1 /*- 2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sbuf.h> 39 #include <sys/sysctl.h> 40 #include <sys/malloc.h> 41 #include <sys/eventhandler.h> 42 #include <vm/uma.h> 43 #include <geom/geom.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <sys/sched.h> 47 #include <geom/raid/g_raid.h> 48 #include "g_raid_md_if.h" 49 #include "g_raid_tr_if.h" 50 51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 52 53 SYSCTL_DECL(_kern_geom); 54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 55 u_int g_raid_aggressive_spare = 0; 56 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare); 57 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW, 58 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 59 u_int g_raid_debug = 0; 60 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug); 61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0, 62 "Debug level"); 63 int g_raid_read_err_thresh = 10; 64 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh); 65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW, 66 &g_raid_read_err_thresh, 0, 67 "Number of read errors equated to disk failure"); 68 u_int g_raid_start_timeout = 30; 69 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout); 70 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW, 71 &g_raid_start_timeout, 0, 72 "Time to wait for all array components"); 73 static u_int g_raid_clean_time = 5; 74 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time); 75 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW, 76 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 77 static u_int g_raid_disconnect_on_failure = 1; 78 TUNABLE_INT("kern.geom.raid.disconnect_on_failure", 79 &g_raid_disconnect_on_failure); 80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, 81 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 82 static u_int g_raid_name_format = 0; 83 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format); 84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW, 85 &g_raid_name_format, 0, "Providers name format."); 86 static u_int g_raid_idle_threshold = 1000000; 87 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold); 88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW, 89 &g_raid_idle_threshold, 1000000, 90 "Time in microseconds to consider a volume idle."); 91 92 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 93 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 94 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 95 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 96 } while (0) 97 98 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 99 LIST_HEAD_INITIALIZER(g_raid_md_classes); 100 101 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 102 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 103 104 LIST_HEAD(, g_raid_volume) g_raid_volumes = 105 LIST_HEAD_INITIALIZER(g_raid_volumes); 106 107 static eventhandler_tag g_raid_pre_sync = NULL; 108 static int g_raid_started = 0; 109 110 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 111 struct g_geom *gp); 112 static g_taste_t g_raid_taste; 113 static void g_raid_init(struct g_class *mp); 114 static void g_raid_fini(struct g_class *mp); 115 116 struct g_class g_raid_class = { 117 .name = G_RAID_CLASS_NAME, 118 .version = G_VERSION, 119 .ctlreq = g_raid_ctl, 120 .taste = g_raid_taste, 121 .destroy_geom = g_raid_destroy_geom, 122 .init = g_raid_init, 123 .fini = g_raid_fini 124 }; 125 126 static void g_raid_destroy_provider(struct g_raid_volume *vol); 127 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 128 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 129 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 130 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 131 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 132 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 133 static void g_raid_start(struct bio *bp); 134 static void g_raid_start_request(struct bio *bp); 135 static void g_raid_disk_done(struct bio *bp); 136 static void g_raid_poll(struct g_raid_softc *sc); 137 138 static const char * 139 g_raid_node_event2str(int event) 140 { 141 142 switch (event) { 143 case G_RAID_NODE_E_WAKE: 144 return ("WAKE"); 145 case G_RAID_NODE_E_START: 146 return ("START"); 147 default: 148 return ("INVALID"); 149 } 150 } 151 152 const char * 153 g_raid_disk_state2str(int state) 154 { 155 156 switch (state) { 157 case G_RAID_DISK_S_NONE: 158 return ("NONE"); 159 case G_RAID_DISK_S_OFFLINE: 160 return ("OFFLINE"); 161 case G_RAID_DISK_S_FAILED: 162 return ("FAILED"); 163 case G_RAID_DISK_S_STALE_FAILED: 164 return ("STALE_FAILED"); 165 case G_RAID_DISK_S_SPARE: 166 return ("SPARE"); 167 case G_RAID_DISK_S_STALE: 168 return ("STALE"); 169 case G_RAID_DISK_S_ACTIVE: 170 return ("ACTIVE"); 171 default: 172 return ("INVALID"); 173 } 174 } 175 176 static const char * 177 g_raid_disk_event2str(int event) 178 { 179 180 switch (event) { 181 case G_RAID_DISK_E_DISCONNECTED: 182 return ("DISCONNECTED"); 183 default: 184 return ("INVALID"); 185 } 186 } 187 188 const char * 189 g_raid_subdisk_state2str(int state) 190 { 191 192 switch (state) { 193 case G_RAID_SUBDISK_S_NONE: 194 return ("NONE"); 195 case G_RAID_SUBDISK_S_FAILED: 196 return ("FAILED"); 197 case G_RAID_SUBDISK_S_NEW: 198 return ("NEW"); 199 case G_RAID_SUBDISK_S_REBUILD: 200 return ("REBUILD"); 201 case G_RAID_SUBDISK_S_UNINITIALIZED: 202 return ("UNINITIALIZED"); 203 case G_RAID_SUBDISK_S_STALE: 204 return ("STALE"); 205 case G_RAID_SUBDISK_S_RESYNC: 206 return ("RESYNC"); 207 case G_RAID_SUBDISK_S_ACTIVE: 208 return ("ACTIVE"); 209 default: 210 return ("INVALID"); 211 } 212 } 213 214 static const char * 215 g_raid_subdisk_event2str(int event) 216 { 217 218 switch (event) { 219 case G_RAID_SUBDISK_E_NEW: 220 return ("NEW"); 221 case G_RAID_SUBDISK_E_FAILED: 222 return ("FAILED"); 223 case G_RAID_SUBDISK_E_DISCONNECTED: 224 return ("DISCONNECTED"); 225 default: 226 return ("INVALID"); 227 } 228 } 229 230 const char * 231 g_raid_volume_state2str(int state) 232 { 233 234 switch (state) { 235 case G_RAID_VOLUME_S_STARTING: 236 return ("STARTING"); 237 case G_RAID_VOLUME_S_BROKEN: 238 return ("BROKEN"); 239 case G_RAID_VOLUME_S_DEGRADED: 240 return ("DEGRADED"); 241 case G_RAID_VOLUME_S_SUBOPTIMAL: 242 return ("SUBOPTIMAL"); 243 case G_RAID_VOLUME_S_OPTIMAL: 244 return ("OPTIMAL"); 245 case G_RAID_VOLUME_S_UNSUPPORTED: 246 return ("UNSUPPORTED"); 247 case G_RAID_VOLUME_S_STOPPED: 248 return ("STOPPED"); 249 default: 250 return ("INVALID"); 251 } 252 } 253 254 static const char * 255 g_raid_volume_event2str(int event) 256 { 257 258 switch (event) { 259 case G_RAID_VOLUME_E_UP: 260 return ("UP"); 261 case G_RAID_VOLUME_E_DOWN: 262 return ("DOWN"); 263 case G_RAID_VOLUME_E_START: 264 return ("START"); 265 case G_RAID_VOLUME_E_STARTMD: 266 return ("STARTMD"); 267 default: 268 return ("INVALID"); 269 } 270 } 271 272 const char * 273 g_raid_volume_level2str(int level, int qual) 274 { 275 276 switch (level) { 277 case G_RAID_VOLUME_RL_RAID0: 278 return ("RAID0"); 279 case G_RAID_VOLUME_RL_RAID1: 280 return ("RAID1"); 281 case G_RAID_VOLUME_RL_RAID3: 282 if (qual == G_RAID_VOLUME_RLQ_R3P0) 283 return ("RAID3-P0"); 284 if (qual == G_RAID_VOLUME_RLQ_R3PN) 285 return ("RAID3-PN"); 286 return ("RAID3"); 287 case G_RAID_VOLUME_RL_RAID4: 288 if (qual == G_RAID_VOLUME_RLQ_R4P0) 289 return ("RAID4-P0"); 290 if (qual == G_RAID_VOLUME_RLQ_R4PN) 291 return ("RAID4-PN"); 292 return ("RAID4"); 293 case G_RAID_VOLUME_RL_RAID5: 294 if (qual == G_RAID_VOLUME_RLQ_R5RA) 295 return ("RAID5-RA"); 296 if (qual == G_RAID_VOLUME_RLQ_R5RS) 297 return ("RAID5-RS"); 298 if (qual == G_RAID_VOLUME_RLQ_R5LA) 299 return ("RAID5-LA"); 300 if (qual == G_RAID_VOLUME_RLQ_R5LS) 301 return ("RAID5-LS"); 302 return ("RAID5"); 303 case G_RAID_VOLUME_RL_RAID6: 304 if (qual == G_RAID_VOLUME_RLQ_R6RA) 305 return ("RAID6-RA"); 306 if (qual == G_RAID_VOLUME_RLQ_R6RS) 307 return ("RAID6-RS"); 308 if (qual == G_RAID_VOLUME_RLQ_R6LA) 309 return ("RAID6-LA"); 310 if (qual == G_RAID_VOLUME_RLQ_R6LS) 311 return ("RAID6-LS"); 312 return ("RAID6"); 313 case G_RAID_VOLUME_RL_RAIDMDF: 314 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 315 return ("RAIDMDF-RA"); 316 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 317 return ("RAIDMDF-RS"); 318 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 319 return ("RAIDMDF-LA"); 320 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 321 return ("RAIDMDF-LS"); 322 return ("RAIDMDF"); 323 case G_RAID_VOLUME_RL_RAID1E: 324 if (qual == G_RAID_VOLUME_RLQ_R1EA) 325 return ("RAID1E-A"); 326 if (qual == G_RAID_VOLUME_RLQ_R1EO) 327 return ("RAID1E-O"); 328 return ("RAID1E"); 329 case G_RAID_VOLUME_RL_SINGLE: 330 return ("SINGLE"); 331 case G_RAID_VOLUME_RL_CONCAT: 332 return ("CONCAT"); 333 case G_RAID_VOLUME_RL_RAID5E: 334 