, crc32(meta->cdr, size));
1274 	error = g_write_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1275 	    meta->cdr, size);
1276 	if (error != 0)
1277 		goto err;
1278 
1279 	size = GET32(meta, hdr->pdr_length) * ss;
1280 	SET32(meta, pdr->CRC, 0xffffffff);
1281 	SET32(meta, pdr->CRC, crc32(meta->pdr, size));
1282 	error = g_write_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1283 	    meta->pdr, size);
1284 	if (error != 0)
1285 		goto err;
1286 
1287 	size = GET32(meta, hdr->vdr_length) * ss;
1288 	SET32(meta, vdr->CRC, 0xffffffff);
1289 	SET32(meta, vdr->CRC, crc32(meta->vdr, size));
1290 	error = g_write_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1291 	    meta->vdr, size);
1292 	if (error != 0)
1293 		goto err;
1294 
1295 	size = GET16(meta, hdr->Configuration_Record_Length) * ss;
1296 	num = GETCRNUM(meta);
1297 	for (i = 0; i < num; i++) {
1298 		vdc = GETVDCPTR(meta, i);
1299 		SET32D(meta, vdc->CRC, 0xffffffff);
1300 		SET32D(meta, vdc->CRC, crc32(vdc, size));
1301 	}
1302 	error = g_write_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1303 	    meta->cr, size * num);
1304 	if (error != 0)
1305 		goto err;
1306 
1307 	size = GET32(meta, hdr->pdd_length) * ss;
1308 	SET32(meta, pdd->CRC, 0xffffffff);
1309 	SET32(meta, pdd->CRC, crc32(meta->pdd, size));
1310 	error = g_write_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1311 	    meta->pdd, size);
1312 	if (error != 0)
1313 		goto err;
1314 
1315 	if (GET32(meta, hdr->bbmlog_length) != 0) {
1316 		size = GET32(meta, hdr->bbmlog_length) * ss;
1317 		SET32(meta, bbm->CRC, 0xffffffff);
1318 		SET32(meta, bbm->CRC, crc32(meta->bbm, size));
1319 		error = g_write_data(cp,
1320 		    (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1321 		    meta->bbm, size);
1322 		if (error != 0)
1323 			goto err;
1324 	}
1325 
1326 done:
1327 	if (lba == plba && slba != -1) {
1328 		lba = slba;
1329 		goto next;
1330 	}
1331 
1332 	return (error);
1333 }
1334 
1335 static int
1336 ddf_meta_erase(struct g_consumer *cp)
1337 {
1338 	struct g_provider *pp;
1339 	char *buf;
1340 	int error;
1341 
1342 	pp = cp->provider;
1343 	buf = malloc(pp->sectorsize, M_MD_DDF, M_WAITOK | M_ZERO);
1344 	error = g_write_data(cp, pp->mediasize - pp->sectorsize,
1345 	    buf, pp->sectorsize);
1346 	if (error != 0) {
1347 		G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
1348 		    pp->name, error);
1349 	}
1350 	free(buf, M_MD_DDF);
1351 	return (error);
1352 }
1353 
1354 static struct g_raid_volume *
1355 g_raid_md_ddf_get_volume(struct g_raid_softc *sc, uint8_t *GUID)
1356 {
1357 	struct g_raid_volume	*vol;
1358 	struct g_raid_md_ddf_pervolume *pv;
1359 
1360 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1361 		pv = vol->v_md_data;
1362 		if (memcmp(pv->pv_meta.vde->VD_GUID, GUID, 24) == 0)
1363 			break;
1364 	}
1365 	return (vol);
1366 }
1367 
1368 static struct g_raid_disk *
1369 g_raid_md_ddf_get_disk(struct g_raid_softc *sc, uint8_t *GUID, uint32_t id)
1370 {
1371 	struct g_raid_disk	*disk;
1372 	struct g_raid_md_ddf_perdisk *pd;
1373 	struct ddf_meta *meta;
1374 
1375 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1376 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1377 		meta = &pd->pd_meta;
1378 		if (GUID != NULL) {
1379 			if (memcmp(meta->pdd->PD_GUID, GUID, 24) == 0)
1380 				break;
1381 		} else {
1382 			if (GET32(meta, pdd->PD_Reference) == id)
1383 				break;
1384 		}
1385 	}
1386 	return (disk);
1387 }
1388 
1389 static int
1390 g_raid_md_ddf_purge_volumes(struct g_raid_softc *sc)
1391 {
1392 	struct g_raid_volume	*vol, *tvol;
1393 	struct g_raid_md_ddf_pervolume *pv;
1394 	int i, res;
1395 
1396 	res = 0;
1397 	TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) {
1398 		pv = vol->v_md_data;
1399 		if (vol->v_stopping)
1400 			continue;
1401 		for (i = 0; i < vol->v_disks_count; i++) {
1402 			if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE)
1403 				break;
1404 		}
1405 		if (i >= vol->v_disks_count) {
1406 			g_raid_destroy_volume(vol);
1407 			res = 1;
1408 		}
1409 	}
1410 	return (res);
1411 }
1412 
1413 static int
1414 g_raid_md_ddf_purge_disks(struct g_raid_softc *sc)
1415 {
1416 #if 0
1417 	struct g_raid_disk	*disk, *tdisk;
1418 	struct g_raid_volume	*vol;
1419 	struct g_raid_md_ddf_perdisk *pd;
1420 	int i, j, res;
1421 
1422 	res = 0;
1423 	TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
1424 		if (disk->d_state == G_RAID_DISK_S_SPARE)
1425 			continue;
1426 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1427 
1428 		/* Scan for deleted volumes. */
1429 		for (i = 0; i < pd->pd_subdisks; ) {
1430 			vol = g_raid_md_ddf_get_volume(sc,
1431 			    pd->pd_meta[i]->volume_id);
1432 			if (vol != NULL && !vol->v_stopping) {
1433 				i++;
1434 				continue;
1435 			}
1436 			free(pd->pd_meta[i], M_MD_DDF);
1437 			for (j = i; j < pd->pd_subdisks - 1; j++)
1438 				pd->pd_meta[j] = pd->pd_meta[j + 1];
1439 			pd->pd_meta[DDF_MAX_SUBDISKS - 1] = NULL;
1440 			pd->pd_subdisks--;
1441 			pd->pd_updated = 1;
1442 		}
1443 
1444 		/* If there is no metadata left - erase and delete disk. */
1445 		if (pd->pd_subdisks == 0) {
1446 			ddf_meta_erase(disk->d_consumer);
1447 			g_raid_destroy_disk(disk);
1448 			res = 1;
1449 		}
1450 	}
1451 	return (res);
1452 #endif
1453 	return (0);
1454 }
1455 
1456 static int
1457 g_raid_md_ddf_supported(int level, int qual, int disks, int force)
1458 {
1459 
1460 	if (disks > DDF_MAX_DISKS_HARD)
1461 		return (0);
1462 	switch (level) {
1463 	case G_RAID_VOLUME_RL_RAID0:
1464 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1465 			return (0);
1466 		if (disks < 1)
1467 			return (0);
1468 		if (!force && disks < 2)
1469 			return (0);
1470 		break;
1471 	case G_RAID_VOLUME_RL_RAID1:
1472 		if (disks < 1)
1473 			return (0);
1474 		if (qual == G_RAID_VOLUME_RLQ_R1SM) {
1475 			if (!force && disks != 2)
1476 				return (0);
1477 		} else if (qual == G_RAID_VOLUME_RLQ_R1MM) {
1478 			if (!force && disks != 3)
1479 				return (0);
1480 		} else
1481 			return (0);
1482 		break;
1483 	case G_RAID_VOLUME_RL_RAID3:
1484 		if (qual != G_RAID_VOLUME_RLQ_R3P0 &&
1485 		    qual != G_RAID_VOLUME_RLQ_R3PN)
1486 			return (0);
1487 		if (disks < 3)
1488 			return (0);
1489 		break;
1490 	case G_RAID_VOLUME_RL_RAID4:
1491 		if (qual != G_RAID_VOLUME_RLQ_R4P0 &&
