xref: /freebsd/sys/geom/raid/md_ddf.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*-
2  * Copyright (c) 2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/endian.h>
33 #include <sys/kernel.h>
34 #include <sys/kobj.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/systm.h>
40 #include <sys/time.h>
41 #include <sys/clock.h>
42 #include <geom/geom.h>
43 #include "geom/raid/g_raid.h"
44 #include "geom/raid/md_ddf.h"
45 #include "g_raid_md_if.h"
46 
47 static MALLOC_DEFINE(M_MD_DDF, "md_ddf_data", "GEOM_RAID DDF metadata");
48 
49 #define	DDF_MAX_DISKS_HARD	128
50 
51 #define	DDF_MAX_DISKS	16
52 #define	DDF_MAX_VDISKS	7
53 #define	DDF_MAX_PARTITIONS	1
54 
55 #define DECADE (3600*24*(365*10+2))	/* 10 years in seconds. */
56 
57 struct ddf_meta {
58 	u_int	sectorsize;
59 	u_int	bigendian;
60 	struct ddf_header *hdr;
61 	struct ddf_cd_record *cdr;
62 	struct ddf_pd_record *pdr;
63 	struct ddf_vd_record *vdr;
64 	void *cr;
65 	struct ddf_pdd_record *pdd;
66 	struct ddf_bbm_log *bbm;
67 };
68 
69 struct ddf_vol_meta {
70 	u_int	sectorsize;
71 	u_int	bigendian;
72 	struct ddf_header *hdr;
73 	struct ddf_cd_record *cdr;
74 	struct ddf_vd_entry *vde;
75 	struct ddf_vdc_record *vdc;
76 	struct ddf_vdc_record *bvdc[DDF_MAX_DISKS_HARD];
77 };
78 
79 struct g_raid_md_ddf_perdisk {
80 	struct ddf_meta	 pd_meta;
81 };
82 
83 struct g_raid_md_ddf_pervolume {
84 	struct ddf_vol_meta		 pv_meta;
85 	int				 pv_started;
86 	struct callout			 pv_start_co;	/* STARTING state timer. */
87 };
88 
89 struct g_raid_md_ddf_object {
90 	struct g_raid_md_object	 mdio_base;
91 	u_int			 mdio_bigendian;
92 	struct ddf_meta		 mdio_meta;
93 	int			 mdio_starting;
94 	struct callout		 mdio_start_co;	/* STARTING state timer. */
95 	int			 mdio_started;
96 	struct root_hold_token	*mdio_rootmount; /* Root mount delay token. */
97 };
98 
99 static g_raid_md_create_req_t g_raid_md_create_req_ddf;
100 static g_raid_md_taste_t g_raid_md_taste_ddf;
101 static g_raid_md_event_t g_raid_md_event_ddf;
102 static g_raid_md_volume_event_t g_raid_md_volume_event_ddf;
103 static g_raid_md_ctl_t g_raid_md_ctl_ddf;
104 static g_raid_md_write_t g_raid_md_write_ddf;
105 static g_raid_md_fail_disk_t g_raid_md_fail_disk_ddf;
106 static g_raid_md_free_disk_t g_raid_md_free_disk_ddf;
107 static g_raid_md_free_volume_t g_raid_md_free_volume_ddf;
108 static g_raid_md_free_t g_raid_md_free_ddf;
109 
110 static kobj_method_t g_raid_md_ddf_methods[] = {
111 	KOBJMETHOD(g_raid_md_create_req,	g_raid_md_create_req_ddf),
112 	KOBJMETHOD(g_raid_md_taste,	g_raid_md_taste_ddf),
113 	KOBJMETHOD(g_raid_md_event,	g_raid_md_event_ddf),
114 	KOBJMETHOD(g_raid_md_volume_event,	g_raid_md_volume_event_ddf),
115 	KOBJMETHOD(g_raid_md_ctl,	g_raid_md_ctl_ddf),
116 	KOBJMETHOD(g_raid_md_write,	g_raid_md_write_ddf),
117 	KOBJMETHOD(g_raid_md_fail_disk,	g_raid_md_fail_disk_ddf),
118 	KOBJMETHOD(g_raid_md_free_disk,	g_raid_md_free_disk_ddf),
119 	KOBJMETHOD(g_raid_md_free_volume,	g_raid_md_free_volume_ddf),
120 	KOBJMETHOD(g_raid_md_free,	g_raid_md_free_ddf),
121 	{ 0, 0 }
122 };
123 
124 static struct g_raid_md_class g_raid_md_ddf_class = {
125 	"DDF",
126 	g_raid_md_ddf_methods,
127 	sizeof(struct g_raid_md_ddf_object),
128 	.mdc_enable = 1,
129 	.mdc_priority = 100
130 };
131 
132 #define GET8(m, f)	((m)->f)
133 #define GET16(m, f)	((m)->bigendian ? be16dec(&(m)->f) : le16dec(&(m)->f))
134 #define GET32(m, f)	((m)->bigendian ? be32dec(&(m)->f) : le32dec(&(m)->f))
135 #define GET64(m, f)	((m)->bigendian ? be64dec(&(m)->f) : le64dec(&(m)->f))
136 #define GET8D(m, f)	(f)
137 #define GET16D(m, f)	((m)->bigendian ? be16dec(&f) : le16dec(&f))
138 #define GET32D(m, f)	((m)->bigendian ? be32dec(&f) : le32dec(&f))
139 #define GET64D(m, f)	((m)->bigendian ? be64dec(&f) : le64dec(&f))
140 #define GET8P(m, f)	(*(f))
141 #define GET16P(m, f)	((m)->bigendian ? be16dec(f) : le16dec(f))
142 #define GET32P(m, f)	((m)->bigendian ? be32dec(f) : le32dec(f))
143 #define GET64P(m, f)	((m)->bigendian ? be64dec(f) : le64dec(f))
144 
145 #define SET8P(m, f, v)							\
146 	(*(f) = (v))
147 #define SET16P(m, f, v)							\
148 	do {								\
149 		if ((m)->bigendian)					\
150 			be16enc((f), (v));				\
151 		else							\
152 			le16enc((f), (v));				\
153 	} while (0)
154 #define SET32P(m, f, v)							\
155 	do {								\
156 		if ((m)->bigendian)					\
157 			be32enc((f), (v));				\
158 		else							\
159 			le32enc((f), (v));				\
160 	} while (0)
161 #define SET64P(m, f, v)							\
162 	do {								\
163 		if ((m)->bigendian)					\
164 			be64enc((f), (v));				\
165 		else							\
166 			le64enc((f), (v));				\
167 	} while (0)
168 #define SET8(m, f, v)	SET8P((m), &((m)->f), (v))
169 #define SET16(m, f, v)	SET16P((m), &((m)->f), (v))
170 #define SET32(m, f, v)	SET32P((m), &((m)->f), (v))
171 #define SET64(m, f, v)	SET64P((m), &((m)->f), (v))
172 #define SET8D(m, f, v)	SET8P((m), &(f), (v))
173 #define SET16D(m, f, v)	SET16P((m), &(f), (v))
174 #define SET32D(m, f, v)	SET32P((m), &(f), (v))
175 #define SET64D(m, f, v)	SET64P((m), &(f), (v))
176 
177 #define GETCRNUM(m)	(GET32((m), hdr->cr_length) /			\
178 	GET16((m), hdr->Configuration_Record_Length))
179 
180 #define GETVDCPTR(m, n)	((struct ddf_vdc_record *)((uint8_t *)(m)->cr +	\
181 	(n) * GET16((m), hdr->Configuration_Record_Length) *		\
182 	(m)->sectorsize))
183 
184 #define GETSAPTR(m, n)	((struct ddf_sa_record *)((uint8_t *)(m)->cr +	\
185 	(n) * GET16((m), hdr->Configuration_Record_Length) *		\
186 	(m)->sectorsize))
187 
188 static int
189 isff(uint8_t *buf, int size)
190 {
191 	int i;
192 
193 	for (i = 0; i < size; i++)
194 		if (buf[i] != 0xff)
195 			return (0);
196 	return (1);
197 }
198 
199 static void
200 print_guid(uint8_t *buf)
201 {
202 	int i, ascii;
203 
204 	ascii = 1;
205 	for (i = 0; i < 24; i++) {
206 		if (buf[i] != 0 && (buf[i] < ' ' || buf[i] > 127)) {
207 			ascii = 0;
208 			break;
209 		}
210 	}
211 	if (ascii) {
212 		printf("'%.24s'", buf);
213 	} else {
214 		for (i = 0; i < 24; i++)
215 			printf("%02x", buf[i]);
216 	}
217 }
218 
219 static void
220 g_raid_md_ddf_print(struct ddf_meta *meta)
221 {
222 	struct ddf_vdc_record *vdc;
223 	struct ddf_vuc_record *vuc;
224 	struct ddf_sa_record *sa;
225 	uint64_t *val2;
226 	uint32_t val;
227 	int i, j, k, num, num2;
228 
229 	if (g_raid_debug < 1)
230 		return;
231 
232 	printf("********* DDF Metadata *********\n");
233 	printf("**** Header ****\n");
234 	printf("DDF_Header_GUID      ");
235 	print_guid(meta->hdr->DDF_Header_GUID);
236 	printf("\n");
237 	printf("DDF_rev              %8.8s\n", (char *)&meta->hdr->DDF_rev[0]);
238 	printf("Sequence_Number      0x%08x\n", GET32(meta, hdr->Sequence_Number));
239 	printf("TimeStamp            0x%08x\n", GET32(meta, hdr->TimeStamp));
240 	printf("Open_Flag            0x%02x\n", GET16(meta, hdr->Open_Flag));
241 	printf("Foreign_Flag         0x%02x\n", GET16(meta, hdr->Foreign_Flag));
242 	printf("Diskgrouping         0x%02x\n", GET16(meta, hdr->Diskgrouping));
243 	printf("Primary_Header_LBA   %ju\n", GET64(meta, hdr->Primary_Header_LBA));
244 	printf("Secondary_Header_LBA %ju\n", GET64(meta, hdr->Secondary_Header_LBA));
245 	printf("WorkSpace_Length     %u\n", GET32(meta, hdr->WorkSpace_Length));
246 	printf("WorkSpace_LBA        %ju\n", GET64(meta, hdr->WorkSpace_LBA));
247 	printf("Max_PD_Entries       %u\n", GET16(meta, hdr->Max_PD_Entries));
248 	printf("Max_VD_Entries       %u\n", GET16(meta, hdr->Max_VD_Entries));
249 	printf("Max_Partitions       %u\n", GET16(meta, hdr->Max_Partitions));
250 	printf("Configuration_Record_Length %u\n", GET16(meta, hdr->Configuration_Record_Length));
251 	printf("Max_Primary_Element_Entries %u\n", GET16(meta, hdr->Max_Primary_Element_Entries));
252 	printf("Controller Data      %u:%u\n", GET32(meta, hdr->cd_section), GET32(meta, hdr->cd_length));
253 	printf("Physical Disk        %u:%u\n", GET32(meta, hdr->pdr_section), GET32(meta, hdr->pdr_length));
254 	printf("Virtual Disk         %u:%u\n", GET32(meta, hdr->vdr_section), GET32(meta, hdr->vdr_length));
255 	printf("Configuration Recs   %u:%u\n", GET32(meta, hdr->cr_section), GET32(meta, hdr->cr_length));
256 	printf("Physical Disk Recs   %u:%u\n", GET32(meta, hdr->pdd_section), GET32(meta, hdr->pdd_length));
257 	printf("BBM Log              %u:%u\n", GET32(meta, hdr->bbmlog_section), GET32(meta, hdr->bbmlog_length));
258 	printf("Diagnostic Space     %u:%u\n", GET32(meta, hdr->Diagnostic_Space), GET32(meta, hdr->Diagnostic_Space_Length));
259 	printf("Vendor_Specific_Logs %u:%u\n", GET32(meta, hdr->Vendor_Specific_Logs), GET32(meta, hdr->Vendor_Specific_Logs_Length));
260 	printf("**** Controller Data ****\n");
261 	printf("Controller_GUID      ");
262 	print_guid(meta->cdr->Controller_GUID);
263 	printf("\n");
264 	printf("Controller_Type      0x%04x%04x 0x%04x%04x\n",
265 	    GET16(meta, cdr->Controller_Type.Vendor_ID),
266 	    GET16(meta, cdr->Controller_Type.Device_ID),
267 	    GET16(meta, cdr->Controller_Type.SubVendor_ID),
268 	    GET16(meta, cdr->Controller_Type.SubDevice_ID));
269 	printf("Product_ID           '%.16s'\n", (char *)&meta->cdr->Product_ID[0]);
270 	printf("**** Physical Disk Records ****\n");
271 	printf("Populated_PDEs       %u\n", GET16(meta, pdr->Populated_PDEs));
272 	printf("Max_PDE_Supported    %u\n", GET16(meta, pdr->Max_PDE_Supported));
273 	for (j = 0; j < GET16(meta, pdr->Populated_PDEs); j++) {
274 		if (isff(meta->pdr->entry[j].PD_GUID, 24))
275 			continue;
276 		if (GET32(meta, pdr->entry[j].PD_Reference) == 0xffffffff)
277 			continue;
278 		printf("PD_GUID              ");
279 		print_guid(meta->pdr->entry[j].PD_GUID);
280 		printf("\n");
281 		printf("PD_Reference         0x%08x\n",
282 		    GET32(meta, pdr->entry[j].PD_Reference));
283 		printf("PD_Type              0x%04x\n",
284 		    GET16(meta, pdr->entry[j].PD_Type));
285 		printf("PD_State             0x%04x\n",
286 		    GET16(meta, pdr->entry[j].PD_State));
287 		printf("Configured_Size      %ju\n",
288 		    GET64(meta, pdr->entry[j].Configured_Size));
289 		printf("Block_Size           %u\n",
290 		    GET16(meta, pdr->entry[j].Block_Size));
291 	}
292 	printf("**** Virtual Disk Records ****\n");
293 	printf("Populated_VDEs       %u\n", GET16(meta, vdr->Populated_VDEs));
294 	printf("Max_VDE_Supported    %u\n", GET16(meta, vdr->Max_VDE_Supported));
295 	for (j = 0; j < GET16(meta, vdr->Populated_VDEs); j++) {
296 		if (isff(meta->vdr->entry[j].VD_GUID, 24))
297 			continue;
298 		printf("VD_GUID              ");
299 		print_guid(meta->vdr->entry[j].VD_GUID);
300 		printf("\n");
301 		printf("VD_Number            0x%04x\n",
302 		    GET16(meta, vdr->entry[j].VD_Number));
303 		printf("VD_Type              0x%04x\n",
304 		    GET16(meta, vdr->entry[j].VD_Type));
305 		printf("VD_State             0x%02x\n",
306 		    GET8(meta, vdr->entry[j].VD_State));
307 		printf("Init_State           0x%02x\n",
308 		    GET8(meta, vdr->entry[j].Init_State));
309 		printf("Drive_Failures_Remaining %u\n",
310 		    GET8(meta, vdr->entry[j].Drive_Failures_Remaining));
311 		printf("VD_Name              '%.16s'\n",
312 		    (char *)&meta->vdr->entry[j].VD_Name);
313 	}
314 	printf("**** Configuration Records ****\n");
315 	num = GETCRNUM(meta);
316 	for (j = 0; j < num; j++) {
317 		vdc = GETVDCPTR(meta, j);
318 		val = GET32D(meta, vdc->Signature);
319 		switch (val) {
320 		case DDF_VDCR_SIGNATURE:
321 			printf("** Virtual Disk Configuration **\n");
322 			printf("VD_GUID              ");
323 			print_guid(vdc->VD_GUID);
324 			printf("\n");
325 			printf("Timestamp            0x%08x\n",
326 			    GET32D(meta, vdc->Timestamp));
327 			printf("Sequence_Number      0x%08x\n",
328 			    GET32D(meta, vdc->Sequence_Number));
329 			printf("Primary_Element_Count %u\n",
330 			    GET16D(meta, vdc->Primary_Element_Count));
331 			printf("Stripe_Size          %u\n",
332 			    GET8D(meta, vdc->Stripe_Size));
333 			printf("Primary_RAID_Level   0x%02x\n",
334 			    GET8D(meta, vdc->Primary_RAID_Level));
335 			printf("RLQ                  0x%02x\n",
336 			    GET8D(meta, vdc->RLQ));
337 			printf("Secondary_Element_Count %u\n",
338 			    GET8D(meta, vdc->Secondary_Element_Count));
339 			printf("Secondary_Element_Seq %u\n",
340 			    GET8D(meta, vdc->Secondary_Element_Seq));
341 			printf("Secondary_RAID_Level 0x%02x\n",
342 			    GET8D(meta, vdc->Secondary_RAID_Level));
343 			printf("Block_Count          %ju\n",
344 			    GET64D(meta, vdc->Block_Count));
345 			printf("VD_Size              %ju\n",
346 			    GET64D(meta, vdc->VD_Size));
347 			printf("Block_Size           %u\n",
348 			    GET16D(meta, vdc->Block_Size));
349 			printf("Rotate_Parity_count  %u\n",
350 			    GET8D(meta, vdc->Rotate_Parity_count));
351 			printf("Associated_Spare_Disks");
352 			for (i = 0; i < 8; i++) {
353 				if (GET32D(meta, vdc->Associated_Spares[i]) != 0xffffffff)
354 					printf(" 0x%08x", GET32D(meta, vdc->Associated_Spares[i]));
355 			}
356 			printf("\n");
357 			printf("Cache_Flags          %016jx\n",
358 			    GET64D(meta, vdc->Cache_Flags));
359 			printf("BG_Rate              %u\n",
360 			    GET8D(meta, vdc->BG_Rate));
361 			printf("MDF_Parity_Disks     %u\n",
362 			    GET8D(meta, vdc->MDF_Parity_Disks));
363 			printf("MDF_Parity_Generator_Polynomial 0x%04x\n",
364 			    GET16D(meta, vdc->MDF_Parity_Generator_Polynomial));
365 			printf("MDF_Constant_Generation_Method 0x%02x\n",
366 			    GET8D(meta, vdc->MDF_Constant_Generation_Method));
367 			printf("Physical_Disks      ");
368 			num2 = GET16D(meta, vdc->Primary_Element_Count);
369 			val2 = (uint64_t *)&(vdc->Physical_Disk_Sequence[GET16(meta, hdr->Max_Primary_Element_Entries)]);
370 			for (i = 0; i < num2; i++)
371 				printf(" 0x%08x @ %ju",
372 				    GET32D(meta, vdc->Physical_Disk_Sequence[i]),
373 				    GET64P(meta, val2 + i));
374 			printf("\n");
375 			break;
376 		case DDF_VUCR_SIGNATURE:
377 			printf("** Vendor Unique Configuration **\n");
378 			vuc = (struct ddf_vuc_record *)vdc;
379 			printf("VD_GUID              ");
380 			print_guid(vuc->VD_GUID);
381 			printf("\n");