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 335 return ("RAID5E-RA"); 336 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 337 return ("RAID5E-RS"); 338 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 339 return ("RAID5E-LA"); 340 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 341 return ("RAID5E-LS"); 342 return ("RAID5E"); 343 case G_RAID_VOLUME_RL_RAID5EE: 344 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 345 return ("RAID5EE-RA"); 346 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 347 return ("RAID5EE-RS"); 348 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 349 return ("RAID5EE-LA"); 350 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 351 return ("RAID5EE-LS"); 352 return ("RAID5EE"); 353 case G_RAID_VOLUME_RL_RAID5R: 354 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 355 return ("RAID5R-RA"); 356 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 357 return ("RAID5R-RS"); 358 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 359 return ("RAID5R-LA"); 360 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 361 return ("RAID5R-LS"); 362 return ("RAID5E"); 363 default: 364 return ("UNKNOWN"); 365 } 366 } 367 368 int 369 g_raid_volume_str2level(const char *str, int *level, int *qual) 370 { 371 372 *level = G_RAID_VOLUME_RL_UNKNOWN; 373 *qual = G_RAID_VOLUME_RLQ_NONE; 374 if (strcasecmp(str, "RAID0") == 0) 375 *level = G_RAID_VOLUME_RL_RAID0; 376 else if (strcasecmp(str, "RAID1") == 0) 377 *level = G_RAID_VOLUME_RL_RAID1; 378 else if (strcasecmp(str, "RAID3-P0") == 0) { 379 *level = G_RAID_VOLUME_RL_RAID3; 380 *qual = G_RAID_VOLUME_RLQ_R3P0; 381 } else if (strcasecmp(str, "RAID3-PN") == 0 || 382 strcasecmp(str, "RAID3") == 0) { 383 *level = G_RAID_VOLUME_RL_RAID3; 384 *qual = G_RAID_VOLUME_RLQ_R3PN; 385 } else if (strcasecmp(str, "RAID4-P0") == 0) { 386 *level = G_RAID_VOLUME_RL_RAID4; 387 *qual = G_RAID_VOLUME_RLQ_R4P0; 388 } else if (strcasecmp(str, "RAID4-PN") == 0 || 389 strcasecmp(str, "RAID4") == 0) { 390 *level = G_RAID_VOLUME_RL_RAID4; 391 *qual = G_RAID_VOLUME_RLQ_R4PN; 392 } else if (strcasecmp(str, "RAID5-RA") == 0) { 393 *level = G_RAID_VOLUME_RL_RAID5; 394 *qual = G_RAID_VOLUME_RLQ_R5RA; 395 } else if (strcasecmp(str, "RAID5-RS") == 0) { 396 *level = G_RAID_VOLUME_RL_RAID5; 397 *qual = G_RAID_VOLUME_RLQ_R5RS; 398 } else if (strcasecmp(str, "RAID5") == 0 || 399 strcasecmp(str, "RAID5-LA") == 0) { 400 *level = G_RAID_VOLUME_RL_RAID5; 401 *qual = G_RAID_VOLUME_RLQ_R5LA; 402 } else if (strcasecmp(str, "RAID5-LS") == 0) { 403 *level = G_RAID_VOLUME_RL_RAID5; 404 *qual = G_RAID_VOLUME_RLQ_R5LS; 405 } else if (strcasecmp(str, "RAID6-RA") == 0) { 406 *level = G_RAID_VOLUME_RL_RAID6; 407 *qual = G_RAID_VOLUME_RLQ_R6RA; 408 } else if (strcasecmp(str, "RAID6-RS") == 0) { 409 *level = G_RAID_VOLUME_RL_RAID6; 410 *qual = G_RAID_VOLUME_RLQ_R6RS; 411 } else if (strcasecmp(str, "RAID6") == 0 || 412 strcasecmp(str, "RAID6-LA") == 0) { 413 *level = G_RAID_VOLUME_RL_RAID6; 414 *qual = G_RAID_VOLUME_RLQ_R6LA; 415 } else if (strcasecmp(str, "RAID6-LS") == 0) { 416 *level = G_RAID_VOLUME_RL_RAID6; 417 *qual = G_RAID_VOLUME_RLQ_R6LS; 418 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 419 *level = G_RAID_VOLUME_RL_RAIDMDF; 420 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 421 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 422 *level = G_RAID_VOLUME_RL_RAIDMDF; 423 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 424 } else if (strcasecmp(str, "RAIDMDF") == 0 || 425 strcasecmp(str, "RAIDMDF-LA") == 0) { 426 *level = G_RAID_VOLUME_RL_RAIDMDF; 427 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 428 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 429 *level = G_RAID_VOLUME_RL_RAIDMDF; 430 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 431 } else if (strcasecmp(str, "RAID10") == 0 || 432 strcasecmp(str, "RAID1E") == 0 || 433 strcasecmp(str, "RAID1E-A") == 0) { 434 *level = G_RAID_VOLUME_RL_RAID1E; 435 *qual = G_RAID_VOLUME_RLQ_R1EA; 436 } else if (strcasecmp(str, "RAID1E-O") == 0) { 437 *level = G_RAID_VOLUME_RL_RAID1E; 438 *qual = G_RAID_VOLUME_RLQ_R1EO; 439 } else if (strcasecmp(str, "SINGLE") == 0) 440 *level = G_RAID_VOLUME_RL_SINGLE; 441 else if (strcasecmp(str, "CONCAT") == 0) 442 *level = G_RAID_VOLUME_RL_CONCAT; 443 else if (strcasecmp(str, "RAID5E-RA") == 0) { 444 *level = G_RAID_VOLUME_RL_RAID5E; 445 *qual = G_RAID_VOLUME_RLQ_R5ERA; 446 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 447 *level = G_RAID_VOLUME_RL_RAID5E; 448 *qual = G_RAID_VOLUME_RLQ_R5ERS; 449 } else if (strcasecmp(str, "RAID5E") == 0 || 450 strcasecmp(str, "RAID5E-LA") == 0) { 451 *level = G_RAID_VOLUME_RL_RAID5E; 452 *qual = G_RAID_VOLUME_RLQ_R5ELA; 453 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 454 *level = G_RAID_VOLUME_RL_RAID5E; 455 *qual = G_RAID_VOLUME_RLQ_R5ELS; 456 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 457 *level = G_RAID_VOLUME_RL_RAID5EE; 458 *qual = G_RAID_VOLUME_RLQ_R5EERA; 459 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 460 *level = G_RAID_VOLUME_RL_RAID5EE; 461 *qual = G_RAID_VOLUME_RLQ_R5EERS; 462 } else if (strcasecmp(str, "RAID5EE") == 0 || 463 strcasecmp(str, "RAID5EE-LA") == 0) { 464 *level = G_RAID_VOLUME_RL_RAID5EE; 465 *qual = G_RAID_VOLUME_RLQ_R5EELA; 466 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 467 *level = G_RAID_VOLUME_RL_RAID5EE; 468 *qual = G_RAID_VOLUME_RLQ_R5EELS; 469 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 470 *level = G_RAID_VOLUME_RL_RAID5R; 471 *qual = G_RAID_VOLUME_RLQ_R5RRA; 472 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 473 *level = G_RAID_VOLUME_RL_RAID5R; 474 *qual = G_RAID_VOLUME_RLQ_R5RRS; 475 } else if (strcasecmp(str, "RAID5R") == 0 || 476 strcasecmp(str, "RAID5R-LA") == 0) { 477 *level = G_RAID_VOLUME_RL_RAID5R; 478 *qual = G_RAID_VOLUME_RLQ_R5RLA; 479 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 480 *level = G_RAID_VOLUME_RL_RAID5R; 481 *qual = G_RAID_VOLUME_RLQ_R5RLS; 482 } else 483 return (-1); 484 return (0); 485 } 486 487 const char * 488 g_raid_get_diskname(struct g_raid_disk *disk) 489 { 490 491 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 492 return ("[unknown]"); 493 return (disk->d_consumer->provider->name); 494 } 495 496 void 497 g_raid_report_disk_state(struct g_raid_disk *disk) 498 { 499 struct g_raid_subdisk *sd; 500 int len, state; 501 uint32_t s; 502 503 if (disk->d_consumer == NULL) 504 return; 505 if (disk->d_state == G_RAID_DISK_S_FAILED || 506 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 507 s = G_STATE_FAILED; 508 } else { 509 state = G_RAID_SUBDISK_S_ACTIVE; 510 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 511 if (sd->sd_state < state) 512 state = sd->sd_state; 513 } 514 if (state == G_RAID_SUBDISK_S_FAILED) 515 s = G_STATE_FAILED; 516 else if (state == G_RAID_SUBDISK_S_NEW || 517 state == G_RAID_SUBDISK_S_REBUILD) 518 s = G_STATE_REBUILD; 519 else if (state == G_RAID_SUBDISK_S_STALE || 520 state == G_RAID_SUBDISK_S_RESYNC) 521 s = G_STATE_RESYNC; 522 else 523 s = G_STATE_ACTIVE; 524 } 525 len = sizeof(s); 526 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 527 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 528 g_raid_get_diskname(disk), s); 529 } 530 531 void 532 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 533 { 534 535 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 536 g_raid_get_diskname(disk), 537 g_raid_disk_state2str(disk->d_state), 538 g_raid_disk_state2str(state)); 539 disk->d_state = state; 540 g_raid_report_disk_state(disk); 541 } 542 543 void 544 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 545 { 546 547 G_RAID_DEBUG1(0, sd->sd_softc, 548 "Subdisk %s:%d-%s state changed from %s to %s.", 549 sd->sd_volume->v_name, sd->sd_pos, 550 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 551 g_raid_subdisk_state2str(sd->sd_state), 552 g_raid_subdisk_state2str(state)); 553 sd->sd_state = state; 554 if (sd->sd_disk) 555 g_raid_report_disk_state(sd->sd_disk); 556 } 557 558 void 559 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 560 { 561 562 G_RAID_DEBUG1(0, vol->v_softc, 563 "Volume %s state changed from %s to %s.", 564 vol->v_name, 565 g_raid_volume_state2str(vol->v_state), 566 g_raid_volume_state2str(state)); 567 vol->v_state = state; 568 } 569 570 /* 571 * --- Events handling functions --- 572 * Events in geom_raid are used to maintain subdisks and volumes status 573 * from one thread to simplify locking. 