1 /*- 2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sbuf.h> 39 #include <sys/sysctl.h> 40 #include <sys/malloc.h> 41 #include <sys/eventhandler.h> 42 #include <vm/uma.h> 43 #include <geom/geom.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <sys/sched.h> 47 #include <geom/raid/g_raid.h> 48 #include "g_raid_md_if.h" 49 #include "g_raid_tr_if.h" 50 51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 52 53 SYSCTL_DECL(_kern_geom); 54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 55 int g_raid_enable = 1; 56 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN, 57 &g_raid_enable, 0, "Enable on-disk metadata taste"); 58 u_int g_raid_aggressive_spare = 0; 59 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN, 60 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 61 u_int g_raid_debug = 0; 62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0, 63 "Debug level"); 64 int g_raid_read_err_thresh = 10; 65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN, 66 &g_raid_read_err_thresh, 0, 67 "Number of read errors equated to disk failure"); 68 u_int g_raid_start_timeout = 30; 69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN, 70 &g_raid_start_timeout, 0, 71 "Time to wait for all array components"); 72 static u_int g_raid_clean_time = 5; 73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN, 74 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 75 static u_int g_raid_disconnect_on_failure = 1; 76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 77 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 78 static u_int g_raid_name_format = 0; 79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN, 80 &g_raid_name_format, 0, "Providers name format."); 81 static u_int g_raid_idle_threshold = 1000000; 82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN, 83 &g_raid_idle_threshold, 1000000, 84 "Time in microseconds to consider a volume idle."); 85 static u_int ar_legacy_aliases = 1; 86 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RWTUN, 87 &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style."); 88 89 90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 91 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 92 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 93 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 94 } while (0) 95 96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 97 LIST_HEAD_INITIALIZER(g_raid_md_classes); 98 99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 100 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 101 102 LIST_HEAD(, g_raid_volume) g_raid_volumes = 103 LIST_HEAD_INITIALIZER(g_raid_volumes); 104 105 static eventhandler_tag g_raid_post_sync = NULL; 106 static int g_raid_started = 0; 107 static int g_raid_shutdown = 0; 108 109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 110 struct g_geom *gp); 111 static g_taste_t g_raid_taste; 112 static void g_raid_init(struct g_class *mp); 113 static void g_raid_fini(struct g_class *mp); 114 115 struct g_class g_raid_class = { 116 .name = G_RAID_CLASS_NAME, 117 .version = G_VERSION, 118 .ctlreq = g_raid_ctl, 119 .taste = g_raid_taste, 120 .destroy_geom = g_raid_destroy_geom, 121 .init = g_raid_init, 122 .fini = g_raid_fini 123 }; 124 125 static void g_raid_destroy_provider(struct g_raid_volume *vol); 126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 131 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 132 static void g_raid_start(struct bio *bp); 133 static void g_raid_start_request(struct bio *bp); 134 static void g_raid_disk_done(struct bio *bp); 135 static void g_raid_poll(struct g_raid_softc *sc); 136 137 static const char * 138 g_raid_node_event2str(int event) 139 { 140 141 switch (event) { 142 case G_RAID_NODE_E_WAKE: 143 return ("WAKE"); 144 case G_RAID_NODE_E_START: 145 return ("START"); 146 default: 147 return ("INVALID"); 148 } 149 } 150 151 const char * 152 g_raid_disk_state2str(int state) 153 { 154 155 switch (state) { 156 case G_RAID_DISK_S_NONE: 157 return ("NONE"); 158 case G_RAID_DISK_S_OFFLINE: 159 return ("OFFLINE"); 160 case G_RAID_DISK_S_DISABLED: 161 return ("DISABLED"); 162 case G_RAID_DISK_S_FAILED: 163 return ("FAILED"); 164 case G_RAID_DISK_S_STALE_FAILED: 165 return ("STALE_FAILED"); 166 case G_RAID_DISK_S_SPARE: 167 return ("SPARE"); 168 case G_RAID_DISK_S_STALE: 169 return ("STALE"); 170 case G_RAID_DISK_S_ACTIVE: 171 return ("ACTIVE"); 172 default: 173 return ("INVALID"); 174 } 175 } 176 177 static const char * 178 g_raid_disk_event2str(int event) 179 { 180 181 switch (event) { 182 case G_RAID_DISK_E_DISCONNECTED: 183 return ("DISCONNECTED"); 184 default: 185 return ("INVALID"); 186 } 187 } 188 189 const char * 190 g_raid_subdisk_state2str(int state) 191 { 192 193 switch (state) { 194 case G_RAID_SUBDISK_S_NONE: 195 return ("NONE"); 196 case G_RAID_SUBDISK_S_FAILED: 197 return ("FAILED"); 198 case G_RAID_SUBDISK_S_NEW: 199 return ("NEW"); 200 case G_RAID_SUBDISK_S_REBUILD: 201 return ("REBUILD"); 202 case G_RAID_SUBDISK_S_UNINITIALIZED: 203 return ("UNINITIALIZED"); 204 case G_RAID_SUBDISK_S_STALE: 205 return ("STALE"); 206 case G_RAID_SUBDISK_S_RESYNC: 207 return ("RESYNC"); 208 case G_RAID_SUBDISK_S_ACTIVE: 209 return ("ACTIVE"); 210 default: 211 return ("INVALID"); 212 } 213 } 214 215 static const char * 216 g_raid_subdisk_event2str(int event) 217 { 218 219 switch (event) { 220 case G_RAID_SUBDISK_E_NEW: 221 return ("NEW"); 222 case G_RAID_SUBDISK_E_FAILED: 223 return ("FAILED"); 224 case G_RAID_SUBDISK_E_DISCONNECTED: 225 return ("DISCONNECTED"); 226 default: 227 return ("INVALID"); 228 } 229 } 230 231 const char * 232 g_raid_volume_state2str(int state) 233 { 234 235 switch (state) { 236 case G_RAID_VOLUME_S_STARTING: 237 return ("STARTING"); 238 case G_RAID_VOLUME_S_BROKEN: 239 return ("BROKEN"); 240 case G_RAID_VOLUME_S_DEGRADED: 241 return ("DEGRADED"); 242 case G_RAID_VOLUME_S_SUBOPTIMAL: 243 return ("SUBOPTIMAL"); 244 case G_RAID_VOLUME_S_OPTIMAL: 245 return ("OPTIMAL"); 246 case G_RAID_VOLUME_S_UNSUPPORTED: 247 return ("UNSUPPORTED"); 248 case G_RAID_VOLUME_S_STOPPED: 249 return ("STOPPED"); 250 default: 251 return ("INVALID"); 252 } 253 } 254 255 static const char * 256 g_raid_volume_event2str(int event) 257 { 258 259 switch (event) { 260 case G_RAID_VOLUME_E_UP: 261 return ("UP"); 262 case G_RAID_VOLUME_E_DOWN: 263 return ("DOWN"); 264 case G_RAID_VOLUME_E_START: 265 return ("START"); 266 case G_RAID_VOLUME_E_STARTMD: 267 return ("STARTMD"); 268 default: 269 return ("INVALID"); 270 } 271 } 272 273 const char * 274 g_raid_volume_level2str(int level, int qual) 275 { 276 277 switch (level) { 278 case G_RAID_VOLUME_RL_RAID0: 279 return ("RAID0"); 280 case G_RAID_VOLUME_RL_RAID1: 281 return ("RAID1"); 282 case G_RAID_VOLUME_RL_RAID3: 283 if (qual == G_RAID_VOLUME_RLQ_R3P0) 284 return ("RAID3-P0"); 285 if (qual == G_RAID_VOLUME_RLQ_R3PN) 286 return ("RAID3-PN"); 287 return ("RAID3"); 288 case G_RAID_VOLUME_RL_RAID4: 289 if (qual == G_RAID_VOLUME_RLQ_R4P0) 290 return ("RAID4-P0"); 291 if (qual == G_RAID_VOLUME_RLQ_R4PN) 292 return ("RAID4-PN"); 293 return ("RAID4"); 294 case G_RAID_VOLUME_RL_RAID5: 295 if (qual == G_RAID_VOLUME_RLQ_R5RA) 296 return ("RAID5-RA"); 297 if (qual == G_RAID_VOLUME_RLQ_R5RS) 298 return ("RAID5-RS"); 299 if (qual == G_RAID_VOLUME_RLQ_R5LA) 300 return ("RAID5-LA"); 301 if (qual == G_RAID_VOLUME_RLQ_R5LS) 302 return ("RAID5-LS"); 303 return ("RAID5"); 304 case G_RAID_VOLUME_RL_RAID6: 305 if (qual == G_RAID_VOLUME_RLQ_R6RA) 306 return ("RAID6-RA"); 307 if (qual == G_RAID_VOLUME_RLQ_R6RS) 308 return ("RAID6-RS"); 309 if (qual == G_RAID_VOLUME_RLQ_R6LA) 310 return ("RAID6-LA"); 311 if (qual == G_RAID_VOLUME_RLQ_R6LS) 312 return ("RAID6-LS"); 313 return ("RAID6"); 314 case G_RAID_VOLUME_RL_RAIDMDF: 315 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 316 return ("RAIDMDF-RA"); 317 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 318 return ("RAIDMDF-RS"); 319 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 320 return ("RAIDMDF-LA"); 321 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 322 return ("RAIDMDF-LS"); 323 return ("RAIDMDF"); 324 case G_RAID_VOLUME_RL_RAID1E: 325 if (qual == G_RAID_VOLUME_RLQ_R1EA) 326 return ("RAID1E-A"); 327 if (qual == G_RAID_VOLUME_RLQ_R1EO) 328 return ("RAID1E-O"); 329 return ("RAID1E"); 330 case G_RAID_VOLUME_RL_SINGLE: 331 return ("SINGLE"); 332 case G_RAID_VOLUME_RL_CONCAT: 333 return ("CONCAT"); 334 case G_RAID_VOLUME_RL_RAID5E: 335 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 336 return ("RAID5E-RA"); 337 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 338 return ("RAID5E-RS"); 339 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 340 return ("RAID5E-LA"); 341 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 342 return ("RAID5E-LS"); 343 return ("RAID5E"); 344 case G_RAID_VOLUME_RL_RAID5EE: 345 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 346 return ("RAID5EE-RA"); 347 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 348 return ("RAID5EE-RS"); 349 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 350 return ("RAID5EE-LA"); 351 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 352 return ("RAID5EE-LS"); 