1492 		    qual != G_RAID_VOLUME_RLQ_R4PN)
1493 			return (0);
1494 		if (disks < 3)
1495 			return (0);
1496 		break;
1497 	case G_RAID_VOLUME_RL_RAID5:
1498 		if (qual != G_RAID_VOLUME_RLQ_R5RA &&
1499 		    qual != G_RAID_VOLUME_RLQ_R5RS &&
1500 		    qual != G_RAID_VOLUME_RLQ_R5LA &&
1501 		    qual != G_RAID_VOLUME_RLQ_R5LS)
1502 			return (0);
1503 		if (disks < 3)
1504 			return (0);
1505 		break;
1506 	case G_RAID_VOLUME_RL_RAID6:
1507 		if (qual != G_RAID_VOLUME_RLQ_R6RA &&
1508 		    qual != G_RAID_VOLUME_RLQ_R6RS &&
1509 		    qual != G_RAID_VOLUME_RLQ_R6LA &&
1510 		    qual != G_RAID_VOLUME_RLQ_R6LS)
1511 			return (0);
1512 		if (disks < 4)
1513 			return (0);
1514 		break;
1515 	case G_RAID_VOLUME_RL_RAIDMDF:
1516 		if (qual != G_RAID_VOLUME_RLQ_RMDFRA &&
1517 		    qual != G_RAID_VOLUME_RLQ_RMDFRS &&
1518 		    qual != G_RAID_VOLUME_RLQ_RMDFLA &&
1519 		    qual != G_RAID_VOLUME_RLQ_RMDFLS)
1520 			return (0);
1521 		if (disks < 4)
1522 			return (0);
1523 		break;
1524 	case G_RAID_VOLUME_RL_RAID1E:
1525 		if (qual != G_RAID_VOLUME_RLQ_R1EA &&
1526 		    qual != G_RAID_VOLUME_RLQ_R1EO)
1527 			return (0);
1528 		if (disks < 3)
1529 			return (0);
1530 		break;
1531 	case G_RAID_VOLUME_RL_SINGLE:
1532 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1533 			return (0);
1534 		if (disks != 1)
1535 			return (0);
1536 		break;
1537 	case G_RAID_VOLUME_RL_CONCAT:
1538 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1539 			return (0);
1540 		if (disks < 2)
1541 			return (0);
1542 		break;
1543 	case G_RAID_VOLUME_RL_RAID5E:
1544 		if (qual != G_RAID_VOLUME_RLQ_R5ERA &&
1545 		    qual != G_RAID_VOLUME_RLQ_R5ERS &&
1546 		    qual != G_RAID_VOLUME_RLQ_R5ELA &&
1547 		    qual != G_RAID_VOLUME_RLQ_R5ELS)
1548 			return (0);
1549 		if (disks < 4)
1550 			return (0);
1551 		break;
1552 	case G_RAID_VOLUME_RL_RAID5EE:
1553 		if (qual != G_RAID_VOLUME_RLQ_R5EERA &&
1554 		    qual != G_RAID_VOLUME_RLQ_R5EERS &&
1555 		    qual != G_RAID_VOLUME_RLQ_R5EELA &&
1556 		    qual != G_RAID_VOLUME_RLQ_R5EELS)
1557 			return (0);
1558 		if (disks < 4)
1559 			return (0);
1560 		break;
1561 	case G_RAID_VOLUME_RL_RAID5R:
1562 		if (qual != G_RAID_VOLUME_RLQ_R5RRA &&
1563 		    qual != G_RAID_VOLUME_RLQ_R5RRS &&
1564 		    qual != G_RAID_VOLUME_RLQ_R5RLA &&
1565 		    qual != G_RAID_VOLUME_RLQ_R5RLS)
1566 			return (0);
1567 		if (disks < 3)
1568 			return (0);
1569 		break;
1570 	default:
1571 		return (0);
1572 	}
1573 	return (1);
1574 }
1575 
1576 static int
1577 g_raid_md_ddf_start_disk(struct g_raid_disk *disk, struct g_raid_volume *vol)
1578 {
1579 	struct g_raid_softc *sc;
1580 	struct g_raid_subdisk *sd;
1581 	struct g_raid_md_ddf_perdisk *pd;
1582 	struct g_raid_md_ddf_pervolume *pv;
1583 	struct g_raid_md_ddf_object *mdi;
1584 	struct ddf_vol_meta *vmeta;
1585 	struct ddf_meta *pdmeta, *gmeta;
1586 	struct ddf_vdc_record *vdc1;
1587 	struct ddf_sa_record *sa;
1588 	off_t size, eoff = 0, esize = 0;
1589 	uint64_t *val2;
1590 	int disk_pos, md_disk_bvd = -1, md_disk_pos = -1, md_pde_pos;
1591 	int i, resurrection = 0;
1592 	uint32_t reference;
1593 
1594 	sc = disk->d_softc;
1595 	mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
1596 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1597 	pdmeta = &pd->pd_meta;
1598 	reference = GET32(&pd->pd_meta, pdd->PD_Reference);
1599 
1600 	pv = vol->v_md_data;
1601 	vmeta = &pv->pv_meta;
1602 	gmeta = &mdi->mdio_meta;
1603 
1604 	/* Find disk position in metadata by it's reference. */
1605 	disk_pos = ddf_meta_find_disk(vmeta, reference,
1606 	    &md_disk_bvd, &md_disk_pos);
1607 	md_pde_pos = ddf_meta_find_pd(gmeta, NULL, reference);
1608 
1609 	if (disk_pos < 0) {
1610 		G_RAID_DEBUG1(1, sc,
1611 		    "Disk %s is not a present part of the volume %s",
1612 		    g_raid_get_diskname(disk), vol->v_name);
1613 
1614 		/* Failed stale disk is useless for us. */
1615 		if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) != 0) {
1616 			g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
1617 			return (0);
1618 		}
1619 
1620 		/* If disk has some metadata for this volume - erase. */
1621 		if ((vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL)
1622 			SET32D(pdmeta, vdc1->Signature, 0xffffffff);
1623 
1624 		/* If we are in the start process, that's all for now. */
1625 		if (!pv->pv_started)
1626 			goto nofit;
1627 		/*
1628 		 * If we have already started - try to get use of the disk.
1629 		 * Try to replace OFFLINE disks first, then FAILED.
1630 		 */
1631 		if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
1632 			GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1633 			G_RAID_DEBUG1(1, sc, "No free partitions on disk %s",
1634 			    g_raid_get_diskname(disk));
1635 			goto nofit;
1636 		}
1637 		ddf_meta_unused_range(&pd->pd_meta, &eoff, &esize);
1638 		if (esize == 0) {
1639 			G_RAID_DEBUG1(1, sc, "No free space on disk %s",
1640 			    g_raid_get_diskname(disk));
1641 			goto nofit;
1642 		}
1643 		eoff *= pd->pd_meta.sectorsize;
1644 		esize *= pd->pd_meta.sectorsize;
1645 		size = INT64_MAX;
1646 		for (i = 0; i < vol->v_disks_count; i++) {
1647 			sd = &vol->v_subdisks[i];
1648 			if (sd->sd_state != G_RAID_SUBDISK_S_NONE)
1649 				size = sd->sd_size;
1650 			if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED &&
1651 			    (disk_pos < 0 ||
1652 			     vol->v_subdisks[i].sd_state < sd->sd_state))
1653 				disk_pos = i;
1654 		}
1655 		if (disk_pos >= 0 &&
1656 		    vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT &&
1657 		    esize < size) {
1658 			G_RAID_DEBUG1(1, sc, "Disk %s free space "
1659 			    "is too small (%ju < %ju)",
1660 			    g_raid_get_diskname(disk), esize, size);
1661 			disk_pos = -1;
1662 		}
1663 		if (disk_pos >= 0) {
1664 			if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT)
1665 				esize = size;
1666 			md_disk_bvd = disk_pos / GET16(vmeta, vdc->Primary_Element_Count); // XXX
1667 			md_disk_pos = disk_pos % GET16(vmeta, vdc->Primary_Element_Count); // XXX
1668 		} else {
1669 nofit:
1670 			if (disk->d_state == G_RAID_DISK_S_NONE)
1671 				g_raid_change_disk_state(disk,
1672 				    G_RAID_DISK_S_STALE);
1673 			return (0);
1674 		}
1675 
1676 		/*
1677 		 * If spare is committable, delete spare record.
1678 		 * Othersize, mark it active and leave there.