574 */ 575 static void 576 g_raid_event_free(struct g_raid_event *ep) 577 { 578 579 free(ep, M_RAID); 580 } 581 582 int 583 g_raid_event_send(void *arg, int event, int flags) 584 { 585 struct g_raid_softc *sc; 586 struct g_raid_event *ep; 587 int error; 588 589 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 590 sc = ((struct g_raid_volume *)arg)->v_softc; 591 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 592 sc = ((struct g_raid_disk *)arg)->d_softc; 593 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 594 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 595 } else { 596 sc = arg; 597 } 598 ep = malloc(sizeof(*ep), M_RAID, 599 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 600 if (ep == NULL) 601 return (ENOMEM); 602 ep->e_tgt = arg; 603 ep->e_event = event; 604 ep->e_flags = flags; 605 ep->e_error = 0; 606 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 607 mtx_lock(&sc->sc_queue_mtx); 608 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 609 mtx_unlock(&sc->sc_queue_mtx); 610 wakeup(sc); 611 612 if ((flags & G_RAID_EVENT_WAIT) == 0) 613 return (0); 614 615 sx_assert(&sc->sc_lock, SX_XLOCKED); 616 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 617 sx_xunlock(&sc->sc_lock); 618 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 619 mtx_lock(&sc->sc_queue_mtx); 620 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 621 hz * 5); 622 } 623 error = ep->e_error; 624 g_raid_event_free(ep); 625 sx_xlock(&sc->sc_lock); 626 return (error); 627 } 628 629 static void 630 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 631 { 632 struct g_raid_event *ep, *tmpep; 633 634 sx_assert(&sc->sc_lock, SX_XLOCKED); 635 636 mtx_lock(&sc->sc_queue_mtx); 637 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 638 if (ep->e_tgt != tgt) 639 continue; 640 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 641 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 642 g_raid_event_free(ep); 643 else { 644 ep->e_error = ECANCELED; 645 wakeup(ep); 646 } 647 } 648 mtx_unlock(&sc->sc_queue_mtx); 649 } 650 651 static int 652 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 653 { 654 struct g_raid_event *ep; 655 int res = 0; 656 657 sx_assert(&sc->sc_lock, SX_XLOCKED); 658 659 mtx_lock(&sc->sc_queue_mtx); 660 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 661 if (ep->e_tgt != tgt) 662 continue; 663 res = 1; 664 break; 665 } 666 mtx_unlock(&sc->sc_queue_mtx); 667 return (res); 668 } 669 670 /* 671 * Return the number of disks in given state. 672 * If state is equal to -1, count all connected disks. 673 */ 674 u_int 675 g_raid_ndisks(struct g_raid_softc *sc, int state) 676 { 677 struct g_raid_disk *disk; 678 u_int n; 679 680 sx_assert(&sc->sc_lock, SX_LOCKED); 681 682 n = 0; 683 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 684 if (disk->d_state == state || state == -1) 685 n++; 686 } 687 return (n); 688 } 689 690 /* 691 * Return the number of subdisks in given state. 692 * If state is equal to -1, count all connected disks. 693 */ 694 u_int 695 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 696 { 697 struct g_raid_subdisk *subdisk; 698 struct g_raid_softc *sc; 699 u_int i, n ; 700 701 sc = vol->v_softc; 702 sx_assert(&sc->sc_lock, SX_LOCKED); 703 704 n = 0; 705 for (i = 0; i < vol->v_disks_count; i++) { 706 subdisk = &vol->v_subdisks[i]; 707 if ((state == -1 && 708 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 709 subdisk->sd_state == state) 710 n++; 711 } 712 return (n); 713 } 714 715 /* 716 * Return the first subdisk in given state. 717 * If state is equal to -1, then the first connected disks. 718 */ 719 struct g_raid_subdisk * 720 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 721 { 722 struct g_raid_subdisk *sd; 723 struct g_raid_softc *sc; 724 u_int i; 725 726 sc = vol->v_softc; 727 sx_assert(&sc->sc_lock, SX_LOCKED); 728 729 for (i = 0; i < vol->v_disks_count; i++) { 730 sd = &vol->v_subdisks[i]; 731 if ((state == -1 && 732 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 733 sd->sd_state == state) 734 return (sd); 735 } 736 return (NULL); 737 } 738 739 struct g_consumer * 740 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 741 { 742 struct g_consumer *cp; 743 struct g_provider *pp; 744 745 g_topology_assert(); 746 747 if (strncmp(name, "/dev/", 5) == 0) 748 name += 5; 749 pp = g_provider_by_name(name); 750 if (pp == NULL) 751 return (NULL); 752 cp = g_new_consumer(sc->sc_geom); 753 if (g_attach(cp, pp) != 0) { 754 g_destroy_consumer(cp); 755 return (NULL); 756 } 757 if (g_access(cp, 1, 1, 1) != 0) { 758 g_detach(cp); 759 g_destroy_consumer(cp); 760 return (NULL); 761 } 762 return (cp); 763 } 764 765 static u_int 766 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 767 { 768 struct bio *bp; 769 u_int nreqs = 0; 770 771 mtx_lock(&sc->sc_queue_mtx); 772 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 773 if (bp->bio_from == cp) 774 nreqs++; 775 } 776 mtx_unlock(&sc->sc_queue_mtx); 777 return (nreqs); 778 } 779 780 u_int 781 g_raid_nopens(struct g_raid_softc *sc) 782 { 783 struct g_raid_volume *vol; 784 u_int opens; 785 786 opens = 0; 787 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 788 if (vol->v_provider_open != 0) 789 opens++; 790 } 791 return (opens); 792 } 793 794 static int 795 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 796 { 797 798 if (cp->index > 0) { 799 G_RAID_DEBUG1(2, sc, 800 "I/O requests for %s exist, can't destroy it now.", 801 cp->provider->name); 802 return (1); 803 } 804 if (g_raid_nrequests(sc, cp) > 0) { 805 G_RAID_DEBUG1(2, sc, 806 "I/O requests for %s in queue, can't destroy it now.", 807 cp->provider->name); 808 return (1); 809 } 810 return (0); 811 } 812 813 static void 814 g_raid_destroy_consumer(void *arg, int flags __unused) 815 { 816 struct g_consumer *cp; 817 818 g_topology_assert(); 819 820 cp = arg; 821 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 822 g_detach(cp); 823 g_destroy_consumer(cp); 824 } 825 826 void 827 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 828 { 829 struct g_provider *pp; 830 int retaste_wait; 831 832 g_topology_assert_not(); 833 834 g_topology_lock(); 835 cp->private = NULL; 836 if (g_raid_consumer_is_busy(sc, cp)) 837 goto out; 838 pp = cp->provider; 839 retaste_wait = 0; 840 if (cp->acw == 1) { 841 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 842 retaste_wait = 1; 843 } 844 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 845 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 846 if (retaste_wait) { 847 /* 848 * After retaste event was send (inside g_access()), we can send 849 * event to detach and destroy consumer. 850 * A class, which has consumer to the given provider connected 851 * will not receive retaste event for the provider. 852 * This is the way how I ignore retaste events when I close 853 * consumers opened for write: I detach and destroy consumer 854 * after retaste event is sent. 855 */ 856 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 857 goto out; 858 } 859 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 860 g_detach(cp); 861 g_destroy_consumer(cp); 862 out: 863 g_topology_unlock(); 864 } 865 866 static void 867 g_raid_orphan(struct g_consumer *cp) 868 { 869 struct g_raid_disk *disk; 870 871 g_topology_assert(); 872 873 disk = cp->private; 874 if (disk == NULL) 875 return; 876 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 877 G_RAID_EVENT_DISK); 878 } 879 880 static int 881 g_raid_clean(struct g_raid_volume *vol, int acw) 882 { 883 struct g_raid_softc *sc; 884 int timeout; 885 886 sc = vol->v_softc; 887 g_topology_assert_not(); 888 sx_assert(&sc->sc_lock, SX_XLOCKED); 889 890 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 891 // return (0); 892 if (!vol->v_dirty) 893 return (0); 894 if (vol->v_writes > 0) 895 return (0); 896 if (acw > 0 || (acw == -1 && 897 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 898 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 899 if (timeout > 0) 900 return (timeout); 901 } 902 vol->v_dirty = 0; 903 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 904 vol->v_name); 905 g_raid_write_metadata(sc, vol, NULL, NULL); 906 return (0); 907 } 908 909 static void 910 g_raid_dirty(struct g_raid_volume *vol) 911 { 912 struct g_raid_softc *sc; 913 914 sc = vol->v_softc; 915 g_topology_assert_not(); 916 sx_assert(&sc->sc_lock, SX_XLOCKED); 917 918 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 919 // return; 920 vol->v_dirty = 1; 921 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 922 vol->v_name); 923 g_raid_write_metadata(sc, vol, NULL, NULL); 924 } 925 926 void 927 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 928 { 929 struct g_raid_softc *sc; 930 struct g_raid_volume *vol; 931 struct g_raid_subdisk *sd; 932 struct bio_queue_head queue; 933 struct bio *cbp; 934 int i; 935 936 vol = tr->tro_volume; 937 sc = vol->v_softc; 938 939 /* 940 * Allocate all bios before sending any request, so we can return 941 * ENOMEM in nice and clean way. 942 */ 943 bioq_init(&queue); 944 for (i = 0; i < vol->v_disks_count; i++) { 945 sd = &vol->v_subdisks[i]; 946 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 947 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 948 continue; 949 cbp = g_clone_bio(bp); 950 if (cbp == NULL) 951 goto failure; 952 cbp->bio_caller1 = sd; 953 bioq_insert_tail(&queue, cbp); 954 } 955 for (cbp = bioq_first(&queue); cbp != NULL; 956 cbp = bioq_first(&queue)) { 957 bioq_remove(&queue, cbp); 958 sd = cbp->bio_caller1; 959 cbp->bio_caller1 = NULL; 960 g_raid_subdisk_iostart(sd, cbp); 961 } 962 return; 963 failure: 964 for (cbp = bioq_first(&queue); cbp != NULL; 965 cbp = bioq_first(&queue)) { 966 bioq_remove(&queue, cbp); 967 g_destroy_bio(cbp); 968 } 969 if (bp->bio_error == 0) 970 bp->bio_error = ENOMEM; 971 g_raid_iodone(bp, bp->bio_error); 972 } 973 974 static void 975 g_raid_tr_kerneldump_common_done(struct bio *bp) 976 { 977 978 bp->bio_flags |= BIO_DONE; 979 } 980 981 int 982 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 983 void *virtual, vm_offset_t physical, off_t offset, size_t length) 984 { 985 struct g_raid_softc *sc; 986 struct g_raid_volume *vol; 987 struct bio bp; 988 989 vol = tr->tro_volume; 990 sc = vol->v_softc; 991 992 bzero(&bp, sizeof(bp)); 993 bp.bio_cmd = BIO_WRITE; 994 bp.bio_done = g_raid_tr_kerneldump_common_done; 995 bp.bio_attribute = NULL; 996 bp.bio_offset = offset; 997 bp.bio_length = length; 998 bp.bio_data = virtual; 999 bp.bio_to = vol->v_provider; 1000 1001 g_raid_start(&bp); 1002 while (!