353 return ("RAID5EE"); 354 case G_RAID_VOLUME_RL_RAID5R: 355 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 356 return ("RAID5R-RA"); 357 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 358 return ("RAID5R-RS"); 359 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 360 return ("RAID5R-LA"); 361 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 362 return ("RAID5R-LS"); 363 return ("RAID5E"); 364 default: 365 return ("UNKNOWN"); 366 } 367 } 368 369 int 370 g_raid_volume_str2level(const char *str, int *level, int *qual) 371 { 372 373 *level = G_RAID_VOLUME_RL_UNKNOWN; 374 *qual = G_RAID_VOLUME_RLQ_NONE; 375 if (strcasecmp(str, "RAID0") == 0) 376 *level = G_RAID_VOLUME_RL_RAID0; 377 else if (strcasecmp(str, "RAID1") == 0) 378 *level = G_RAID_VOLUME_RL_RAID1; 379 else if (strcasecmp(str, "RAID3-P0") == 0) { 380 *level = G_RAID_VOLUME_RL_RAID3; 381 *qual = G_RAID_VOLUME_RLQ_R3P0; 382 } else if (strcasecmp(str, "RAID3-PN") == 0 || 383 strcasecmp(str, "RAID3") == 0) { 384 *level = G_RAID_VOLUME_RL_RAID3; 385 *qual = G_RAID_VOLUME_RLQ_R3PN; 386 } else if (strcasecmp(str, "RAID4-P0") == 0) { 387 *level = G_RAID_VOLUME_RL_RAID4; 388 *qual = G_RAID_VOLUME_RLQ_R4P0; 389 } else if (strcasecmp(str, "RAID4-PN") == 0 || 390 strcasecmp(str, "RAID4") == 0) { 391 *level = G_RAID_VOLUME_RL_RAID4; 392 *qual = G_RAID_VOLUME_RLQ_R4PN; 393 } else if (strcasecmp(str, "RAID5-RA") == 0) { 394 *level = G_RAID_VOLUME_RL_RAID5; 395 *qual = G_RAID_VOLUME_RLQ_R5RA; 396 } else if (strcasecmp(str, "RAID5-RS") == 0) { 397 *level = G_RAID_VOLUME_RL_RAID5; 398 *qual = G_RAID_VOLUME_RLQ_R5RS; 399 } else if (strcasecmp(str, "RAID5") == 0 || 400 strcasecmp(str, "RAID5-LA") == 0) { 401 *level = G_RAID_VOLUME_RL_RAID5; 402 *qual = G_RAID_VOLUME_RLQ_R5LA; 403 } else if (strcasecmp(str, "RAID5-LS") == 0) { 404 *level = G_RAID_VOLUME_RL_RAID5; 405 *qual = G_RAID_VOLUME_RLQ_R5LS; 406 } else if (strcasecmp(str, "RAID6-RA") == 0) { 407 *level = G_RAID_VOLUME_RL_RAID6; 408 *qual = G_RAID_VOLUME_RLQ_R6RA; 409 } else if (strcasecmp(str, "RAID6-RS") == 0) { 410 *level = G_RAID_VOLUME_RL_RAID6; 411 *qual = G_RAID_VOLUME_RLQ_R6RS; 412 } else if (strcasecmp(str, "RAID6") == 0 || 413 strcasecmp(str, "RAID6-LA") == 0) { 414 *level = G_RAID_VOLUME_RL_RAID6; 415 *qual = G_RAID_VOLUME_RLQ_R6LA; 416 } else if (strcasecmp(str, "RAID6-LS") == 0) { 417 *level = G_RAID_VOLUME_RL_RAID6; 418 *qual = G_RAID_VOLUME_RLQ_R6LS; 419 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 420 *level = G_RAID_VOLUME_RL_RAIDMDF; 421 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 422 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 423 *level = G_RAID_VOLUME_RL_RAIDMDF; 424 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 425 } else if (strcasecmp(str, "RAIDMDF") == 0 || 426 strcasecmp(str, "RAIDMDF-LA") == 0) { 427 *level = G_RAID_VOLUME_RL_RAIDMDF; 428 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 429 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 430 *level = G_RAID_VOLUME_RL_RAIDMDF; 431 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 432 } else if (strcasecmp(str, "RAID10") == 0 || 433 strcasecmp(str, "RAID1E") == 0 || 434 strcasecmp(str, "RAID1E-A") == 0) { 435 *level = G_RAID_VOLUME_RL_RAID1E; 436 *qual = G_RAID_VOLUME_RLQ_R1EA; 437 } else if (strcasecmp(str, "RAID1E-O") == 0) { 438 *level = G_RAID_VOLUME_RL_RAID1E; 439 *qual = G_RAID_VOLUME_RLQ_R1EO; 440 } else if (strcasecmp(str, "SINGLE") == 0) 441 *level = G_RAID_VOLUME_RL_SINGLE; 442 else if (strcasecmp(str, "CONCAT") == 0) 443 *level = G_RAID_VOLUME_RL_CONCAT; 444 else if (strcasecmp(str, "RAID5E-RA") == 0) { 445 *level = G_RAID_VOLUME_RL_RAID5E; 446 *qual = G_RAID_VOLUME_RLQ_R5ERA; 447 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 448 *level = G_RAID_VOLUME_RL_RAID5E; 449 *qual = G_RAID_VOLUME_RLQ_R5ERS; 450 } else if (strcasecmp(str, "RAID5E") == 0 || 451 strcasecmp(str, "RAID5E-LA") == 0) { 452 *level = G_RAID_VOLUME_RL_RAID5E; 453 *qual = G_RAID_VOLUME_RLQ_R5ELA; 454 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 455 *level = G_RAID_VOLUME_RL_RAID5E; 456 *qual = G_RAID_VOLUME_RLQ_R5ELS; 457 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 458 *level = G_RAID_VOLUME_RL_RAID5EE; 459 *qual = G_RAID_VOLUME_RLQ_R5EERA; 460 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 461 *level = G_RAID_VOLUME_RL_RAID5EE; 462 *qual = G_RAID_VOLUME_RLQ_R5EERS; 463 } else if (strcasecmp(str, "RAID5EE") == 0 || 464 strcasecmp(str, "RAID5EE-LA") == 0) { 465 *level = G_RAID_VOLUME_RL_RAID5EE; 466 *qual = G_RAID_VOLUME_RLQ_R5EELA; 467 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 468 *level = G_RAID_VOLUME_RL_RAID5EE; 469 *qual = G_RAID_VOLUME_RLQ_R5EELS; 470 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 471 *level = G_RAID_VOLUME_RL_RAID5R; 472 *qual = G_RAID_VOLUME_RLQ_R5RRA; 473 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 474 *level = G_RAID_VOLUME_RL_RAID5R; 475 *qual = G_RAID_VOLUME_RLQ_R5RRS; 476 } else if (strcasecmp(str, "RAID5R") == 0 || 477 strcasecmp(str, "RAID5R-LA") == 0) { 478 *level = G_RAID_VOLUME_RL_RAID5R; 479 *qual = G_RAID_VOLUME_RLQ_R5RLA; 480 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 481 *level = G_RAID_VOLUME_RL_RAID5R; 482 *qual = G_RAID_VOLUME_RLQ_R5RLS; 483 } else 484 return (-1); 485 return (0); 486 } 487 488 const char * 489 g_raid_get_diskname(struct g_raid_disk *disk) 490 { 491 492 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 493 return ("[unknown]"); 494 return (disk->d_consumer->provider->name); 495 } 496 497 void 498 g_raid_get_disk_info(struct g_raid_disk *disk) 499 { 500 struct g_consumer *cp = disk->d_consumer; 501 int error, len; 502 503 /* Read kernel dumping information. */ 504 disk->d_kd.offset = 0; 505 disk->d_kd.length = OFF_MAX; 506 len = sizeof(disk->d_kd); 507 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 508 if (error) 509 disk->d_kd.di.dumper = NULL; 510 if (disk->d_kd.di.dumper == NULL) 511 G_RAID_DEBUG1(2, disk->d_softc, 512 "Dumping not supported by %s: %d.", 513 cp->provider->name, error); 514 515 /* Read BIO_DELETE support. */ 516 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 517 if (error) 518 disk->d_candelete = 0; 519 if (!disk->d_candelete) 520 G_RAID_DEBUG1(2, disk->d_softc, 521 "BIO_DELETE not supported by %s: %d.", 522 cp->provider->name, error); 523 } 524 525 void 526 g_raid_report_disk_state(struct g_raid_disk *disk) 527 { 528 struct g_raid_subdisk *sd; 529 int len, state; 530 uint32_t s; 531 532 if (disk->d_consumer == NULL) 533 return; 534 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 535 s = G_STATE_ACTIVE; /* XXX */ 536 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 537 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 538 s = G_STATE_FAILED; 539 } else { 540 state = G_RAID_SUBDISK_S_ACTIVE; 541 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 542 if (sd->sd_state < state) 543 state = sd->sd_state; 544 } 545 if (state == G_RAID_SUBDISK_S_FAILED) 546 s = G_STATE_FAILED; 547 else if (state == G_RAID_SUBDISK_S_NEW || 548 state == G_RAID_SUBDISK_S_REBUILD) 549 s = G_STATE_REBUILD; 550 else if (state == G_RAID_SUBDISK_S_STALE || 551 state == G_RAID_SUBDISK_S_RESYNC) 552 s = G_STATE_RESYNC; 553 else 554 s = G_STATE_ACTIVE; 555 } 556 len = sizeof(s); 557 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 558 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 559 g_raid_get_diskname(disk), s); 560 } 561 562 void 563 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 564 { 565 566 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 567 g_raid_get_diskname(disk), 568 g_raid_disk_state2str(disk->d_state), 569 g_raid_disk_state2str(state)); 570 disk->d_state = state; 571 g_raid_report_disk_state(disk); 572 } 573 574 void 575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 576 { 577 578 G_RAID_DEBUG1(0, sd->sd_softc, 579 "Subdisk %s:%d-%s state changed from %s to %s.", 580 sd->sd_volume->v_name, sd->sd_pos, 581 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 582 g_raid_subdisk_state2str(sd->sd_state), 583 g_raid_subdisk_state2str(state)); 584 sd->sd_state = state; 585 if (sd->sd_disk) 586 g_raid_report_disk_state(sd->sd_disk); 587 } 588 589 void 590 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 591 { 592 593 G_RAID_DEBUG1(0, vol->v_softc, 594 "Volume %s state changed from %s to %s.", 595 vol->v_name, 596 g_raid_volume_state2str(vol->v_state), 597 g_raid_volume_state2str(state)); 598 vol->v_state = state; 599 } 600 601 /* 602 * --- Events handling functions --- 603 * Events in geom_raid are used to maintain subdisks and volumes status 604 * from one thread to simplify locking. 