1679 		 */
1680 		sa = ddf_meta_find_sa(&pd->pd_meta, 0);
1681 		if (sa != NULL) {
1682 			if ((GET8D(&pd->pd_meta, sa->Spare_Type) &
1683 			    DDF_SAR_TYPE_REVERTIBLE) == 0) {
1684 				SET32D(&pd->pd_meta, sa->Signature, 0xffffffff);
1685 			} else {
1686 				SET8D(&pd->pd_meta, sa->Spare_Type,
1687 				    GET8D(&pd->pd_meta, sa->Spare_Type) |
1688 				    DDF_SAR_TYPE_ACTIVE);
1689 			}
1690 		}
1691 
1692 		G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s",
1693 		    g_raid_get_diskname(disk), disk_pos, vol->v_name);
1694 		resurrection = 1;
1695 	}
1696 
1697 	sd = &vol->v_subdisks[disk_pos];
1698 
1699 	if (resurrection && sd->sd_disk != NULL) {
1700 		g_raid_change_disk_state(sd->sd_disk,
1701 		    G_RAID_DISK_S_STALE_FAILED);
1702 		TAILQ_REMOVE(&sd->sd_disk->d_subdisks,
1703 		    sd, sd_next);
1704 	}
1705 	vol->v_subdisks[disk_pos].sd_disk = disk;
1706 	TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1707 
1708 	/* Welcome the new disk. */
1709 	if (resurrection)
1710 		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1711 	else if (GET8(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA)
1712 		g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1713 	else
1714 		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1715 
1716 	if (resurrection) {
1717 		sd->sd_offset = eoff;
1718 		sd->sd_size = esize;
1719 	} else if (pdmeta->cr != NULL &&
1720 	    (vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL) {
1721 		val2 = (uint64_t *)&(vdc1->Physical_Disk_Sequence[GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1722 		sd->sd_offset = (off_t)GET64P(pdmeta, val2 + md_disk_pos) * 512;
1723 		sd->sd_size = (off_t)GET64D(pdmeta, vdc1->Block_Count) * 512;
1724 	}
1725 
1726 	if (resurrection) {
1727 		/* Stale disk, almost same as new. */
1728 		g_raid_change_subdisk_state(sd,
1729 		    G_RAID_SUBDISK_S_NEW);
1730 	} else if (GET8(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) {
1731 		/* Failed disk. */
1732 		g_raid_change_subdisk_state(sd,
1733 		    G_RAID_SUBDISK_S_FAILED);
1734 	} else if ((GET8(gmeta, pdr->entry[md_pde_pos].PD_State) &
1735 	     (DDF_PDE_FAILED | DDF_PDE_REBUILD)) != 0) {
1736 		/* Rebuilding disk. */
1737 		g_raid_change_subdisk_state(sd,
1738 		    G_RAID_SUBDISK_S_REBUILD);
1739 		sd->sd_rebuild_pos = 0;
1740 	} else if ((GET8(vmeta, vde->VD_State) & DDF_VDE_DIRTY) != 0 ||
1741 	    (GET8(vmeta, vde->Init_State) & DDF_VDE_INIT_MASK) !=
1742 	     DDF_VDE_INIT_FULL) {
1743 		/* Stale disk or dirty volume (unclean shutdown). */
1744 		g_raid_change_subdisk_state(sd,
1745 		    G_RAID_SUBDISK_S_STALE);
1746 	} else {
1747 		/* Up to date disk. */
1748 		g_raid_change_subdisk_state(sd,
1749 		    G_RAID_SUBDISK_S_ACTIVE);
1750 	}
1751 	g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1752 	    G_RAID_EVENT_SUBDISK);
1753 
1754 	return (resurrection);
1755 }
1756 
1757 static void
1758 g_raid_md_ddf_refill(struct g_raid_softc *sc)
1759 {
1760 	struct g_raid_volume *vol;
1761 	struct g_raid_subdisk *sd;
1762 	struct g_raid_disk *disk;
1763 	struct g_raid_md_object *md;
1764 	struct g_raid_md_ddf_perdisk *pd;
1765 	struct g_raid_md_ddf_pervolume *pv;
1766 	int update, updated, i, bad;
1767 
1768 	md = sc->sc_md;
1769 restart:
1770 	updated = 0;
1771 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1772 		pv = vol->v_md_data;
1773 		if (!pv->pv_started || vol->v_stopping)
1774 			continue;
1775 
1776 		/* Search for subdisk that needs replacement. */
1777 		bad = 0;
1778 		for (i = 0; i < vol->v_disks_count; i++) {
1779 			sd = &vol->v_subdisks[i];
1780 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
1781 			    sd->sd_state == G_RAID_SUBDISK_S_FAILED)
1782 			        bad = 1;
1783 		}
1784 		if (!bad)
1785 			continue;
1786 
1787 		G_RAID_DEBUG1(1, sc, "Volume %s is not complete, "
1788 		    "trying to refill.", vol->v_name);
1789 
1790 		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1791 			/* Skip failed. */
1792 			if (disk->d_state < G_RAID_DISK_S_SPARE)
1793 				continue;
1794 			/* Skip already used by this volume. */
1795 			for (i = 0; i < vol->v_disks_count; i++) {
1796 				sd = &vol->v_subdisks[i];
1797 				if (sd->sd_disk == disk)
1798 					break;
1799 			}
1800 			if (i < vol->v_disks_count)
1801 				continue;
1802 
1803 			/* Try to use disk if it has empty extents. */
1804 			pd = disk->d_md_data;
1805 			if (ddf_meta_count_vdc(&pd->pd_meta, NULL) <
1806 			    GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1807 				update = g_raid_md_ddf_start_disk(disk, vol);
1808 			} else
1809 				update = 0;
1810 			if (update) {
1811 				updated = 1;
1812 				g_raid_md_write_ddf(md, vol, NULL, disk);
1813 				break;
1814 			}
1815 		}
1816 	}
1817 	if (updated)
1818 		goto restart;
1819 }
1820 
1821 static void
1822 g_raid_md_ddf_start(struct g_raid_volume *vol)
1823 {
1824 	struct g_raid_softc *sc;
1825 	struct g_raid_subdisk *sd;
1826 	struct g_raid_disk *disk;
1827 	struct g_raid_md_object *md;
1828 	struct g_raid_md_ddf_perdisk *pd;
1829 	struct g_raid_md_ddf_pervolume *pv;
1830 	struct g_raid_md_ddf_object *mdi;
1831 	struct ddf_vol_meta *vmeta;
1832 	struct ddf_vdc_record *vdc;
1833 	uint64_t *val2;
1834 	int i, j, bvd;
1835 
1836 	sc = vol->v_softc;
1837 	md = sc->sc_md;
1838 	mdi = (struct g_raid_md_ddf_object *)md;
1839 	pv = vol->v_md_data;
1840 	vmeta = &pv->pv_meta;
1841 	vdc = vmeta->vdc;
1842 
1843 	vol->v_raid_level = GET8(vmeta, vdc->Primary_RAID_Level);
1844 	vol->v_raid_level_qualifier = GET8(vmeta, vdc->RLQ);
1845 	if (GET8(vmeta, vdc->Secondary_Element_Count) > 1 &&
1846 	    vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 &&
1847 	    GET8(vmeta, vdc->Secondary_RAID_Level) == 0)
1848 		vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1849 	vol->v_sectorsize = GET16(vmeta, vdc->Block_Size);
1850 	if (vol->v_sectorsize == 0xffff)
1851 		vol->v_sectorsize = vmeta->sectorsize;
1852 	vol->v_strip_size = vol->v_sectorsize << GET8(vmeta, vdc->Stripe_Size);
1853 	vol->v_disks_count = GET16(vmeta, vdc->Primary_Element_Count) *
1854 	    GET8(vmeta, vdc->Secondary_Element_Count);
1855 	vol->v_mdf_pdisks = GET8(vmeta, vdc->MDF_Parity_Disks);
1856 	vol->v_mdf_polynomial = GET16(vmeta, vdc->MDF_Parity_Generator_Polynomial);
1857 	vol->v_mdf_method = GET8(vmeta, vdc->MDF_Constant_Generation_Method);
1858 	if (GET8(vmeta, vdc->Rotate_Parity_count) > 31)
1859 		vol->v_rotate_parity = 1;
1860 	else
1861 		vol->v_rotate_parity = 1 << GET8(vmeta, vdc->Rotate_Parity_count);
1862 	vol->v_mediasize = GET64(vmeta, vdc->VD_Size) * vol->v_sectorsize;
1863 	for (i = 0, j = 0, bvd = 0; i < vol->v_disks_count; i++, j++) {
1864 		if (j == GET16(vmeta, vdc->Primary_Element_Count)) {
1865 			j = 0;
1866 			bvd++;
1867 		}
1868 		sd = &vol->v_subdisks[i];
1869 		if (vmeta->bvdc[bvd] == NULL) {
1870 			sd->sd_offset = 0;
1871 			sd->sd_size = GET64(vmeta, vdc->Block_Count) *
1872 			    vol->v_sectorsize;
1873 			continue;
1874 		}
1875 		val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
1876 		    GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1877 		sd->sd_offset = GET64P(vmeta, val2 + j) * vol->v_sectorsize;
1878 		sd->sd_size = GET64(vmeta, bvdc[bvd]->Block_Count) *
1879 		    vol->v_sectorsize;
1880 	}
1881 	g_raid_start_volume(vol);
1882 
1883 	/* Make all disks found till the moment take their places. */
1884 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1885 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1886 		if (ddf_meta_find_vdc(&pd->pd_meta, vmeta->vdc->VD_GUID) != NULL)
1887 			g_raid_md_ddf_start_disk(disk, vol);
1888 	}
1889 
1890 	pv->pv_started = 1;
1891 	mdi->mdio_starting--;
1892 	callout_stop(&pv->pv_start_co);
1893 	G_RAID_DEBUG1(0, sc, "Volume started.");
1894 	g_raid_md_write_ddf(md, vol, NULL, NULL);
1895 
1896 	/* Pickup any STALE/SPARE disks to refill array if needed. */
1897 	g_raid_md_ddf_refill(sc);
1898 
1899 	g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