(bp.bio_flags & BIO_DONE)) { 1003 G_RAID_DEBUG1(4, sc, "Poll..."); 1004 g_raid_poll(sc); 1005 DELAY(10); 1006 } 1007 1008 return (bp.bio_error != 0 ? EIO : 0); 1009 } 1010 1011 static int 1012 g_raid_dump(void *arg, 1013 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1014 { 1015 struct g_raid_volume *vol; 1016 int error; 1017 1018 vol = (struct g_raid_volume *)arg; 1019 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1020 (long long unsigned)offset, (long long unsigned)length); 1021 1022 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1023 virtual, physical, offset, length); 1024 return (error); 1025 } 1026 1027 static void 1028 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1029 { 1030 struct g_kerneldump *gkd; 1031 struct g_provider *pp; 1032 struct g_raid_volume *vol; 1033 1034 gkd = (struct g_kerneldump*)bp->bio_data; 1035 pp = bp->bio_to; 1036 vol = pp->private; 1037 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1038 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1039 gkd->di.dumper = g_raid_dump; 1040 gkd->di.priv = vol; 1041 gkd->di.blocksize = vol->v_sectorsize; 1042 gkd->di.maxiosize = DFLTPHYS; 1043 gkd->di.mediaoffset = gkd->offset; 1044 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1045 gkd->length = vol->v_mediasize - gkd->offset; 1046 gkd->di.mediasize = gkd->length; 1047 g_io_deliver(bp, 0); 1048 } 1049 1050 static void 1051 g_raid_start(struct bio *bp) 1052 { 1053 struct g_raid_softc *sc; 1054 1055 sc = bp->bio_to->geom->softc; 1056 /* 1057 * If sc == NULL or there are no valid disks, provider's error 1058 * should be set and g_raid_start() should not be called at all. 1059 */ 1060 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1061 // ("Provider's error should be set (error=%d)(mirror=%s).", 1062 // bp->bio_to->error, bp->bio_to->name)); 1063 G_RAID_LOGREQ(3, bp, "Request received."); 1064 1065 switch (bp->bio_cmd) { 1066 case BIO_READ: 1067 case BIO_WRITE: 1068 case BIO_DELETE: 1069 case BIO_FLUSH: 1070 break; 1071 case BIO_GETATTR: 1072 if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1073 g_raid_kerneldump(sc, bp); 1074 else 1075 g_io_deliver(bp, EOPNOTSUPP); 1076 return; 1077 default: 1078 g_io_deliver(bp, EOPNOTSUPP); 1079 return; 1080 } 1081 mtx_lock(&sc->sc_queue_mtx); 1082 bioq_disksort(&sc->sc_queue, bp); 1083 mtx_unlock(&sc->sc_queue_mtx); 1084 if (!dumping) { 1085 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1086 wakeup(sc); 1087 } 1088 } 1089 1090 static int 1091 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1092 { 1093 /* 1094 * 5 cases: 1095 * (1) bp entirely below NO 1096 * (2) bp entirely above NO 1097 * (3) bp start below, but end in range YES 1098 * (4) bp entirely within YES 1099 * (5) bp starts within, ends above YES 1100 * 1101 * lock range 10-19 (offset 10 length 10) 1102 * (1) 1-5: first if kicks it out 1103 * (2) 30-35: second if kicks it out 1104 * (3) 5-15: passes both ifs 1105 * (4) 12-14: passes both ifs 1106 * (5) 19-20: passes both 1107 */ 1108 off_t lend = lstart + len - 1; 1109 off_t bstart = bp->bio_offset; 1110 off_t bend = bp->bio_offset + bp->bio_length - 1; 1111 1112 if (bend < lstart) 1113 return (0); 1114 if (lend < bstart) 1115 return (0); 1116 return (1); 1117 } 1118 1119 static int 1120 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1121 { 1122 struct g_raid_lock *lp; 1123 1124 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1125 1126 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1127 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1128 return (1); 1129 } 1130 return (0); 1131 } 1132 1133 static void 1134 g_raid_start_request(struct bio *bp) 1135 { 1136 struct g_raid_softc *sc; 1137 struct g_raid_volume *vol; 1138 1139 sc = bp->bio_to->geom->softc; 1140 sx_assert(&sc->sc_lock, SX_LOCKED); 1141 vol = bp->bio_to->private; 1142 1143 /* 1144 * Check to see if this item is in a locked range. If so, 1145 * queue it to our locked queue and return. We'll requeue 1146 * it when the range is unlocked. Internal I/O for the 1147 * rebuild/rescan/recovery process is excluded from this 1148 * check so we can actually do the recovery. 1149 */ 1150 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1151 g_raid_is_in_locked_range(vol, bp)) { 1152 G_RAID_LOGREQ(3, bp, "Defer request."); 1153 bioq_insert_tail(&vol->v_locked, bp); 1154 return; 1155 } 1156 1157 /* 1158 * If we're actually going to do the write/delete, then 1159 * update the idle stats for the volume. 1160 */ 1161 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1162 if (!vol->v_dirty) 1163 g_raid_dirty(vol); 1164 vol->v_writes++; 1165 } 1166 1167 /* 1168 * Put request onto inflight queue, so we can check if new 1169 * synchronization requests don't collide with it. Then tell 1170 * the transformation layer to start the I/O. 1171 */ 1172 bioq_insert_tail(&vol->v_inflight, bp); 1173 G_RAID_LOGREQ(4, bp, "Request started"); 1174 G_RAID_TR_IOSTART(vol->v_tr, bp); 1175 } 1176 1177 static void 1178 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1179 { 1180 off_t off, len; 1181 struct bio *nbp; 1182 struct g_raid_lock *lp; 1183 1184 vol->v_pending_lock = 0; 1185 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1186 if (lp->l_pending) { 1187 off = lp->l_offset; 1188 len = lp->l_length; 1189 lp->l_pending = 0; 1190 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1191 if (g_raid_bio_overlaps(nbp, off, len)) 1192 lp->l_pending++; 1193 } 1194 if (lp->l_pending) { 1195 vol->v_pending_lock = 1; 1196 G_RAID_DEBUG1(4, vol->v_softc, 1197 "Deferred lock(%jd, %jd) has %d pending", 1198 (intmax_t)off, (intmax_t)(off + len), 1199 lp->l_pending); 1200 continue; 1201 } 1202 G_RAID_DEBUG1(4, vol->v_softc, 1203 "Deferred lock of %jd to %jd completed", 1204 (intmax_t)off, (intmax_t)(off + len)); 1205 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1206 } 1207 } 1208 } 1209 1210 void 1211 g_raid_iodone(struct bio *bp, int error) 1212 { 1213 struct g_raid_softc *sc; 1214 struct g_raid_volume *vol; 1215 1216 sc = bp->bio_to->geom->softc; 1217 sx_assert(&sc->sc_lock, SX_LOCKED); 1218 vol = bp->bio_to->private; 1219 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1220 1221 /* Update stats if we done write/delete. */ 1222 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1223 vol->v_writes--; 1224 vol->v_last_write = time_uptime; 1225 } 1226 1227 bioq_remove(&vol->v_inflight, bp); 1228 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1229 g_raid_finish_with_locked_ranges(vol, bp); 1230 getmicrouptime(&vol->v_last_done); 1231 g_io_deliver(bp, error); 1232 } 1233 1234 int 1235 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1236 struct bio *ignore, void *argp) 1237 { 1238 struct g_raid_softc *sc; 1239 struct g_raid_lock *lp; 1240 struct bio *bp; 1241 1242 sc = vol->v_softc; 1243 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1244 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1245 lp->l_offset = off; 1246 lp->l_length = len; 1247 lp->l_callback_arg = argp; 1248 1249 lp->l_pending = 0; 1250 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1251 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1252 lp->l_pending++; 1253 } 1254 1255 /* 1256 * If there are any writes that are pending, we return EBUSY. All 1257 * callers will have to wait until all pending writes clear. 