605 */ 606 static void 607 g_raid_event_free(struct g_raid_event *ep) 608 { 609 610 free(ep, M_RAID); 611 } 612 613 int 614 g_raid_event_send(void *arg, int event, int flags) 615 { 616 struct g_raid_softc *sc; 617 struct g_raid_event *ep; 618 int error; 619 620 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 621 sc = ((struct g_raid_volume *)arg)->v_softc; 622 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 623 sc = ((struct g_raid_disk *)arg)->d_softc; 624 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 625 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 626 } else { 627 sc = arg; 628 } 629 ep = malloc(sizeof(*ep), M_RAID, 630 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 631 if (ep == NULL) 632 return (ENOMEM); 633 ep->e_tgt = arg; 634 ep->e_event = event; 635 ep->e_flags = flags; 636 ep->e_error = 0; 637 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 638 mtx_lock(&sc->sc_queue_mtx); 639 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 640 mtx_unlock(&sc->sc_queue_mtx); 641 wakeup(sc); 642 643 if ((flags & G_RAID_EVENT_WAIT) == 0) 644 return (0); 645 646 sx_assert(&sc->sc_lock, SX_XLOCKED); 647 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 648 sx_xunlock(&sc->sc_lock); 649 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 650 mtx_lock(&sc->sc_queue_mtx); 651 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 652 hz * 5); 653 } 654 error = ep->e_error; 655 g_raid_event_free(ep); 656 sx_xlock(&sc->sc_lock); 657 return (error); 658 } 659 660 static void 661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 662 { 663 struct g_raid_event *ep, *tmpep; 664 665 sx_assert(&sc->sc_lock, SX_XLOCKED); 666 667 mtx_lock(&sc->sc_queue_mtx); 668 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 669 if (ep->e_tgt != tgt) 670 continue; 671 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 672 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 673 g_raid_event_free(ep); 674 else { 675 ep->e_error = ECANCELED; 676 wakeup(ep); 677 } 678 } 679 mtx_unlock(&sc->sc_queue_mtx); 680 } 681 682 static int 683 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 684 { 685 struct g_raid_event *ep; 686 int res = 0; 687 688 sx_assert(&sc->sc_lock, SX_XLOCKED); 689 690 mtx_lock(&sc->sc_queue_mtx); 691 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 692 if (ep->e_tgt != tgt) 693 continue; 694 res = 1; 695 break; 696 } 697 mtx_unlock(&sc->sc_queue_mtx); 698 return (res); 699 } 700 701 /* 702 * Return the number of disks in given state. 703 * If state is equal to -1, count all connected disks. 704 */ 705 u_int 706 g_raid_ndisks(struct g_raid_softc *sc, int state) 707 { 708 struct g_raid_disk *disk; 709 u_int n; 710 711 sx_assert(&sc->sc_lock, SX_LOCKED); 712 713 n = 0; 714 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 715 if (disk->d_state == state || state == -1) 716 n++; 717 } 718 return (n); 719 } 720 721 /* 722 * Return the number of subdisks in given state. 723 * If state is equal to -1, count all connected disks. 724 */ 725 u_int 726 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 727 { 728 struct g_raid_subdisk *subdisk; 729 struct g_raid_softc *sc; 730 u_int i, n ; 731 732 sc = vol->v_softc; 733 sx_assert(&sc->sc_lock, SX_LOCKED); 734 735 n = 0; 736 for (i = 0; i < vol->v_disks_count; i++) { 737 subdisk = &vol->v_subdisks[i]; 738 if ((state == -1 && 739 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 740 subdisk->sd_state == state) 741 n++; 742 } 743 return (n); 744 } 745 746 /* 747 * Return the first subdisk in given state. 748 * If state is equal to -1, then the first connected disks. 749 */ 750 struct g_raid_subdisk * 751 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 752 { 753 struct g_raid_subdisk *sd; 754 struct g_raid_softc *sc; 755 u_int i; 756 757 sc = vol->v_softc; 758 sx_assert(&sc->sc_lock, SX_LOCKED); 759 760 for (i = 0; i < vol->v_disks_count; i++) { 761 sd = &vol->v_subdisks[i]; 762 if ((state == -1 && 763 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 764 sd->sd_state == state) 765 return (sd); 766 } 767 return (NULL); 768 } 769 770 struct g_consumer * 771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 772 { 773 struct g_consumer *cp; 774 struct g_provider *pp; 775 776 g_topology_assert(); 777 778 if (strncmp(name, "/dev/", 5) == 0) 779 name += 5; 780 pp = g_provider_by_name(name); 781 if (pp == NULL) 782 return (NULL); 783 cp = g_new_consumer(sc->sc_geom); 784 cp->flags |= G_CF_DIRECT_RECEIVE; 785 if (g_attach(cp, pp) != 0) { 786 g_destroy_consumer(cp); 787 return (NULL); 788 } 789 if (g_access(cp, 1, 1, 1) != 0) { 790 g_detach(cp); 791 g_destroy_consumer(cp); 792 return (NULL); 793 } 794 return (cp); 795 } 796 797 static u_int 798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 799 { 800 struct bio *bp; 801 u_int nreqs = 0; 802 803 mtx_lock(&sc->sc_queue_mtx); 804 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 805 if (bp->bio_from == cp) 806 nreqs++; 807 } 808 mtx_unlock(&sc->sc_queue_mtx); 809 return (nreqs); 810 } 811 812 u_int 813 g_raid_nopens(struct g_raid_softc *sc) 814 { 815 struct g_raid_volume *vol; 816 u_int opens; 817 818 opens = 0; 819 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 820 if (vol->v_provider_open != 0) 821 opens++; 822 } 823 return (opens); 824 } 825 826 static int 827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 828 { 829 830 if (cp->index > 0) { 831 G_RAID_DEBUG1(2, sc, 832 "I/O requests for %s exist, can't destroy it now.", 833 cp->provider->name); 834 return (1); 835 } 836 if (g_raid_nrequests(sc, cp) > 0) { 837 G_RAID_DEBUG1(2, sc, 838 "I/O requests for %s in queue, can't destroy it now.", 839 cp->provider->name); 840 return (1); 841 } 842 return (0); 843 } 844 845 static void 846 g_raid_destroy_consumer(void *arg, int flags __unused) 847 { 848 struct g_consumer *cp; 849 850 g_topology_assert(); 851 852 cp = arg; 853 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 854 g_detach(cp); 855 g_destroy_consumer(cp); 856 } 857 858 void 859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 860 { 861 struct g_provider *pp; 862 int retaste_wait; 863 864 g_topology_assert_not(); 865 866 g_topology_lock(); 867 cp->private = NULL; 868 if (g_raid_consumer_is_busy(sc, cp)) 869 goto out; 870 pp = cp->provider; 871 retaste_wait = 0; 872 if (cp->acw == 1) { 873 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 874 retaste_wait = 1; 875 } 876 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 877 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 878 if (retaste_wait) { 879 /* 880 * After retaste event was send (inside g_access()), we can send 881 * event to detach and destroy consumer. 882 * A class, which has consumer to the given provider connected 883 * will not receive retaste event for the provider. 884 * This is the way how I ignore retaste events when I close 885 * consumers opened for write: I detach and destroy consumer 886 * after retaste event is sent. 887 */ 888 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 889 goto out; 890 } 891 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 892 g_detach(cp); 893 g_destroy_consumer(cp); 894 out: 895 g_topology_unlock(); 896 } 897 898 static void 899 g_raid_orphan(struct g_consumer *cp) 900 { 901 struct g_raid_disk *disk; 902 903 g_topology_assert(); 904 905 disk = cp->private; 906 if (disk == NULL) 907 return; 908 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 909 G_RAID_EVENT_DISK); 910 } 911 912 static void 913 g_raid_clean(struct g_raid_volume *vol, int acw) 914 { 915 struct g_raid_softc *sc; 916 int timeout; 917 918 sc = vol->v_softc; 919 g_topology_assert_not(); 920 sx_assert(&sc->sc_lock, SX_XLOCKED); 921 922 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 923 // return; 924 if (!vol->v_dirty) 925 return; 926 if (vol->v_writes > 0) 927 return; 928 if (acw > 0 || (acw == -1 && 929 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 930 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 931 if (!g_raid_shutdown && timeout > 0) 932 return; 933 } 934 vol->v_dirty = 0; 935 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 936 vol->v_name); 937 g_raid_write_metadata(sc, vol, NULL, NULL); 938 } 939 940 static void 941 g_raid_dirty(struct g_raid_volume *vol) 942 { 943 struct g_raid_softc *sc; 944 945 sc = vol->v_softc; 946 g_topology_assert_not(); 947 sx_assert(&sc->sc_lock, SX_XLOCKED); 948 949 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 950 // return; 951 vol->v_dirty = 1; 952 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 953 vol->v_name); 954 g_raid_write_metadata(sc, vol, NULL, NULL); 955 } 956 957 void 958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 959 { 960 struct g_raid_softc *sc; 961 struct g_raid_volume *vol; 962 struct g_raid_subdisk *sd; 963 struct bio_queue_head queue; 964 struct bio *cbp; 965 int i; 966 967 vol = tr->tro_volume; 968 sc = vol->v_softc; 969 970 /* 971 * Allocate all bios before sending any request, so we can return 972 * ENOMEM in nice and clean way. 973 */ 974 bioq_init(&queue); 975 for (i = 0; i < vol->v_disks_count; i++) { 976 sd = &vol->v_subdisks[i]; 977 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 978 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 979 continue; 980 cbp = g_clone_bio(bp); 981 if (cbp == NULL) 982 goto failure; 983 cbp->bio_caller1 = sd; 984 bioq_insert_tail(&queue, cbp); 985 } 986 while ((cbp = bioq_takefirst(&queue)) != NULL) { 987 sd = cbp->bio_caller1; 988 cbp->bio_caller1 = NULL; 989 g_raid_subdisk_iostart(sd, cbp); 990 } 991 return; 992 failure: 993 while ((cbp = bioq_takefirst(&queue)) != NULL) 994 g_destroy_bio(cbp); 995 if (bp->bio_error == 0) 996 bp->bio_error = ENOMEM; 997 g_raid_iodone(bp, bp->bio_error); 998 } 999 1000 static void 1001 g_raid_tr_kerneldump_common_done(struct bio *bp) 1002 { 1003 1004 bp->bio_flags |= BIO_DONE; 1005 } 1006 1007 int 1008 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1009 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1010 { 1011 struct g_raid_softc *sc; 1012 struct g_raid_volume *vol; 1013 struct bio bp; 1014 1015 vol = tr->tro_volume; 1016 sc = vol->v_softc; 1017 1018 bzero(&bp, sizeof(bp)); 1019 bp.bio_cmd = BIO_WRITE; 1020 bp.bio_done = g_raid_tr_kerneldump_common_done; 1021 bp.bio_attribute = NULL; 1022 bp.bio_offset = offset; 1023 bp.bio_length = length; 1024 bp.bio_data = virtual; 1025 bp.bio_to = vol->v_provider; 1026 1027 g_raid_start(&bp); 1028 while (!