1900 }
1901 
1902 static void
1903 g_raid_ddf_go(void *arg)
1904 {
1905 	struct g_raid_volume *vol;
1906 	struct g_raid_softc *sc;
1907 	struct g_raid_md_ddf_pervolume *pv;
1908 
1909 	vol = arg;
1910 	pv = vol->v_md_data;
1911 	sc = vol->v_softc;
1912 	if (!pv->pv_started) {
1913 		G_RAID_DEBUG1(0, sc, "Force volume start due to timeout.");
1914 		g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD,
1915 		    G_RAID_EVENT_VOLUME);
1916 	}
1917 }
1918 
1919 static void
1920 g_raid_md_ddf_new_disk(struct g_raid_disk *disk)
1921 {
1922 	struct g_raid_softc *sc;
1923 	struct g_raid_md_object *md;
1924 	struct g_raid_md_ddf_perdisk *pd;
1925 	struct g_raid_md_ddf_pervolume *pv;
1926 	struct g_raid_md_ddf_object *mdi;
1927 	struct g_raid_volume *vol;
1928 	struct ddf_meta *pdmeta;
1929 	struct ddf_vol_meta *vmeta;
1930 	struct ddf_vdc_record *vdc;
1931 	struct ddf_vd_entry *vde;
1932 	int i, j, k, num, have, need, cnt, spare;
1933 	uint32_t val;
1934 	char buf[17];
1935 
1936 	sc = disk->d_softc;
1937 	md = sc->sc_md;
1938 	mdi = (struct g_raid_md_ddf_object *)md;
1939 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1940 	pdmeta = &pd->pd_meta;
1941 	spare = -1;
1942 
1943 	if (mdi->mdio_meta.hdr == NULL)
1944 		ddf_meta_copy(&mdi->mdio_meta, pdmeta);
1945 	else
1946 		ddf_meta_update(&mdi->mdio_meta, pdmeta);
1947 
1948 	num = GETCRNUM(pdmeta);
1949 	for (j = 0; j < num; j++) {
1950 		vdc = GETVDCPTR(pdmeta, j);
1951 		val = GET32D(pdmeta, vdc->Signature);
1952 
1953 		if (val == DDF_SA_SIGNATURE && spare == -1)
1954 			spare = 1;
1955 
1956 		if (val != DDF_VDCR_SIGNATURE)
1957 			continue;
1958 		spare = 0;
1959 		k = ddf_meta_find_vd(pdmeta, vdc->VD_GUID);
1960 		if (k < 0)
1961 			continue;
1962 		vde = &pdmeta->vdr->entry[k];
1963 
1964 		/* Look for volume with matching ID. */
1965 		vol = g_raid_md_ddf_get_volume(sc, vdc->VD_GUID);
1966 		if (vol == NULL) {
1967 			ddf_meta_get_name(pdmeta, k, buf);
1968 			vol = g_raid_create_volume(sc, buf,
1969 			    GET16D(pdmeta, vde->VD_Number));
1970 			pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
1971 			vol->v_md_data = pv;
1972 			callout_init(&pv->pv_start_co, 1);
1973 			callout_reset(&pv->pv_start_co,
1974 			    g_raid_start_timeout * hz,
1975 			    g_raid_ddf_go, vol);
1976 			mdi->mdio_starting++;
1977 		} else
1978 			pv = vol->v_md_data;
1979 
1980 		/* If we haven't started yet - check metadata freshness. */
1981 		vmeta = &pv->pv_meta;
1982 		ddf_vol_meta_update(vmeta, pdmeta, vdc->VD_GUID, pv->pv_started);
1983 	}
1984 
1985 	if (spare == 1) {
1986 		g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
1987 		g_raid_md_ddf_refill(sc);
1988 	}
1989 
1990 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1991 		pv = vol->v_md_data;
1992 		vmeta = &pv->pv_meta;
1993 
1994 		if (ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID) == NULL)
1995 			continue;
1996 
1997 		if (pv->pv_started) {
1998 			if (g_raid_md_ddf_start_disk(disk, vol))
1999 				g_raid_md_write_ddf(md, vol, NULL, NULL);
2000 			continue;
2001 		}
2002 
2003 		/* If we collected all needed disks - start array. */
2004 		need = 0;
2005 		have = 0;
2006 		for (k = 0; k < GET8(vmeta, vdc->Secondary_Element_Count); k++) {
2007 			if (vmeta->bvdc[k] == NULL) {
2008 				need += GET16(vmeta, vdc->Primary_Element_Count);
2009 				continue;
2010 			}
2011 			cnt = GET16(vmeta, bvdc[k]->Primary_Element_Count);
2012 			need += cnt;
2013 			for (i = 0; i < cnt; i++) {
2014 				val = GET32(vmeta, bvdc[k]->Physical_Disk_Sequence[i]);
2015 				if (g_raid_md_ddf_get_disk(sc, NULL, val) != NULL)
2016 					have++;
2017 			}
2018 		}
2019 		G_RAID_DEBUG1(1, sc, "Volume %s now has %d of %d disks",
2020 		    vol->v_name, have, need);
2021 		if (have == need)
2022 			g_raid_md_ddf_start(vol);
2023 	}
2024 }
2025 
2026 static int
2027 g_raid_md_create_req_ddf(struct g_raid_md_object *md, struct g_class *mp,
2028     struct gctl_req *req, struct g_geom **gp)
2029 {
2030 	struct g_geom *geom;
2031 	struct g_raid_softc *sc;
2032 	struct g_raid_md_ddf_object *mdi, *mdi1;
2033 	char name[16];
2034 	const char *fmtopt;
2035 	int be = 1;
2036 
2037 	mdi = (struct g_raid_md_ddf_object *)md;
2038 	fmtopt = gctl_get_asciiparam(req, "fmtopt");
2039 	if (fmtopt == NULL || strcasecmp(fmtopt, "BE") == 0)
2040 		be = 1;
2041 	else if (strcasecmp(fmtopt, "LE") == 0)
2042 		be = 0;
2043 	else {
2044 		gctl_error(req, "Incorrect fmtopt argument.");
2045 		return (G_RAID_MD_TASTE_FAIL);
2046 	}
2047 
2048 	/* Search for existing node. */
2049 	LIST_FOREACH(geom, &mp->geom, geom) {
2050 		sc = geom->softc;
2051 		if (sc == NULL)
2052 			continue;
2053 		if (sc->sc_stopping != 0)
2054 			continue;
2055 		if (sc->sc_md->mdo_class != md->mdo_class)
2056 			continue;
2057 		mdi1 = (struct g_raid_md_ddf_object *)sc->sc_md;
2058 		if (mdi1->mdio_bigendian != be)
2059 			continue;
2060 		break;
2061 	}
2062 	if (geom != NULL) {
2063 		*gp = geom;
2064 		return (G_RAID_MD_TASTE_EXISTING);
2065 	}
2066 
2067 	/* Create new one if not found. */
2068 	mdi->mdio_bigendian = be;
2069 	snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2070 	sc = g_raid_create_node(mp, name, md);
2071 	if (sc == NULL)
2072 		return (G_RAID_MD_TASTE_FAIL);
2073 	md->mdo_softc = sc;
2074 	*gp = sc->sc_geom;
2075 	return (G_RAID_MD_TASTE_NEW);
2076 }
2077 
2078 static int
2079 g_raid_md_taste_ddf(struct g_raid_md_object *md, struct g_class *mp,
2080                               struct g_consumer *cp, struct g_geom **gp)
2081 {
2082 	struct g_consumer *rcp;
2083 	struct g_provider *pp;
2084 	struct g_raid_softc *sc;
2085 	struct g_raid_disk *disk;
2086 	struct ddf_meta meta;
2087 	struct g_raid_md_ddf_perdisk *pd;
2088 	struct g_raid_md_ddf_object *mdi;
2089 	struct g_geom *geom;
2090 	int error, result, len, be;
2091 	char name[16];
2092 
2093 	G_RAID_DEBUG(1, "Tasting DDF on %s", cp->provider->name);
2094 	mdi = (struct g_raid_md_ddf_object *)md;
2095 	pp = cp->provider;
2096 
2097 	/* Read metadata from device. */
2098 	if (g_access(cp, 1, 0, 0) != 0)
2099 		return (G_RAID_MD_TASTE_FAIL);
2100 	g_topology_unlock();
2101 	bzero(&meta, sizeof(meta));
2102 	error = ddf_meta_read(cp, &meta);
2103 	g_topology_lock();
2104 	g_access(cp, -1, 0, 0);
2105 	if (error != 0)
2106 		return (G_RAID_MD_TASTE_FAIL);
2107 	be = meta.bigendian;
2108 
2109 	/* Metadata valid. Print it. */
2110 	g_raid_md_ddf_print(&meta);
2111 
2112 	/* Search for matching node. */
2113 	sc = NULL;
2114 	LIST_FOREACH(geom, &mp->geom, geom) {
2115 		sc = geom->softc;
2116 		if (sc == NULL)
2117 			continue;
2118 		if (sc->sc_stopping != 0)
2119 			continue;
2120 		if (sc->sc_md->mdo_class != md->mdo_class)
2121 			continue;
2122 		mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
2123 		if (mdi->mdio_bigendian != be)
2124 			continue;
2125 		break;
2126 	}
2127 
2128 	/* Found matching node. */
2129 	if (geom != NULL) {
2130 		G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
2131 		result = G_RAID_MD_TASTE_EXISTING;
2132 
2133 	} else { /* Not found matching node -- create one. */
2134 		result = G_RAID_MD_TASTE_NEW;
2135 		mdi->mdio_bigendian = be;
2136 		snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2137 		sc = g_raid_create_node(mp, name, md);
2138 		md->mdo_softc = sc;
2139 		geom = sc->sc_geom;
2140 	}
2141 
2142 	rcp = g_new_consumer(geom);
2143 	g_attach(rcp, pp);
2144 	if (g_access(rcp, 1, 1, 1) != 0)
2145 		; //goto fail1;
2146 
2147 	g_topology_unlock();
2148 	sx_xlock(&sc->sc_lock);
2149 
2150 	pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2151 	pd->pd_meta = meta;
2152 	disk = g_raid_create_disk(sc);
2153 	disk->d_md_data = (void *)pd;
2154 	disk->d_consumer = rcp;
2155 	rcp->private = disk;
2156 
2157 	/* Read kernel dumping information. */
2158 	disk->d_kd.offset = 0;
2159 	disk->d_kd.length = OFF_MAX;
2160 	len = sizeof(disk->d_kd);
2161 	error = g_io_getattr("GEOM::kerneldump", rcp, &len, &disk->d_kd);