1258 */ 1259 if (lp->l_pending > 0) { 1260 vol->v_pending_lock = 1; 1261 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1262 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1263 return (EBUSY); 1264 } 1265 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1266 (intmax_t)off, (intmax_t)(off+len)); 1267 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1268 return (0); 1269 } 1270 1271 int 1272 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1273 { 1274 struct g_raid_lock *lp; 1275 struct g_raid_softc *sc; 1276 struct bio *bp; 1277 1278 sc = vol->v_softc; 1279 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1280 if (lp->l_offset == off && lp->l_length == len) { 1281 LIST_REMOVE(lp, l_next); 1282 /* XXX 1283 * Right now we just put them all back on the queue 1284 * and hope for the best. We hope this because any 1285 * locked ranges will go right back on this list 1286 * when the worker thread runs. 1287 * XXX 1288 */ 1289 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1290 (intmax_t)lp->l_offset, 1291 (intmax_t)(lp->l_offset+lp->l_length)); 1292 mtx_lock(&sc->sc_queue_mtx); 1293 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1294 bioq_disksort(&sc->sc_queue, bp); 1295 mtx_unlock(&sc->sc_queue_mtx); 1296 free(lp, M_RAID); 1297 return (0); 1298 } 1299 } 1300 return (EINVAL); 1301 } 1302 1303 void 1304 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1305 { 1306 struct g_consumer *cp; 1307 struct g_raid_disk *disk, *tdisk; 1308 1309 bp->bio_caller1 = sd; 1310 1311 /* 1312 * Make sure that the disk is present. Generally it is a task of 1313 * transformation layers to not send requests to absent disks, but 1314 * it is better to be safe and report situation then sorry. 1315 */ 1316 if (sd->sd_disk == NULL) { 1317 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1318 nodisk: 1319 bp->bio_from = NULL; 1320 bp->bio_to = NULL; 1321 bp->bio_error = ENXIO; 1322 g_raid_disk_done(bp); 1323 return; 1324 } 1325 disk = sd->sd_disk; 1326 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1327 disk->d_state != G_RAID_DISK_S_FAILED) { 1328 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1329 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1330 goto nodisk; 1331 } 1332 1333 cp = disk->d_consumer; 1334 bp->bio_from = cp; 1335 bp->bio_to = cp->provider; 1336 cp->index++; 1337 1338 /* Update average disks load. */ 1339 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1340 if (tdisk->d_consumer == NULL) 1341 tdisk->d_load = 0; 1342 else 1343 tdisk->d_load = (tdisk->d_consumer->index * 1344 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1345 } 1346 1347 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1348 if (dumping) { 1349 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1350 if (bp->bio_cmd == BIO_WRITE) { 1351 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1352 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1353 } else 1354 bp->bio_error = EOPNOTSUPP; 1355 g_raid_disk_done(bp); 1356 } else { 1357 bp->bio_done = g_raid_disk_done; 1358 bp->bio_offset += sd->sd_offset; 1359 G_RAID_LOGREQ(3, bp, "Sending request."); 1360 g_io_request(bp, cp); 1361 } 1362 } 1363 1364 int 1365 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1366 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1367 { 1368 1369 if (sd->sd_disk == NULL) 1370 return (ENXIO); 1371 if (sd->sd_disk->d_kd.di.dumper == NULL) 1372 return (EOPNOTSUPP); 1373 return (dump_write(&sd->sd_disk->d_kd.di, 1374 virtual, physical, 1375 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1376 length)); 1377 } 1378 1379 static void 1380 g_raid_disk_done(struct bio *bp) 1381 { 1382 struct g_raid_softc *sc; 1383 struct g_raid_subdisk *sd; 1384 1385 sd = bp->bio_caller1; 1386 sc = sd->sd_softc; 1387 mtx_lock(&sc->sc_queue_mtx); 1388 bioq_disksort(&sc->sc_queue, bp); 1389 mtx_unlock(&sc->sc_queue_mtx); 1390 if (!dumping) 1391 wakeup(sc); 1392 } 1393 1394 static void 1395 g_raid_disk_done_request(struct bio *bp) 1396 { 1397 struct g_raid_softc *sc; 1398 struct g_raid_disk *disk; 1399 struct g_raid_subdisk *sd; 1400 struct g_raid_volume *vol; 1401 1402 g_topology_assert_not(); 1403 1404 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1405 sd = bp->bio_caller1; 1406 sc = sd->sd_softc; 1407 vol = sd->sd_volume; 1408 if (bp->bio_from != NULL) { 1409 bp->bio_from->index--; 1410 disk = bp->bio_from->private; 1411 if (disk == NULL) 1412 g_raid_kill_consumer(sc, bp->bio_from); 1413 } 1414 bp->bio_offset -= sd->sd_offset; 1415 1416 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1417 } 1418 1419 static void 1420 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1421 { 1422 1423 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1424 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1425 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1426 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1427 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1428 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1429 else 1430 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1431 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1432 KASSERT(ep->e_error == 0, 1433 ("Error cannot be handled.")); 1434 g_raid_event_free(ep); 1435 } else { 1436 ep->e_flags |= G_RAID_EVENT_DONE; 1437 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1438 mtx_lock(&sc->sc_queue_mtx); 1439 wakeup(ep); 1440 mtx_unlock(&sc->sc_queue_mtx); 1441 } 1442 } 1443 1444 /* 1445 * Worker thread. 1446 */ 1447 static void 1448 g_raid_worker(void *arg) 1449 { 1450 struct g_raid_softc *sc; 1451 struct g_raid_event *ep; 1452 struct g_raid_volume *vol; 1453 struct bio *bp; 1454 struct timeval now, t; 1455 int timeout, rv; 1456 1457 sc = arg; 1458 thread_lock(curthread); 1459 sched_prio(curthread, PRIBIO); 1460 thread_unlock(curthread); 1461 1462 sx_xlock(&sc->sc_lock); 1463 for (;;) { 1464 mtx_lock(&sc->sc_queue_mtx); 1465 /* 1466 * First take a look at events. 1467 * This is important to handle events before any I/O requests. 1468 */ 1469 bp = NULL; 1470 vol = NULL; 1471 rv = 0; 1472 ep = TAILQ_FIRST(&sc->sc_events); 1473 if (ep != NULL) 1474 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1475 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1476 ; 1477 else { 1478 getmicrouptime(&now); 1479 t = now; 1480 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1481 if (bioq_first(&vol->v_inflight) == NULL && 1482 vol->v_tr && 1483 timevalcmp(&vol->v_last_done, &t, < )) 1484 t = vol->v_last_done; 1485 } 1486 timevalsub(&t, &now); 1487 timeout = g_raid_idle_threshold + 1488 t.tv_sec * 1000000 + t.tv_usec; 1489 if (timeout > 0) { 1490 /* 1491 * Two steps to avoid overflows at HZ=1000 1492 * and idle timeouts > 2.1s. Some rounding 1493 * errors can occur, but they are < 1tick, 1494 * which is deemed to be close enough for 1495 * this purpose. 1496 */ 1497 int micpertic = 1000000 / hz; 1498 timeout = (timeout + micpertic - 1) / micpertic; 1499 sx_xunlock(&sc->sc_lock); 1500 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1501 PRIBIO | PDROP, "-", timeout); 1502 sx_xlock(&sc->sc_lock); 1503 goto process; 1504 } else 1505 rv = EWOULDBLOCK; 1506 } 1507 mtx_unlock(&sc->sc_queue_mtx); 1508 process: 1509 if (ep != NULL) { 1510 g_raid_handle_event(sc, ep); 1511 } else if (bp != NULL) { 1512 if (bp->bio_to != NULL && 1513 bp->bio_to->geom == sc->sc_geom) 1514 g_raid_start_request(bp); 1515 else 1516 g_raid_disk_done_request(bp); 1517 } else if (rv == EWOULDBLOCK) { 1518 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1519 if (vol->v_writes == 0 && vol->v_dirty) 1520 g_raid_clean(vol, -1); 1521 if (bioq_first(&vol->v_inflight) == NULL && 1522 vol->v_tr) { 1523 t.tv_sec = g_raid_idle_threshold / 1000000; 1524 t.tv_usec = g_raid_idle_threshold % 1000000; 1525 timevaladd(&t, &vol->v_last_done); 1526 getmicrouptime(&now); 1527 if (timevalcmp(&t, &now, <= )) { 1528 G_RAID_TR_IDLE(vol->v_tr); 1529 vol->v_last_done = now; 1530 } 1531 } 1532 } 1533 } 1534 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1535 g_raid_destroy_node(sc, 1); /* May not return. */ 1536 } 1537 } 1538 1539 static void 1540 g_raid_poll(struct g_raid_softc *sc) 1541 { 1542 struct g_raid_event *ep; 1543 struct bio *bp; 1544 1545 sx_xlock(&sc->sc_lock); 1546 mtx_lock(&sc->sc_queue_mtx); 1547 /* 1548 * First take a look at events. 1549 * This is important to handle events before any I/O requests. 