(bp.bio_flags & BIO_DONE)) { 1029 G_RAID_DEBUG1(4, sc, "Poll..."); 1030 g_raid_poll(sc); 1031 DELAY(10); 1032 } 1033 1034 return (bp.bio_error != 0 ? EIO : 0); 1035 } 1036 1037 static int 1038 g_raid_dump(void *arg, 1039 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1040 { 1041 struct g_raid_volume *vol; 1042 int error; 1043 1044 vol = (struct g_raid_volume *)arg; 1045 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1046 (long long unsigned)offset, (long long unsigned)length); 1047 1048 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1049 virtual, physical, offset, length); 1050 return (error); 1051 } 1052 1053 static void 1054 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1055 { 1056 struct g_kerneldump *gkd; 1057 struct g_provider *pp; 1058 struct g_raid_volume *vol; 1059 1060 gkd = (struct g_kerneldump*)bp->bio_data; 1061 pp = bp->bio_to; 1062 vol = pp->private; 1063 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1064 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1065 gkd->di.dumper = g_raid_dump; 1066 gkd->di.priv = vol; 1067 gkd->di.blocksize = vol->v_sectorsize; 1068 gkd->di.maxiosize = DFLTPHYS; 1069 gkd->di.mediaoffset = gkd->offset; 1070 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1071 gkd->length = vol->v_mediasize - gkd->offset; 1072 gkd->di.mediasize = gkd->length; 1073 g_io_deliver(bp, 0); 1074 } 1075 1076 static void 1077 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1078 { 1079 struct g_provider *pp; 1080 struct g_raid_volume *vol; 1081 struct g_raid_subdisk *sd; 1082 int *val; 1083 int i; 1084 1085 val = (int *)bp->bio_data; 1086 pp = bp->bio_to; 1087 vol = pp->private; 1088 *val = 0; 1089 for (i = 0; i < vol->v_disks_count; i++) { 1090 sd = &vol->v_subdisks[i]; 1091 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1092 continue; 1093 if (sd->sd_disk->d_candelete) { 1094 *val = 1; 1095 break; 1096 } 1097 } 1098 g_io_deliver(bp, 0); 1099 } 1100 1101 static void 1102 g_raid_start(struct bio *bp) 1103 { 1104 struct g_raid_softc *sc; 1105 1106 sc = bp->bio_to->geom->softc; 1107 /* 1108 * If sc == NULL or there are no valid disks, provider's error 1109 * should be set and g_raid_start() should not be called at all. 1110 */ 1111 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1112 // ("Provider's error should be set (error=%d)(mirror=%s).", 1113 // bp->bio_to->error, bp->bio_to->name)); 1114 G_RAID_LOGREQ(3, bp, "Request received."); 1115 1116 switch (bp->bio_cmd) { 1117 case BIO_READ: 1118 case BIO_WRITE: 1119 case BIO_DELETE: 1120 case BIO_FLUSH: 1121 break; 1122 case BIO_GETATTR: 1123 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1124 g_raid_candelete(sc, bp); 1125 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1126 g_raid_kerneldump(sc, bp); 1127 else 1128 g_io_deliver(bp, EOPNOTSUPP); 1129 return; 1130 default: 1131 g_io_deliver(bp, EOPNOTSUPP); 1132 return; 1133 } 1134 mtx_lock(&sc->sc_queue_mtx); 1135 bioq_disksort(&sc->sc_queue, bp); 1136 mtx_unlock(&sc->sc_queue_mtx); 1137 if (!dumping) { 1138 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1139 wakeup(sc); 1140 } 1141 } 1142 1143 static int 1144 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1145 { 1146 /* 1147 * 5 cases: 1148 * (1) bp entirely below NO 1149 * (2) bp entirely above NO 1150 * (3) bp start below, but end in range YES 1151 * (4) bp entirely within YES 1152 * (5) bp starts within, ends above YES 1153 * 1154 * lock range 10-19 (offset 10 length 10) 1155 * (1) 1-5: first if kicks it out 1156 * (2) 30-35: second if kicks it out 1157 * (3) 5-15: passes both ifs 1158 * (4) 12-14: passes both ifs 1159 * (5) 19-20: passes both 1160 */ 1161 off_t lend = lstart + len - 1; 1162 off_t bstart = bp->bio_offset; 1163 off_t bend = bp->bio_offset + bp->bio_length - 1; 1164 1165 if (bend < lstart) 1166 return (0); 1167 if (lend < bstart) 1168 return (0); 1169 return (1); 1170 } 1171 1172 static int 1173 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1174 { 1175 struct g_raid_lock *lp; 1176 1177 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1178 1179 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1180 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1181 return (1); 1182 } 1183 return (0); 1184 } 1185 1186 static void 1187 g_raid_start_request(struct bio *bp) 1188 { 1189 struct g_raid_softc *sc; 1190 struct g_raid_volume *vol; 1191 1192 sc = bp->bio_to->geom->softc; 1193 sx_assert(&sc->sc_lock, SX_LOCKED); 1194 vol = bp->bio_to->private; 1195 1196 /* 1197 * Check to see if this item is in a locked range. If so, 1198 * queue it to our locked queue and return. We'll requeue 1199 * it when the range is unlocked. Internal I/O for the 1200 * rebuild/rescan/recovery process is excluded from this 1201 * check so we can actually do the recovery. 1202 */ 1203 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1204 g_raid_is_in_locked_range(vol, bp)) { 1205 G_RAID_LOGREQ(3, bp, "Defer request."); 1206 bioq_insert_tail(&vol->v_locked, bp); 1207 return; 1208 } 1209 1210 /* 1211 * If we're actually going to do the write/delete, then 1212 * update the idle stats for the volume. 1213 */ 1214 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1215 if (!vol->v_dirty) 1216 g_raid_dirty(vol); 1217 vol->v_writes++; 1218 } 1219 1220 /* 1221 * Put request onto inflight queue, so we can check if new 1222 * synchronization requests don't collide with it. Then tell 1223 * the transformation layer to start the I/O. 1224 */ 1225 bioq_insert_tail(&vol->v_inflight, bp); 1226 G_RAID_LOGREQ(4, bp, "Request started"); 1227 G_RAID_TR_IOSTART(vol->v_tr, bp); 1228 } 1229 1230 static void 1231 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1232 { 1233 off_t off, len; 1234 struct bio *nbp; 1235 struct g_raid_lock *lp; 1236 1237 vol->v_pending_lock = 0; 1238 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1239 if (lp->l_pending) { 1240 off = lp->l_offset; 1241 len = lp->l_length; 1242 lp->l_pending = 0; 1243 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1244 if (g_raid_bio_overlaps(nbp, off, len)) 1245 lp->l_pending++; 1246 } 1247 if (lp->l_pending) { 1248 vol->v_pending_lock = 1; 1249 G_RAID_DEBUG1(4, vol->v_softc, 1250 "Deferred lock(%jd, %jd) has %d pending", 1251 (intmax_t)off, (intmax_t)(off + len), 1252 lp->l_pending); 1253 continue; 1254 } 1255 G_RAID_DEBUG1(4, vol->v_softc, 1256 "Deferred lock of %jd to %jd completed", 1257 (intmax_t)off, (intmax_t)(off + len)); 1258 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1259 } 1260 } 1261 } 1262 1263 void 1264 g_raid_iodone(struct bio *bp, int error) 1265 { 1266 struct g_raid_softc *sc; 1267 struct g_raid_volume *vol; 1268 1269 sc = bp->bio_to->geom->softc; 1270 sx_assert(&sc->sc_lock, SX_LOCKED); 1271 vol = bp->bio_to->private; 1272 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1273 1274 /* Update stats if we done write/delete. */ 1275 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1276 vol->v_writes--; 1277 vol->v_last_write = time_uptime; 1278 } 1279 1280 bioq_remove(&vol->v_inflight, bp); 1281 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1282 g_raid_finish_with_locked_ranges(vol, bp); 1283 getmicrouptime(&vol->v_last_done); 1284 g_io_deliver(bp, error); 1285 } 1286 1287 int 1288 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1289 struct bio *ignore, void *argp) 1290 { 1291 struct g_raid_softc *sc; 1292 struct g_raid_lock *lp; 1293 struct bio *bp; 1294 1295 sc = vol->v_softc; 1296 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1297 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1298 lp->l_offset = off; 1299 lp->l_length = len; 1300 lp->l_callback_arg = argp; 1301 1302 lp->l_pending = 0; 1303 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1304 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1305 lp->l_pending++; 1306 } 1307 1308 /* 1309 * If there are any writes that are pending, we return EBUSY. All 1310 * callers will have to wait until all pending writes clear. 