382 			break;
383 		case DDF_SA_SIGNATURE:
384 			printf("** Spare Assignment Configuration **\n");
385 			sa = (struct ddf_sa_record *)vdc;
386 			printf("Timestamp            0x%08x\n",
387 			    GET32D(meta, sa->Timestamp));
388 			printf("Spare_Type           0x%02x\n",
389 			    GET8D(meta, sa->Spare_Type));
390 			printf("Populated_SAEs       %u\n",
391 			    GET16D(meta, sa->Populated_SAEs));
392 			printf("MAX_SAE_Supported    %u\n",
393 			    GET16D(meta, sa->MAX_SAE_Supported));
394 			for (i = 0; i < GET16D(meta, sa->Populated_SAEs); i++) {
395 				if (isff(sa->entry[i].VD_GUID, 24))
396 					continue;
397 				printf("VD_GUID             ");
398 				for (k = 0; k < 24; k++)
399 					printf("%02x", sa->entry[i].VD_GUID[k]);
400 				printf("\n");
401 				printf("Secondary_Element   %u\n",
402 				    GET16D(meta, sa->entry[i].Secondary_Element));
403 			}
404 			break;
405 		case 0x00000000:
406 		case 0xFFFFFFFF:
407 			break;
408 		default:
409 			printf("Unknown configuration signature %08x\n", val);
410 			break;
411 		}
412 	}
413 	printf("**** Physical Disk Data ****\n");
414 	printf("PD_GUID              ");
415 	print_guid(meta->pdd->PD_GUID);
416 	printf("\n");
417 	printf("PD_Reference         0x%08x\n",
418 	    GET32(meta, pdd->PD_Reference));
419 	printf("Forced_Ref_Flag      0x%02x\n",
420 	    GET8(meta, pdd->Forced_Ref_Flag));
421 	printf("Forced_PD_GUID_Flag  0x%02x\n",
422 	    GET8(meta, pdd->Forced_PD_GUID_Flag));
423 }
424 
425 static int
426 ddf_meta_find_pd(struct ddf_meta *meta, uint8_t *GUID, uint32_t PD_Reference)
427 {
428 	int i;
429 
430 	for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
431 		if (GUID != NULL) {
432 			if (memcmp(meta->pdr->entry[i].PD_GUID, GUID, 24) == 0)
433 				return (i);
434 		} else if (PD_Reference != 0xffffffff) {
435 			if (GET32(meta, pdr->entry[i].PD_Reference) == PD_Reference)
436 				return (i);
437 		} else
438 			if (isff(meta->pdr->entry[i].PD_GUID, 24))
439 				return (i);
440 	}
441 	if (GUID == NULL && PD_Reference == 0xffffffff) {
442 		if (i >= GET16(meta, pdr->Max_PDE_Supported))
443 			return (-1);
444 		SET16(meta, pdr->Populated_PDEs, i + 1);
445 		return (i);
446 	}
447 	return (-1);
448 }
449 
450 static int
451 ddf_meta_find_vd(struct ddf_meta *meta, uint8_t *GUID)
452 {
453 	int i;
454 
455 	for (i = 0; i < GET16(meta, vdr->Populated_VDEs); i++) {
456 		if (GUID != NULL) {
457 			if (memcmp(meta->vdr->entry[i].VD_GUID, GUID, 24) == 0)
458 				return (i);
459 		} else
460 			if (isff(meta->vdr->entry[i].VD_GUID, 24))
461 				return (i);
462 	}
463 	if (GUID == NULL) {
464 		if (i >= GET16(meta, vdr->Max_VDE_Supported))
465 			return (-1);
466 		SET16(meta, vdr->Populated_VDEs, i + 1);
467 		return (i);
468 	}
469 	return (-1);
470 }
471 
472 static struct ddf_vdc_record *
473 ddf_meta_find_vdc(struct ddf_meta *meta, uint8_t *GUID)
474 {
475 	struct ddf_vdc_record *vdc;
476 	int i, num;
477 
478 	num = GETCRNUM(meta);
479 	for (i = 0; i < num; i++) {
480 		vdc = GETVDCPTR(meta, i);
481 		if (GUID != NULL) {
482 			if (GET32D(meta, vdc->Signature) == DDF_VDCR_SIGNATURE &&
483 			    memcmp(vdc->VD_GUID, GUID, 24) == 0)
484 				return (vdc);
485 		} else
486 			if (GET32D(meta, vdc->Signature) == 0xffffffff ||
487 			    GET32D(meta, vdc->Signature) == 0)
488 				return (vdc);
489 	}
490 	return (NULL);
491 }
492 
493 static int
494 ddf_meta_count_vdc(struct ddf_meta *meta, uint8_t *GUID)
495 {
496 	struct ddf_vdc_record *vdc;
497 	int i, num, cnt;
498 
499 	cnt = 0;
500 	num = GETCRNUM(meta);
501 	for (i = 0; i < num; i++) {
502 		vdc = GETVDCPTR(meta, i);
503 		if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
504 			continue;
505 		if (GUID == NULL || memcmp(vdc->VD_GUID, GUID, 24) == 0)
506 			cnt++;
507 	}
508 	return (cnt);
509 }
510 
511 static int
512 ddf_meta_find_disk(struct ddf_vol_meta *vmeta, uint32_t PD_Reference,
513     int *bvdp, int *posp)
514 {
515 	int i, bvd, pos;
516 
517 	i = 0;
518 	for (bvd = 0; bvd < GET8(vmeta, vdc->Secondary_Element_Count); bvd++) {
519 		if (vmeta->bvdc[bvd] == NULL) {
520 			i += GET16(vmeta, vdc->Primary_Element_Count); // XXX
521 			continue;
522 		}
523 		for (pos = 0; pos < GET16(vmeta, bvdc[bvd]->Primary_Element_Count);
524 		    pos++, i++) {
525 			if (GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]) ==
526 			    PD_Reference) {
527 				if (bvdp != NULL)
528 					*bvdp = bvd;
529 				if (posp != NULL)
530 					*posp = pos;
531 				return (i);
532 			}
533 		}
534 	}
535 	return (-1);
536 }
537 
538 static struct ddf_sa_record *
539 ddf_meta_find_sa(struct ddf_meta *meta, int create)
540 {
541 	struct ddf_sa_record *sa;
542 	int i, num;
543 
544 	num = GETCRNUM(meta);
545 	for (i = 0; i < num; i++) {
546 		sa = GETSAPTR(meta, i);
547 		if (GET32D(meta, sa->Signature) == DDF_SA_SIGNATURE)
548 			return (sa);
549 	}
550 	if (create) {
551 		for (i = 0; i < num; i++) {
552 			sa = GETSAPTR(meta, i);
553 			if (GET32D(meta, sa->Signature) == 0xffffffff ||
554 			    GET32D(meta, sa->Signature) == 0)
555 				return (sa);
556 		}
557 	}
558 	return (NULL);
559 }
560 
561 static void
562 ddf_meta_create(struct g_raid_disk *disk, struct ddf_meta *sample)
563 {
564 	struct timespec ts;
565 	struct clocktime ct;
566 	struct g_raid_md_ddf_perdisk *pd;
567 	struct g_raid_md_ddf_object *mdi;
568 	struct ddf_meta *meta;
569 	struct ddf_pd_entry *pde;
570 	off_t anchorlba;
571 	u_int ss, pos, size;
572 	int len, error;
573 	char serial_buffer[24];
574 
575 	if (sample->hdr == NULL)
576 		sample = NULL;
577 
578 	mdi = (struct g_raid_md_ddf_object *)disk->d_softc->sc_md;
579 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
580 	meta = &pd->pd_meta;
581 	ss = disk->d_consumer->provider->sectorsize;
582 	anchorlba = disk->d_consumer->provider->mediasize / ss - 1;
583 
584 	meta->sectorsize = ss;
585 	meta->bigendian = sample ? sample->bigendian : mdi->mdio_bigendian;
586 	getnanotime(&ts);
587 	clock_ts_to_ct(&ts, &ct);
588 
589 	/* Header */
590 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
591 	memset(meta->hdr, 0xff, ss);
592 	if (sample) {
593 		memcpy(meta->hdr, sample->hdr, sizeof(struct ddf_header));
594 		if (ss != sample->sectorsize) {
595 			SET32(meta, hdr->WorkSpace_Length,
596 			    howmany(GET32(sample, hdr->WorkSpace_Length) *
597 			        sample->sectorsize, ss));
598 			SET16(meta, hdr->Configuration_Record_Length,
599 			    howmany(GET16(sample,
600 			        hdr->Configuration_Record_Length) *
601 				sample->sectorsize, ss));
602 			SET32(meta, hdr->cd_length,
603 			    howmany(GET32(sample, hdr->cd_length) *
604 			        sample->sectorsize, ss));
605 			SET32(meta, hdr->pdr_length,
606 			    howmany(GET32(sample, hdr->pdr_length) *
607 			        sample->sectorsize, ss));
608 			SET32(meta, hdr->vdr_length,
609 			    howmany(GET32(sample, hdr->vdr_length) *
610 			        sample->sectorsize, ss));
611 			SET32(meta, hdr->cr_length,
612 			    howmany(GET32(sample, hdr->cr_length) *
613 			        sample->sectorsize, ss));
614 			SET32(meta, hdr->pdd_length,
615 			    howmany(GET32(sample, hdr->pdd_length) *
616 			        sample->sectorsize, ss));
617 			SET32(meta, hdr->bbmlog_length,
618 			    howmany(GET32(sample, hdr->bbmlog_length) *
619 			        sample->sectorsize, ss));
620 			SET32(meta, hdr->Diagnostic_Space,
621 			    howmany(GET32(sample, hdr->bbmlog_length) *
622 			        sample->sectorsize, ss));
623 			SET32(meta, hdr->Vendor_Specific_Logs,
624 			    howmany(GET32(sample, hdr->bbmlog_length) *
625 			        sample->sectorsize, ss));
626 		}
627 	} else {
628 		SET32(meta, hdr->Signature, DDF_HEADER_SIGNATURE);
629 		snprintf(meta->hdr->DDF_Header_GUID, 25, "FreeBSD %08x%08x",
630 		    (u_int)(ts.tv_sec - DECADE), arc4random());
631 		memcpy(meta->hdr->DDF_rev, "02.00.00", 8);
632 		SET32(meta, hdr->TimeStamp, (ts.tv_sec - DECADE));
633 		SET32(meta, hdr->WorkSpace_Length, 16 * 1024 * 1024 / ss);
634 		SET16(meta, hdr->Max_PD_Entries, DDF_MAX_DISKS - 1);
635 		SET16(meta, hdr->Max_VD_Entries, DDF_MAX_VDISKS);
636 		SET16(meta, hdr->Max_Partitions, DDF_MAX_PARTITIONS);
637 		SET16(meta, hdr->Max_Primary_Element_Entries, DDF_MAX_DISKS);
638 		SET16(meta, hdr->Configuration_Record_Length,
639 		    howmany(sizeof(struct ddf_vdc_record) + (4 + 8) *
640 		        GET16(meta, hdr->Max_Primary_Element_Entries), ss));
641 		SET32(meta, hdr->cd_length,
642 		    howmany(sizeof(struct ddf_cd_record), ss));
643 		SET32(meta, hdr->pdr_length,
644 		    howmany(sizeof(struct ddf_pd_record) +
645 		        sizeof(struct ddf_pd_entry) * GET16(meta,
646 			hdr->Max_PD_Entries), ss));
647 		SET32(meta, hdr->vdr_length,
648 		    howmany(sizeof(struct ddf_vd_record) +
649 		        sizeof(struct ddf_vd_entry) *
650 			GET16(meta, hdr->Max_VD_Entries), ss));
651 		SET32(meta, hdr->cr_length,
652 		    GET16(meta, hdr->Configuration_Record_Length) *
653 		    (GET16(meta, hdr->Max_Partitions) + 1));
654 		SET32(meta, hdr->pdd_length,
655 		    howmany(sizeof(struct ddf_pdd_record), ss));
656 		SET32(meta, hdr->bbmlog_length, 0);
657 		SET32(meta, hdr->Diagnostic_Space_Length, 0);
658 		SET32(meta, hdr->Vendor_Specific_Logs_Length, 0);
659 	}
660 	pos = 1;
661 	SET32(meta, hdr->cd_section, pos);
662 	pos += GET32(meta, hdr->cd_length);
663 	SET32(meta, hdr->pdr_section, pos);
664 	pos += GET32(meta, hdr->pdr_length);
665 	SET32(meta, hdr->vdr_section, pos);
666 	pos += GET32(meta, hdr->vdr_length);
667 	SET32(meta, hdr->cr_section, pos);
668 	pos += GET32(meta, hdr->cr_length);
669 	SET32(meta, hdr->pdd_section, pos);
670 	pos += GET32(meta, hdr->pdd_length);
671 	SET32(meta, hdr->bbmlog_section,
672 	    GET32(meta, hdr->bbmlog_length) != 0 ? pos : 0xffffffff);
673 	pos += GET32(meta, hdr->bbmlog_length);
674 	SET32(meta, hdr->Diagnostic_Space,
675 	    GET32(meta, hdr->Diagnostic_Space_Length) != 0 ? pos : 0xffffffff);
676 	pos += GET32(meta, hdr->Diagnostic_Space_Length);
677 	SET32(meta, hdr->Vendor_Specific_Logs,
678 	    GET32(meta, hdr->Vendor_Specific_Logs_Length) != 0 ? pos : 0xffffffff);
679 	pos += min(GET32(meta, hdr->Vendor_Specific_Logs_Length), 1);
680 	SET64(meta, hdr->Primary_Header_LBA,
681 	    anchorlba - pos);
682 	SET64(meta, hdr->Secondary_Header_LBA,
683 	    0xffffffffffffffffULL);
684 	SET64(meta, hdr->WorkSpace_LBA,
685 	    anchorlba + 1 - 32 * 1024 * 1024 / ss);
686 
687 	/* Controller Data */
688 	size = GET32(meta, hdr->cd_length) * ss;
689 	meta->cdr = malloc(size, M_MD_DDF, M_WAITOK);
690 	memset(meta->cdr, 0xff, size);
691 	SET32(meta, cdr->Signature, DDF_CONTROLLER_DATA_SIGNATURE);
692 	memcpy(meta->cdr->Controller_GUID, "FreeBSD GEOM RAID SERIAL", 24);
693 	memcpy(meta->cdr->Product_ID, "FreeBSD GEOMRAID", 16);
694 
695 	/* Physical Drive Records. */
696 	size = GET32(meta, hdr->pdr_length) * ss;
697 	meta->pdr = malloc(size, M_MD_DDF, M_WAITOK);
698 	memset(meta->pdr, 0xff, size);
699 	SET32(meta, pdr->Signature, DDF_PDR_SIGNATURE);
700 	SET16(meta, pdr->Populated_PDEs, 1);
701 	SET16(meta, pdr->Max_PDE_Supported,
702 	    GET16(meta, hdr->Max_PD_Entries));
703 
704 	pde = &meta->pdr->entry[0];
705 	len = sizeof(serial_buffer);
706 	error = g_io_getattr("GEOM::ident", disk->d_consumer, &len, serial_buffer);
707 	if (error == 0 && (len = strlen (serial_buffer)) >= 6 && len <= 20)
708 		snprintf(pde->PD_GUID, 25, "DISK%20s", serial_buffer);
709 	else
710 		snprintf(pde->PD_GUID, 25, "DISK%04d%02d%02d%08x%04x",
711 		    ct.year, ct.mon, ct.day,
712 		    arc4random(), arc4random() & 0xffff);
713 	SET32D(meta, pde->PD_Reference, arc4random());
714 	SET16D(meta, pde->PD_Type, DDF_PDE_GUID_FORCE);
715 	SET16D(meta, pde->PD_State, 0);
716 	SET64D(meta, pde->Configured_Size,
717 	    anchorlba + 1 - 32 * 1024 * 1024 / ss);
718 	SET16D(meta, pde->Block_Size, ss);
719 
720 	/* Virtual Drive Records. */
721 	size = GET32(meta, hdr->vdr_length) * ss;
722 	meta->vdr = malloc(size, M_MD_DDF, M_WAITOK);
723 	memset(meta->vdr, 0xff, size);
724 	SET32(meta, vdr->Signature, DDF_VD_RECORD_SIGNATURE);
725 	SET32(meta, vdr->Populated_VDEs, 0);
726 	SET16(meta, vdr->Max_VDE_Supported,
727 	    GET16(meta, hdr->Max_VD_Entries));
728 
729 	/* Configuration Records. */
730 	size = GET32(meta, hdr->cr_length) * ss;
731 	meta->cr = malloc(size, M_MD_DDF, M_WAITOK);
732 	memset(meta->cr, 0xff, size);
733 
734 	/* Physical Disk Data. */
735 	size = GET32(meta, hdr->pdd_length) * ss;
736 	meta->pdd = malloc(size, M_MD_DDF, M_WAITOK);
737 	memset(meta->pdd, 0xff, size);
738 	SET32(meta, pdd->Signature, DDF_PDD_SIGNATURE);
739 	memcpy(meta->pdd->PD_GUID, pde->PD_GUID, 24);
740 	SET32(meta, pdd->PD_Reference, GET32D(meta, pde->PD_Reference));
741 	SET8(meta, pdd->Forced_Ref_Flag, DDF_PDD_FORCED_REF);
742 	SET8(meta, pdd->Forced_PD_GUID_Flag, DDF_PDD_FORCED_GUID);
743 
744 	/* Bad Block Management Log. */
745 	if (GET32(meta, hdr->bbmlog_length) != 0) {
746 		size = GET32(meta, hdr->bbmlog_length) * ss;
747 		meta->bbm = malloc(size, M_MD_DDF, M_WAITOK);
748 		memset(meta->bbm, 0xff, size);
749 		SET32(meta, bbm->Signature, DDF_BBML_SIGNATURE);
750 		SET32(meta, bbm->Entry_Count, 0);
751 		SET32(meta, bbm->Spare_Block_Count, 0);
752 	}
753 }
754 
755 static void
756 ddf_meta_copy(struct ddf_meta *dst, struct ddf_meta *src)
757 {
758 	struct ddf_header *hdr;
759 	u_int ss;
760 
761 	hdr = src->hdr;
762 	dst->bigendian = src->bigendian;
763 	ss = dst->sectorsize = src->sectorsize;
764 	dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
765 	memcpy(dst->hdr, src->hdr, ss);
766 	dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
767 	memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
768 	dst->pdr = malloc(GET32(src, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
769 	memcpy(dst->pdr, src->pdr, GET32(src, hdr->pdr_length) * ss);
770 	dst->vdr = malloc(GET32(src, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
771 	memcpy(dst->vdr, src->vdr, GET32(src, hdr->vdr_length) * ss);
772 	dst->cr = malloc(GET32(src, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
773 	memcpy(dst->cr, src->cr, GET32(src, hdr->cr_length) * ss);