1550 */ 1551 ep = TAILQ_FIRST(&sc->sc_events); 1552 if (ep != NULL) { 1553 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1554 mtx_unlock(&sc->sc_queue_mtx); 1555 g_raid_handle_event(sc, ep); 1556 goto out; 1557 } 1558 bp = bioq_takefirst(&sc->sc_queue); 1559 if (bp != NULL) { 1560 mtx_unlock(&sc->sc_queue_mtx); 1561 if (bp->bio_from == NULL || 1562 bp->bio_from->geom != sc->sc_geom) 1563 g_raid_start_request(bp); 1564 else 1565 g_raid_disk_done_request(bp); 1566 } 1567 out: 1568 sx_xunlock(&sc->sc_lock); 1569 } 1570 1571 static void 1572 g_raid_launch_provider(struct g_raid_volume *vol) 1573 { 1574 struct g_raid_disk *disk; 1575 struct g_raid_softc *sc; 1576 struct g_provider *pp; 1577 char name[G_RAID_MAX_VOLUMENAME]; 1578 off_t off; 1579 1580 sc = vol->v_softc; 1581 sx_assert(&sc->sc_lock, SX_LOCKED); 1582 1583 g_topology_lock(); 1584 /* Try to name provider with volume name. */ 1585 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1586 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1587 g_provider_by_name(name) != NULL) { 1588 /* Otherwise use sequential volume number. */ 1589 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1590 } 1591 pp = g_new_providerf(sc->sc_geom, "%s", name); 1592 pp->private = vol; 1593 pp->mediasize = vol->v_mediasize; 1594 pp->sectorsize = vol->v_sectorsize; 1595 pp->stripesize = 0; 1596 pp->stripeoffset = 0; 1597 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1598 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1599 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1600 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1601 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1602 disk->d_consumer != NULL && 1603 disk->d_consumer->provider != NULL) { 1604 pp->stripesize = disk->d_consumer->provider->stripesize; 1605 off = disk->d_consumer->provider->stripeoffset; 1606 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1607 if (off > 0) 1608 pp->stripeoffset %= off; 1609 } 1610 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1611 pp->stripesize *= (vol->v_disks_count - 1); 1612 pp->stripeoffset *= (vol->v_disks_count - 1); 1613 } 1614 } else 1615 pp->stripesize = vol->v_strip_size; 1616 vol->v_provider = pp; 1617 g_error_provider(pp, 0); 1618 g_topology_unlock(); 1619 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1620 pp->name, vol->v_name); 1621 } 1622 1623 static void 1624 g_raid_destroy_provider(struct g_raid_volume *vol) 1625 { 1626 struct g_raid_softc *sc; 1627 struct g_provider *pp; 1628 struct bio *bp, *tmp; 1629 1630 g_topology_assert_not(); 1631 sc = vol->v_softc; 1632 pp = vol->v_provider; 1633 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1634 1635 g_topology_lock(); 1636 g_error_provider(pp, ENXIO); 1637 mtx_lock(&sc->sc_queue_mtx); 1638 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1639 if (bp->bio_to != pp) 1640 continue; 1641 bioq_remove(&sc->sc_queue, bp); 1642 g_io_deliver(bp, ENXIO); 1643 } 1644 mtx_unlock(&sc->sc_queue_mtx); 1645 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1646 pp->name, vol->v_name); 1647 g_wither_provider(pp, ENXIO); 1648 g_topology_unlock(); 1649 vol->v_provider = NULL; 1650 } 1651 1652 /* 1653 * Update device state. 1654 */ 1655 static int 1656 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1657 { 1658 struct g_raid_softc *sc; 1659 1660 sc = vol->v_softc; 1661 sx_assert(&sc->sc_lock, SX_XLOCKED); 1662 1663 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1664 g_raid_volume_event2str(event), 1665 vol->v_name); 1666 switch (event) { 1667 case G_RAID_VOLUME_E_DOWN: 1668 if (vol->v_provider != NULL) 1669 g_raid_destroy_provider(vol); 1670 break; 1671 case G_RAID_VOLUME_E_UP: 1672 if (vol->v_provider == NULL) 1673 g_raid_launch_provider(vol); 1674 break; 1675 case G_RAID_VOLUME_E_START: 1676 if (vol->v_tr) 1677 G_RAID_TR_START(vol->v_tr); 1678 return (0); 1679 default: 1680 if (sc->sc_md) 1681 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1682 return (0); 1683 } 1684 1685 /* Manage root mount release. */ 1686 if (vol->v_starting) { 1687 vol->v_starting = 0; 1688 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1689 root_mount_rel(vol->v_rootmount); 1690 vol->v_rootmount = NULL; 1691 } 1692 if (vol->v_stopping && vol->v_provider_open == 0) 1693 g_raid_destroy_volume(vol); 1694 return (0); 1695 } 1696 1697 /* 1698 * Update subdisk state. 1699 */ 1700 static int 1701 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1702 { 1703 struct g_raid_softc *sc; 1704 struct g_raid_volume *vol; 1705 1706 sc = sd->sd_softc; 1707 vol = sd->sd_volume; 1708 sx_assert(&sc->sc_lock, SX_XLOCKED); 1709 1710 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1711 g_raid_subdisk_event2str(event), 1712 vol->v_name, sd->sd_pos, 1713 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1714 if (vol->v_tr) 1715 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1716 1717 return (0); 1718 } 1719 1720 /* 1721 * Update disk state. 1722 */ 1723 static int 1724 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1725 { 1726 struct g_raid_softc *sc; 1727 1728 sc = disk->d_softc; 1729 sx_assert(&sc->sc_lock, SX_XLOCKED); 1730 1731 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1732 g_raid_disk_event2str(event), 1733 g_raid_get_diskname(disk)); 1734 1735 if (sc->sc_md) 1736 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1737 return (0); 1738 } 1739 1740 /* 1741 * Node event. 1742 */ 1743 static int 1744 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1745 { 1746 sx_assert(&sc->sc_lock, SX_XLOCKED); 1747 1748 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1749 g_raid_node_event2str(event)); 1750 1751 if (event == G_RAID_NODE_E_WAKE) 1752 return (0); 1753 if (sc->sc_md) 1754 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1755 return (0); 1756 } 1757 1758 static int 1759 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1760 { 1761 struct g_raid_volume *vol; 1762 struct g_raid_softc *sc; 1763 int dcw, opens, error = 0; 1764 1765 g_topology_assert(); 1766 sc = pp->geom->softc; 1767 vol = pp->private; 1768 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1769 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1770 1771 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1772 acr, acw, ace); 1773 dcw = pp->acw + acw; 1774 1775 g_topology_unlock(); 1776 sx_xlock(&sc->sc_lock); 1777 /* Deny new opens while dying. */ 1778 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1779 error = ENXIO; 1780 goto out; 1781 } 1782 if (dcw == 0 && vol->v_dirty) 1783 g_raid_clean(vol, dcw); 1784 vol->v_provider_open += acr + acw + ace; 1785 /* Handle delayed node destruction. */ 1786 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1787 vol->v_provider_open == 0) { 1788 /* Count open volumes. */ 1789 opens = g_raid_nopens(sc); 1790 if (opens == 0) { 1791 sc->sc_stopping = G_RAID_DESTROY_HARD; 1792 /* Wake up worker to make it selfdestruct. */ 1793 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1794 } 1795 } 1796 /* Handle open volume destruction. */ 1797 if (vol->v_stopping && vol->v_provider_open == 0) 1798 g_raid_destroy_volume(vol); 1799 out: 1800 sx_xunlock(&sc->sc_lock); 1801 g_topology_lock(); 1802 return (error); 1803 } 1804 1805 struct g_raid_softc * 1806 g_raid_create_node(struct g_class *mp, 1807 const char *name, struct g_raid_md_object *md) 1808 { 1809 struct g_raid_softc *sc; 1810 struct g_geom *gp; 1811 int error; 1812 1813 g_topology_assert(); 1814 G_RAID_DEBUG(1, "Creating array %s.", name); 1815 1816 gp = g_new_geomf(mp, "%s", name); 1817 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1818 gp->start = g_raid_start; 1819 gp->orphan = g_raid_orphan; 1820 gp->access = g_raid_access; 1821 gp->dumpconf = g_raid_dumpconf; 1822 1823 sc->sc_md = md; 1824 sc->sc_geom = gp; 1825 sc->sc_flags = 0; 1826 TAILQ_INIT(&sc->sc_volumes); 1827 TAILQ_INIT(&sc->sc_disks); 1828 sx_init(&sc->sc_lock, "graid:lock"); 1829 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1830 TAILQ_INIT(&sc->sc_events); 1831 bioq_init(&sc->sc_queue); 1832 gp->softc = sc; 1833 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1834 "g_raid %s", name); 1835 if (error != 0) { 1836 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1837 mtx_destroy(&sc->sc_queue_mtx); 1838 sx_destroy(&sc->sc_lock); 1839 g_destroy_geom(sc->sc_geom); 1840 free(sc, M_RAID); 1841 return (NULL); 1842 } 1843 1844 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1845 return (sc); 1846 } 1847 1848 struct g_raid_volume * 1849 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1850 { 1851 struct g_raid_volume *vol, *vol1; 1852 int i; 1853 1854 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1855 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1856 vol->v_softc = sc; 1857 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1858 vol->v_state = G_RAID_VOLUME_S_STARTING; 1859 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1860 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1861 vol->v_rotate_parity = 1; 1862 bioq_init(&vol->v_inflight); 1863 bioq_init(&vol->v_locked); 1864 LIST_INIT(&vol->v_locks); 1865 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1866 vol->v_subdisks[i].sd_softc = sc; 1867 vol->v_subdisks[i].sd_volume = vol; 1868 vol->v_subdisks[i].sd_pos = i; 1869 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1870 } 1871 1872 /* Find free ID for this volume. */ 1873 g_topology_lock(); 1874 vol1 = vol; 1875 if (id >= 0) { 1876 