1311 */ 1312 if (lp->l_pending > 0) { 1313 vol->v_pending_lock = 1; 1314 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1315 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1316 return (EBUSY); 1317 } 1318 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1319 (intmax_t)off, (intmax_t)(off+len)); 1320 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1321 return (0); 1322 } 1323 1324 int 1325 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1326 { 1327 struct g_raid_lock *lp; 1328 struct g_raid_softc *sc; 1329 struct bio *bp; 1330 1331 sc = vol->v_softc; 1332 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1333 if (lp->l_offset == off && lp->l_length == len) { 1334 LIST_REMOVE(lp, l_next); 1335 /* XXX 1336 * Right now we just put them all back on the queue 1337 * and hope for the best. We hope this because any 1338 * locked ranges will go right back on this list 1339 * when the worker thread runs. 1340 * XXX 1341 */ 1342 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1343 (intmax_t)lp->l_offset, 1344 (intmax_t)(lp->l_offset+lp->l_length)); 1345 mtx_lock(&sc->sc_queue_mtx); 1346 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1347 bioq_disksort(&sc->sc_queue, bp); 1348 mtx_unlock(&sc->sc_queue_mtx); 1349 free(lp, M_RAID); 1350 return (0); 1351 } 1352 } 1353 return (EINVAL); 1354 } 1355 1356 void 1357 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1358 { 1359 struct g_consumer *cp; 1360 struct g_raid_disk *disk, *tdisk; 1361 1362 bp->bio_caller1 = sd; 1363 1364 /* 1365 * Make sure that the disk is present. Generally it is a task of 1366 * transformation layers to not send requests to absent disks, but 1367 * it is better to be safe and report situation then sorry. 1368 */ 1369 if (sd->sd_disk == NULL) { 1370 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1371 nodisk: 1372 bp->bio_from = NULL; 1373 bp->bio_to = NULL; 1374 bp->bio_error = ENXIO; 1375 g_raid_disk_done(bp); 1376 return; 1377 } 1378 disk = sd->sd_disk; 1379 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1380 disk->d_state != G_RAID_DISK_S_FAILED) { 1381 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1382 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1383 goto nodisk; 1384 } 1385 1386 cp = disk->d_consumer; 1387 bp->bio_from = cp; 1388 bp->bio_to = cp->provider; 1389 cp->index++; 1390 1391 /* Update average disks load. */ 1392 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1393 if (tdisk->d_consumer == NULL) 1394 tdisk->d_load = 0; 1395 else 1396 tdisk->d_load = (tdisk->d_consumer->index * 1397 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1398 } 1399 1400 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1401 if (dumping) { 1402 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1403 if (bp->bio_cmd == BIO_WRITE) { 1404 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1405 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1406 } else 1407 bp->bio_error = EOPNOTSUPP; 1408 g_raid_disk_done(bp); 1409 } else { 1410 bp->bio_done = g_raid_disk_done; 1411 bp->bio_offset += sd->sd_offset; 1412 G_RAID_LOGREQ(3, bp, "Sending request."); 1413 g_io_request(bp, cp); 1414 } 1415 } 1416 1417 int 1418 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1419 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1420 { 1421 1422 if (sd->sd_disk == NULL) 1423 return (ENXIO); 1424 if (sd->sd_disk->d_kd.di.dumper == NULL) 1425 return (EOPNOTSUPP); 1426 return (dump_write(&sd->sd_disk->d_kd.di, 1427 virtual, physical, 1428 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1429 length)); 1430 } 1431 1432 static void 1433 g_raid_disk_done(struct bio *bp) 1434 { 1435 struct g_raid_softc *sc; 1436 struct g_raid_subdisk *sd; 1437 1438 sd = bp->bio_caller1; 1439 sc = sd->sd_softc; 1440 mtx_lock(&sc->sc_queue_mtx); 1441 bioq_disksort(&sc->sc_queue, bp); 1442 mtx_unlock(&sc->sc_queue_mtx); 1443 if (!dumping) 1444 wakeup(sc); 1445 } 1446 1447 static void 1448 g_raid_disk_done_request(struct bio *bp) 1449 { 1450 struct g_raid_softc *sc; 1451 struct g_raid_disk *disk; 1452 struct g_raid_subdisk *sd; 1453 struct g_raid_volume *vol; 1454 1455 g_topology_assert_not(); 1456 1457 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1458 sd = bp->bio_caller1; 1459 sc = sd->sd_softc; 1460 vol = sd->sd_volume; 1461 if (bp->bio_from != NULL) { 1462 bp->bio_from->index--; 1463 disk = bp->bio_from->private; 1464 if (disk == NULL) 1465 g_raid_kill_consumer(sc, bp->bio_from); 1466 } 1467 bp->bio_offset -= sd->sd_offset; 1468 1469 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1470 } 1471 1472 static void 1473 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1474 { 1475 1476 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1477 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1478 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1479 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1480 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1481 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1482 else 1483 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1484 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1485 KASSERT(ep->e_error == 0, 1486 ("Error cannot be handled.")); 1487 g_raid_event_free(ep); 1488 } else { 1489 ep->e_flags |= G_RAID_EVENT_DONE; 1490 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1491 mtx_lock(&sc->sc_queue_mtx); 1492 wakeup(ep); 1493 mtx_unlock(&sc->sc_queue_mtx); 1494 } 1495 } 1496 1497 /* 1498 * Worker thread. 1499 */ 1500 static void 1501 g_raid_worker(void *arg) 1502 { 1503 struct g_raid_softc *sc; 1504 struct g_raid_event *ep; 1505 struct g_raid_volume *vol; 1506 struct bio *bp; 1507 struct timeval now, t; 1508 int timeout, rv; 1509 1510 sc = arg; 1511 thread_lock(curthread); 1512 sched_prio(curthread, PRIBIO); 1513 thread_unlock(curthread); 1514 1515 sx_xlock(&sc->sc_lock); 1516 for (;;) { 1517 mtx_lock(&sc->sc_queue_mtx); 1518 /* 1519 * First take a look at events. 1520 * This is important to handle events before any I/O requests. 1521 */ 1522 bp = NULL; 1523 vol = NULL; 1524 rv = 0; 1525 ep = TAILQ_FIRST(&sc->sc_events); 1526 if (ep != NULL) 1527 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1528 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1529 ; 1530 else { 1531 getmicrouptime(&now); 1532 t = now; 1533 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1534 if (bioq_first(&vol->v_inflight) == NULL && 1535 vol->v_tr && 1536 timevalcmp(&vol->v_last_done, &t, < )) 1537 t = vol->v_last_done; 1538 } 1539 timevalsub(&t, &now); 1540 timeout = g_raid_idle_threshold + 1541 t.tv_sec * 1000000 + t.tv_usec; 1542 if (timeout > 0) { 1543 /* 1544 * Two steps to avoid overflows at HZ=1000 1545 * and idle timeouts > 2.1s. Some rounding 1546 * errors can occur, but they are < 1tick, 1547 * which is deemed to be close enough for 1548 * this purpose. 1549 */ 1550 int micpertic = 1000000 / hz; 1551 timeout = (timeout + micpertic - 1) / micpertic; 1552 sx_xunlock(&sc->sc_lock); 1553 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1554 PRIBIO | PDROP, "-", timeout); 1555 sx_xlock(&sc->sc_lock); 1556 goto process; 1557 } else 1558 rv = EWOULDBLOCK; 1559 } 1560 mtx_unlock(&sc->sc_queue_mtx); 1561 process: 1562 if (ep != NULL) { 1563 g_raid_handle_event(sc, ep); 1564 } else if (bp != NULL) { 1565 if (bp->bio_to != NULL && 1566 bp->bio_to->geom == sc->sc_geom) 1567 g_raid_start_request(bp); 1568 else 1569 g_raid_disk_done_request(bp); 1570 } else if (rv == EWOULDBLOCK) { 1571 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1572 g_raid_clean(vol, -1); 1573 if (bioq_first(&vol->v_inflight) == NULL && 1574 vol->v_tr) { 1575 t.tv_sec = g_raid_idle_threshold / 1000000; 1576 t.tv_usec = g_raid_idle_threshold % 1000000; 1577 timevaladd(&t, &vol->v_last_done); 1578 getmicrouptime(&now); 1579 if (timevalcmp(&t, &now, <= )) { 1580 G_RAID_TR_IDLE(vol->v_tr); 1581 vol->v_last_done = now; 1582 } 1583 } 1584 } 1585 } 1586 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1587 g_raid_destroy_node(sc, 1); /* May not return. */ 1588 } 1589 } 1590 1591 static void 1592 g_raid_poll(struct g_raid_softc *sc) 1593 { 1594 struct g_raid_event *ep; 1595 struct bio *bp; 1596 1597 sx_xlock(&sc->sc_lock); 1598 mtx_lock(&sc->sc_queue_mtx); 1599 /* 1600 * First take a look at events. 1601 * This is important to handle events before any I/O requests. 1602 */ 1603 ep = TAILQ_FIRST(&sc->sc_events); 1604 if (ep != NULL) { 1605 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1606 mtx_unlock(&sc->sc_queue_mtx); 1607 g_raid_handle_event(sc, ep); 1608 goto out; 1609 } 1610 bp = bioq_takefirst(&sc->sc_queue); 1611 if (bp != NULL) { 1612 mtx_unlock(&sc->sc_queue_mtx); 1613 if (bp->bio_from == NULL || 1614 bp->bio_from->geom != sc->sc_geom) 1615 g_raid_start_request(bp); 1616 else 1617 g_raid_disk_done_request(bp); 1618 } 1619 out: 1620 sx_xunlock(&sc->sc_lock); 1621 } 1622 1623 static void 1624 g_raid_launch_provider(struct g_raid_volume *vol) 1625 { 1626 struct g_raid_disk *disk; 1627 struct g_raid_subdisk *sd; 1628 struct g_raid_softc *sc; 1629 struct g_provider *pp; 1630 char name[G_RAID_MAX_VOLUMENAME]; 1631 char announce_buf[80], buf1[32]; 1632 off_t off; 1633 int i; 1634 1635 sc = vol->v_softc; 1636 sx_assert(&sc->sc_lock, SX_LOCKED); 1637 1638 g_topology_lock(); 1639 /* Try to name provider with volume name. */ 1640 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1641 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1642 g_provider_by_name(name) != NULL) { 1643 /* Otherwise use sequential volume number. */ 1644 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1645 } 1646 1647 /* 1648 * Create a /dev/ar%d that the old ataraid(4) stack once 1649 * created as an alias for /dev/raid/r%d if requested. 