774 	dst->pdd = malloc(GET32(src, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
775 	memcpy(dst->pdd, src->pdd, GET32(src, hdr->pdd_length) * ss);
776 	if (src->bbm != NULL) {
777 		dst->bbm = malloc(GET32(src, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
778 		memcpy(dst->bbm, src->bbm, GET32(src, hdr->bbmlog_length) * ss);
779 	}
780 }
781 
782 static void
783 ddf_meta_update(struct ddf_meta *meta, struct ddf_meta *src)
784 {
785 	struct ddf_pd_entry *pde, *spde;
786 	int i, j;
787 
788 	for (i = 0; i < GET16(src, pdr->Populated_PDEs); i++) {
789 		spde = &src->pdr->entry[i];
790 		if (isff(spde->PD_GUID, 24))
791 			continue;
792 		j = ddf_meta_find_pd(meta, NULL,
793 		    GET32(src, pdr->entry[i].PD_Reference));
794 		if (j < 0) {
795 			j = ddf_meta_find_pd(meta, NULL, 0xffffffff);
796 			pde = &meta->pdr->entry[j];
797 			memcpy(pde, spde, sizeof(*pde));
798 		} else {
799 			pde = &meta->pdr->entry[j];
800 			SET16D(meta, pde->PD_State,
801 			    GET16D(meta, pde->PD_State) |
802 			    GET16D(src, pde->PD_State));
803 		}
804 	}
805 }
806 
807 static void
808 ddf_meta_free(struct ddf_meta *meta)
809 {
810 
811 	if (meta->hdr != NULL) {
812 		free(meta->hdr, M_MD_DDF);
813 		meta->hdr = NULL;
814 	}
815 	if (meta->cdr != NULL) {
816 		free(meta->cdr, M_MD_DDF);
817 		meta->cdr = NULL;
818 	}
819 	if (meta->pdr != NULL) {
820 		free(meta->pdr, M_MD_DDF);
821 		meta->pdr = NULL;
822 	}
823 	if (meta->vdr != NULL) {
824 		free(meta->vdr, M_MD_DDF);
825 		meta->vdr = NULL;
826 	}
827 	if (meta->cr != NULL) {
828 		free(meta->cr, M_MD_DDF);
829 		meta->cr = NULL;
830 	}
831 	if (meta->pdd != NULL) {
832 		free(meta->pdd, M_MD_DDF);
833 		meta->pdd = NULL;
834 	}
835 	if (meta->bbm != NULL) {
836 		free(meta->bbm, M_MD_DDF);
837 		meta->bbm = NULL;
838 	}
839 }
840 
841 static void
842 ddf_vol_meta_create(struct ddf_vol_meta *meta, struct ddf_meta *sample)
843 {
844 	struct timespec ts;
845 	struct clocktime ct;
846 	struct ddf_header *hdr;
847 	u_int ss, size;
848 
849 	hdr = sample->hdr;
850 	meta->bigendian = sample->bigendian;
851 	ss = meta->sectorsize = sample->sectorsize;
852 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
853 	memcpy(meta->hdr, sample->hdr, ss);
854 	meta->cdr = malloc(GET32(sample, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
855 	memcpy(meta->cdr, sample->cdr, GET32(sample, hdr->cd_length) * ss);
856 	meta->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
857 	memset(meta->vde, 0xff, sizeof(struct ddf_vd_entry));
858 	getnanotime(&ts);
859 	clock_ts_to_ct(&ts, &ct);
860 	snprintf(meta->vde->VD_GUID, 25, "FreeBSD%04d%02d%02d%08x%01x",
861 	    ct.year, ct.mon, ct.day,
862 	    arc4random(), arc4random() & 0xf);
863 	size = GET16(sample, hdr->Configuration_Record_Length) * ss;
864 	meta->vdc = malloc(size, M_MD_DDF, M_WAITOK);
865 	memset(meta->vdc, 0xff, size);
866 	SET32(meta, vdc->Signature, DDF_VDCR_SIGNATURE);
867 	memcpy(meta->vdc->VD_GUID, meta->vde->VD_GUID, 24);
868 	SET32(meta, vdc->Sequence_Number, 0);
869 }
870 
871 static void
872 ddf_vol_meta_update(struct ddf_vol_meta *dst, struct ddf_meta *src,
873     uint8_t *GUID, int started)
874 {
875 	struct ddf_header *hdr;
876 	struct ddf_vd_entry *vde;
877 	struct ddf_vdc_record *vdc;
878 	int vnew, bvnew, bvd, size;
879 	u_int ss;
880 
881 	hdr = src->hdr;
882 	vde = &src->vdr->entry[ddf_meta_find_vd(src, GUID)];
883 	vdc = ddf_meta_find_vdc(src, GUID);
884 	if (GET8D(src, vdc->Secondary_Element_Count) == 1)
885 		bvd = 0;
886 	else
887 		bvd = GET8D(src, vdc->Secondary_Element_Seq);
888 	size = GET16(src, hdr->Configuration_Record_Length) * src->sectorsize;
889 
890 	if (dst->vdc == NULL ||
891 	    (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
892 	    GET32(dst, vdc->Sequence_Number))) > 0))
893 		vnew = 1;
894 	else
895 		vnew = 0;
896 
897 	if (dst->bvdc[bvd] == NULL ||
898 	    (!started && ((int32_t)(GET32D(src, vdc->Sequence_Number) -
899 	    GET32(dst, bvdc[bvd]->Sequence_Number))) > 0))
900 		bvnew = 1;
901 	else
902 		bvnew = 0;
903 
904 	if (vnew) {
905 		dst->bigendian = src->bigendian;
906 		ss = dst->sectorsize = src->sectorsize;
907 		if (dst->hdr != NULL)
908 			free(dst->hdr, M_MD_DDF);
909 		dst->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
910 		memcpy(dst->hdr, src->hdr, ss);
911 		if (dst->cdr != NULL)
912 			free(dst->cdr, M_MD_DDF);
913 		dst->cdr = malloc(GET32(src, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
914 		memcpy(dst->cdr, src->cdr, GET32(src, hdr->cd_length) * ss);
915 		if (dst->vde != NULL)
916 			free(dst->vde, M_MD_DDF);
917 		dst->vde = malloc(sizeof(struct ddf_vd_entry), M_MD_DDF, M_WAITOK);
918 		memcpy(dst->vde, vde, sizeof(struct ddf_vd_entry));
919 		if (dst->vdc != NULL)
920 			free(dst->vdc, M_MD_DDF);
921 		dst->vdc = malloc(size, M_MD_DDF, M_WAITOK);
922 		memcpy(dst->vdc, vdc, size);
923 	}
924 	if (bvnew) {
925 		if (dst->bvdc[bvd] != NULL)
926 			free(dst->bvdc[bvd], M_MD_DDF);
927 		dst->bvdc[bvd] = malloc(size, M_MD_DDF, M_WAITOK);
928 		memcpy(dst->bvdc[bvd], vdc, size);
929 	}
930 }
931 
932 static void
933 ddf_vol_meta_free(struct ddf_vol_meta *meta)
934 {
935 	int i;
936 
937 	if (meta->hdr != NULL) {
938 		free(meta->hdr, M_MD_DDF);
939 		meta->hdr = NULL;
940 	}
941 	if (meta->cdr != NULL) {
942 		free(meta->cdr, M_MD_DDF);
943 		meta->cdr = NULL;
944 	}
945 	if (meta->vde != NULL) {
946 		free(meta->vde, M_MD_DDF);
947 		meta->vde = NULL;
948 	}
949 	if (meta->vdc != NULL) {
950 		free(meta->vdc, M_MD_DDF);
951 		meta->vdc = NULL;
952 	}
953 	for (i = 0; i < DDF_MAX_DISKS_HARD; i++) {
954 		if (meta->bvdc[i] != NULL) {
955 			free(meta->bvdc[i], M_MD_DDF);
956 			meta->bvdc[i] = NULL;
957 		}
958 	}
959 }
960 
961 static int
962 ddf_meta_unused_range(struct ddf_meta *meta, off_t *off, off_t *size)
963 {
964 	struct ddf_vdc_record *vdc;
965 	off_t beg[32], end[32], beg1, end1;
966 	uint64_t *offp;
967 	int i, j, n, num, pos;
968 	uint32_t ref;
969 
970 	*off = 0;
971 	*size = 0;
972 	ref = GET32(meta, pdd->PD_Reference);
973 	pos = ddf_meta_find_pd(meta, NULL, ref);
974 	beg[0] = 0;
975 	end[0] = GET64(meta, pdr->entry[pos].Configured_Size);
976 	n = 1;
977 	num = GETCRNUM(meta);
978 	for (i = 0; i < num; i++) {
979 		vdc = GETVDCPTR(meta, i);
980 		if (GET32D(meta, vdc->Signature) != DDF_VDCR_SIGNATURE)
981 			continue;
982 		for (pos = 0; pos < GET16D(meta, vdc->Primary_Element_Count); pos++)
983 			if (GET32D(meta, vdc->Physical_Disk_Sequence[pos]) == ref)
984 				break;
985 		if (pos == GET16D(meta, vdc->Primary_Element_Count))
986 			continue;
987 		offp = (uint64_t *)&(vdc->Physical_Disk_Sequence[
988 		    GET16(meta, hdr->Max_Primary_Element_Entries)]);
989 		beg1 = GET64P(meta, offp + pos);
990 		end1 = beg1 + GET64D(meta, vdc->Block_Count);
991 		for (j = 0; j < n; j++) {
992 			if (beg[j] >= end1 || end[j] <= beg1 )
993 				continue;
994 			if (beg[j] < beg1 && end[j] > end1) {
995 				beg[n] = end1;
996 				end[n] = end[j];
997 				end[j] = beg1;
998 				n++;
999 			} else if (beg[j] < beg1)
1000 				end[j] = beg1;
1001 			else
1002 				beg[j] = end1;
1003 		}
1004 	}
1005 	for (j = 0; j < n; j++) {
1006 		if (end[j] - beg[j] > *size) {
1007 			*off = beg[j];
1008 			*size = end[j] - beg[j];
1009 		}
1010 	}
1011 	return ((*size > 0) ? 1 : 0);
1012 }
1013 
1014 static void
1015 ddf_meta_get_name(struct ddf_meta *meta, int num, char *buf)
1016 {
1017 	const char *b;
1018 	int i;
1019 
1020 	b = meta->vdr->entry[num].VD_Name;
1021 	for (i = 15; i >= 0; i--)
1022 		if (b[i] != 0x20)
1023 			break;
1024 	memcpy(buf, b, i + 1);
1025 	buf[i + 1] = 0;
1026 }
1027 
1028 static void
1029 ddf_meta_put_name(struct ddf_vol_meta *meta, char *buf)
1030 {
1031 	int len;
1032 
1033 	len = min(strlen(buf), 16);
1034 	memset(meta->vde->VD_Name, 0x20, 16);
1035 	memcpy(meta->vde->VD_Name, buf, len);
1036 }
1037 
1038 static int
1039 ddf_meta_read(struct g_consumer *cp, struct ddf_meta *meta)
1040 {
1041 	struct g_provider *pp;
1042 	struct ddf_header *ahdr, *hdr;
1043 	char *abuf, *buf;
1044 	off_t plba, slba, lba;
1045 	int error, len, i;
1046 	u_int ss;
1047 	uint32_t val;
1048 
1049 	ddf_meta_free(meta);
1050 	pp = cp->provider;
1051 	ss = meta->sectorsize = pp->sectorsize;
1052 	/* Read anchor block. */
1053 	abuf = g_read_data(cp, pp->mediasize - ss, ss, &error);
1054 	if (abuf == NULL) {
1055 		G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
1056 		    pp->name, error);
1057 		return (error);
1058 	}
1059 	ahdr = (struct ddf_header *)abuf;
1060 
1061 	/* Check if this is an DDF RAID struct */
1062 	if (be32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1063 		meta->bigendian = 1;
1064 	else if (le32dec(&ahdr->Signature) == DDF_HEADER_SIGNATURE)
1065 		meta->bigendian = 0;
1066 	else {
1067 		G_RAID_DEBUG(1, "DDF signature check failed on %s", pp->name);
1068 		error = EINVAL;
1069 		goto done;
1070 	}
1071 	if (ahdr->Header_Type != DDF_HEADER_ANCHOR) {
1072 		G_RAID_DEBUG(1, "DDF header type check failed on %s", pp->name);
1073 		error = EINVAL;
1074 		goto done;
1075 	}
1076 	meta->hdr = ahdr;
1077 	plba = GET64(meta, hdr->Primary_Header_LBA);
1078 	slba = GET64(meta, hdr->Secondary_Header_LBA);
1079 	val = GET32(meta, hdr->CRC);
1080 	SET32(meta, hdr->CRC, 0xffffffff);
1081 	meta->hdr = NULL;
1082 	if (crc32(ahdr, ss) != val) {
1083 		G_RAID_DEBUG(1, "DDF CRC mismatch on %s", pp->name);
1084 		error = EINVAL;
1085 		goto done;
1086 	}
1087 	if ((plba + 6) * ss >= pp->mediasize) {
1088 		G_RAID_DEBUG(1, "DDF primary header LBA is wrong on %s", pp->name);
1089 		error = EINVAL;
1090 		goto done;
1091 	}
1092 	if (slba != -1 && (slba + 6) * ss >= pp->mediasize) {
1093 		G_RAID_DEBUG(1, "DDF secondary header LBA is wrong on %s", pp->name);
1094 		error = EINVAL;
1095 		goto done;
1096 	}
1097 	lba = plba;
1098 
1099 doread:
1100 	error = 0;
1101 	ddf_meta_free(meta);
1102 
1103 	/* Read header block. */
1104 	buf = g_read_data(cp, lba * ss, ss, &error);
1105 	if (buf == NULL) {
1106 readerror:
1107 		G_RAID_DEBUG(1, "DDF %s metadata read error on %s (error=%d).",
1108 		    (lba == plba) ? "primary" : "secondary", pp->name, error);
1109 		if (lba == plba && slba != -1) {
1110 			lba = slba;
1111 			goto doread;
1112 		}
1113 		G_RAID_DEBUG(1, "DDF metadata read error on %s.", pp->name);
1114 		goto done;
1115 	}
1116 	meta->hdr = malloc(ss, M_MD_DDF, M_WAITOK);
1117 	memcpy(meta->hdr, buf, ss);
1118 	g_free(buf);
1119 	hdr = meta->hdr;
1120 	val = GET32(meta, hdr->CRC);
1121 	SET32(meta, hdr->CRC, 0xffffffff);
1122 	if (hdr->Signature != ahdr->Signature ||
1123 	    crc32(meta->hdr, ss) != val ||
1124 	    memcmp(hdr->DDF_Header_GUID, ahdr->DDF_Header_GUID, 24) ||
1125 	    GET64(meta, hdr->Primary_Header_LBA) != plba ||
1126 	    GET64(meta, hdr->Secondary_Header_LBA) != slba) {
1127 hdrerror:
1128 		G_RAID_DEBUG(1, "DDF %s metadata check failed on %s",
1129 		    (lba == plba) ? "primary" : "secondary", pp->name);
1130 		if (lba == plba && slba != -1) {
1131 			lba = slba;
1132 			goto doread;
1133 		}
1134 		G_RAID_DEBUG(1, "DDF metadata check failed on %s", pp->name);
1135 		error = EINVAL;
1136 		goto done;
1137 	}
1138 	if ((lba == plba && hdr->Header_Type != DDF_HEADER_PRIMARY) ||
1139 	    (lba == slba && hdr->Header_Type != DDF_HEADER_SECONDARY))
1140 		goto hdrerror;
1141 	len = 1;
1142 	len = max(len, GET32(meta, hdr->cd_section) + GET32(meta, hdr->cd_length));
1143 	len = max(len, GET32(meta, hdr->pdr_section) + GET32(meta, hdr->pdr_length));
1144 	len = max(len, GET32(meta, hdr->vdr_section) + GET32(meta, hdr->vdr_length));
1145 	len = max(len, GET32(meta, hdr->cr_section) + GET32(meta, hdr->cr_length));
1146 	len = max(len, GET32(meta, hdr->pdd_section) + GET32(meta, hdr->pdd_length));
1147 	if ((val = GET32(meta, hdr->bbmlog_section)) != 0xffffffff)
1148 		len = max(len, val + GET32(meta, hdr->bbmlog_length));
1149 	if ((val = GET32(meta, hdr->Diagnostic_Space)) != 0xffffffff)
1150 		len = max(len, val + GET32(meta, hdr->Diagnostic_Space_Length));
1151 	if ((val = GET32(meta, hdr->Vendor_Specific_Logs)) != 0xffffffff)
1152 		len = max(len, val + GET32(meta, hdr->Vendor_Specific_Logs_Length));
1153 	if ((plba + len) * ss >= pp->mediasize)
1154 		goto hdrerror;
1155 	if (slba != -1 && (slba + len) * ss >= pp->mediasize)
1156 		goto hdrerror;
1157 	/* Workaround for Adaptec implementation. */
1158 	if (GET16(meta, hdr->Max_Primary_Element_Entries) == 0xffff) {
1159 		SET16(meta, hdr->Max_Primary_Element_Entries,
1160 		    min(GET16(meta, hdr->Max_PD_Entries),
1161 		    (GET16(meta, hdr->Configuration_Record_Length) * ss - 512) / 12));
1162 	}
1163 
1164 	if (GET32(meta, hdr->cd_length) * ss >= MAXPHYS ||
1165 	    GET32(meta, hdr->pdr_length) * ss >= MAXPHYS ||
1166 	    GET32(meta, hdr->vdr_length) * ss >= MAXPHYS ||
1167 	    GET32(meta, hdr->cr_length) * ss >= MAXPHYS ||
1168 	    GET32(meta, hdr->pdd_length) * ss >= MAXPHYS ||
1169 	    GET32(meta, hdr->bbmlog_length) * ss >= MAXPHYS) {
1170 		G_RAID_DEBUG(1, "%s: Blocksize is too big.", pp->name);
1171 		goto hdrerror;
1172 	}
1173 
1174 	/* Read controller data. */
1175 	buf = g_read_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1176 	    GET32(meta, hdr->cd_length) * ss, &error);
1177 	if (buf == NULL)
1178 		goto readerror;
1179 	meta->cdr = malloc(GET32(meta, hdr->cd_length) * ss, M_MD_DDF, M_WAITOK);
1180 	memcpy(meta->cdr, buf, GET32(meta, hdr->cd_length) * ss);
1181 	g_free(buf);
1182 	if (GET32(meta, cdr->Signature) != DDF_CONTROLLER_DATA_SIGNATURE)
1183 		goto hdrerror;
1184 
1185 	/* Read physical disk records. */
1186 	buf = g_read_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1187 	    GET32(meta, hdr->pdr_length) * ss, &error);
1188 	if (buf == NULL)
1189 		goto readerror;
1190 	meta->pdr = malloc(GET32(meta, hdr->pdr_length) * ss, M_MD_DDF, M_WAITOK);
1191 	memcpy(meta->pdr, buf, GET32(meta, hdr->pdr_length) * ss);
1192 	g_free(buf);
1193 	if (GET32(meta, pdr->Signature) != DDF_PDR_SIGNATURE)
1194 		goto hdrerror;
1195 	/*
1196 	 * Workaround for reading metadata corrupted due to graid bug.