2162 	if (disk->d_kd.di.dumper == NULL)
2163 		G_RAID_DEBUG1(2, sc, "Dumping not supported by %s: %d.",
2164 		    rcp->provider->name, error);
2165 
2166 	g_raid_md_ddf_new_disk(disk);
2167 
2168 	sx_xunlock(&sc->sc_lock);
2169 	g_topology_lock();
2170 	*gp = geom;
2171 	return (result);
2172 }
2173 
2174 static int
2175 g_raid_md_event_ddf(struct g_raid_md_object *md,
2176     struct g_raid_disk *disk, u_int event)
2177 {
2178 	struct g_raid_softc *sc;
2179 
2180 	sc = md->mdo_softc;
2181 	if (disk == NULL)
2182 		return (-1);
2183 	switch (event) {
2184 	case G_RAID_DISK_E_DISCONNECTED:
2185 		/* Delete disk. */
2186 		g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2187 		g_raid_destroy_disk(disk);
2188 		g_raid_md_ddf_purge_volumes(sc);
2189 
2190 		/* Write updated metadata to all disks. */
2191 		g_raid_md_write_ddf(md, NULL, NULL, NULL);
2192 
2193 		/* Check if anything left. */
2194 		if (g_raid_ndisks(sc, -1) == 0)
2195 			g_raid_destroy_node(sc, 0);
2196 		else
2197 			g_raid_md_ddf_refill(sc);
2198 		return (0);
2199 	}
2200 	return (-2);
2201 }
2202 
2203 static int
2204 g_raid_md_volume_event_ddf(struct g_raid_md_object *md,
2205     struct g_raid_volume *vol, u_int event)
2206 {
2207 	struct g_raid_md_ddf_pervolume *pv;
2208 
2209 	pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2210 	switch (event) {
2211 	case G_RAID_VOLUME_E_STARTMD:
2212 		if (!pv->pv_started)
2213 			g_raid_md_ddf_start(vol);
2214 		return (0);
2215 	}
2216 	return (-2);
2217 }
2218 
2219 static int
2220 g_raid_md_ctl_ddf(struct g_raid_md_object *md,
2221     struct gctl_req *req)
2222 {
2223 	struct g_raid_softc *sc;
2224 	struct g_raid_volume *vol, *vol1;
2225 	struct g_raid_subdisk *sd;
2226 	struct g_raid_disk *disk, *disks[DDF_MAX_DISKS_HARD];
2227 	struct g_raid_md_ddf_perdisk *pd;
2228 	struct g_raid_md_ddf_pervolume *pv;
2229 	struct g_raid_md_ddf_object *mdi;
2230 	struct ddf_sa_record *sa;
2231 	struct g_consumer *cp;
2232 	struct g_provider *pp;
2233 	char arg[16];
2234 	const char *nodename, *verb, *volname, *levelname, *diskname;
2235 	char *tmp;
2236 	int *nargs, *force;
2237 	off_t size, sectorsize, strip, offs[DDF_MAX_DISKS_HARD], esize;
2238 	intmax_t *sizearg, *striparg;
2239 	int i, numdisks, len, level, qual;
2240 	int error;
2241 
2242 	sc = md->mdo_softc;
2243 	mdi = (struct g_raid_md_ddf_object *)md;
2244 	verb = gctl_get_param(req, "verb", NULL);
2245 	nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
2246 	error = 0;
2247 
2248 	if (strcmp(verb, "label") == 0) {
2249 
2250 		if (*nargs < 4) {
2251 			gctl_error(req, "Invalid number of arguments.");
2252 			return (-1);
2253 		}
2254 		volname = gctl_get_asciiparam(req, "arg1");
2255 		if (volname == NULL) {
2256 			gctl_error(req, "No volume name.");
2257 			return (-2);
2258 		}
2259 		levelname = gctl_get_asciiparam(req, "arg2");
2260 		if (levelname == NULL) {
2261 			gctl_error(req, "No RAID level.");
2262 			return (-3);
2263 		}
2264 		if (g_raid_volume_str2level(levelname, &level, &qual)) {
2265 			gctl_error(req, "Unknown RAID level '%s'.", levelname);
2266 			return (-4);
2267 		}
2268 		numdisks = *nargs - 3;
2269 		force = gctl_get_paraml(req, "force", sizeof(*force));
2270 		if (!g_raid_md_ddf_supported(level, qual, numdisks,
2271 		    force ? *force : 0)) {
2272 			gctl_error(req, "Unsupported RAID level "
2273 			    "(0x%02x/0x%02x), or number of disks (%d).",
2274 			    level, qual, numdisks);
2275 			return (-5);
2276 		}
2277 
2278 		/* Search for disks, connect them and probe. */
2279 		size = INT64_MAX;
2280 		sectorsize = 0;
2281 		bzero(disks, sizeof(disks));
2282 		bzero(offs, sizeof(offs));
2283 		for (i = 0; i < numdisks; i++) {
2284 			snprintf(arg, sizeof(arg), "arg%d", i + 3);
2285 			diskname = gctl_get_asciiparam(req, arg);
2286 			if (diskname == NULL) {
2287 				gctl_error(req, "No disk name (%s).", arg);
2288 				error = -6;
2289 				break;
2290 			}
2291 			if (strcmp(diskname, "NONE") == 0)
2292 				continue;
2293 
2294 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2295 				if (disk->d_consumer != NULL &&
2296 				    disk->d_consumer->provider != NULL &&
2297 				    strcmp(disk->d_consumer->provider->name,
2298 				     diskname) == 0)
2299 					break;
2300 			}
2301 			if (disk != NULL) {
2302 				if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2303 					gctl_error(req, "Disk '%s' is in a "
2304 					    "wrong state (%s).", diskname,
2305 					    g_raid_disk_state2str(disk->d_state));
2306 					error = -7;
2307 					break;
2308 				}
2309 				pd = disk->d_md_data;
2310 				if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
2311 				    GET16(&pd->pd_meta, hdr->Max_Partitions)) {
2312 					gctl_error(req, "No free partitions "
2313 					    "on disk '%s'.",
2314 					    diskname);
2315 					error = -7;
2316 					break;
2317 				}
2318 				pp = disk->d_consumer->provider;
2319 				disks[i] = disk;
2320 				ddf_meta_unused_range(&pd->pd_meta,
2321 				    &offs[i], &esize);
2322 				offs[i] *= pp->sectorsize;
2323 				size = MIN(size, (off_t)esize * pp->sectorsize);
2324 				sectorsize = MAX(sectorsize, pp->sectorsize);
2325 				continue;
2326 			}
2327 
2328 			g_topology_lock();
2329 			cp = g_raid_open_consumer(sc, diskname);
2330 			if (cp == NULL) {
2331 				gctl_error(req, "Can't open disk '%s'.",
2332 				    diskname);
2333 				g_topology_unlock();
2334 				error = -8;
2335 				break;
2336 			}
2337 			pp = cp->provider;
2338 			pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2339 			disk = g_raid_create_disk(sc);
2340 			disk->d_md_data = (void *)pd;
2341 			disk->d_consumer = cp;
2342 			disks[i] = disk;
2343 			cp->private = disk;
2344 			ddf_meta_create(disk, &mdi->mdio_meta);
2345 			if (mdi->mdio_meta.hdr == NULL)
2346 				ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2347 			else
2348 				ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2349 			g_topology_unlock();
2350 
2351 			/* Read kernel dumping information. */
2352 			disk->d_kd.offset = 0;
2353 			disk->d_kd.length = OFF_MAX;
2354 			len = sizeof(disk->d_kd);
2355 			g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
2356 			if (disk->d_kd.di.dumper == NULL)
2357 				G_RAID_DEBUG1(2, sc,
2358 				    "Dumping not supported by %s.",
2359 				    cp->provider->name);
2360 
2361 			/* Reserve some space for metadata. */
2362 			size = MIN(size, GET64(&pd->pd_meta,
2363 			    pdr->entry[0].Configured_Size) * pp->sectorsize);
2364 			sectorsize = MAX(sectorsize, pp->sectorsize);
2365 		}
2366 		if (error != 0) {
2367 			for (i = 0; i < numdisks; i++) {
2368 				if (disks[i] != NULL &&
2369 				    disks[i]->d_state == G_RAID_DISK_S_NONE)
2370 					g_raid_destroy_disk(disks[i]);
2371 			}
2372 			return (error);
2373 		}
2374 
2375 		if (sectorsize <= 0) {
2376 			gctl_error(req, "Can't get sector size.");
2377 			return (-8);
2378 		}
2379 
2380 		/* Handle size argument. */
2381 		len = sizeof(*sizearg);
2382 		sizearg = gctl_get_param(req, "size", &len);
2383 		if (sizearg != NULL && len == sizeof(*sizearg) &&
2384 		    *sizearg > 0) {
2385 			if (*sizearg > size) {
2386 				gctl_error(req, "Size too big %lld > %lld.",
2387 				    (long long)*sizearg, (long long)size);
2388 				return (-9);
2389 			}
2390 			size = *sizearg;
2391 		}
2392 
2393 		/* Handle strip argument. */
2394 		strip = 131072;
2395 		len = sizeof(*striparg);
2396 		striparg = gctl_get_param(req, "strip", &len);
2397 		if (striparg != NULL && len == sizeof(*striparg) &&
2398 		    *striparg > 0) {
2399 			if (*striparg < sectorsize) {
2400 				gctl_error(req, "Strip size too small.");
2401 				return (-10);
2402 			}
2403 			if (*striparg % sectorsize != 0) {
2404 				gctl_error(req, "Incorrect strip size.");
2405 				return (-11);
2406 			}
2407 			strip = *striparg;
2408 		}
2409 
2410 		/* Round size down to strip or sector. */
2411 		if (level == G_RAID_VOLUME_RL_RAID1 ||