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1877 if (vol1->v_global_id == id) 1878 break; 1879 } 1880 } 1881 if (vol1 != NULL) { 1882 for (id = 0; ; id++) { 1883 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1884 if (vol1->v_global_id == id) 1885 break; 1886 } 1887 if (vol1 == NULL) 1888 break; 1889 } 1890 } 1891 vol->v_global_id = id; 1892 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1893 g_topology_unlock(); 1894 1895 /* Delay root mounting. */ 1896 vol->v_rootmount = root_mount_hold("GRAID"); 1897 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1898 vol->v_starting = 1; 1899 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1900 return (vol); 1901 } 1902 1903 struct g_raid_disk * 1904 g_raid_create_disk(struct g_raid_softc *sc) 1905 { 1906 struct g_raid_disk *disk; 1907 1908 G_RAID_DEBUG1(1, sc, "Creating disk."); 1909 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1910 disk->d_softc = sc; 1911 disk->d_state = G_RAID_DISK_S_NONE; 1912 TAILQ_INIT(&disk->d_subdisks); 1913 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1914 return (disk); 1915 } 1916 1917 int g_raid_start_volume(struct g_raid_volume *vol) 1918 { 1919 struct g_raid_tr_class *class; 1920 struct g_raid_tr_object *obj; 1921 int status; 1922 1923 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1924 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1925 G_RAID_DEBUG1(2, vol->v_softc, 1926 "Tasting volume %s for %s transformation.", 1927 vol->v_name, class->name); 1928 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1929 M_WAITOK); 1930 obj->tro_class = class; 1931 obj->tro_volume = vol; 1932 status = G_RAID_TR_TASTE(obj, vol); 1933 if (status != G_RAID_TR_TASTE_FAIL) 1934 break; 1935 kobj_delete((kobj_t)obj, M_RAID); 1936 } 1937 if (class == NULL) { 1938 G_RAID_DEBUG1(0, vol->v_softc, 1939 "No transformation module found for %s.", 1940 vol->v_name); 1941 vol->v_tr = NULL; 1942 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 1943 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 1944 G_RAID_EVENT_VOLUME); 1945 return (-1); 1946 } 1947 G_RAID_DEBUG1(2, vol->v_softc, 1948 "Transformation module %s chosen for %s.", 1949 class->name, vol->v_name); 1950 vol->v_tr = obj; 1951 return (0); 1952 } 1953 1954 int 1955 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 1956 { 1957 struct g_raid_volume *vol, *tmpv; 1958 struct g_raid_disk *disk, *tmpd; 1959 int error = 0; 1960 1961 sc->sc_stopping = G_RAID_DESTROY_HARD; 1962 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 1963 if (g_raid_destroy_volume(vol)) 1964 error = EBUSY; 1965 } 1966 if (error) 1967 return (error); 1968 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 1969 if (g_raid_destroy_disk(disk)) 1970 error = EBUSY; 1971 } 1972 if (error) 1973 return (error); 1974 if (sc->sc_md) { 1975 G_RAID_MD_FREE(sc->sc_md); 1976 kobj_delete((kobj_t)sc->sc_md, M_RAID); 1977 sc->sc_md = NULL; 1978 } 1979 if (sc->sc_geom != NULL) { 1980 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 1981 g_topology_lock(); 1982 sc->sc_geom->softc = NULL; 1983 g_wither_geom(sc->sc_geom, ENXIO); 1984 g_topology_unlock(); 1985 sc->sc_geom = NULL; 1986 } else 1987 G_RAID_DEBUG(1, "Array destroyed."); 1988 if (worker) { 1989 g_raid_event_cancel(sc, sc); 1990 mtx_destroy(&sc->sc_queue_mtx); 1991 sx_xunlock(&sc->sc_lock); 1992 sx_destroy(&sc->sc_lock); 1993 wakeup(&sc->sc_stopping); 1994 free(sc, M_RAID); 1995 curthread->td_pflags &= ~TDP_GEOM; 1996 G_RAID_DEBUG(1, "Thread exiting."); 1997 kproc_exit(0); 1998 } else { 1999 /* Wake up worker to make it selfdestruct. */ 2000 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2001 } 2002 return (0); 2003 } 2004 2005 int 2006 g_raid_destroy_volume(struct g_raid_volume *vol) 2007 { 2008 struct g_raid_softc *sc; 2009 struct g_raid_disk *disk; 2010 int i; 2011 2012 sc = vol->v_softc; 2013 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2014 vol->v_stopping = 1; 2015 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2016 if (vol->v_tr) { 2017 G_RAID_TR_STOP(vol->v_tr); 2018 return (EBUSY); 2019 } else 2020 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2021 } 2022 if (g_raid_event_check(sc, vol) != 0) 2023 return (EBUSY); 2024 if (vol->v_provider != NULL) 2025 return (EBUSY); 2026 if (vol->v_provider_open != 0) 2027 return (EBUSY); 2028 if (vol->v_tr) { 2029 G_RAID_TR_FREE(vol->v_tr); 2030 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2031 vol->v_tr = NULL; 2032 } 2033 if (vol->v_rootmount) 2034 root_mount_rel(vol->v_rootmount); 2035 g_topology_lock(); 2036 LIST_REMOVE(vol, v_global_next); 2037 g_topology_unlock(); 2038 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2039 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2040 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2041 disk = vol->v_subdisks[i].sd_disk; 2042 if (disk == NULL) 2043 continue; 2044 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2045 } 2046 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2047 if (sc->sc_md) 2048 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2049 g_raid_event_cancel(sc, vol); 2050 free(vol, M_RAID); 2051 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2052 /* Wake up worker to let it selfdestruct. */ 2053 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2054 } 2055 return (0); 2056 } 2057 2058 int 2059 g_raid_destroy_disk(struct g_raid_disk *disk) 2060 { 2061 struct g_raid_softc *sc; 2062 struct g_raid_subdisk *sd, *tmp; 2063 2064 sc = disk->d_softc; 2065 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2066 if (disk->d_consumer) { 2067 g_raid_kill_consumer(sc, disk->d_consumer); 2068 disk->d_consumer = NULL; 2069 } 2070 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2071 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2072 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2073 G_RAID_EVENT_SUBDISK); 2074 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2075 sd->sd_disk = NULL; 2076 } 2077 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2078 if (sc->sc_md) 2079 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2080 g_raid_event_cancel(sc, disk); 2081 free(disk, M_RAID); 2082 return (0); 2083 } 2084 2085 int 2086 g_raid_destroy(struct g_raid_softc *sc, int how) 2087 { 2088 int opens; 2089 2090 g_topology_assert_not(); 2091 if (sc == NULL) 2092 return (ENXIO); 2093 sx_assert(&sc->sc_lock, SX_XLOCKED); 2094 2095 /* Count open volumes. */ 2096 opens = g_raid_nopens(sc); 2097 2098 /* React on some opened volumes. */ 2099 if (opens > 0) { 2100 switch (how) { 2101 case G_RAID_DESTROY_SOFT: 2102 G_RAID_DEBUG1(1, sc, 2103 "%d volumes are still open.", 2104 opens); 2105 return (EBUSY); 2106 case G_RAID_DESTROY_DELAYED: 2107 G_RAID_DEBUG1(1, sc, 2108 "Array will be destroyed on last close."); 2109 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2110 return (EBUSY); 2111 case G_RAID_DESTROY_HARD: 2112 G_RAID_DEBUG1(1, sc, 2113 "%d volumes are still open.", 2114 opens); 2115 } 2116 } 2117 2118 /* Mark node for destruction. */ 2119 sc->sc_stopping = G_RAID_DESTROY_HARD; 2120 /* Wake up worker to let it selfdestruct. */ 2121 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2122 /* Sleep until node destroyed. */ 2123 sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2124 PRIBIO | PDROP, "r:destroy", 0); 2125 return (0); 2126 } 2127 2128 static void 2129 g_raid_taste_orphan(struct g_consumer *cp) 2130 { 2131 2132 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2133 cp->provider->name)); 2134 } 2135 2136 static struct g_geom * 2137 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2138 { 2139 struct g_consumer *cp; 2140 struct g_geom *gp, *geom; 2141 struct g_raid_md_class *class; 2142 struct g_raid_md_object *obj; 2143 int status; 2144 2145 g_topology_assert(); 2146 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2147 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2148 2149 gp = g_new_geomf(mp, "raid:taste"); 2150 /* 2151 * This orphan function should be never called. 