1197 	 * XXX: Remove this before we have disks above 128PB. :)
1198 	 */
1199 	if (meta->bigendian) {
1200 		for (i = 0; i < GET16(meta, pdr->Populated_PDEs); i++) {
1201 			if (isff(meta->pdr->entry[i].PD_GUID, 24))
1202 				continue;
1203 			if (GET32(meta, pdr->entry[i].PD_Reference) ==
1204 			    0xffffffff)
1205 				continue;
1206 			if (GET64(meta, pdr->entry[i].Configured_Size) >=
1207 			     (1ULL << 48)) {
1208 				SET16(meta, pdr->entry[i].PD_State,
1209 				    GET16(meta, pdr->entry[i].PD_State) &
1210 				    ~DDF_PDE_FAILED);
1211 				SET64(meta, pdr->entry[i].Configured_Size,
1212 				    GET64(meta, pdr->entry[i].Configured_Size) &
1213 				    ((1ULL << 48) - 1));
1214 			}
1215 		}
1216 	}
1217 
1218 	/* Read virtual disk records. */
1219 	buf = g_read_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1220 	    GET32(meta, hdr->vdr_length) * ss, &error);
1221 	if (buf == NULL)
1222 		goto readerror;
1223 	meta->vdr = malloc(GET32(meta, hdr->vdr_length) * ss, M_MD_DDF, M_WAITOK);
1224 	memcpy(meta->vdr, buf, GET32(meta, hdr->vdr_length) * ss);
1225 	g_free(buf);
1226 	if (GET32(meta, vdr->Signature) != DDF_VD_RECORD_SIGNATURE)
1227 		goto hdrerror;
1228 
1229 	/* Read configuration records. */
1230 	buf = g_read_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1231 	    GET32(meta, hdr->cr_length) * ss, &error);
1232 	if (buf == NULL)
1233 		goto readerror;
1234 	meta->cr = malloc(GET32(meta, hdr->cr_length) * ss, M_MD_DDF, M_WAITOK);
1235 	memcpy(meta->cr, buf, GET32(meta, hdr->cr_length) * ss);
1236 	g_free(buf);
1237 
1238 	/* Read physical disk data. */
1239 	buf = g_read_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1240 	    GET32(meta, hdr->pdd_length) * ss, &error);
1241 	if (buf == NULL)
1242 		goto readerror;
1243 	meta->pdd = malloc(GET32(meta, hdr->pdd_length) * ss, M_MD_DDF, M_WAITOK);
1244 	memcpy(meta->pdd, buf, GET32(meta, hdr->pdd_length) * ss);
1245 	g_free(buf);
1246 	if (GET32(meta, pdd->Signature) != DDF_PDD_SIGNATURE)
1247 		goto hdrerror;
1248 	i = ddf_meta_find_pd(meta, NULL, GET32(meta, pdd->PD_Reference));
1249 	if (i < 0)
1250 		goto hdrerror;
1251 
1252 	/* Read BBM Log. */
1253 	if (GET32(meta, hdr->bbmlog_section) != 0xffffffff &&
1254 	    GET32(meta, hdr->bbmlog_length) != 0) {
1255 		buf = g_read_data(cp, (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1256 		    GET32(meta, hdr->bbmlog_length) * ss, &error);
1257 		if (buf == NULL)
1258 			goto readerror;
1259 		meta->bbm = malloc(GET32(meta, hdr->bbmlog_length) * ss, M_MD_DDF, M_WAITOK);
1260 		memcpy(meta->bbm, buf, GET32(meta, hdr->bbmlog_length) * ss);
1261 		g_free(buf);
1262 		if (GET32(meta, bbm->Signature) != DDF_BBML_SIGNATURE)
1263 			goto hdrerror;
1264 	}
1265 
1266 done:
1267 	g_free(abuf);
1268 	if (error != 0)
1269 		ddf_meta_free(meta);
1270 	return (error);
1271 }
1272 
1273 static int
1274 ddf_meta_write(struct g_consumer *cp, struct ddf_meta *meta)
1275 {
1276 	struct g_provider *pp;
1277 	struct ddf_vdc_record *vdc;
1278 	off_t alba, plba, slba, lba;
1279 	u_int ss, size;
1280 	int error, i, num;
1281 
1282 	pp = cp->provider;
1283 	ss = pp->sectorsize;
1284 	lba = alba = pp->mediasize / ss - 1;
1285 	plba = GET64(meta, hdr->Primary_Header_LBA);
1286 	slba = GET64(meta, hdr->Secondary_Header_LBA);
1287 
1288 next:
1289 	SET8(meta, hdr->Header_Type, (lba == alba) ? DDF_HEADER_ANCHOR :
1290 	    (lba == plba) ? DDF_HEADER_PRIMARY : DDF_HEADER_SECONDARY);
1291 	SET32(meta, hdr->CRC, 0xffffffff);
1292 	SET32(meta, hdr->CRC, crc32(meta->hdr, ss));
1293 	error = g_write_data(cp, lba * ss, meta->hdr, ss);
1294 	if (error != 0) {
1295 err:
1296 		G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
1297 		    pp->name, error);
1298 		if (lba != alba)
1299 			goto done;
1300 	}
1301 	if (lba == alba) {
1302 		lba = plba;
1303 		goto next;
1304 	}
1305 
1306 	size = GET32(meta, hdr->cd_length) * ss;
1307 	SET32(meta, cdr->CRC, 0xffffffff);
1308 	SET32(meta, cdr->CRC, crc32(meta->cdr, size));
1309 	error = g_write_data(cp, (lba + GET32(meta, hdr->cd_section)) * ss,
1310 	    meta->cdr, size);
1311 	if (error != 0)
1312 		goto err;
1313 
1314 	size = GET32(meta, hdr->pdr_length) * ss;
1315 	SET32(meta, pdr->CRC, 0xffffffff);
1316 	SET32(meta, pdr->CRC, crc32(meta->pdr, size));
1317 	error = g_write_data(cp, (lba + GET32(meta, hdr->pdr_section)) * ss,
1318 	    meta->pdr, size);
1319 	if (error != 0)
1320 		goto err;
1321 
1322 	size = GET32(meta, hdr->vdr_length) * ss;
1323 	SET32(meta, vdr->CRC, 0xffffffff);
1324 	SET32(meta, vdr->CRC, crc32(meta->vdr, size));
1325 	error = g_write_data(cp, (lba + GET32(meta, hdr->vdr_section)) * ss,
1326 	    meta->vdr, size);
1327 	if (error != 0)
1328 		goto err;
1329 
1330 	size = GET16(meta, hdr->Configuration_Record_Length) * ss;
1331 	num = GETCRNUM(meta);
1332 	for (i = 0; i < num; i++) {
1333 		vdc = GETVDCPTR(meta, i);
1334 		SET32D(meta, vdc->CRC, 0xffffffff);
1335 		SET32D(meta, vdc->CRC, crc32(vdc, size));
1336 	}
1337 	error = g_write_data(cp, (lba + GET32(meta, hdr->cr_section)) * ss,
1338 	    meta->cr, size * num);
1339 	if (error != 0)
1340 		goto err;
1341 
1342 	size = GET32(meta, hdr->pdd_length) * ss;
1343 	SET32(meta, pdd->CRC, 0xffffffff);
1344 	SET32(meta, pdd->CRC, crc32(meta->pdd, size));
1345 	error = g_write_data(cp, (lba + GET32(meta, hdr->pdd_section)) * ss,
1346 	    meta->pdd, size);
1347 	if (error != 0)
1348 		goto err;
1349 
1350 	if (GET32(meta, hdr->bbmlog_length) != 0) {
1351 		size = GET32(meta, hdr->bbmlog_length) * ss;
1352 		SET32(meta, bbm->CRC, 0xffffffff);
1353 		SET32(meta, bbm->CRC, crc32(meta->bbm, size));
1354 		error = g_write_data(cp,
1355 		    (lba + GET32(meta, hdr->bbmlog_section)) * ss,
1356 		    meta->bbm, size);
1357 		if (error != 0)
1358 			goto err;
1359 	}
1360 
1361 done:
1362 	if (lba == plba && slba != -1) {
1363 		lba = slba;
1364 		goto next;
1365 	}
1366 
1367 	return (error);
1368 }
1369 
1370 static int
1371 ddf_meta_erase(struct g_consumer *cp)
1372 {
1373 	struct g_provider *pp;
1374 	char *buf;
1375 	int error;
1376 
1377 	pp = cp->provider;
1378 	buf = malloc(pp->sectorsize, M_MD_DDF, M_WAITOK | M_ZERO);
1379 	error = g_write_data(cp, pp->mediasize - pp->sectorsize,
1380 	    buf, pp->sectorsize);
1381 	if (error != 0) {
1382 		G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
1383 		    pp->name, error);
1384 	}
1385 	free(buf, M_MD_DDF);
1386 	return (error);
1387 }
1388 
1389 static struct g_raid_volume *
1390 g_raid_md_ddf_get_volume(struct g_raid_softc *sc, uint8_t *GUID)
1391 {
1392 	struct g_raid_volume	*vol;
1393 	struct g_raid_md_ddf_pervolume *pv;
1394 
1395 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1396 		pv = vol->v_md_data;
1397 		if (memcmp(pv->pv_meta.vde->VD_GUID, GUID, 24) == 0)
1398 			break;
1399 	}
1400 	return (vol);
1401 }
1402 
1403 static struct g_raid_disk *
1404 g_raid_md_ddf_get_disk(struct g_raid_softc *sc, uint8_t *GUID, uint32_t id)
1405 {
1406 	struct g_raid_disk	*disk;
1407 	struct g_raid_md_ddf_perdisk *pd;
1408 	struct ddf_meta *meta;
1409 
1410 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1411 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1412 		meta = &pd->pd_meta;
1413 		if (GUID != NULL) {
1414 			if (memcmp(meta->pdd->PD_GUID, GUID, 24) == 0)
1415 				break;
1416 		} else {
1417 			if (GET32(meta, pdd->PD_Reference) == id)
1418 				break;
1419 		}
1420 	}
1421 	return (disk);
1422 }
1423 
1424 static int
1425 g_raid_md_ddf_purge_volumes(struct g_raid_softc *sc)
1426 {
1427 	struct g_raid_volume	*vol, *tvol;
1428 	struct g_raid_md_ddf_pervolume *pv;
1429 	int i, res;
1430 
1431 	res = 0;
1432 	TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) {
1433 		pv = vol->v_md_data;
1434 		if (vol->v_stopping)
1435 			continue;
1436 		for (i = 0; i < vol->v_disks_count; i++) {
1437 			if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE)
1438 				break;
1439 		}
1440 		if (i >= vol->v_disks_count) {
1441 			g_raid_destroy_volume(vol);
1442 			res = 1;
1443 		}
1444 	}
1445 	return (res);
1446 }
1447 
1448 static int
1449 g_raid_md_ddf_purge_disks(struct g_raid_softc *sc)
1450 {
1451 #if 0
1452 	struct g_raid_disk	*disk, *tdisk;
1453 	struct g_raid_volume	*vol;
1454 	struct g_raid_md_ddf_perdisk *pd;
1455 	int i, j, res;
1456 
1457 	res = 0;
1458 	TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
1459 		if (disk->d_state == G_RAID_DISK_S_SPARE)
1460 			continue;
1461 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1462 
1463 		/* Scan for deleted volumes. */
1464 		for (i = 0; i < pd->pd_subdisks; ) {
1465 			vol = g_raid_md_ddf_get_volume(sc,
1466 			    pd->pd_meta[i]->volume_id);
1467 			if (vol != NULL && !vol->v_stopping) {
1468 				i++;
1469 				continue;
1470 			}
1471 			free(pd->pd_meta[i], M_MD_DDF);
1472 			for (j = i; j < pd->pd_subdisks - 1; j++)
1473 				pd->pd_meta[j] = pd->pd_meta[j + 1];
1474 			pd->pd_meta[DDF_MAX_SUBDISKS - 1] = NULL;
1475 			pd->pd_subdisks--;
1476 			pd->pd_updated = 1;
1477 		}
1478 
1479 		/* If there is no metadata left - erase and delete disk. */
1480 		if (pd->pd_subdisks == 0) {
1481 			ddf_meta_erase(disk->d_consumer);
1482 			g_raid_destroy_disk(disk);
1483 			res = 1;
1484 		}
1485 	}
1486 	return (res);
1487 #endif
1488 	return (0);
1489 }
1490 
1491 static int
1492 g_raid_md_ddf_supported(int level, int qual, int disks, int force)
1493 {
1494 
1495 	if (disks > DDF_MAX_DISKS_HARD)
1496 		return (0);
1497 	switch (level) {
1498 	case G_RAID_VOLUME_RL_RAID0:
1499 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1500 			return (0);
1501 		if (disks < 1)
1502 			return (0);
1503 		if (!force && disks < 2)
1504 			return (0);
1505 		break;
1506 	case G_RAID_VOLUME_RL_RAID1:
1507 		if (disks < 1)
1508 			return (0);
1509 		if (qual == G_RAID_VOLUME_RLQ_R1SM) {
1510 			if (!force && disks != 2)
1511 				return (0);
1512 		} else if (qual == G_RAID_VOLUME_RLQ_R1MM) {
1513 			if (!force && disks != 3)
1514 				return (0);
1515 		} else
1516 			return (0);
1517 		break;
1518 	case G_RAID_VOLUME_RL_RAID3:
1519 		if (qual != G_RAID_VOLUME_RLQ_R3P0 &&
1520 		    qual != G_RAID_VOLUME_RLQ_R3PN)
1521 			return (0);
1522 		if (disks < 3)
1523 			return (0);
1524 		break;
1525 	case G_RAID_VOLUME_RL_RAID4:
1526 		if (qual != G_RAID_VOLUME_RLQ_R4P0 &&
1527 		    qual != G_RAID_VOLUME_RLQ_R4PN)
1528 			return (0);
1529 		if (disks < 3)
1530 			return (0);
1531 		break;
1532 	case G_RAID_VOLUME_RL_RAID5:
1533 		if (qual != G_RAID_VOLUME_RLQ_R5RA &&
1534 		    qual != G_RAID_VOLUME_RLQ_R5RS &&
1535 		    qual != G_RAID_VOLUME_RLQ_R5LA &&
1536 		    qual != G_RAID_VOLUME_RLQ_R5LS)
1537 			return (0);
1538 		if (disks < 3)
1539 			return (0);
1540 		break;
1541 	case G_RAID_VOLUME_RL_RAID6:
1542 		if (qual != G_RAID_VOLUME_RLQ_R6RA &&
1543 		    qual != G_RAID_VOLUME_RLQ_R6RS &&
1544 		    qual != G_RAID_VOLUME_RLQ_R6LA &&
1545 		    qual != G_RAID_VOLUME_RLQ_R6LS)
1546 			return (0);
1547 		if (disks < 4)
1548 			return (0);
1549 		break;
1550 	case G_RAID_VOLUME_RL_RAIDMDF:
1551 		if (qual != G_RAID_VOLUME_RLQ_RMDFRA &&
1552 		    qual != G_RAID_VOLUME_RLQ_RMDFRS &&
1553 		    qual != G_RAID_VOLUME_RLQ_RMDFLA &&
1554 		    qual != G_RAID_VOLUME_RLQ_RMDFLS)
1555 			return (0);
1556 		if (disks < 4)
1557 			return (0);
1558 		break;
1559 	case G_RAID_VOLUME_RL_RAID1E:
1560 		if (qual != G_RAID_VOLUME_RLQ_R1EA &&
1561 		    qual != G_RAID_VOLUME_RLQ_R1EO)
1562 			return (0);
1563 		if (disks < 3)
1564 			return (0);
1565 		break;
1566 	case G_RAID_VOLUME_RL_SINGLE:
1567 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1568 			return (0);
1569 		if (disks != 1)
1570 			return (0);
1571 		break;
1572 	case G_RAID_VOLUME_RL_CONCAT:
1573 		if (qual != G_RAID_VOLUME_RLQ_NONE)
1574 			return (0);
1575 		if (disks < 2)
1576 			return (0);
1577 		break;
1578 	case G_RAID_VOLUME_RL_RAID5E:
1579 		if (qual != G_RAID_VOLUME_RLQ_R5ERA &&
1580 		    qual != G_RAID_VOLUME_RLQ_R5ERS &&
1581 		    qual != G_RAID_VOLUME_RLQ_R5ELA &&
1582 		    qual != G_RAID_VOLUME_RLQ_R5ELS)
1583 			return (0);
1584 		if (disks < 4)
1585 			return (0);
1586 		break;
1587 	case G_RAID_VOLUME_RL_RAID5EE:
1588 		if (qual != G_RAID_VOLUME_RLQ_R5EERA &&
1589 		    qual != G_RAID_VOLUME_RLQ_R5EERS &&
1590 		    qual != G_RAID_VOLUME_RLQ_R5EELA &&
1591 		    qual != G_RAID_VOLUME_RLQ_R5EELS)
1592 			return (0);
1593 		if (disks < 4)
1594 			return (0);
1595 		break;
1596 	case G_RAID_VOLUME_RL_RAID5R:
1597 		if (qual != G_RAID_VOLUME_RLQ_R5RRA &&
1598 		    qual != G_RAID_VOLUME_RLQ_R5RRS &&
1599 		    qual != G_RAID_VOLUME_RLQ_R5RLA &&