1650 * This helps going from stable/7 ataraid devices to newer 1651 * FreeBSD releases. sbruno 07 MAY 2013 1652 */ 1653 1654 if (ar_legacy_aliases) { 1655 snprintf(announce_buf, sizeof(announce_buf), 1656 "kern.devalias.%s", name); 1657 snprintf(buf1, sizeof(buf1), 1658 "ar%d", vol->v_global_id); 1659 kern_setenv(announce_buf, buf1); 1660 } 1661 1662 pp = g_new_providerf(sc->sc_geom, "%s", name); 1663 pp->flags |= G_PF_DIRECT_RECEIVE; 1664 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1665 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1666 for (i = 0; i < vol->v_disks_count; i++) { 1667 sd = &vol->v_subdisks[i]; 1668 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1669 continue; 1670 if ((sd->sd_disk->d_consumer->provider->flags & 1671 G_PF_ACCEPT_UNMAPPED) == 0) 1672 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1673 } 1674 } 1675 pp->private = vol; 1676 pp->mediasize = vol->v_mediasize; 1677 pp->sectorsize = vol->v_sectorsize; 1678 pp->stripesize = 0; 1679 pp->stripeoffset = 0; 1680 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1681 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1682 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1683 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1684 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1685 disk->d_consumer != NULL && 1686 disk->d_consumer->provider != NULL) { 1687 pp->stripesize = disk->d_consumer->provider->stripesize; 1688 off = disk->d_consumer->provider->stripeoffset; 1689 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1690 if (off > 0) 1691 pp->stripeoffset %= off; 1692 } 1693 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1694 pp->stripesize *= (vol->v_disks_count - 1); 1695 pp->stripeoffset *= (vol->v_disks_count - 1); 1696 } 1697 } else 1698 pp->stripesize = vol->v_strip_size; 1699 vol->v_provider = pp; 1700 g_error_provider(pp, 0); 1701 g_topology_unlock(); 1702 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1703 pp->name, vol->v_name); 1704 } 1705 1706 static void 1707 g_raid_destroy_provider(struct g_raid_volume *vol) 1708 { 1709 struct g_raid_softc *sc; 1710 struct g_provider *pp; 1711 struct bio *bp, *tmp; 1712 1713 g_topology_assert_not(); 1714 sc = vol->v_softc; 1715 pp = vol->v_provider; 1716 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1717 1718 g_topology_lock(); 1719 g_error_provider(pp, ENXIO); 1720 mtx_lock(&sc->sc_queue_mtx); 1721 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1722 if (bp->bio_to != pp) 1723 continue; 1724 bioq_remove(&sc->sc_queue, bp); 1725 g_io_deliver(bp, ENXIO); 1726 } 1727 mtx_unlock(&sc->sc_queue_mtx); 1728 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1729 pp->name, vol->v_name); 1730 g_wither_provider(pp, ENXIO); 1731 g_topology_unlock(); 1732 vol->v_provider = NULL; 1733 } 1734 1735 /* 1736 * Update device state. 1737 */ 1738 static int 1739 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1740 { 1741 struct g_raid_softc *sc; 1742 1743 sc = vol->v_softc; 1744 sx_assert(&sc->sc_lock, SX_XLOCKED); 1745 1746 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1747 g_raid_volume_event2str(event), 1748 vol->v_name); 1749 switch (event) { 1750 case G_RAID_VOLUME_E_DOWN: 1751 if (vol->v_provider != NULL) 1752 g_raid_destroy_provider(vol); 1753 break; 1754 case G_RAID_VOLUME_E_UP: 1755 if (vol->v_provider == NULL) 1756 g_raid_launch_provider(vol); 1757 break; 1758 case G_RAID_VOLUME_E_START: 1759 if (vol->v_tr) 1760 G_RAID_TR_START(vol->v_tr); 1761 return (0); 1762 default: 1763 if (sc->sc_md) 1764 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1765 return (0); 1766 } 1767 1768 /* Manage root mount release. */ 1769 if (vol->v_starting) { 1770 vol->v_starting = 0; 1771 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1772 root_mount_rel(vol->v_rootmount); 1773 vol->v_rootmount = NULL; 1774 } 1775 if (vol->v_stopping && vol->v_provider_open == 0) 1776 g_raid_destroy_volume(vol); 1777 return (0); 1778 } 1779 1780 /* 1781 * Update subdisk state. 1782 */ 1783 static int 1784 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1785 { 1786 struct g_raid_softc *sc; 1787 struct g_raid_volume *vol; 1788 1789 sc = sd->sd_softc; 1790 vol = sd->sd_volume; 1791 sx_assert(&sc->sc_lock, SX_XLOCKED); 1792 1793 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1794 g_raid_subdisk_event2str(event), 1795 vol->v_name, sd->sd_pos, 1796 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1797 if (vol->v_tr) 1798 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1799 1800 return (0); 1801 } 1802 1803 /* 1804 * Update disk state. 1805 */ 1806 static int 1807 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1808 { 1809 struct g_raid_softc *sc; 1810 1811 sc = disk->d_softc; 1812 sx_assert(&sc->sc_lock, SX_XLOCKED); 1813 1814 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1815 g_raid_disk_event2str(event), 1816 g_raid_get_diskname(disk)); 1817 1818 if (sc->sc_md) 1819 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1820 return (0); 1821 } 1822 1823 /* 1824 * Node event. 1825 */ 1826 static int 1827 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1828 { 1829 sx_assert(&sc->sc_lock, SX_XLOCKED); 1830 1831 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1832 g_raid_node_event2str(event)); 1833 1834 if (event == G_RAID_NODE_E_WAKE) 1835 return (0); 1836 if (sc->sc_md) 1837 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1838 return (0); 1839 } 1840 1841 static int 1842 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1843 { 1844 struct g_raid_volume *vol; 1845 struct g_raid_softc *sc; 1846 int dcw, opens, error = 0; 1847 1848 g_topology_assert(); 1849 sc = pp->geom->softc; 1850 vol = pp->private; 1851 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1852 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1853 1854 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1855 acr, acw, ace); 1856 dcw = pp->acw + acw; 1857 1858 g_topology_unlock(); 1859 sx_xlock(&sc->sc_lock); 1860 /* Deny new opens while dying. */ 1861 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1862 error = ENXIO; 1863 goto out; 1864 } 1865 /* Deny write opens for read-only volumes. */ 1866 if (vol->v_read_only && acw > 0) { 1867 error = EROFS; 1868 goto out; 1869 } 1870 if (dcw == 0) 1871 g_raid_clean(vol, dcw); 1872 vol->v_provider_open += acr + acw + ace; 1873 /* Handle delayed node destruction. */ 1874 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1875 vol->v_provider_open == 0) { 1876 /* Count open volumes. */ 1877 opens = g_raid_nopens(sc); 1878 if (opens == 0) { 1879 sc->sc_stopping = G_RAID_DESTROY_HARD; 1880 /* Wake up worker to make it selfdestruct. */ 1881 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1882 } 1883 } 1884 /* Handle open volume destruction. */ 1885 if (vol->v_stopping && vol->v_provider_open == 0) 1886 g_raid_destroy_volume(vol); 1887 out: 1888 sx_xunlock(&sc->sc_lock); 1889 g_topology_lock(); 1890 return (error); 1891 } 1892 1893 struct g_raid_softc * 1894 g_raid_create_node(struct g_class *mp, 1895 const char *name, struct g_raid_md_object *md) 1896 { 1897 struct g_raid_softc *sc; 1898 struct g_geom *gp; 1899 int error; 1900 1901 g_topology_assert(); 1902 G_RAID_DEBUG(1, "Creating array %s.", name); 1903 1904 gp = g_new_geomf(mp, "%s", name); 1905 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1906 gp->start = g_raid_start; 1907 gp->orphan = g_raid_orphan; 1908 gp->access = g_raid_access; 1909 gp->dumpconf = g_raid_dumpconf; 1910 1911 sc->sc_md = md; 1912 sc->sc_geom = gp; 1913 sc->sc_flags = 0; 1914 TAILQ_INIT(&sc->sc_volumes); 1915 TAILQ_INIT(&sc->sc_disks); 1916 sx_init(&sc->sc_lock, "graid:lock"); 1917 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1918 TAILQ_INIT(&sc->sc_events); 1919 bioq_init(&sc->sc_queue); 1920 gp->softc = sc; 1921 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1922 "g_raid %s", name); 1923 if (error != 0) { 1924 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1925 mtx_destroy(&sc->sc_queue_mtx); 1926 sx_destroy(&sc->sc_lock); 1927 g_destroy_geom(sc->sc_geom); 1928 free(sc, M_RAID); 1929 return (NULL); 1930 } 1931 1932 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1933 return (sc); 1934 } 1935 1936 struct g_raid_volume * 1937 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1938 { 1939 struct g_raid_volume *vol, *vol1; 1940 int i; 1941 1942 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1943 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1944 vol->v_softc = sc; 1945 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1946 vol->v_state = G_RAID_VOLUME_S_STARTING; 1947 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1948 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1949 vol->v_rotate_parity = 1; 1950 bioq_init(&vol->v_inflight); 1951 bioq_init(&vol->v_locked); 1952 LIST_INIT(&vol->v_locks); 1953 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1954 vol->v_subdisks[i].sd_softc = sc; 1955 vol->v_subdisks[i].sd_volume = vol; 1956 vol->v_subdisks[i].sd_pos = i; 1957 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1958 } 1959 1960 /* Find free ID for this