2412 		    level == G_RAID_VOLUME_RL_RAID3 ||
2413 		    level == G_RAID_VOLUME_RL_SINGLE ||
2414 		    level == G_RAID_VOLUME_RL_CONCAT)
2415 			size -= (size % sectorsize);
2416 		else if (level == G_RAID_VOLUME_RL_RAID1E &&
2417 		    (numdisks & 1) != 0)
2418 			size -= (size % (2 * strip));
2419 		else
2420 			size -= (size % strip);
2421 		if (size <= 0) {
2422 			gctl_error(req, "Size too small.");
2423 			return (-13);
2424 		}
2425 
2426 		/* We have all we need, create things: volume, ... */
2427 		pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2428 		ddf_vol_meta_create(&pv->pv_meta, &mdi->mdio_meta);
2429 		pv->pv_started = 1;
2430 		vol = g_raid_create_volume(sc, volname, -1);
2431 		vol->v_md_data = pv;
2432 		vol->v_raid_level = level;
2433 		vol->v_raid_level_qualifier = qual;
2434 		vol->v_strip_size = strip;
2435 		vol->v_disks_count = numdisks;
2436 		if (level == G_RAID_VOLUME_RL_RAID0 ||
2437 		    level == G_RAID_VOLUME_RL_CONCAT ||
2438 		    level == G_RAID_VOLUME_RL_SINGLE)
2439 			vol->v_mediasize = size * numdisks;
2440 		else if (level == G_RAID_VOLUME_RL_RAID1)
2441 			vol->v_mediasize = size;
2442 		else if (level == G_RAID_VOLUME_RL_RAID3 ||
2443 		    level == G_RAID_VOLUME_RL_RAID4 ||
2444 		    level == G_RAID_VOLUME_RL_RAID5)
2445 			vol->v_mediasize = size * (numdisks - 1);
2446 		else if (level == G_RAID_VOLUME_RL_RAID5R) {
2447 			vol->v_mediasize = size * (numdisks - 1);
2448 			vol->v_rotate_parity = 1024;
2449 		} else if (level == G_RAID_VOLUME_RL_RAID6 ||
2450 		    level == G_RAID_VOLUME_RL_RAID5E ||
2451 		    level == G_RAID_VOLUME_RL_RAID5EE)
2452 			vol->v_mediasize = size * (numdisks - 2);
2453 		else if (level == G_RAID_VOLUME_RL_RAIDMDF) {
2454 			if (numdisks < 5)
2455 				vol->v_mdf_pdisks = 2;
2456 			else
2457 				vol->v_mdf_pdisks = 3;
2458 			vol->v_mdf_polynomial = 0x11d;
2459 			vol->v_mdf_method = 0x00;
2460 			vol->v_mediasize = size * (numdisks - vol->v_mdf_pdisks);
2461 		} else { /* RAID1E */
2462 			vol->v_mediasize = ((size * numdisks) / strip / 2) *
2463 			    strip;
2464 		}
2465 		vol->v_sectorsize = sectorsize;
2466 		g_raid_start_volume(vol);
2467 
2468 		/* , and subdisks. */
2469 		for (i = 0; i < numdisks; i++) {
2470 			disk = disks[i];
2471 			sd = &vol->v_subdisks[i];
2472 			sd->sd_disk = disk;
2473 			sd->sd_offset = offs[i];
2474 			sd->sd_size = size;
2475 			if (disk == NULL)
2476 				continue;
2477 			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2478 			g_raid_change_disk_state(disk,
2479 			    G_RAID_DISK_S_ACTIVE);
2480 			g_raid_change_subdisk_state(sd,
2481 			    G_RAID_SUBDISK_S_ACTIVE);
2482 			g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2483 			    G_RAID_EVENT_SUBDISK);
2484 		}
2485 
2486 		/* Write metadata based on created entities. */
2487 		G_RAID_DEBUG1(0, sc, "Array started.");
2488 		g_raid_md_write_ddf(md, vol, NULL, NULL);
2489 
2490 		/* Pickup any STALE/SPARE disks to refill array if needed. */
2491 		g_raid_md_ddf_refill(sc);
2492 
2493 		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2494 		    G_RAID_EVENT_VOLUME);
2495 		return (0);
2496 	}
2497 	if (strcmp(verb, "add") == 0) {
2498 
2499 		gctl_error(req, "`add` command is not applicable, "
2500 		    "use `label` instead.");
2501 		return (-99);
2502 	}
2503 	if (strcmp(verb, "delete") == 0) {
2504 
2505 		nodename = gctl_get_asciiparam(req, "arg0");
2506 		if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2507 			nodename = NULL;
2508 
2509 		/* Full node destruction. */
2510 		if (*nargs == 1 && nodename != NULL) {
2511 			/* Check if some volume is still open. */
2512 			force = gctl_get_paraml(req, "force", sizeof(*force));
2513 			if (force != NULL && *force == 0 &&
2514 			    g_raid_nopens(sc) != 0) {
2515 				gctl_error(req, "Some volume is still open.");
2516 				return (-4);
2517 			}
2518 
2519 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2520 				if (disk->d_consumer)
2521 					ddf_meta_erase(disk->d_consumer);
2522 			}
2523 			g_raid_destroy_node(sc, 0);
2524 			return (0);
2525 		}
2526 
2527 		/* Destroy specified volume. If it was last - all node. */
2528 		if (*nargs > 2) {
2529 			gctl_error(req, "Invalid number of arguments.");
2530 			return (-1);
2531 		}
2532 		volname = gctl_get_asciiparam(req,
2533 		    nodename != NULL ? "arg1" : "arg0");
2534 		if (volname == NULL) {
2535 			gctl_error(req, "No volume name.");
2536 			return (-2);
2537 		}
2538 
2539 		/* Search for volume. */
2540 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2541 			if (strcmp(vol->v_name, volname) == 0)
2542 				break;
2543 			pp = vol->v_provider;
2544 			if (pp == NULL)
2545 				continue;
2546 			if (strcmp(pp->name, volname) == 0)
2547 				break;
2548 			if (strncmp(pp->name, "raid/", 5) == 0 &&
2549 			    strcmp(pp->name + 5, volname) == 0)
2550 				break;
2551 		}
2552 		if (vol == NULL) {
2553 			i = strtol(volname, &tmp, 10);
2554 			if (verb != volname && tmp[0] == 0) {
2555 				TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2556 					if (vol->v_global_id == i)
2557 						break;
2558 				}
2559 			}
2560 		}
2561 		if (vol == NULL) {
2562 			gctl_error(req, "Volume '%s' not found.", volname);
2563 			return (-3);
2564 		}
2565 
2566 		/* Check if volume is still open. */
2567 		force = gctl_get_paraml(req, "force", sizeof(*force));
2568 		if (force != NULL && *force == 0 &&
2569 		    vol->v_provider_open != 0) {
2570 			gctl_error(req, "Volume is still open.");
2571 			return (-4);
2572 		}
2573 
2574 		/* Destroy volume and potentially node. */
2575 		i = 0;
2576 		TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2577 			i++;
2578 		if (i >= 2) {
2579 			g_raid_destroy_volume(vol);
2580 			g_raid_md_ddf_purge_disks(sc);
2581 			g_raid_md_write_ddf(md, NULL, NULL, NULL);
2582 		} else {
2583 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2584 				if (disk->d_consumer)
2585 					ddf_meta_erase(disk->d_consumer);
2586 			}
2587 			g_raid_destroy_node(sc, 0);
2588 		}
2589 		return (0);
2590 	}
2591 	if (strcmp(verb, "remove") == 0 ||
2592 	    strcmp(verb, "fail") == 0) {
2593 		if (*nargs < 2) {
2594 			gctl_error(req, "Invalid number of arguments.");
2595 			return (-1);
2596 		}
2597 		for (i = 1; i < *nargs; i++) {
2598 			snprintf(arg, sizeof(arg), "arg%d", i);
2599 			diskname = gctl_get_asciiparam(req, arg);
2600 			if (diskname == NULL) {
2601 				gctl_error(req, "No disk name (%s).", arg);
2602 				error = -2;
2603 				break;
2604 			}
2605 			if (strncmp(diskname, "/dev/", 5) == 0)
2606 				diskname += 5;
2607 
2608 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2609 				if (disk->d_consumer != NULL &&
2610 				    disk->d_consumer->provider != NULL &&
2611 				    strcmp(disk->d_consumer->provider->name,
2612 				     diskname) == 0)
2613 					break;
2614 			}
2615 			if (disk == NULL) {
2616 				gctl_error(req, "Disk '%s' not found.",
2617 				    diskname);
2618 				error = -3;
2619 				break;
2620 			}
2621 
2622 			if (strcmp(verb, "fail") == 0) {
2623 				g_raid_md_fail_disk_ddf(md, NULL, disk);
2624 				continue;
2625 			}
2626 
2627 			/* Erase metadata on deleting disk and destroy it. */
2628 			ddf_meta_erase(disk->d_consumer);
2629 			g_raid_destroy_disk(disk);
2630 		}
2631 		g_raid_md_ddf_purge_volumes(sc);
2632 
2633 		/* Write updated metadata to remaining disks. */
2634 		g_raid_md_write_ddf(md, NULL, NULL, NULL);
2635 
2636 		/* Check if anything left. */
2637 		if (g_raid_ndisks(sc, -1) == 0)
2638 			g_raid_destroy_node(sc, 0);
2639 		else
2640 			g_raid_md_ddf_refill(sc);
2641 		return (error);
2642 	}
2643 	if (strcmp(verb, "insert") == 0) {
2644 		if (*nargs < 2) {
2645 			gctl_error(req, "Invalid number of arguments.");
2646 			return (-1);
2647 		}
2648 		for (i = 1; i < *nargs; i++) {
2649 			/* Get disk name. */
2650 			snprintf(arg, sizeof(arg), "arg%d", i);
2651 			diskname = gctl_get_asciiparam(req, arg);