1600 		    qual != G_RAID_VOLUME_RLQ_R5RLS)
1601 			return (0);
1602 		if (disks < 3)
1603 			return (0);
1604 		break;
1605 	default:
1606 		return (0);
1607 	}
1608 	return (1);
1609 }
1610 
1611 static int
1612 g_raid_md_ddf_start_disk(struct g_raid_disk *disk, struct g_raid_volume *vol)
1613 {
1614 	struct g_raid_softc *sc;
1615 	struct g_raid_subdisk *sd;
1616 	struct g_raid_md_ddf_perdisk *pd;
1617 	struct g_raid_md_ddf_pervolume *pv;
1618 	struct g_raid_md_ddf_object *mdi;
1619 	struct ddf_vol_meta *vmeta;
1620 	struct ddf_meta *pdmeta, *gmeta;
1621 	struct ddf_vdc_record *vdc1;
1622 	struct ddf_sa_record *sa;
1623 	off_t size, eoff = 0, esize = 0;
1624 	uint64_t *val2;
1625 	int disk_pos, md_disk_bvd = -1, md_disk_pos = -1, md_pde_pos;
1626 	int i, resurrection = 0;
1627 	uint32_t reference;
1628 
1629 	sc = disk->d_softc;
1630 	mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
1631 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1632 	pdmeta = &pd->pd_meta;
1633 	reference = GET32(&pd->pd_meta, pdd->PD_Reference);
1634 
1635 	pv = vol->v_md_data;
1636 	vmeta = &pv->pv_meta;
1637 	gmeta = &mdi->mdio_meta;
1638 
1639 	/* Find disk position in metadata by its reference. */
1640 	disk_pos = ddf_meta_find_disk(vmeta, reference,
1641 	    &md_disk_bvd, &md_disk_pos);
1642 	md_pde_pos = ddf_meta_find_pd(gmeta, NULL, reference);
1643 
1644 	if (disk_pos < 0) {
1645 		G_RAID_DEBUG1(1, sc,
1646 		    "Disk %s is not a present part of the volume %s",
1647 		    g_raid_get_diskname(disk), vol->v_name);
1648 
1649 		/* Failed stale disk is useless for us. */
1650 		if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) != 0) {
1651 			g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
1652 			return (0);
1653 		}
1654 
1655 		/* If disk has some metadata for this volume - erase. */
1656 		if ((vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL)
1657 			SET32D(pdmeta, vdc1->Signature, 0xffffffff);
1658 
1659 		/* If we are in the start process, that's all for now. */
1660 		if (!pv->pv_started)
1661 			goto nofit;
1662 		/*
1663 		 * If we have already started - try to get use of the disk.
1664 		 * Try to replace OFFLINE disks first, then FAILED.
1665 		 */
1666 		if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
1667 			GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1668 			G_RAID_DEBUG1(1, sc, "No free partitions on disk %s",
1669 			    g_raid_get_diskname(disk));
1670 			goto nofit;
1671 		}
1672 		ddf_meta_unused_range(&pd->pd_meta, &eoff, &esize);
1673 		if (esize == 0) {
1674 			G_RAID_DEBUG1(1, sc, "No free space on disk %s",
1675 			    g_raid_get_diskname(disk));
1676 			goto nofit;
1677 		}
1678 		eoff *= pd->pd_meta.sectorsize;
1679 		esize *= pd->pd_meta.sectorsize;
1680 		size = INT64_MAX;
1681 		for (i = 0; i < vol->v_disks_count; i++) {
1682 			sd = &vol->v_subdisks[i];
1683 			if (sd->sd_state != G_RAID_SUBDISK_S_NONE)
1684 				size = sd->sd_size;
1685 			if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED &&
1686 			    (disk_pos < 0 ||
1687 			     vol->v_subdisks[i].sd_state < sd->sd_state))
1688 				disk_pos = i;
1689 		}
1690 		if (disk_pos >= 0 &&
1691 		    vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT &&
1692 		    esize < size) {
1693 			G_RAID_DEBUG1(1, sc, "Disk %s free space "
1694 			    "is too small (%ju < %ju)",
1695 			    g_raid_get_diskname(disk), esize, size);
1696 			disk_pos = -1;
1697 		}
1698 		if (disk_pos >= 0) {
1699 			if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT)
1700 				esize = size;
1701 			md_disk_bvd = disk_pos / GET16(vmeta, vdc->Primary_Element_Count); // XXX
1702 			md_disk_pos = disk_pos % GET16(vmeta, vdc->Primary_Element_Count); // XXX
1703 		} else {
1704 nofit:
1705 			if (disk->d_state == G_RAID_DISK_S_NONE)
1706 				g_raid_change_disk_state(disk,
1707 				    G_RAID_DISK_S_STALE);
1708 			return (0);
1709 		}
1710 
1711 		/*
1712 		 * If spare is committable, delete spare record.
1713 		 * Othersize, mark it active and leave there.
1714 		 */
1715 		sa = ddf_meta_find_sa(&pd->pd_meta, 0);
1716 		if (sa != NULL) {
1717 			if ((GET8D(&pd->pd_meta, sa->Spare_Type) &
1718 			    DDF_SAR_TYPE_REVERTIBLE) == 0) {
1719 				SET32D(&pd->pd_meta, sa->Signature, 0xffffffff);
1720 			} else {
1721 				SET8D(&pd->pd_meta, sa->Spare_Type,
1722 				    GET8D(&pd->pd_meta, sa->Spare_Type) |
1723 				    DDF_SAR_TYPE_ACTIVE);
1724 			}
1725 		}
1726 
1727 		G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s",
1728 		    g_raid_get_diskname(disk), disk_pos, vol->v_name);
1729 		resurrection = 1;
1730 	}
1731 
1732 	sd = &vol->v_subdisks[disk_pos];
1733 
1734 	if (resurrection && sd->sd_disk != NULL) {
1735 		g_raid_change_disk_state(sd->sd_disk,
1736 		    G_RAID_DISK_S_STALE_FAILED);
1737 		TAILQ_REMOVE(&sd->sd_disk->d_subdisks,
1738 		    sd, sd_next);
1739 	}
1740 	vol->v_subdisks[disk_pos].sd_disk = disk;
1741 	TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1742 
1743 	/* Welcome the new disk. */
1744 	if (resurrection)
1745 		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1746 	else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA)
1747 		g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
1748 	else
1749 		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
1750 
1751 	if (resurrection) {
1752 		sd->sd_offset = eoff;
1753 		sd->sd_size = esize;
1754 	} else if (pdmeta->cr != NULL &&
1755 	    (vdc1 = ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID)) != NULL) {
1756 		val2 = (uint64_t *)&(vdc1->Physical_Disk_Sequence[GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1757 		sd->sd_offset = (off_t)GET64P(pdmeta, val2 + md_disk_pos) * 512;
1758 		sd->sd_size = (off_t)GET64D(pdmeta, vdc1->Block_Count) * 512;
1759 	}
1760 
1761 	if (resurrection) {
1762 		/* Stale disk, almost same as new. */
1763 		g_raid_change_subdisk_state(sd,
1764 		    G_RAID_SUBDISK_S_NEW);
1765 	} else if (GET16(gmeta, pdr->entry[md_pde_pos].PD_State) & DDF_PDE_PFA) {
1766 		/* Failed disk. */
1767 		g_raid_change_subdisk_state(sd,
1768 		    G_RAID_SUBDISK_S_FAILED);
1769 	} else if ((GET16(gmeta, pdr->entry[md_pde_pos].PD_State) &
1770 	     (DDF_PDE_FAILED | DDF_PDE_REBUILD)) != 0) {
1771 		/* Rebuilding disk. */
1772 		g_raid_change_subdisk_state(sd,
1773 		    G_RAID_SUBDISK_S_REBUILD);
1774 		sd->sd_rebuild_pos = 0;
1775 	} else if ((GET8(vmeta, vde->VD_State) & DDF_VDE_DIRTY) != 0 ||
1776 	    (GET8(vmeta, vde->Init_State) & DDF_VDE_INIT_MASK) !=
1777 	     DDF_VDE_INIT_FULL) {
1778 		/* Stale disk or dirty volume (unclean shutdown). */
1779 		g_raid_change_subdisk_state(sd,
1780 		    G_RAID_SUBDISK_S_STALE);
1781 	} else {
1782 		/* Up to date disk. */
1783 		g_raid_change_subdisk_state(sd,
1784 		    G_RAID_SUBDISK_S_ACTIVE);
1785 	}
1786 	g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1787 	    G_RAID_EVENT_SUBDISK);
1788 
1789 	return (resurrection);
1790 }
1791 
1792 static void
1793 g_raid_md_ddf_refill(struct g_raid_softc *sc)
1794 {
1795 	struct g_raid_volume *vol;
1796 	struct g_raid_subdisk *sd;
1797 	struct g_raid_disk *disk;
1798 	struct g_raid_md_object *md;
1799 	struct g_raid_md_ddf_perdisk *pd;
1800 	struct g_raid_md_ddf_pervolume *pv;
1801 	int update, updated, i, bad;
1802 
1803 	md = sc->sc_md;
1804 restart:
1805 	updated = 0;
1806 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1807 		pv = vol->v_md_data;
1808 		if (!pv->pv_started || vol->v_stopping)
1809 			continue;
1810 
1811 		/* Search for subdisk that needs replacement. */
1812 		bad = 0;
1813 		for (i = 0; i < vol->v_disks_count; i++) {
1814 			sd = &vol->v_subdisks[i];
1815 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
1816 			    sd->sd_state == G_RAID_SUBDISK_S_FAILED)
1817 			        bad = 1;
1818 		}
1819 		if (!bad)
1820 			continue;
1821 
1822 		G_RAID_DEBUG1(1, sc, "Volume %s is not complete, "
1823 		    "trying to refill.", vol->v_name);
1824 
1825 		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1826 			/* Skip failed. */
1827 			if (disk->d_state < G_RAID_DISK_S_SPARE)
1828 				continue;
1829 			/* Skip already used by this volume. */
1830 			for (i = 0; i < vol->v_disks_count; i++) {
1831 				sd = &vol->v_subdisks[i];
1832 				if (sd->sd_disk == disk)
1833 					break;
1834 			}
1835 			if (i < vol->v_disks_count)
1836 				continue;
1837 
1838 			/* Try to use disk if it has empty extents. */
1839 			pd = disk->d_md_data;
1840 			if (ddf_meta_count_vdc(&pd->pd_meta, NULL) <
1841 			    GET16(&pd->pd_meta, hdr->Max_Partitions)) {
1842 				update = g_raid_md_ddf_start_disk(disk, vol);
1843 			} else
1844 				update = 0;
1845 			if (update) {
1846 				updated = 1;
1847 				g_raid_md_write_ddf(md, vol, NULL, disk);
1848 				break;
1849 			}
1850 		}
1851 	}
1852 	if (updated)
1853 		goto restart;
1854 }
1855 
1856 static void
1857 g_raid_md_ddf_start(struct g_raid_volume *vol)
1858 {
1859 	struct g_raid_softc *sc;
1860 	struct g_raid_subdisk *sd;
1861 	struct g_raid_disk *disk;
1862 	struct g_raid_md_object *md;
1863 	struct g_raid_md_ddf_perdisk *pd;
1864 	struct g_raid_md_ddf_pervolume *pv;
1865 	struct g_raid_md_ddf_object *mdi;
1866 	struct ddf_vol_meta *vmeta;
1867 	struct ddf_vdc_record *vdc;
1868 	uint64_t *val2;
1869 	int i, j, bvd;
1870 
1871 	sc = vol->v_softc;
1872 	md = sc->sc_md;
1873 	mdi = (struct g_raid_md_ddf_object *)md;
1874 	pv = vol->v_md_data;
1875 	vmeta = &pv->pv_meta;
1876 	vdc = vmeta->vdc;
1877 
1878 	vol->v_raid_level = GET8(vmeta, vdc->Primary_RAID_Level);
1879 	vol->v_raid_level_qualifier = GET8(vmeta, vdc->RLQ);
1880 	if (GET8(vmeta, vdc->Secondary_Element_Count) > 1 &&
1881 	    vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 &&
1882 	    GET8(vmeta, vdc->Secondary_RAID_Level) == 0)
1883 		vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1884 	vol->v_sectorsize = GET16(vmeta, vdc->Block_Size);
1885 	if (vol->v_sectorsize == 0xffff)
1886 		vol->v_sectorsize = vmeta->sectorsize;
1887 	vol->v_strip_size = vol->v_sectorsize << GET8(vmeta, vdc->Stripe_Size);
1888 	vol->v_disks_count = GET16(vmeta, vdc->Primary_Element_Count) *
1889 	    GET8(vmeta, vdc->Secondary_Element_Count);
1890 	vol->v_mdf_pdisks = GET8(vmeta, vdc->MDF_Parity_Disks);
1891 	vol->v_mdf_polynomial = GET16(vmeta, vdc->MDF_Parity_Generator_Polynomial);
1892 	vol->v_mdf_method = GET8(vmeta, vdc->MDF_Constant_Generation_Method);
1893 	if (GET8(vmeta, vdc->Rotate_Parity_count) > 31)
1894 		vol->v_rotate_parity = 1;
1895 	else
1896 		vol->v_rotate_parity = 1 << GET8(vmeta, vdc->Rotate_Parity_count);
1897 	vol->v_mediasize = GET64(vmeta, vdc->VD_Size) * vol->v_sectorsize;
1898 	for (i = 0, j = 0, bvd = 0; i < vol->v_disks_count; i++, j++) {
1899 		if (j == GET16(vmeta, vdc->Primary_Element_Count)) {
1900 			j = 0;
1901 			bvd++;
1902 		}
1903 		sd = &vol->v_subdisks[i];
1904 		if (vmeta->bvdc[bvd] == NULL) {
1905 			sd->sd_offset = 0;
1906 			sd->sd_size = GET64(vmeta, vdc->Block_Count) *
1907 			    vol->v_sectorsize;
1908 			continue;
1909 		}
1910 		val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
1911 		    GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
1912 		sd->sd_offset = GET64P(vmeta, val2 + j) * vol->v_sectorsize;
1913 		sd->sd_size = GET64(vmeta, bvdc[bvd]->Block_Count) *
1914 		    vol->v_sectorsize;
1915 	}
1916 	g_raid_start_volume(vol);
1917 
1918 	/* Make all disks found till the moment take their places. */
1919 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1920 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1921 		if (ddf_meta_find_vdc(&pd->pd_meta, vmeta->vdc->VD_GUID) != NULL)
1922 			g_raid_md_ddf_start_disk(disk, vol);
1923 	}
1924 
1925 	pv->pv_started = 1;
1926 	mdi->mdio_starting--;
1927 	callout_stop(&pv->pv_start_co);
1928 	G_RAID_DEBUG1(0, sc, "Volume started.");
1929 	g_raid_md_write_ddf(md, vol, NULL, NULL);
1930 
1931 	/* Pickup any STALE/SPARE disks to refill array if needed. */
1932 	g_raid_md_ddf_refill(sc);
1933 
1934 	g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
1935 }
1936 
1937 static void
1938 g_raid_ddf_go(void *arg)
1939 {
1940 	struct g_raid_volume *vol;
1941 	struct g_raid_softc *sc;
1942 	struct g_raid_md_ddf_pervolume *pv;
1943 
1944 	vol = arg;
1945 	pv = vol->v_md_data;
1946 	sc = vol->v_softc;
1947 	if (!pv->pv_started) {
1948 		G_RAID_DEBUG1(0, sc, "Force volume start due to timeout.");
1949 		g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD,
1950 		    G_RAID_EVENT_VOLUME);
1951 	}
1952 }
1953 
1954 static void
1955 g_raid_md_ddf_new_disk(struct g_raid_disk *disk)
1956 {
1957 	struct g_raid_softc *sc;
1958 	struct g_raid_md_object *md;