volume. */ 1961 g_topology_lock(); 1962 vol1 = vol; 1963 if (id >= 0) { 1964 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1965 if (vol1->v_global_id == id) 1966 break; 1967 } 1968 } 1969 if (vol1 != NULL) { 1970 for (id = 0; ; id++) { 1971 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1972 if (vol1->v_global_id == id) 1973 break; 1974 } 1975 if (vol1 == NULL) 1976 break; 1977 } 1978 } 1979 vol->v_global_id = id; 1980 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1981 g_topology_unlock(); 1982 1983 /* Delay root mounting. */ 1984 vol->v_rootmount = root_mount_hold("GRAID"); 1985 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1986 vol->v_starting = 1; 1987 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1988 return (vol); 1989 } 1990 1991 struct g_raid_disk * 1992 g_raid_create_disk(struct g_raid_softc *sc) 1993 { 1994 struct g_raid_disk *disk; 1995 1996 G_RAID_DEBUG1(1, sc, "Creating disk."); 1997 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1998 disk->d_softc = sc; 1999 disk->d_state = G_RAID_DISK_S_NONE; 2000 TAILQ_INIT(&disk->d_subdisks); 2001 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 2002 return (disk); 2003 } 2004 2005 int g_raid_start_volume(struct g_raid_volume *vol) 2006 { 2007 struct g_raid_tr_class *class; 2008 struct g_raid_tr_object *obj; 2009 int status; 2010 2011 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 2012 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 2013 if (!class->trc_enable) 2014 continue; 2015 G_RAID_DEBUG1(2, vol->v_softc, 2016 "Tasting volume %s for %s transformation.", 2017 vol->v_name, class->name); 2018 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2019 M_WAITOK); 2020 obj->tro_class = class; 2021 obj->tro_volume = vol; 2022 status = G_RAID_TR_TASTE(obj, vol); 2023 if (status != G_RAID_TR_TASTE_FAIL) 2024 break; 2025 kobj_delete((kobj_t)obj, M_RAID); 2026 } 2027 if (class == NULL) { 2028 G_RAID_DEBUG1(0, vol->v_softc, 2029 "No transformation module found for %s.", 2030 vol->v_name); 2031 vol->v_tr = NULL; 2032 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2033 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2034 G_RAID_EVENT_VOLUME); 2035 return (-1); 2036 } 2037 G_RAID_DEBUG1(2, vol->v_softc, 2038 "Transformation module %s chosen for %s.", 2039 class->name, vol->v_name); 2040 vol->v_tr = obj; 2041 return (0); 2042 } 2043 2044 int 2045 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2046 { 2047 struct g_raid_volume *vol, *tmpv; 2048 struct g_raid_disk *disk, *tmpd; 2049 int error = 0; 2050 2051 sc->sc_stopping = G_RAID_DESTROY_HARD; 2052 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2053 if (g_raid_destroy_volume(vol)) 2054 error = EBUSY; 2055 } 2056 if (error) 2057 return (error); 2058 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2059 if (g_raid_destroy_disk(disk)) 2060 error = EBUSY; 2061 } 2062 if (error) 2063 return (error); 2064 if (sc->sc_md) { 2065 G_RAID_MD_FREE(sc->sc_md); 2066 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2067 sc->sc_md = NULL; 2068 } 2069 if (sc->sc_geom != NULL) { 2070 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2071 g_topology_lock(); 2072 sc->sc_geom->softc = NULL; 2073 g_wither_geom(sc->sc_geom, ENXIO); 2074 g_topology_unlock(); 2075 sc->sc_geom = NULL; 2076 } else 2077 G_RAID_DEBUG(1, "Array destroyed."); 2078 if (worker) { 2079 g_raid_event_cancel(sc, sc); 2080 mtx_destroy(&sc->sc_queue_mtx); 2081 sx_xunlock(&sc->sc_lock); 2082 sx_destroy(&sc->sc_lock); 2083 wakeup(&sc->sc_stopping); 2084 free(sc, M_RAID); 2085 curthread->td_pflags &= ~TDP_GEOM; 2086 G_RAID_DEBUG(1, "Thread exiting."); 2087 kproc_exit(0); 2088 } else { 2089 /* Wake up worker to make it selfdestruct. */ 2090 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2091 } 2092 return (0); 2093 } 2094 2095 int 2096 g_raid_destroy_volume(struct g_raid_volume *vol) 2097 { 2098 struct g_raid_softc *sc; 2099 struct g_raid_disk *disk; 2100 int i; 2101 2102 sc = vol->v_softc; 2103 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2104 vol->v_stopping = 1; 2105 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2106 if (vol->v_tr) { 2107 G_RAID_TR_STOP(vol->v_tr); 2108 return (EBUSY); 2109 } else 2110 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2111 } 2112 if (g_raid_event_check(sc, vol) != 0) 2113 return (EBUSY); 2114 if (vol->v_provider != NULL) 2115 return (EBUSY); 2116 if (vol->v_provider_open != 0) 2117 return (EBUSY); 2118 if (vol->v_tr) { 2119 G_RAID_TR_FREE(vol->v_tr); 2120 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2121 vol->v_tr = NULL; 2122 } 2123 if (vol->v_rootmount) 2124 root_mount_rel(vol->v_rootmount); 2125 g_topology_lock(); 2126 LIST_REMOVE(vol, v_global_next); 2127 g_topology_unlock(); 2128 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2129 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2130 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2131 disk = vol->v_subdisks[i].sd_disk; 2132 if (disk == NULL) 2133 continue; 2134 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2135 } 2136 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2137 if (sc->sc_md) 2138 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2139 g_raid_event_cancel(sc, vol); 2140 free(vol, M_RAID); 2141 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2142 /* Wake up worker to let it selfdestruct. */ 2143 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2144 } 2145 return (0); 2146 } 2147 2148 int 2149 g_raid_destroy_disk(struct g_raid_disk *disk) 2150 { 2151 struct g_raid_softc *sc; 2152 struct g_raid_subdisk *sd, *tmp; 2153 2154 sc = disk->d_softc; 2155 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2156 if (disk->d_consumer) { 2157 g_raid_kill_consumer(sc, disk->d_consumer); 2158 disk->d_consumer = NULL; 2159 } 2160 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2161 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2162 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2163 G_RAID_EVENT_SUBDISK); 2164 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2165 sd->sd_disk = NULL; 2166 } 2167 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2168 if (sc->sc_md) 2169 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2170 g_raid_event_cancel(sc, disk); 2171 free(disk, M_RAID); 2172 return (0); 2173 } 2174 2175 int 2176 g_raid_destroy(struct g_raid_softc *sc, int how) 2177 { 2178 int error, opens; 2179 2180 g_topology_assert_not(); 2181 if (sc == NULL) 2182 return (ENXIO); 2183 sx_assert(&sc->sc_lock, SX_XLOCKED); 2184 2185 /* Count open volumes. */ 2186 opens = g_raid_nopens(sc); 2187 2188 /* React on some opened volumes. */ 2189 if (opens > 0) { 2190 switch (how) { 2191 case G_RAID_DESTROY_SOFT: 2192 G_RAID_DEBUG1(1, sc, 2193 "%d volumes are still open.", 2194 opens); 2195 sx_xunlock(&sc->sc_lock); 2196 return (EBUSY); 2197 case G_RAID_DESTROY_DELAYED: 2198 G_RAID_DEBUG1(1, sc, 2199 "Array will be destroyed on last close."); 2200 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2201 sx_xunlock(&sc->sc_lock); 2202 return (EBUSY); 2203 case G_RAID_DESTROY_HARD: 2204 G_RAID_DEBUG1(1, sc, 2205 "%d volumes are still open.", 2206 opens); 2207 } 2208 } 2209 2210 /* Mark node for destruction. */ 2211 sc->sc_stopping = G_RAID_DESTROY_HARD; 2212 /* Wake up worker to let it selfdestruct. */ 2213 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2214 /* Sleep until node destroyed. */ 2215 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2216 PRIBIO | PDROP, "r:destroy", hz * 3); 2217 return (error == EWOULDBLOCK ? EBUSY : 0); 2218 } 2219 2220 static void 2221 g_raid_taste_orphan(struct g_consumer *cp) 2222 { 2223 2224 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2225 cp->provider->name)); 2226 } 2227 2228 static struct g_geom * 2229 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2230 { 2231 struct g_consumer *cp; 2232 struct g_geom *gp, *geom; 2233 struct g_raid_md_class *class; 2234 struct g_raid_md_object *obj; 2235 int status; 2236 2237 g_topology_assert(); 2238 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2239 if (!g_raid_enable) 2240 return (NULL); 2241 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2242 2243 geom = NULL; 2244 status = G_RAID_MD_TASTE_FAIL; 2245 gp = g_new_geomf(mp, "raid:taste"); 2246 /* 2247 * This orphan function should be never called. 