2152 */ 2153 gp->orphan = g_raid_taste_orphan; 2154 cp = g_new_consumer(gp); 2155 g_attach(cp, pp); 2156 2157 geom = NULL; 2158 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2159 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2160 pp->name, class->name); 2161 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2162 M_WAITOK); 2163 obj->mdo_class = class; 2164 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2165 if (status != G_RAID_MD_TASTE_NEW) 2166 kobj_delete((kobj_t)obj, M_RAID); 2167 if (status != G_RAID_MD_TASTE_FAIL) 2168 break; 2169 } 2170 2171 g_detach(cp); 2172 g_destroy_consumer(cp); 2173 g_destroy_geom(gp); 2174 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2175 return (geom); 2176 } 2177 2178 int 2179 g_raid_create_node_format(const char *format, struct gctl_req *req, 2180 struct g_geom **gp) 2181 { 2182 struct g_raid_md_class *class; 2183 struct g_raid_md_object *obj; 2184 int status; 2185 2186 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2187 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2188 if (strcasecmp(class->name, format) == 0) 2189 break; 2190 } 2191 if (class == NULL) { 2192 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2193 return (G_RAID_MD_TASTE_FAIL); 2194 } 2195 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2196 M_WAITOK); 2197 obj->mdo_class = class; 2198 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2199 if (status != G_RAID_MD_TASTE_NEW) 2200 kobj_delete((kobj_t)obj, M_RAID); 2201 return (status); 2202 } 2203 2204 static int 2205 g_raid_destroy_geom(struct gctl_req *req __unused, 2206 struct g_class *mp __unused, struct g_geom *gp) 2207 { 2208 struct g_raid_softc *sc; 2209 int error; 2210 2211 g_topology_unlock(); 2212 sc = gp->softc; 2213 sx_xlock(&sc->sc_lock); 2214 g_cancel_event(sc); 2215 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2216 if (error != 0) 2217 sx_xunlock(&sc->sc_lock); 2218 g_topology_lock(); 2219 return (error); 2220 } 2221 2222 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2223 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2224 { 2225 2226 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2227 return; 2228 if (sc->sc_md) 2229 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2230 } 2231 2232 void g_raid_fail_disk(struct g_raid_softc *sc, 2233 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2234 { 2235 2236 if (disk == NULL) 2237 disk = sd->sd_disk; 2238 if (disk == NULL) { 2239 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2240 return; 2241 } 2242 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2243 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2244 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2245 return; 2246 } 2247 if (sc->sc_md) 2248 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2249 } 2250 2251 static void 2252 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2253 struct g_consumer *cp, struct g_provider *pp) 2254 { 2255 struct g_raid_softc *sc; 2256 struct g_raid_volume *vol; 2257 struct g_raid_subdisk *sd; 2258 struct g_raid_disk *disk; 2259 int i, s; 2260 2261 g_topology_assert(); 2262 2263 sc = gp->softc; 2264 if (sc == NULL) 2265 return; 2266 if (pp != NULL) { 2267 vol = pp->private; 2268 g_topology_unlock(); 2269 sx_xlock(&sc->sc_lock); 2270 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2271 vol->v_name); 2272 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2273 g_raid_volume_level2str(vol->v_raid_level, 2274 vol->v_raid_level_qualifier)); 2275 sbuf_printf(sb, 2276 "%s<Transformation>%s</Transformation>\n", indent, 2277 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2278 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2279 vol->v_disks_count); 2280 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2281 vol->v_strip_size); 2282 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2283 g_raid_volume_state2str(vol->v_state)); 2284 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2285 vol->v_dirty ? "Yes" : "No"); 2286 sbuf_printf(sb, "%s<Subdisks>", indent); 2287 for (i = 0; i < vol->v_disks_count; i++) { 2288 sd = &vol->v_subdisks[i]; 2289 if (sd->sd_disk != NULL && 2290 sd->sd_disk->d_consumer != NULL) { 2291 sbuf_printf(sb, "%s ", 2292 g_raid_get_diskname(sd->sd_disk)); 2293 } else { 2294 sbuf_printf(sb, "NONE "); 2295 } 2296 sbuf_printf(sb, "(%s", 2297 g_raid_subdisk_state2str(sd->sd_state)); 2298 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2299 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2300 sbuf_printf(sb, " %d%%", 2301 (int)(sd->sd_rebuild_pos * 100 / 2302 sd->sd_size)); 2303 } 2304 sbuf_printf(sb, ")"); 2305 if (i + 1 < vol->v_disks_count) 2306 sbuf_printf(sb, ", "); 2307 } 2308 sbuf_printf(sb, "</Subdisks>\n"); 2309 sx_xunlock(&sc->sc_lock); 2310 g_topology_lock(); 2311 } else if (cp != NULL) { 2312 disk = cp->private; 2313 if (disk == NULL) 2314 return; 2315 g_topology_unlock(); 2316 sx_xlock(&sc->sc_lock); 2317 sbuf_printf(sb, "%s<State>%s", indent, 2318 g_raid_disk_state2str(disk->d_state)); 2319 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2320 sbuf_printf(sb, " ("); 2321 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2322 sbuf_printf(sb, "%s", 2323 g_raid_subdisk_state2str(sd->sd_state)); 2324 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2325 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2326 sbuf_printf(sb, " %d%%", 2327 (int)(sd->sd_rebuild_pos * 100 / 2328 sd->sd_size)); 2329 } 2330 if (TAILQ_NEXT(sd, sd_next)) 2331 sbuf_printf(sb, ", "); 2332 } 2333 sbuf_printf(sb, ")"); 2334 } 2335 sbuf_printf(sb, "</State>\n"); 2336 sbuf_printf(sb, "%s<Subdisks>", indent); 2337 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2338 sbuf_printf(sb, "r%d(%s):%d@%ju", 2339 sd->sd_volume->v_global_id, 2340 sd->sd_volume->v_name, 2341 sd->sd_pos, sd->sd_offset); 2342 if (TAILQ_NEXT(sd, sd_next)) 2343 sbuf_printf(sb, ", "); 2344 } 2345 sbuf_printf(sb, "</Subdisks>\n"); 2346 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2347 disk->d_read_errs); 2348 sx_xunlock(&sc->sc_lock); 2349 g_topology_lock(); 2350 } else { 2351 g_topology_unlock(); 2352 sx_xlock(&sc->sc_lock); 2353 if (sc->sc_md) { 2354 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2355 sc->sc_md->mdo_class->name); 2356 } 2357 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2358 s = 0xff; 2359 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2360 if (vol->v_state < s) 2361 s = vol->v_state; 2362 } 2363 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2364 g_raid_volume_state2str(s)); 2365 } 2366 sx_xunlock(&sc->sc_lock); 2367 g_topology_lock(); 2368 } 2369 } 2370 2371 static void 2372 g_raid_shutdown_pre_sync(void *arg, int howto) 2373 { 2374 struct g_class *mp; 2375 struct g_geom *gp, *gp2; 2376 struct g_raid_softc *sc; 2377 int error; 2378 2379 mp = arg; 2380 DROP_GIANT(); 2381 g_topology_lock(); 2382 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2383 if ((sc = gp->softc) == NULL) 2384 continue; 2385 g_topology_unlock(); 2386 sx_xlock(&sc->sc_lock); 2387 g_cancel_event(sc); 2388 error = g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2389 if (error != 0) 2390 sx_xunlock(&sc->sc_lock); 2391 g_topology_lock(); 2392 } 2393 g_topology_unlock(); 2394 PICKUP_GIANT(); 2395 } 2396 2397 static void 2398 g_raid_init(struct g_class *mp) 2399 { 2400 2401 g_raid_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, 2402 g_raid_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); 2403 if (g_raid_pre_sync == NULL) 2404 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2405 g_raid_started = 1; 2406 } 2407 2408 static void 2409 g_raid_fini(struct g_class *mp) 2410 { 2411 2412 if (g_raid_pre_sync != NULL) 2413 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid_pre_sync); 2414 g_raid_started = 0; 2415 } 2416 2417 int 2418 g_raid_md_modevent(module_t mod, int type, void *arg) 2419 { 2420 struct g_raid_md_class *class, *c, *nc; 2421 int error; 2422 2423 error = 0; 2424 class = arg; 2425 switch (type) { 2426 case MOD_LOAD: 2427 c = LIST_FIRST(&g_raid_md_classes); 2428 if (c == NULL || c->mdc_priority > class->mdc_priority) 2429 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2430 else { 2431 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2432 nc->mdc_priority < class->mdc_priority) 2433 c = nc; 2434 LIST_INSERT_AFTER(c, class, mdc_list); 2435 } 2436 if (g_raid_started) 2437 g_retaste(&g_raid_class); 2438 break; 2439 case MOD_UNLOAD: 2440 LIST_REMOVE(class, mdc_list); 2441 break; 2442 default: 2443 error = EOPNOTSUPP; 2444 break; 2445 } 2446 2447 return (error); 2448 } 2449 2450 int 2451 g_raid_tr_modevent(module_t mod, int type, void *arg) 2452 { 2453 struct g_raid_tr_class *class, *c, *nc; 2454 int error; 2455 2456 error = 0; 2457 class = arg; 2458 switch (type) { 2459 case MOD_LOAD: 2460 c = LIST_FIRST(&g_raid_tr_classes); 2461 if (c == NULL || c->trc_priority > class->trc_priority) 2462 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2463 else { 2464 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2465 nc->trc_priority < class->trc_priority) 2466 c = nc; 2467 LIST_INSERT_AFTER(c, class, trc_list); 2468 } 2469 break; 2470 case MOD_UNLOAD: 2471 LIST_REMOVE(class, trc_list); 2472 break; 2473 default: 2474 error = EOPNOTSUPP; 2475 break; 2476 } 2477 2478 return (error); 2479 } 2480 2481 /* 2482 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2483 * to reduce module priority, allowing submodules to register them first. 2484 */ 2485 static moduledata_t g_raid_mod = { 2486 "g_raid", 2487 g_modevent, 2488 &g_raid_class 2489 }; 2490 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2491 MODULE_VERSION(geom_raid, 0); 2492