1959 	struct g_raid_md_ddf_perdisk *pd;
1960 	struct g_raid_md_ddf_pervolume *pv;
1961 	struct g_raid_md_ddf_object *mdi;
1962 	struct g_raid_volume *vol;
1963 	struct ddf_meta *pdmeta;
1964 	struct ddf_vol_meta *vmeta;
1965 	struct ddf_vdc_record *vdc;
1966 	struct ddf_vd_entry *vde;
1967 	int i, j, k, num, have, need, cnt, spare;
1968 	uint32_t val;
1969 	char buf[17];
1970 
1971 	sc = disk->d_softc;
1972 	md = sc->sc_md;
1973 	mdi = (struct g_raid_md_ddf_object *)md;
1974 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
1975 	pdmeta = &pd->pd_meta;
1976 	spare = -1;
1977 
1978 	if (mdi->mdio_meta.hdr == NULL)
1979 		ddf_meta_copy(&mdi->mdio_meta, pdmeta);
1980 	else
1981 		ddf_meta_update(&mdi->mdio_meta, pdmeta);
1982 
1983 	num = GETCRNUM(pdmeta);
1984 	for (j = 0; j < num; j++) {
1985 		vdc = GETVDCPTR(pdmeta, j);
1986 		val = GET32D(pdmeta, vdc->Signature);
1987 
1988 		if (val == DDF_SA_SIGNATURE && spare == -1)
1989 			spare = 1;
1990 
1991 		if (val != DDF_VDCR_SIGNATURE)
1992 			continue;
1993 		spare = 0;
1994 		k = ddf_meta_find_vd(pdmeta, vdc->VD_GUID);
1995 		if (k < 0)
1996 			continue;
1997 		vde = &pdmeta->vdr->entry[k];
1998 
1999 		/* Look for volume with matching ID. */
2000 		vol = g_raid_md_ddf_get_volume(sc, vdc->VD_GUID);
2001 		if (vol == NULL) {
2002 			ddf_meta_get_name(pdmeta, k, buf);
2003 			vol = g_raid_create_volume(sc, buf,
2004 			    GET16D(pdmeta, vde->VD_Number));
2005 			pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2006 			vol->v_md_data = pv;
2007 			callout_init(&pv->pv_start_co, 1);
2008 			callout_reset(&pv->pv_start_co,
2009 			    g_raid_start_timeout * hz,
2010 			    g_raid_ddf_go, vol);
2011 			mdi->mdio_starting++;
2012 		} else
2013 			pv = vol->v_md_data;
2014 
2015 		/* If we haven't started yet - check metadata freshness. */
2016 		vmeta = &pv->pv_meta;
2017 		ddf_vol_meta_update(vmeta, pdmeta, vdc->VD_GUID, pv->pv_started);
2018 	}
2019 
2020 	if (spare == 1) {
2021 		g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2022 		g_raid_md_ddf_refill(sc);
2023 	}
2024 
2025 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2026 		pv = vol->v_md_data;
2027 		vmeta = &pv->pv_meta;
2028 
2029 		if (ddf_meta_find_vdc(pdmeta, vmeta->vdc->VD_GUID) == NULL)
2030 			continue;
2031 
2032 		if (pv->pv_started) {
2033 			if (g_raid_md_ddf_start_disk(disk, vol))
2034 				g_raid_md_write_ddf(md, vol, NULL, NULL);
2035 			continue;
2036 		}
2037 
2038 		/* If we collected all needed disks - start array. */
2039 		need = 0;
2040 		have = 0;
2041 		for (k = 0; k < GET8(vmeta, vdc->Secondary_Element_Count); k++) {
2042 			if (vmeta->bvdc[k] == NULL) {
2043 				need += GET16(vmeta, vdc->Primary_Element_Count);
2044 				continue;
2045 			}
2046 			cnt = GET16(vmeta, bvdc[k]->Primary_Element_Count);
2047 			need += cnt;
2048 			for (i = 0; i < cnt; i++) {
2049 				val = GET32(vmeta, bvdc[k]->Physical_Disk_Sequence[i]);
2050 				if (g_raid_md_ddf_get_disk(sc, NULL, val) != NULL)
2051 					have++;
2052 			}
2053 		}
2054 		G_RAID_DEBUG1(1, sc, "Volume %s now has %d of %d disks",
2055 		    vol->v_name, have, need);
2056 		if (have == need)
2057 			g_raid_md_ddf_start(vol);
2058 	}
2059 }
2060 
2061 static int
2062 g_raid_md_create_req_ddf(struct g_raid_md_object *md, struct g_class *mp,
2063     struct gctl_req *req, struct g_geom **gp)
2064 {
2065 	struct g_geom *geom;
2066 	struct g_raid_softc *sc;
2067 	struct g_raid_md_ddf_object *mdi, *mdi1;
2068 	char name[16];
2069 	const char *fmtopt;
2070 	int be = 1;
2071 
2072 	mdi = (struct g_raid_md_ddf_object *)md;
2073 	fmtopt = gctl_get_asciiparam(req, "fmtopt");
2074 	if (fmtopt == NULL || strcasecmp(fmtopt, "BE") == 0)
2075 		be = 1;
2076 	else if (strcasecmp(fmtopt, "LE") == 0)
2077 		be = 0;
2078 	else {
2079 		gctl_error(req, "Incorrect fmtopt argument.");
2080 		return (G_RAID_MD_TASTE_FAIL);
2081 	}
2082 
2083 	/* Search for existing node. */
2084 	LIST_FOREACH(geom, &mp->geom, geom) {
2085 		sc = geom->softc;
2086 		if (sc == NULL)
2087 			continue;
2088 		if (sc->sc_stopping != 0)
2089 			continue;
2090 		if (sc->sc_md->mdo_class != md->mdo_class)
2091 			continue;
2092 		mdi1 = (struct g_raid_md_ddf_object *)sc->sc_md;
2093 		if (mdi1->mdio_bigendian != be)
2094 			continue;
2095 		break;
2096 	}
2097 	if (geom != NULL) {
2098 		*gp = geom;
2099 		return (G_RAID_MD_TASTE_EXISTING);
2100 	}
2101 
2102 	/* Create new one if not found. */
2103 	mdi->mdio_bigendian = be;
2104 	snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2105 	sc = g_raid_create_node(mp, name, md);
2106 	if (sc == NULL)
2107 		return (G_RAID_MD_TASTE_FAIL);
2108 	md->mdo_softc = sc;
2109 	*gp = sc->sc_geom;
2110 	return (G_RAID_MD_TASTE_NEW);
2111 }
2112 
2113 static int
2114 g_raid_md_taste_ddf(struct g_raid_md_object *md, struct g_class *mp,
2115                               struct g_consumer *cp, struct g_geom **gp)
2116 {
2117 	struct g_consumer *rcp;
2118 	struct g_provider *pp;
2119 	struct g_raid_softc *sc;
2120 	struct g_raid_disk *disk;
2121 	struct ddf_meta meta;
2122 	struct g_raid_md_ddf_perdisk *pd;
2123 	struct g_raid_md_ddf_object *mdi;
2124 	struct g_geom *geom;
2125 	int error, result, be;
2126 	char name[16];
2127 
2128 	G_RAID_DEBUG(1, "Tasting DDF on %s", cp->provider->name);
2129 	mdi = (struct g_raid_md_ddf_object *)md;
2130 	pp = cp->provider;
2131 
2132 	/* Read metadata from device. */
2133 	g_topology_unlock();
2134 	bzero(&meta, sizeof(meta));
2135 	error = ddf_meta_read(cp, &meta);
2136 	g_topology_lock();
2137 	if (error != 0)
2138 		return (G_RAID_MD_TASTE_FAIL);
2139 	be = meta.bigendian;
2140 
2141 	/* Metadata valid. Print it. */
2142 	g_raid_md_ddf_print(&meta);
2143 
2144 	/* Search for matching node. */
2145 	sc = NULL;
2146 	LIST_FOREACH(geom, &mp->geom, geom) {
2147 		sc = geom->softc;
2148 		if (sc == NULL)
2149 			continue;
2150 		if (sc->sc_stopping != 0)
2151 			continue;
2152 		if (sc->sc_md->mdo_class != md->mdo_class)
2153 			continue;
2154 		mdi = (struct g_raid_md_ddf_object *)sc->sc_md;
2155 		if (mdi->mdio_bigendian != be)
2156 			continue;
2157 		break;
2158 	}
2159 
2160 	/* Found matching node. */
2161 	if (geom != NULL) {
2162 		G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
2163 		result = G_RAID_MD_TASTE_EXISTING;
2164 
2165 	} else { /* Not found matching node -- create one. */
2166 		result = G_RAID_MD_TASTE_NEW;
2167 		mdi->mdio_bigendian = be;
2168 		snprintf(name, sizeof(name), "DDF%s", be ? "" : "-LE");
2169 		sc = g_raid_create_node(mp, name, md);
2170 		md->mdo_softc = sc;
2171 		geom = sc->sc_geom;
2172 	}
2173 
2174 	/* There is no return after this point, so we close passed consumer. */
2175 	g_access(cp, -1, 0, 0);
2176 
2177 	rcp = g_new_consumer(geom);
2178 	rcp->flags |= G_CF_DIRECT_RECEIVE;
2179 	g_attach(rcp, pp);
2180 	if (g_access(rcp, 1, 1, 1) != 0)
2181 		; //goto fail1;
2182 
2183 	g_topology_unlock();
2184 	sx_xlock(&sc->sc_lock);
2185 
2186 	pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2187 	pd->pd_meta = meta;
2188 	disk = g_raid_create_disk(sc);
2189 	disk->d_md_data = (void *)pd;
2190 	disk->d_consumer = rcp;
2191 	rcp->private = disk;
2192 
2193 	g_raid_get_disk_info(disk);
2194 
2195 	g_raid_md_ddf_new_disk(disk);
2196 
2197 	sx_xunlock(&sc->sc_lock);
2198 	g_topology_lock();
2199 	*gp = geom;
2200 	return (result);
2201 }
2202 
2203 static int
2204 g_raid_md_event_ddf(struct g_raid_md_object *md,
2205     struct g_raid_disk *disk, u_int event)
2206 {
2207 	struct g_raid_softc *sc;
2208 
2209 	sc = md->mdo_softc;
2210 	if (disk == NULL)
2211 		return (-1);
2212 	switch (event) {
2213 	case G_RAID_DISK_E_DISCONNECTED:
2214 		/* Delete disk. */
2215 		g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2216 		g_raid_destroy_disk(disk);
2217 		g_raid_md_ddf_purge_volumes(sc);
2218 
2219 		/* Write updated metadata to all disks. */
2220 		g_raid_md_write_ddf(md, NULL, NULL, NULL);
2221 
2222 		/* Check if anything left. */
2223 		if (g_raid_ndisks(sc, -1) == 0)
2224 			g_raid_destroy_node(sc, 0);
2225 		else
2226 			g_raid_md_ddf_refill(sc);
2227 		return (0);
2228 	}
2229 	return (-2);
2230 }
2231 
2232 static int
2233 g_raid_md_volume_event_ddf(struct g_raid_md_object *md,
2234     struct g_raid_volume *vol, u_int event)
2235 {
2236 	struct g_raid_md_ddf_pervolume *pv;
2237 
2238 	pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2239 	switch (event) {
2240 	case G_RAID_VOLUME_E_STARTMD:
2241 		if (!pv->pv_started)
2242 			g_raid_md_ddf_start(vol);
2243 		return (0);
2244 	}
2245 	return (-2);
2246 }
2247 
2248 static int
2249 g_raid_md_ctl_ddf(struct g_raid_md_object *md,
2250     struct gctl_req *req)
2251 {
2252 	struct g_raid_softc *sc;
2253 	struct g_raid_volume *vol, *vol1;
2254 	struct g_raid_subdisk *sd;
2255 	struct g_raid_disk *disk, *disks[DDF_MAX_DISKS_HARD];
2256 	struct g_raid_md_ddf_perdisk *pd;
2257 	struct g_raid_md_ddf_pervolume *pv;
2258 	struct g_raid_md_ddf_object *mdi;
2259 	struct ddf_sa_record *sa;
2260 	struct g_consumer *cp;
2261 	struct g_provider *pp;
2262 	char arg[16];
2263 	const char *nodename, *verb, *volname, *levelname, *diskname;
2264 	char *tmp;
2265 	int *nargs, *force;
2266 	off_t size, sectorsize, strip, offs[DDF_MAX_DISKS_HARD], esize;
2267 	intmax_t *sizearg, *striparg;
2268 	int i, numdisks, len, level, qual;
2269 	int error;
2270 
2271 	sc = md->mdo_softc;
2272 	mdi = (struct g_raid_md_ddf_object *)md;
2273 	verb = gctl_get_param(req, "verb", NULL);
2274 	nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
2275 	error = 0;
2276 
2277 	if (strcmp(verb, "label") == 0) {
2278 
2279 		if (*nargs < 4) {
2280 			gctl_error(req, "Invalid number of arguments.");
2281 			return (-1);
2282 		}
2283 		volname = gctl_get_asciiparam(req, "arg1");
2284 		if (volname == NULL) {
2285 			gctl_error(req, "No volume name.");
2286 			return (-2);
2287 		}
2288 		levelname = gctl_get_asciiparam(req, "arg2");
2289 		if (levelname == NULL) {
2290 			gctl_error(req, "No RAID level.");
2291 			return (-3);
2292 		}
2293 		if (g_raid_volume_str2level(levelname, &level, &qual)) {
2294 			gctl_error(req, "Unknown RAID level '%s'.", levelname);
2295 			return (-4);
2296 		}
2297 		numdisks = *nargs - 3;
2298 		force = gctl_get_paraml(req, "force", sizeof(*force));
2299 		if (!g_raid_md_ddf_supported(level, qual, numdisks,
2300 		    force ? *force : 0)) {
2301 			gctl_error(req, "Unsupported RAID level "
2302 			    "(0x%02x/0x%02x), or number of disks (%d).",
2303 			    level, qual, numdisks);
2304 			return (-5);
2305 		}
2306 
2307 		/* Search for disks, connect them and probe. */
2308 		size = INT64_MAX;
2309 		sectorsize = 0;
2310 		bzero(disks, sizeof(disks));
2311 		bzero(offs, sizeof(offs));
2312 		for (i = 0; i < numdisks; i++) {
2313 			snprintf(arg, sizeof(arg), "arg%d", i + 3);
2314 			diskname = gctl_get_asciiparam(req, arg);
2315 			if (diskname == NULL) {
2316 				gctl_error(req, "No disk name (%s).", arg);
2317 				error = -6;
2318 				break;
2319 			}
2320 			if (strcmp(diskname, "NONE") == 0)
2321 				continue;
2322 
2323 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2324 				if (disk->d_consumer != NULL &&
2325 				    disk->d_consumer->provider != NULL &&
2326 				    strcmp(disk->d_consumer->provider->name,
2327 				     diskname) == 0)
2328 					break;
2329 			}
2330 			if (disk != NULL) {
2331 				if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2332 					gctl_error(req, "Disk '%s' is in a "
2333 					    "wrong state (%s).", diskname,
2334 					    g_raid_disk_state2str(disk->d_state));
2335 					error = -7;
2336 					break;
2337 				}
2338 				pd = disk->d_md_data;
2339 				if (ddf_meta_count_vdc(&pd->pd_meta, NULL) >=
2340 				    GET16(&pd->pd_meta, hdr->Max_Partitions)) {
2341 					gctl_error(req, "No free partitions "
2342 					    "on disk '%s'.",
2343 					    diskname);
2344 					error = -7;
2345 					break;
2346 				}
2347 				pp = disk->d_consumer->provider;
2348 				disks[i] = disk;
2349 				ddf_meta_unused_range(&pd->pd_meta,
2350 				    &offs[i], &esize);
2351 				offs[i] *= pp->sectorsize;
2352 				size = MIN(size, (off_t)esize * pp->sectorsize);
2353 				sectorsize = MAX(sectorsize, pp->sectorsize);
2354 				continue;
2355 			}
2356 
2357 			g_topology_lock();
2358 			cp = g_raid_open_consumer(sc, diskname);
2359 			if (cp == NULL) {
2360 				gctl_error(req, "Can't open disk '%s'.",
2361 				    diskname);
2362 				g_topology_unlock();
2363 				error = -8;
2364 				break;
2365 			}
2366 			pp = cp->provider;
2367 			pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2368 			disk = g_raid_create_disk(sc);