2248 */ 2249 gp->orphan = g_raid_taste_orphan; 2250 cp = g_new_consumer(gp); 2251 cp->flags |= G_CF_DIRECT_RECEIVE; 2252 g_attach(cp, pp); 2253 if (g_access(cp, 1, 0, 0) != 0) 2254 goto ofail; 2255 2256 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2257 if (!class->mdc_enable) 2258 continue; 2259 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2260 pp->name, class->name); 2261 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2262 M_WAITOK); 2263 obj->mdo_class = class; 2264 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2265 if (status != G_RAID_MD_TASTE_NEW) 2266 kobj_delete((kobj_t)obj, M_RAID); 2267 if (status != G_RAID_MD_TASTE_FAIL) 2268 break; 2269 } 2270 2271 if (status == G_RAID_MD_TASTE_FAIL) 2272 (void)g_access(cp, -1, 0, 0); 2273 ofail: 2274 g_detach(cp); 2275 g_destroy_consumer(cp); 2276 g_destroy_geom(gp); 2277 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2278 return (geom); 2279 } 2280 2281 int 2282 g_raid_create_node_format(const char *format, struct gctl_req *req, 2283 struct g_geom **gp) 2284 { 2285 struct g_raid_md_class *class; 2286 struct g_raid_md_object *obj; 2287 int status; 2288 2289 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2290 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2291 if (strcasecmp(class->name, format) == 0) 2292 break; 2293 } 2294 if (class == NULL) { 2295 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2296 return (G_RAID_MD_TASTE_FAIL); 2297 } 2298 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2299 M_WAITOK); 2300 obj->mdo_class = class; 2301 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2302 if (status != G_RAID_MD_TASTE_NEW) 2303 kobj_delete((kobj_t)obj, M_RAID); 2304 return (status); 2305 } 2306 2307 static int 2308 g_raid_destroy_geom(struct gctl_req *req __unused, 2309 struct g_class *mp __unused, struct g_geom *gp) 2310 { 2311 struct g_raid_softc *sc; 2312 int error; 2313 2314 g_topology_unlock(); 2315 sc = gp->softc; 2316 sx_xlock(&sc->sc_lock); 2317 g_cancel_event(sc); 2318 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2319 g_topology_lock(); 2320 return (error); 2321 } 2322 2323 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2324 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2325 { 2326 2327 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2328 return; 2329 if (sc->sc_md) 2330 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2331 } 2332 2333 void g_raid_fail_disk(struct g_raid_softc *sc, 2334 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2335 { 2336 2337 if (disk == NULL) 2338 disk = sd->sd_disk; 2339 if (disk == NULL) { 2340 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2341 return; 2342 } 2343 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2344 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2345 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2346 return; 2347 } 2348 if (sc->sc_md) 2349 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2350 } 2351 2352 static void 2353 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2354 struct g_consumer *cp, struct g_provider *pp) 2355 { 2356 struct g_raid_softc *sc; 2357 struct g_raid_volume *vol; 2358 struct g_raid_subdisk *sd; 2359 struct g_raid_disk *disk; 2360 int i, s; 2361 2362 g_topology_assert(); 2363 2364 sc = gp->softc; 2365 if (sc == NULL) 2366 return; 2367 if (pp != NULL) { 2368 vol = pp->private; 2369 g_topology_unlock(); 2370 sx_xlock(&sc->sc_lock); 2371 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2372 sc->sc_md->mdo_class->name, 2373 g_raid_volume_level2str(vol->v_raid_level, 2374 vol->v_raid_level_qualifier)); 2375 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2376 vol->v_name); 2377 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2378 g_raid_volume_level2str(vol->v_raid_level, 2379 vol->v_raid_level_qualifier)); 2380 sbuf_printf(sb, 2381 "%s<Transformation>%s</Transformation>\n", indent, 2382 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2383 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2384 vol->v_disks_count); 2385 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2386 vol->v_strip_size); 2387 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2388 g_raid_volume_state2str(vol->v_state)); 2389 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2390 vol->v_dirty ? "Yes" : "No"); 2391 sbuf_printf(sb, "%s<Subdisks>", indent); 2392 for (i = 0; i < vol->v_disks_count; i++) { 2393 sd = &vol->v_subdisks[i]; 2394 if (sd->sd_disk != NULL && 2395 sd->sd_disk->d_consumer != NULL) { 2396 sbuf_printf(sb, "%s ", 2397 g_raid_get_diskname(sd->sd_disk)); 2398 } else { 2399 sbuf_printf(sb, "NONE "); 2400 } 2401 sbuf_printf(sb, "(%s", 2402 g_raid_subdisk_state2str(sd->sd_state)); 2403 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2404 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2405 sbuf_printf(sb, " %d%%", 2406 (int)(sd->sd_rebuild_pos * 100 / 2407 sd->sd_size)); 2408 } 2409 sbuf_printf(sb, ")"); 2410 if (i + 1 < vol->v_disks_count) 2411 sbuf_printf(sb, ", "); 2412 } 2413 sbuf_printf(sb, "</Subdisks>\n"); 2414 sx_xunlock(&sc->sc_lock); 2415 g_topology_lock(); 2416 } else if (cp != NULL) { 2417 disk = cp->private; 2418 if (disk == NULL) 2419 return; 2420 g_topology_unlock(); 2421 sx_xlock(&sc->sc_lock); 2422 sbuf_printf(sb, "%s<State>%s", indent, 2423 g_raid_disk_state2str(disk->d_state)); 2424 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2425 sbuf_printf(sb, " ("); 2426 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2427 sbuf_printf(sb, "%s", 2428 g_raid_subdisk_state2str(sd->sd_state)); 2429 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2430 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2431 sbuf_printf(sb, " %d%%", 2432 (int)(sd->sd_rebuild_pos * 100 / 2433 sd->sd_size)); 2434 } 2435 if (TAILQ_NEXT(sd, sd_next)) 2436 sbuf_printf(sb, ", "); 2437 } 2438 sbuf_printf(sb, ")"); 2439 } 2440 sbuf_printf(sb, "</State>\n"); 2441 sbuf_printf(sb, "%s<Subdisks>", indent); 2442 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2443 sbuf_printf(sb, "r%d(%s):%d@%ju", 2444 sd->sd_volume->v_global_id, 2445 sd->sd_volume->v_name, 2446 sd->sd_pos, sd->sd_offset); 2447 if (TAILQ_NEXT(sd, sd_next)) 2448 sbuf_printf(sb, ", "); 2449 } 2450 sbuf_printf(sb, "</Subdisks>\n"); 2451 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2452 disk->d_read_errs); 2453 sx_xunlock(&sc->sc_lock); 2454 g_topology_lock(); 2455 } else { 2456 g_topology_unlock(); 2457 sx_xlock(&sc->sc_lock); 2458 if (sc->sc_md) { 2459 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2460 sc->sc_md->mdo_class->name); 2461 } 2462 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2463 s = 0xff; 2464 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2465 if (vol->v_state < s) 2466 s = vol->v_state; 2467 } 2468 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2469 g_raid_volume_state2str(s)); 2470 } 2471 sx_xunlock(&sc->sc_lock); 2472 g_topology_lock(); 2473 } 2474 } 2475 2476 static void 2477 g_raid_shutdown_post_sync(void *arg, int howto) 2478 { 2479 struct g_class *mp; 2480 struct g_geom *gp, *gp2; 2481 struct g_raid_softc *sc; 2482 struct g_raid_volume *vol; 2483 2484 mp = arg; 2485 DROP_GIANT(); 2486 g_topology_lock(); 2487 g_raid_shutdown = 1; 2488 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2489 if ((sc = gp->softc) == NULL) 2490 continue; 2491 g_topology_unlock(); 2492 sx_xlock(&sc->sc_lock); 2493 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2494 g_raid_clean(vol, -1); 2495 g_cancel_event(sc); 2496 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2497 g_topology_lock(); 2498 } 2499 g_topology_unlock(); 2500 PICKUP_GIANT(); 2501 } 2502 2503 static void 2504 g_raid_init(struct g_class *mp) 2505 { 2506 2507 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2508 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2509 if (g_raid_post_sync == NULL) 2510 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2511 g_raid_started = 1; 2512 } 2513 2514 static void 2515 g_raid_fini(struct g_class *mp) 2516 { 2517 2518 if (g_raid_post_sync != NULL) 2519 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2520 g_raid_started = 0; 2521 } 2522 2523 int 2524 g_raid_md_modevent(module_t mod, int type, void *arg) 2525 { 2526 struct g_raid_md_class *class, *c, *nc; 2527 int error; 2528 2529 error = 0; 2530 class = arg; 2531 switch (type) { 2532 case MOD_LOAD: 2533 c = LIST_FIRST(&g_raid_md_classes); 2534 if (c == NULL || c->mdc_priority > class->mdc_priority) 2535 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2536 else { 2537 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2538 nc->mdc_priority < class->mdc_priority) 2539 c = nc; 2540 LIST_INSERT_AFTER(c, class, mdc_list); 2541 } 2542 if (g_raid_started) 2543 g_retaste(&g_raid_class); 2544 break; 2545 case MOD_UNLOAD: 2546 LIST_REMOVE(class, mdc_list); 2547 break; 2548 default: 2549 error = EOPNOTSUPP; 2550 break; 2551 } 2552 2553 return (error); 2554 } 2555 2556 int 2557 g_raid_tr_modevent(module_t mod, int type, void *arg) 2558 { 2559 struct g_raid_tr_class *class, *c, *nc; 2560 int error; 2561 2562 error = 0; 2563 class = arg; 2564 switch (type) { 2565 case MOD_LOAD: 2566 c = LIST_FIRST(&g_raid_tr_classes); 2567 if (c == NULL || c->trc_priority > class->trc_priority) 2568 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2569 else { 2570 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2571 nc->trc_priority < class->trc_priority) 2572 c = nc; 2573 LIST_INSERT_AFTER(c, class, trc_list); 2574 } 2575 break; 2576 case MOD_UNLOAD: 2577 LIST_REMOVE(class, trc_list); 2578 break; 2579 default: 2580 error = EOPNOTSUPP; 2581 break; 2582 } 2583 2584 return (error); 2585 } 2586 2587 /* 2588 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2589 * to reduce module priority, allowing submodules to register them first. 2590 */ 2591 static moduledata_t g_raid_mod = { 2592 "g_raid", 2593 g_modevent, 2594 &g_raid_class 2595 }; 2596 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2597 MODULE_VERSION(geom_raid, 0); 2598