2652 			if (diskname == NULL) {
2653 				gctl_error(req, "No disk name (%s).", arg);
2654 				error = -3;
2655 				break;
2656 			}
2657 
2658 			/* Try to find provider with specified name. */
2659 			g_topology_lock();
2660 			cp = g_raid_open_consumer(sc, diskname);
2661 			if (cp == NULL) {
2662 				gctl_error(req, "Can't open disk '%s'.",
2663 				    diskname);
2664 				g_topology_unlock();
2665 				error = -4;
2666 				break;
2667 			}
2668 			pp = cp->provider;
2669 			g_topology_unlock();
2670 
2671 			pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2672 
2673 			disk = g_raid_create_disk(sc);
2674 			disk->d_consumer = cp;
2675 			disk->d_md_data = (void *)pd;
2676 			cp->private = disk;
2677 
2678 			/* Read kernel dumping information. */
2679 			disk->d_kd.offset = 0;
2680 			disk->d_kd.length = OFF_MAX;
2681 			len = sizeof(disk->d_kd);
2682 			g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
2683 			if (disk->d_kd.di.dumper == NULL)
2684 				G_RAID_DEBUG1(2, sc,
2685 				    "Dumping not supported by %s.",
2686 				    cp->provider->name);
2687 
2688 			/* Welcome the "new" disk. */
2689 			g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2690 			ddf_meta_create(disk, &mdi->mdio_meta);
2691 			sa = ddf_meta_find_sa(&pd->pd_meta, 1);
2692 			if (sa != NULL) {
2693 				SET32D(&pd->pd_meta, sa->Signature,
2694 				    DDF_SA_SIGNATURE);
2695 				SET8D(&pd->pd_meta, sa->Spare_Type, 0);
2696 				SET16D(&pd->pd_meta, sa->Populated_SAEs, 0);
2697 				SET16D(&pd->pd_meta, sa->MAX_SAE_Supported,
2698 				    (GET16(&pd->pd_meta, hdr->Configuration_Record_Length) *
2699 				     pd->pd_meta.sectorsize -
2700 				     sizeof(struct ddf_sa_record)) /
2701 				    sizeof(struct ddf_sa_entry));
2702 			}
2703 			if (mdi->mdio_meta.hdr == NULL)
2704 				ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2705 			else
2706 				ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2707 			g_raid_md_write_ddf(md, NULL, NULL, NULL);
2708 			g_raid_md_ddf_refill(sc);
2709 		}
2710 		return (error);
2711 	}
2712 	return (-100);
2713 }
2714 
2715 static int
2716 g_raid_md_write_ddf(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2717     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2718 {
2719 	struct g_raid_softc *sc;
2720 	struct g_raid_volume *vol;
2721 	struct g_raid_subdisk *sd;
2722 	struct g_raid_disk *disk;
2723 	struct g_raid_md_ddf_perdisk *pd;
2724 	struct g_raid_md_ddf_pervolume *pv;
2725 	struct g_raid_md_ddf_object *mdi;
2726 	struct ddf_meta *gmeta;
2727 	struct ddf_vol_meta *vmeta;
2728 	struct ddf_vdc_record *vdc;
2729 	struct ddf_sa_record *sa;
2730 	uint64_t *val2;
2731 	int i, j, pos, bvd, size;
2732 
2733 	sc = md->mdo_softc;
2734 	mdi = (struct g_raid_md_ddf_object *)md;
2735 	gmeta = &mdi->mdio_meta;
2736 
2737 	if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2738 		return (0);
2739 
2740 	/*
2741 	 * Clear disk flags to let only really needed ones to be reset.
2742 	 * Do it only if there are no volumes in starting state now,
2743 	 * as they can update disk statuses yet and we may kill innocent.
2744 	 */
2745 	if (mdi->mdio_starting == 0) {
2746 		for (i = 0; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2747 			if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2748 				continue;
2749 			SET16(gmeta, pdr->entry[i].PD_Type,
2750 			    GET16(gmeta, pdr->entry[i].PD_Type) &
2751 			    ~(DDF_PDE_PARTICIPATING |
2752 			      DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE));
2753 			if ((GET16(gmeta, pdr->entry[i].PD_State) &
2754 			    DDF_PDE_PFA) == 0)
2755 				SET16(gmeta, pdr->entry[i].PD_State, 0);
2756 		}
2757 	}
2758 
2759 	/* Generate/update new per-volume metadata. */
2760 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2761 		pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2762 		if (vol->v_stopping || !pv->pv_started)
2763 			continue;
2764 		vmeta = &pv->pv_meta;
2765 
2766 		SET32(vmeta, vdc->Sequence_Number,
2767 		    GET32(vmeta, vdc->Sequence_Number) + 1);
2768 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2769 		    vol->v_disks_count % 2 == 0)
2770 			SET16(vmeta, vdc->Primary_Element_Count, 2);
2771 		else
2772 			SET16(vmeta, vdc->Primary_Element_Count,
2773 			    vol->v_disks_count);
2774 		SET8(vmeta, vdc->Stripe_Size,
2775 		    ffs(vol->v_strip_size / vol->v_sectorsize) - 1);
2776 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2777 		    vol->v_disks_count % 2 == 0) {
2778 			SET8(vmeta, vdc->Primary_RAID_Level,
2779 			    DDF_VDCR_RAID1);
2780 			SET8(vmeta, vdc->RLQ, 0);
2781 			SET8(vmeta, vdc->Secondary_Element_Count,
2782 			    vol->v_disks_count / 2);
2783 			SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2784 		} else {
2785 			SET8(vmeta, vdc->Primary_RAID_Level,
2786 			    vol->v_raid_level);
2787 			SET8(vmeta, vdc->RLQ,
2788 			    vol->v_raid_level_qualifier);
2789 			SET8(vmeta, vdc->Secondary_Element_Count, 1);
2790 			SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2791 		}
2792 		SET8(vmeta, vdc->Secondary_Element_Seq, 0);
2793 		SET64(vmeta, vdc->Block_Count, 0);
2794 		SET64(vmeta, vdc->VD_Size, vol->v_mediasize / vol->v_sectorsize);
2795 		SET16(vmeta, vdc->Block_Size, vol->v_sectorsize);
2796 		SET8(vmeta, vdc->Rotate_Parity_count,
2797 		    fls(vol->v_rotate_parity) - 1);
2798 		SET8(vmeta, vdc->MDF_Parity_Disks, vol->v_mdf_pdisks);
2799 		SET16(vmeta, vdc->MDF_Parity_Generator_Polynomial,
2800 		    vol->v_mdf_polynomial);
2801 		SET8(vmeta, vdc->MDF_Constant_Generation_Method,
2802 		    vol->v_mdf_method);
2803 
2804 		SET16(vmeta, vde->VD_Number, vol->v_global_id);
2805 		if (vol->v_state <= G_RAID_VOLUME_S_BROKEN)
2806 			SET8(vmeta, vde->VD_State, DDF_VDE_FAILED);
2807 		else if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED)
2808 			SET8(vmeta, vde->VD_State, DDF_VDE_DEGRADED);
2809 		else if (vol->v_state <= G_RAID_VOLUME_S_SUBOPTIMAL)
2810 			SET8(vmeta, vde->VD_State, DDF_VDE_PARTIAL);
2811 		else
2812 			SET8(vmeta, vde->VD_State, DDF_VDE_OPTIMAL);
2813 		if (vol->v_dirty ||
2814 		    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) > 0 ||
2815 		    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC) > 0)
2816 			SET8(vmeta, vde->VD_State,
2817 			    GET8(vmeta, vde->VD_State) | DDF_VDE_DIRTY);
2818 		SET8(vmeta, vde->Init_State, DDF_VDE_INIT_FULL); // XXX
2819 		ddf_meta_put_name(vmeta, vol->v_name);
2820 
2821 		for (i = 0; i < vol->v_disks_count; i++) {
2822 			sd = &vol->v_subdisks[i];
2823 			bvd = i / GET16(vmeta, vdc->Primary_Element_Count);
2824 			pos = i % GET16(vmeta, vdc->Primary_Element_Count);
2825 			disk = sd->sd_disk;
2826 			if (disk != NULL) {
2827 				pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2828 				if (vmeta->bvdc[bvd] == NULL) {
2829 					size = GET16(vmeta,
2830 					    hdr->Configuration_Record_Length) *
2831 					    vmeta->sectorsize;
2832 					vmeta->bvdc[bvd] = malloc(size,
2833 					    M_MD_DDF, M_WAITOK);
2834 					memset(vmeta->bvdc[bvd], 0xff, size);
2835 				}
2836 				memcpy(vmeta->bvdc[bvd], vmeta->vdc,
2837 				    sizeof(struct ddf_vdc_record));
2838 				SET8(vmeta, bvdc[bvd]->Secondary_Element_Seq, bvd);
2839 				SET64(vmeta, bvdc[bvd]->Block_Count,
2840 				    sd->sd_size / vol->v_sectorsize);
2841 				SET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos],
2842 				    GET32(&pd->pd_meta, pdd->PD_Reference));
2843 				val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
2844 				    GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
2845 				SET64P(vmeta, val2 + pos,
2846 				    sd->sd_offset / vol->v_sectorsize);
2847 			}
2848 			if (vmeta->bvdc[bvd] == NULL)
2849 				continue;
2850 
2851 			j = ddf_meta_find_pd(gmeta, NULL,
2852 			    GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]));
2853 			if (j < 0)
2854 				continue;
2855 			SET32(gmeta, pdr->entry[j].PD_Type,
2856 			    GET32(gmeta, pdr->entry[j].PD_Type) |