2369 			disk->d_md_data = (void *)pd;
2370 			disk->d_consumer = cp;
2371 			disks[i] = disk;
2372 			cp->private = disk;
2373 			ddf_meta_create(disk, &mdi->mdio_meta);
2374 			if (mdi->mdio_meta.hdr == NULL)
2375 				ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2376 			else
2377 				ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2378 			g_topology_unlock();
2379 
2380 			g_raid_get_disk_info(disk);
2381 
2382 			/* Reserve some space for metadata. */
2383 			size = MIN(size, GET64(&pd->pd_meta,
2384 			    pdr->entry[0].Configured_Size) * pp->sectorsize);
2385 			sectorsize = MAX(sectorsize, pp->sectorsize);
2386 		}
2387 		if (error != 0) {
2388 			for (i = 0; i < numdisks; i++) {
2389 				if (disks[i] != NULL &&
2390 				    disks[i]->d_state == G_RAID_DISK_S_NONE)
2391 					g_raid_destroy_disk(disks[i]);
2392 			}
2393 			return (error);
2394 		}
2395 
2396 		if (sectorsize <= 0) {
2397 			gctl_error(req, "Can't get sector size.");
2398 			return (-8);
2399 		}
2400 
2401 		/* Handle size argument. */
2402 		len = sizeof(*sizearg);
2403 		sizearg = gctl_get_param(req, "size", &len);
2404 		if (sizearg != NULL && len == sizeof(*sizearg) &&
2405 		    *sizearg > 0) {
2406 			if (*sizearg > size) {
2407 				gctl_error(req, "Size too big %lld > %lld.",
2408 				    (long long)*sizearg, (long long)size);
2409 				return (-9);
2410 			}
2411 			size = *sizearg;
2412 		}
2413 
2414 		/* Handle strip argument. */
2415 		strip = 131072;
2416 		len = sizeof(*striparg);
2417 		striparg = gctl_get_param(req, "strip", &len);
2418 		if (striparg != NULL && len == sizeof(*striparg) &&
2419 		    *striparg > 0) {
2420 			if (*striparg < sectorsize) {
2421 				gctl_error(req, "Strip size too small.");
2422 				return (-10);
2423 			}
2424 			if (*striparg % sectorsize != 0) {
2425 				gctl_error(req, "Incorrect strip size.");
2426 				return (-11);
2427 			}
2428 			strip = *striparg;
2429 		}
2430 
2431 		/* Round size down to strip or sector. */
2432 		if (level == G_RAID_VOLUME_RL_RAID1 ||
2433 		    level == G_RAID_VOLUME_RL_RAID3 ||
2434 		    level == G_RAID_VOLUME_RL_SINGLE ||
2435 		    level == G_RAID_VOLUME_RL_CONCAT)
2436 			size -= (size % sectorsize);
2437 		else if (level == G_RAID_VOLUME_RL_RAID1E &&
2438 		    (numdisks & 1) != 0)
2439 			size -= (size % (2 * strip));
2440 		else
2441 			size -= (size % strip);
2442 		if (size <= 0) {
2443 			gctl_error(req, "Size too small.");
2444 			return (-13);
2445 		}
2446 
2447 		/* We have all we need, create things: volume, ... */
2448 		pv = malloc(sizeof(*pv), M_MD_DDF, M_WAITOK | M_ZERO);
2449 		ddf_vol_meta_create(&pv->pv_meta, &mdi->mdio_meta);
2450 		pv->pv_started = 1;
2451 		vol = g_raid_create_volume(sc, volname, -1);
2452 		vol->v_md_data = pv;
2453 		vol->v_raid_level = level;
2454 		vol->v_raid_level_qualifier = qual;
2455 		vol->v_strip_size = strip;
2456 		vol->v_disks_count = numdisks;
2457 		if (level == G_RAID_VOLUME_RL_RAID0 ||
2458 		    level == G_RAID_VOLUME_RL_CONCAT ||
2459 		    level == G_RAID_VOLUME_RL_SINGLE)
2460 			vol->v_mediasize = size * numdisks;
2461 		else if (level == G_RAID_VOLUME_RL_RAID1)
2462 			vol->v_mediasize = size;
2463 		else if (level == G_RAID_VOLUME_RL_RAID3 ||
2464 		    level == G_RAID_VOLUME_RL_RAID4 ||
2465 		    level == G_RAID_VOLUME_RL_RAID5)
2466 			vol->v_mediasize = size * (numdisks - 1);
2467 		else if (level == G_RAID_VOLUME_RL_RAID5R) {
2468 			vol->v_mediasize = size * (numdisks - 1);
2469 			vol->v_rotate_parity = 1024;
2470 		} else if (level == G_RAID_VOLUME_RL_RAID6 ||
2471 		    level == G_RAID_VOLUME_RL_RAID5E ||
2472 		    level == G_RAID_VOLUME_RL_RAID5EE)
2473 			vol->v_mediasize = size * (numdisks - 2);
2474 		else if (level == G_RAID_VOLUME_RL_RAIDMDF) {
2475 			if (numdisks < 5)
2476 				vol->v_mdf_pdisks = 2;
2477 			else
2478 				vol->v_mdf_pdisks = 3;
2479 			vol->v_mdf_polynomial = 0x11d;
2480 			vol->v_mdf_method = 0x00;
2481 			vol->v_mediasize = size * (numdisks - vol->v_mdf_pdisks);
2482 		} else { /* RAID1E */
2483 			vol->v_mediasize = ((size * numdisks) / strip / 2) *
2484 			    strip;
2485 		}
2486 		vol->v_sectorsize = sectorsize;
2487 		g_raid_start_volume(vol);
2488 
2489 		/* , and subdisks. */
2490 		for (i = 0; i < numdisks; i++) {
2491 			disk = disks[i];
2492 			sd = &vol->v_subdisks[i];
2493 			sd->sd_disk = disk;
2494 			sd->sd_offset = offs[i];
2495 			sd->sd_size = size;
2496 			if (disk == NULL)
2497 				continue;
2498 			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
2499 			g_raid_change_disk_state(disk,
2500 			    G_RAID_DISK_S_ACTIVE);
2501 			g_raid_change_subdisk_state(sd,
2502 			    G_RAID_SUBDISK_S_ACTIVE);
2503 			g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
2504 			    G_RAID_EVENT_SUBDISK);
2505 		}
2506 
2507 		/* Write metadata based on created entities. */
2508 		G_RAID_DEBUG1(0, sc, "Array started.");
2509 		g_raid_md_write_ddf(md, vol, NULL, NULL);
2510 
2511 		/* Pickup any STALE/SPARE disks to refill array if needed. */
2512 		g_raid_md_ddf_refill(sc);
2513 
2514 		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
2515 		    G_RAID_EVENT_VOLUME);
2516 		return (0);
2517 	}
2518 	if (strcmp(verb, "add") == 0) {
2519 
2520 		gctl_error(req, "`add` command is not applicable, "
2521 		    "use `label` instead.");
2522 		return (-99);
2523 	}
2524 	if (strcmp(verb, "delete") == 0) {
2525 
2526 		nodename = gctl_get_asciiparam(req, "arg0");
2527 		if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
2528 			nodename = NULL;
2529 
2530 		/* Full node destruction. */
2531 		if (*nargs == 1 && nodename != NULL) {
2532 			/* Check if some volume is still open. */
2533 			force = gctl_get_paraml(req, "force", sizeof(*force));
2534 			if (force != NULL && *force == 0 &&
2535 			    g_raid_nopens(sc) != 0) {
2536 				gctl_error(req, "Some volume is still open.");
2537 				return (-4);
2538 			}
2539 
2540 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2541 				if (disk->d_consumer)
2542 					ddf_meta_erase(disk->d_consumer);
2543 			}
2544 			g_raid_destroy_node(sc, 0);
2545 			return (0);
2546 		}
2547 
2548 		/* Destroy specified volume. If it was last - all node. */
2549 		if (*nargs > 2) {
2550 			gctl_error(req, "Invalid number of arguments.");
2551 			return (-1);
2552 		}
2553 		volname = gctl_get_asciiparam(req,
2554 		    nodename != NULL ? "arg1" : "arg0");
2555 		if (volname == NULL) {
2556 			gctl_error(req, "No volume name.");
2557 			return (-2);
2558 		}
2559 
2560 		/* Search for volume. */
2561 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2562 			if (strcmp(vol->v_name, volname) == 0)
2563 				break;
2564 			pp = vol->v_provider;
2565 			if (pp == NULL)
2566 				continue;
2567 			if (strcmp(pp->name, volname) == 0)
2568 				break;
2569 			if (strncmp(pp->name, "raid/", 5) == 0 &&
2570 			    strcmp(pp->name + 5, volname) == 0)
2571 				break;
2572 		}
2573 		if (vol == NULL) {
2574 			i = strtol(volname, &tmp, 10);
2575 			if (verb != volname && tmp[0] == 0) {
2576 				TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2577 					if (vol->v_global_id == i)
2578 						break;
2579 				}
2580 			}
2581 		}
2582 		if (vol == NULL) {
2583 			gctl_error(req, "Volume '%s' not found.", volname);
2584 			return (-3);
2585 		}
2586 
2587 		/* Check if volume is still open. */
2588 		force = gctl_get_paraml(req, "force", sizeof(*force));
2589 		if (force != NULL && *force == 0 &&
2590 		    vol->v_provider_open != 0) {
2591 			gctl_error(req, "Volume is still open.");
2592 			return (-4);
2593 		}
2594 
2595 		/* Destroy volume and potentially node. */
2596 		i = 0;
2597 		TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
2598 			i++;
2599 		if (i >= 2) {
2600 			g_raid_destroy_volume(vol);
2601 			g_raid_md_ddf_purge_disks(sc);
2602 			g_raid_md_write_ddf(md, NULL, NULL, NULL);
2603 		} else {
2604 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2605 				if (disk->d_consumer)
2606 					ddf_meta_erase(disk->d_consumer);
2607 			}
2608 			g_raid_destroy_node(sc, 0);
2609 		}
2610 		return (0);
2611 	}
2612 	if (strcmp(verb, "remove") == 0 ||
2613 	    strcmp(verb, "fail") == 0) {
2614 		if (*nargs < 2) {
2615 			gctl_error(req, "Invalid number of arguments.");
2616 			return (-1);
2617 		}
2618 		for (i = 1; i < *nargs; i++) {
2619 			snprintf(arg, sizeof(arg), "arg%d", i);
2620 			diskname = gctl_get_asciiparam(req, arg);
2621 			if (diskname == NULL) {
2622 				gctl_error(req, "No disk name (%s).", arg);
2623 				error = -2;
2624 				break;
2625 			}
2626 			if (strncmp(diskname, "/dev/", 5) == 0)
2627 				diskname += 5;
2628 
2629 			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2630 				if (disk->d_consumer != NULL &&
2631 				    disk->d_consumer->provider != NULL &&
2632 				    strcmp(disk->d_consumer->provider->name,
2633 				     diskname) == 0)
2634 					break;
2635 			}
2636 			if (disk == NULL) {
2637 				gctl_error(req, "Disk '%s' not found.",
2638 				    diskname);
2639 				error = -3;
2640 				break;
2641 			}
2642 
2643 			if (strcmp(verb, "fail") == 0) {
2644 				g_raid_md_fail_disk_ddf(md, NULL, disk);
2645 				continue;
2646 			}
2647 
2648 			/* Erase metadata on deleting disk and destroy it. */
2649 			ddf_meta_erase(disk->d_consumer);
2650 			g_raid_destroy_disk(disk);
2651 		}
2652 		g_raid_md_ddf_purge_volumes(sc);
2653 
2654 		/* Write updated metadata to remaining disks. */
2655 		g_raid_md_write_ddf(md, NULL, NULL, NULL);
2656 
2657 		/* Check if anything left. */
2658 		if (g_raid_ndisks(sc, -1) == 0)
2659 			g_raid_destroy_node(sc, 0);
2660 		else
2661 			g_raid_md_ddf_refill(sc);
2662 		return (error);
2663 	}
2664 	if (strcmp(verb, "insert") == 0) {
2665 		if (*nargs < 2) {
2666 			gctl_error(req, "Invalid number of arguments.");
2667 			return (-1);
2668 		}
2669 		for (i = 1; i < *nargs; i++) {
2670 			/* Get disk name. */
2671 			snprintf(arg, sizeof(arg), "arg%d", i);
2672 			diskname = gctl_get_asciiparam(req, arg);
2673 			if (diskname == NULL) {
2674 				gctl_error(req, "No disk name (%s).", arg);
2675 				error = -3;
2676 				break;
2677 			}
2678 
2679 			/* Try to find provider with specified name. */
2680 			g_topology_lock();
2681 			cp = g_raid_open_consumer(sc, diskname);
2682 			if (cp == NULL) {
2683 				gctl_error(req, "Can't open disk '%s'.",
2684 				    diskname);
2685 				g_topology_unlock();
2686 				error = -4;
2687 				break;
2688 			}
2689 			pp = cp->provider;
2690 			g_topology_unlock();
2691 
2692 			pd = malloc(sizeof(*pd), M_MD_DDF, M_WAITOK | M_ZERO);
2693 
2694 			disk = g_raid_create_disk(sc);
2695 			disk->d_consumer = cp;
2696 			disk->d_md_data = (void *)pd;
2697 			cp->private = disk;
2698 
2699 			g_raid_get_disk_info(disk);
2700 
2701 			/* Welcome the "new" disk. */
2702 			g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
2703 			ddf_meta_create(disk, &mdi->mdio_meta);
2704 			sa = ddf_meta_find_sa(&pd->pd_meta, 1);
2705 			if (sa != NULL) {
2706 				SET32D(&pd->pd_meta, sa->Signature,
2707 				    DDF_SA_SIGNATURE);
2708 				SET8D(&pd->pd_meta, sa->Spare_Type, 0);
2709 				SET16D(&pd->pd_meta, sa->Populated_SAEs, 0);
2710 				SET16D(&pd->pd_meta, sa->MAX_SAE_Supported,
2711 				    (GET16(&pd->pd_meta, hdr->Configuration_Record_Length) *
2712 				     pd->pd_meta.sectorsize -
2713 				     sizeof(struct ddf_sa_record)) /
2714 				    sizeof(struct ddf_sa_entry));
2715 			}
2716 			if (mdi->mdio_meta.hdr == NULL)
2717 				ddf_meta_copy(&mdi->mdio_meta, &pd->pd_meta);
2718 			else
2719 				ddf_meta_update(&mdi->mdio_meta, &pd->pd_meta);
2720 			g_raid_md_write_ddf(md, NULL, NULL, NULL);
2721 			g_raid_md_ddf_refill(sc);
2722 		}
2723 		return (error);
2724 	}
2725 	return (-100);
2726 }
2727 
2728 static int
2729 g_raid_md_write_ddf(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2730     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2731 {
2732 	struct g_raid_softc *sc;
2733 	struct g_raid_volume *vol;
2734 	struct g_raid_subdisk *sd;
2735 	struct g_raid_disk *disk;
2736 	struct g_raid_md_ddf_perdisk *pd;
2737 	struct g_raid_md_ddf_pervolume *pv;
2738 	struct g_raid_md_ddf_object *mdi;
2739 	struct ddf_meta *gmeta;
2740 	struct ddf_vol_meta *vmeta;
2741 	struct ddf_vdc_record *vdc;
2742 	struct ddf_sa_record *sa;
2743 	uint64_t *val2;
2744 	int i, j, pos, bvd, size;
2745 
2746 	sc = md->mdo_softc;
2747 	mdi = (struct g_raid_md_ddf_object *)md;
2748 	gmeta = &mdi->mdio_meta;
2749 
2750 	if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2751 		return (0);
2752 
2753 	/*
2754 	 * Clear disk flags to let only really needed ones to be reset.
2755 	 * Do it only if there are no volumes in starting state now,
2756 	 * as they can update disk statuses yet and we may kill innocent.
2757 	 */
2758 	if (mdi->mdio_starting == 0) {
2759 		for (i = 0; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2760 			if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2761 				continue;
2762 			SET16(gmeta, pdr->entry[i].PD_Type,
2763 			    GET16(gmeta, pdr->entry[i].PD_Type) &
2764 			    ~(DDF_PDE_PARTICIPATING |
2765 			      DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE));
2766 			if ((GET16(gmeta, pdr->entry[i].PD_State) &
2767 			    DDF_PDE_PFA) == 0)
2768 				SET16(gmeta, pdr->entry[i].PD_State, 0);
2769 		}
2770 	}
2771 
2772 	/* Generate/update new per-volume metadata. */
2773 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2774 		pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2775 		if (vol->v_stopping || !pv->pv_started)
2776 			continue;
2777 		vmeta = &pv->pv_meta;
2778 
2779 		SET32(vmeta, vdc->Sequence_Number,
2780 		    GET32(vmeta, vdc->Sequence_Number) + 1);
2781 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2782 		    vol->v_disks_count % 2 == 0)
2783 			SET16(vmeta, vdc->Primary_Element_Count, 2);
2784 		else
2785 			SET16(vmeta, vdc->Primary_Element_Count,
2786 			    vol->v_disks_count);
2787 		SET8(vmeta, vdc->Stripe_Size,
2788 		    ffs(vol->v_strip_size / vol->v_sectorsize) - 1);
2789 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E &&
2790 		    vol->v_disks_count % 2 == 0) {
2791 			SET8(vmeta, vdc->Primary_RAID_Level,
2792 			    DDF_VDCR_RAID1);
2793 			SET8(vmeta, vdc->RLQ, 0);
2794 			SET8(vmeta, vdc->Secondary_Element_Count,
2795 			    vol->v_disks_count / 2);
2796 			SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2797 		} else {
2798 			SET8(vmeta, vdc->Primary_RAID_Level,
2799 			    vol->v_raid_level);
2800 			SET8(vmeta, vdc->RLQ,
2801 			    vol->v_raid_level_qualifier);
2802 			SET8(vmeta, vdc->Secondary_Element_Count, 1);
2803 			SET8(vmeta, vdc->Secondary_RAID_Level, 0);
2804 		}
2805 		SET8(vmeta, vdc->Secondary_Element_Seq, 0);
2806 		SET64(vmeta, vdc->Block_Count, 0);
2807 		SET64(vmeta, vdc->VD_Size, vol->v_mediasize / vol->v_sectorsize);
2808 		SET16(vmeta, vdc->Block_Size, vol->v_sectorsize);
2809 		SET8(vmeta, vdc->Rotate_Parity_count,
2810 		    fls(vol->v_rotate_parity) - 1);
2811 		SET8(vmeta, vdc->MDF_Parity_Disks, vol->v_mdf_pdisks);
2812 		SET16(vmeta, vdc->MDF_Parity_Generator_Polynomial,
2813 		    vol->v_mdf_polynomial);
2814 		SET8(vmeta, vdc->MDF_Constant_Generation_Method,
2815 		    vol->v_mdf_method);
2816 
2817 		SET16(vmeta, vde->VD_Number, vol->v_global_id);
2818 		if (vol->v_state <= G_RAID_VOLUME_S_BROKEN)
2819 			SET8(vmeta, vde->VD_State, DDF_VDE_FAILED);
2820 		else if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED)
2821 			SET8(vmeta, vde->VD_State, DDF_VDE_DEGRADED);
2822 		else if (vol->v_state <= G_RAID_VOLUME_S_SUBOPTIMAL)
2823 			SET8(vmeta, vde->VD_State, DDF_VDE_PARTIAL);
2824 		else
2825 			SET8(vmeta, vde->VD_State, DDF_VDE_OPTIMAL);
2826 		if (vol->v_dirty ||
2827 		    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) > 0 ||
2828 		    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC) > 0)
2829 			SET8(vmeta, vde->VD_State,
2830 			    GET8(vmeta, vde->VD_State) | DDF_VDE_DIRTY);
2831 		SET8(vmeta, vde->Init_State, DDF_VDE_INIT_FULL); // XXX
2832 		ddf_meta_put_name(vmeta, vol->v_name);
2833 
2834 		for (i = 0; i < vol->v_disks_count; i++) {
2835 			sd = &vol->v_subdisks[i];
2836 			bvd = i / GET16(vmeta, vdc->Primary_Element_Count);
2837 			pos = i % GET16(vmeta, vdc->Primary_Element_Count);
2838 			disk = sd->sd_disk;
2839 			if (disk != NULL) {
2840 				pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2841 				if (vmeta->bvdc[bvd] == NULL) {
2842 					size = GET16(vmeta,
2843 					    hdr->Configuration_Record_Length) *
2844 					    vmeta->sectorsize;
2845 					vmeta->bvdc[bvd] = malloc(size,
2846 					    M_MD_DDF, M_WAITOK);
2847 					memset(vmeta->bvdc[bvd], 0xff, size);
2848 				}
2849 				memcpy(vmeta->bvdc[bvd], vmeta->vdc,
2850 				    sizeof(struct ddf_vdc_record));
2851 				SET8(vmeta, bvdc[bvd]->Secondary_Element_Seq, bvd);
2852 				SET64(vmeta, bvdc[bvd]->Block_Count,
2853 				    sd->sd_size / vol->v_sectorsize);
2854 				SET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos],
2855 				    GET32(&pd->pd_meta, pdd->PD_Reference));
2856 				val2 = (uint64_t *)&(vmeta->bvdc[bvd]->Physical_Disk_Sequence[
2857 				    GET16(vmeta, hdr->Max_Primary_Element_Entries)]);
2858 				SET64P(vmeta, val2 + pos,
2859 				    sd->sd_offset / vol->v_sectorsize);
2860 			}
2861 			if (vmeta->bvdc[bvd] == NULL)
2862 				continue;
2863 
2864 			j = ddf_meta_find_pd(gmeta, NULL,
2865 			    GET32(vmeta, bvdc[bvd]->Physical_Disk_Sequence[pos]));
2866 			if (j < 0)
2867 				continue;
2868 			SET16(gmeta, pdr->entry[j].PD_Type,
2869 			    GET16(gmeta, pdr->entry[j].PD_Type) |
2870 			    DDF_PDE_PARTICIPATING);
2871 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
2872 				SET16(gmeta, pdr->entry[j].PD_State,
2873 				    GET16(gmeta, pdr->entry[j].PD_State) |
2874 				    (DDF_PDE_FAILED | DDF_PDE_MISSING));
2875 			else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED)
2876 				SET16(gmeta, pdr->entry[j].PD_State,
2877 				    GET16(gmeta, pdr->entry[j].PD_State) |
2878 				    (DDF_PDE_FAILED | DDF_PDE_PFA));
2879 			else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD)
2880 				SET16(gmeta, pdr->entry[j].PD_State,
2881 				    GET16(gmeta, pdr->entry[j].PD_State) |
2882 				    DDF_PDE_REBUILD);
2883 			else
2884 				SET16(gmeta, pdr->entry[j].PD_State,
2885 				    GET16(gmeta, pdr->entry[j].PD_State) |
2886 				    DDF_PDE_ONLINE);
2887 		}
2888 	}
2889 
2890 	/* Mark spare and failed disks as such. */
2891 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2892 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2893 		i = ddf_meta_find_pd(gmeta, NULL,
2894 		    GET32(&pd->pd_meta, pdd->PD_Reference));
2895 		if (i < 0)
2896 			continue;
2897 		if (disk->d_state == G_RAID_DISK_S_FAILED) {
2898 			SET16(gmeta, pdr->entry[i].PD_State,
2899 			    GET16(gmeta, pdr->entry[i].PD_State) |
2900 			    (DDF_PDE_FAILED | DDF_PDE_PFA));
2901 		}
2902 		if (disk->d_state != G_RAID_DISK_S_SPARE)
2903 			continue;
2904 		sa = ddf_meta_find_sa(&pd->pd_meta, 0);
2905 		if (sa == NULL ||
2906 		    (GET8D(&pd->pd_meta, sa->Spare_Type) &
2907 		     DDF_SAR_TYPE_DEDICATED) == 0) {
2908 			SET16(gmeta, pdr->entry[i].PD_Type,
2909 			    GET16(gmeta, pdr->entry[i].PD_Type) |
2910 			    DDF_PDE_GLOBAL_SPARE);
2911 		} else {
2912 			SET16(gmeta, pdr->entry[i].PD_Type,
2913 			    GET16(gmeta, pdr->entry[i].PD_Type) |
2914 			    DDF_PDE_CONFIG_SPARE);
2915 		}
2916 		SET16(gmeta, pdr->entry[i].PD_State,
2917 		    GET16(gmeta, pdr->entry[i].PD_State) |
2918 		    DDF_PDE_ONLINE);
2919 	}
2920 
2921 	/* Remove disks without "participating" flag (unused). */
2922 	for (i = 0, j = -1; i < GET16(gmeta, pdr->Populated_PDEs); i++) {
2923 		if (isff(gmeta->pdr->entry[i].PD_GUID, 24))
2924 			continue;
2925 		if ((GET16(gmeta, pdr->entry[i].PD_Type) &
2926 		    (DDF_PDE_PARTICIPATING |
2927 		     DDF_PDE_GLOBAL_SPARE | DDF_PDE_CONFIG_SPARE)) != 0 ||
2928 		    g_raid_md_ddf_get_disk(sc,
2929 		     NULL, GET32(gmeta, pdr->entry[i].PD_Reference)) != NULL)
2930 			j = i;
2931 		else
2932 			memset(&gmeta->pdr->entry[i], 0xff,
2933 			    sizeof(struct ddf_pd_entry));
2934 	}
2935 	SET16(gmeta, pdr->Populated_PDEs, j + 1);
2936 
2937 	/* Update per-disk metadata and write them. */
2938 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2939 		pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
2940 		if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
2941 		    disk->d_state != G_RAID_DISK_S_SPARE)
2942 			continue;
2943 		/* Update PDR. */
2944 		memcpy(pd->pd_meta.pdr, gmeta->pdr,
2945 		    GET32(&pd->pd_meta, hdr->pdr_length) *
2946 		    pd->pd_meta.sectorsize);
2947 		/* Update VDR. */
2948 		SET16(&pd->pd_meta, vdr->Populated_VDEs, 0);
2949 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2950 			if (vol->v_stopping)
2951 				continue;
2952 			pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2953 			i = ddf_meta_find_vd(&pd->pd_meta,
2954 			    pv->pv_meta.vde->VD_GUID);
2955 			if (i < 0)
2956 				i = ddf_meta_find_vd(&pd->pd_meta, NULL);
2957 			if (i >= 0)
2958 				memcpy(&pd->pd_meta.vdr->entry[i],
2959 				    pv->pv_meta.vde,
2960 				    sizeof(struct ddf_vd_entry));
2961 		}
2962 		/* Update VDC. */
2963 		if (mdi->mdio_starting == 0) {
2964 			/* Remove all VDCs to restore needed later. */
2965 			j = GETCRNUM(&pd->pd_meta);
2966 			for (i = 0; i < j; i++) {
2967 				vdc = GETVDCPTR(&pd->pd_meta, i);
2968 				if (GET32D(&pd->pd_meta, vdc->Signature) !=
2969 				    DDF_VDCR_SIGNATURE)
2970 					continue;
2971 				SET32D(&pd->pd_meta, vdc->Signature, 0xffffffff);
2972 			}
2973 		}
2974 		TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2975 			vol = sd->sd_volume;
2976 			if (vol->v_stopping)
2977 				continue;
2978 			pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
2979 			vmeta = &pv->pv_meta;
2980 			vdc = ddf_meta_find_vdc(&pd->pd_meta,
2981 			    vmeta->vde->VD_GUID);
2982 			if (vdc == NULL)
2983 				vdc = ddf_meta_find_vdc(&pd->pd_meta, NULL);
2984 			if (vdc != NULL) {
2985 				bvd = sd->sd_pos / GET16(vmeta,
2986 				    vdc->Primary_Element_Count);
2987 				memcpy(vdc, vmeta->bvdc[bvd],
2988 				    GET16(&pd->pd_meta,
2989 				    hdr->Configuration_Record_Length) *
2990 				    pd->pd_meta.sectorsize);
2991 			}
2992 		}
2993 		G_RAID_DEBUG(1, "Writing DDF metadata to %s",
2994 		    g_raid_get_diskname(disk));
2995 		g_raid_md_ddf_print(&pd->pd_meta);
2996 		ddf_meta_write(disk->d_consumer, &pd->pd_meta);
2997 	}
2998 	return (0);
2999 }
3000 
3001 static int
3002 g_raid_md_fail_disk_ddf(struct g_raid_md_object *md,
3003     struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
3004 {
3005 	struct g_raid_softc *sc;
3006 	struct g_raid_md_ddf_perdisk *pd;
3007 	struct g_raid_subdisk *sd;
3008 	int i;
3009 
3010 	sc = md->mdo_softc;
3011 	pd = (struct g_raid_md_ddf_perdisk *)tdisk->d_md_data;
3012 
3013 	/* We can't fail disk that is not a part of array now. */
3014 	if (tdisk->d_state != G_RAID_DISK_S_ACTIVE)
3015 		return (-1);
3016 
3017 	/*
3018 	 * Mark disk as failed in metadata and try to write that metadata
3019 	 * to the disk itself to prevent it's later resurrection as STALE.
3020 	 */
3021 	G_RAID_DEBUG(1, "Writing DDF metadata to %s",
3022 	    g_raid_get_diskname(tdisk));
3023 	i = ddf_meta_find_pd(&pd->pd_meta, NULL, GET32(&pd->pd_meta, pdd->PD_Reference));
3024 	SET16(&pd->pd_meta, pdr->entry[i].PD_State, DDF_PDE_FAILED | DDF_PDE_PFA);
3025 	if (tdisk->d_consumer != NULL)
3026 		ddf_meta_write(tdisk->d_consumer, &pd->pd_meta);
3027 
3028 	/* Change states. */
3029 	g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
3030 	TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
3031 		g_raid_change_subdisk_state(sd,
3032 		    G_RAID_SUBDISK_S_FAILED);
3033 		g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
3034 		    G_RAID_EVENT_SUBDISK);
3035 	}
3036 
3037 	/* Write updated metadata to remaining disks. */
3038 	g_raid_md_write_ddf(md, NULL, NULL, tdisk);
3039 
3040 	g_raid_md_ddf_refill(sc);
3041 	return (0);
3042 }
3043 
3044 static int
3045 g_raid_md_free_disk_ddf(struct g_raid_md_object *md,
3046     struct g_raid_disk *disk)
3047 {
3048 	struct g_raid_md_ddf_perdisk *pd;
3049 
3050 	pd = (struct g_raid_md_ddf_perdisk *)disk->d_md_data;
3051 	ddf_meta_free(&pd->pd_meta);
3052 	free(pd, M_MD_DDF);
3053 	disk->d_md_data = NULL;
3054 	return (0);
3055 }
3056 
3057 static int
3058 g_raid_md_free_volume_ddf(struct g_raid_md_object *md,
3059     struct g_raid_volume *vol)
3060 {
3061 	struct g_raid_md_ddf_object *mdi;
3062 	struct g_raid_md_ddf_pervolume *pv;
3063 
3064 	mdi = (struct g_raid_md_ddf_object *)md;
3065 	pv = (struct g_raid_md_ddf_pervolume *)vol->v_md_data;
3066 	ddf_vol_meta_free(&pv->pv_meta);
3067 	if (!pv->pv_started) {
3068 		pv->pv_started = 1;
3069 		mdi->mdio_starting--;
3070 		callout_stop(&pv->pv_start_co);
3071 	}
3072 	free(pv, M_MD_DDF);
3073 	vol->v_md_data = NULL;
3074 	return (0);
3075 }
3076 
3077 static int
3078 g_raid_md_free_ddf(struct g_raid_md_object *md)
3079 {
3080 	struct g_raid_md_ddf_object *mdi;
3081 
3082 	mdi = (struct g_raid_md_ddf_object *)md;
3083 	if (!mdi->mdio_started) {
3084 		mdi->mdio_started = 0;
3085 		callout_stop(&mdi->mdio_start_co);
3086 		G_RAID_DEBUG1(1, md->mdo_softc,
3087 		    "root_mount_rel %p", mdi->mdio_rootmount);
3088 		root_mount_rel(mdi->mdio_rootmount);
3089 		mdi->mdio_rootmount = NULL;
3090 	}
3091 	ddf_meta_free(&mdi->mdio_meta);
3092 	return (0);
3093 }
3094 
3095 G_RAID_MD_DECLARE(ddf, "DDF");
3096