2857 			    DDF_PDE_PARTICIPATING);
2858 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
2859 				SET32(gmeta, pdr->entry[j].PD_State,
2860 				    GET32(gmeta, pdr->entry[j].PD_State) |
2861 				    (DDF_PDE_FAILED | DDF_PDE_MISSING));
2862 			else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED)
2863 				SET32(gmeta, pdr->entry[j].PD_State,
2864 				    GET32(gmeta, pdr->entry[j].PD_State) |
2865 				    (DDF_PDE_FAILED | DDF_PDE_PFA));
2866 			else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD)
2867 				SET32(gmeta, pdr->entry[j].PD_State,
2868 				    GET32(gmeta, pdr->entry[j].PD_State) |
2869 				    DDF_PDE_REBUILD);
2870 			else
2871 				SET32(gmeta, pdr->entry[j].PD_State,
2872 				    GET32(gmeta, pdr->entry[j].PD_State) |
2873 				    DDF_PDE_ONLINE);
2874 		}
2875 	}
2876 
2877 	/* Mark spare and failed disks as such. */
2878 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2879 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2880 		i = ddf_meta_find_pd(gmeta, NULL,
2881 		    GET32(&pd->pd_meta, pdd->PD_Reference));
2882 		if (i < 0)
2883 			continue;
2884 		if (disk->d_state == G_RAID_DISK_S_FAILED) {
2885 			SET32(gmeta, pdr->entry[i].PD_State,
2886 			    GET32(gmeta, pdr->entry[i].PD_State) |
2887 			    (DDF_PDE_FAILED | DDF_PDE_PFA));
2888 		}
2889 		if (disk->d_state != G_RAID_DISK_S_SPARE)
2890 			continue;
2891 		sa = ddf_meta_find_sa(&pd->pd_meta, 0);
2892 		if (sa == NULL ||
2893 		    (GET8D(&pd->pd_meta, sa->Spare_Type) &
2894 		     DDF_SAR_TYPE_DEDICATED) == 0) {
2895 			SET16(gmeta, pdr->entry[i].PD_Type,
2896 			    GET16(gmeta, pdr->entry[i].PD_Type) |
2897 			    DDF_PDE_GLOBAL_SPARE);
2898 		} else {
2899 			SET16(gmeta, pdr->entry[i].PD_Type,
2900 			    GET16(gmeta, pdr->entry[i].PD_Type) |
2901 			    DDF_PDE_CONFIG_SPARE);
2902 		}
2903 		SET32(gmeta, pdr->entry[i].PD_State,
2904 		    GET32(gmeta, pdr->entry[i].PD_State) |
2905 		    DDF_PDE_ONLINE);
2906 	}
2907 
2908 	/* Remove disks without "participating" flag (unused). */
2909 	for (i = 0, j = -1; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2910 		if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2911 			continue;
2912 		if ((GET16(gmeta, pdr->entry[i].PD_Type) &
2913 		    (DDF_PDE_PARTICIPATING |
2914 		     DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE)) != 0 ||
2915 		    g_raid_md_ddf_get_disk(sc,
2916 		     NULL, GET32(gmeta, pdr->entry[i].PD_Reference)) != NULL)
2917 			j = i;
2918 		else
2919 			memset(&gmeta->pdr->entry[i], 0xff,
2920 			    sizeof(struct ddf_pd_entry));
2921 	}
2922 	SET16(gmeta, pdr->Populated_PDEs, j + 1);
2923 
2924 	/* Update per-disk metadata and write them. */
2925 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2926 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2927 		if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
2928 		    disk->d_state != G_RAID_DISK_S_SPARE)
2929 			continue;
2930 		/* Update PDR. */
2931 		memcpy(pd->pd_meta.pdr, gmeta->pdr,
2932 		    GET32(&pd->pd_meta, hdr->pdr_length) *
2933 		    pd->pd_meta.sectorsize);
2934 		/* Update VDR. */
2935 		SET16(&pd->pd_meta, vdr->Populated_VDEs, 0);
2936 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2937 			if (vol->v_stopping)
2938 				continue;
2939 			pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2940 			i = ddf_meta_find_vd(&pd->pd_meta,
2941 			    pv->pv_meta.vde->VD_GUID);
2942 			if (i < 0)
2943 				i = ddf_meta_find_vd(&pd->pd_meta, NULL);
2944 			if (i >= 0)
2945 				memcpy(&pd->pd_meta.vdr->entry[i],
2946 				    pv->pv_meta.vde,
2947 				    sizeof(struct ddf_vd_entry));
2948 		}
2949 		/* Update VDC. */
2950 		if (mdi->mdio_starting == 0) {
2951 			/* Remove all VDCs to restore needed later. */
2952 			j = GETCRNUM(&pd->pd_meta);
2953 			for (i = 0; i < j; i++) {
2954 				vdc = GETVDCPTR(&pd->pd_meta, i);
2955 				if (GET32D(&pd->pd_meta, vdc->Signature) !=
2956 				    DDF_VDCR_SIGNATURE)
2957 					continue;
2958 				SET32D(&pd->pd_meta, vdc->Signature, 0xffffffff);
2959 			}
2960 		}
2961 		TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2962 			vol = sd->sd_volume;
2963 			if (vol->v_stopping)
2964 				continue;
2965 			pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2966 			vmeta = &pv->pv_meta;
2967 			vdc = ddf_meta_find_vdc(&pd->pd_meta,
2968 			    vmeta->vde->VD_GUID);
2969 			if (vdc == NULL)
2970 				vdc = ddf_meta_find_vdc(&pd->pd_meta, NULL);
2971 			if (vdc != NULL) {
2972 				bvd = sd->sd_pos / GET16(vmeta,
2973 				    vdc->Primary_Element_Count);
2974 				memcpy(vdc, vmeta->bvdc[bvd],
2975 				    GET16(&pd->pd_meta,
2976 				    hdr->Configuration_Record_Length) *
2977 				    pd->pd_meta.sectorsize);
2978 			}
2979 		}
2980 		G_RAID_DEBUG(1, "Writing DDF metadata to %s",
2981 		    g_raid_get_diskname(disk));
2982 		g_raid_md_ddf_print(&pd->pd_meta);
2983 		ddf_meta_write(disk->d_consumer, &pd->pd_meta);
2984 	}
2985 	return (0);
2986 }
2987 
2988 static int
2989 g_raid_md_fail_disk_ddf(struct g_raid_md_object *md,
2990     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2991 {
2992 	struct g_raid_softc *sc;
2993 	struct g_raid_md_ddf_perdisk *pd;
2994 	struct g_raid_subdisk *sd;
2995 	int i;
2996 
2997 	sc = md->mdo_softc;
2998 	pd = (struct g_raid_md_ddf_perdisk *)tdisk->d_md_data;
2999 
3000 	/* We can't fail disk that is not a part of array now. */
3001 	if (tdisk->d_state != G_RAID_DISK_S_ACTIVE)
3002 		return (-1);
3003 
3004 	/*
3005 	 * Mark disk as failed in metadata and try to write that metadata
3006 	 * to the disk itself to prevent it's later resurrection as STALE.
3007 	 */
3008 	G_RAID_DEBUG(1, "Writing DDF metadata to %s",
3009 	    g_raid_get_diskname(tdisk));
3010 	i = ddf_meta_find_pd(&pd->pd_meta, NULL, GET32(&pd->pd_meta, pdd->PD_Reference));
3011 	SET16(&pd->pd_meta, pdr->entry[i].PD_State, DDF_PDE_FAILED | DDF_PDE_PFA);
3012 	if (tdisk->d_consumer != NULL)
3013 		ddf_meta_write(tdisk->d_consumer, &pd->pd_meta);
3014 
3015 	/* Change states. */
3016 	g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
3017 	TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
3018 		g_raid_change_subdisk_state(sd,
3019 		    G_RAID_SUBDISK_S_FAILED);
3020 		g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
3021 		    G_RAID_EVENT_SUBDISK);
3022 	}
3023 
3024 	/* Write updated metadata to remaining disks. */
3025 	g_raid_md_write_ddf(md, NULL, NULL, tdisk);
3026 
3027 	g_raid_md_ddf_refill(sc);
3028 	return (0);
3029 }
3030 
3031 static int
3032 g_raid_md_free_disk_ddf(struct g_raid_md_object *md,
3033     struct g_raid_disk *disk)
3034 {
3035 	struct g_raid_md_ddf_perdisk *pd;
3036 
3037 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
3038 	ddf_meta_free(&pd->pd_meta);
3039 	free(pd, M_MD_DDF);
3040 	disk->d_md_data = NULL;
3041 	return (0);
3042 }
3043 
3044 static int
3045 g_raid_md_free_volume_ddf(struct g_raid_md_object *md,
3046     struct g_raid_volume *vol)
3047 {
3048 	struct g_raid_md_ddf_object *mdi;
3049 	struct g_raid_md_ddf_pervolume *pv;
3050 
3051 	mdi = (struct g_raid_md_ddf_object *)md;
3052 	pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
3053 	ddf_vol_meta_free(&pv->pv_meta);
3054 	if (!pv->pv_started) {
3055 		pv->pv_started = 1;
3056 		mdi->mdio_starting--;
3057 		callout_stop(&pv->pv_start_co);
3058 	}
3059 	free(pv, M_MD_DDF);
3060 	vol->v_md_data = NULL;
3061 	return (0);
3062 }
3063 
3064 static int
3065 g_raid_md_free_ddf(struct g_raid_md_object *md)
3066 {
3067 	struct g_raid_md_ddf_object *mdi;
3068 
3069 	mdi = (struct g_raid_md_ddf_object *)md;
3070 	if (!mdi->mdio_started) {
3071 		mdi->mdio_started = 0;
3072 		callout_stop(&mdi->mdio_start_co);
3073 		G_RAID_DEBUG1(1, md->mdo_softc,
3074 		    "root_mount_rel %p", mdi->mdio_rootmount);
3075 		root_mount_rel(mdi->mdio_rootmount);
3076 		mdi->mdio_rootmount = NULL;
3077 	}
3078 	ddf_meta_free(&mdi->mdio_meta);
3079 	return (0);
3080 }
3081 
3082 G_RAID_MD_DECLARE(ddf, "DDF");
3083