1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/bio.h> 40 #include <sys/sbuf.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/eventhandler.h> 44 #include <vm/uma.h> 45 #include <geom/geom.h> 46 #include <geom/geom_dbg.h> 47 #include <sys/proc.h> 48 #include <sys/kthread.h> 49 #include <sys/sched.h> 50 #include <geom/raid/g_raid.h> 51 #include "g_raid_md_if.h" 52 #include "g_raid_tr_if.h" 53 54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 55 56 SYSCTL_DECL(_kern_geom); 57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 58 "GEOM_RAID stuff"); 59 int g_raid_enable = 1; 60 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN, 61 &g_raid_enable, 0, "Enable on-disk metadata taste"); 62 u_int g_raid_aggressive_spare = 0; 63 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN, 64 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 65 u_int g_raid_debug = 0; 66 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0, 67 "Debug level"); 68 int g_raid_read_err_thresh = 10; 69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN, 70 &g_raid_read_err_thresh, 0, 71 "Number of read errors equated to disk failure"); 72 u_int g_raid_start_timeout = 30; 73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN, 74 &g_raid_start_timeout, 0, 75 "Time to wait for all array components"); 76 static u_int g_raid_clean_time = 5; 77 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN, 78 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 79 static u_int g_raid_disconnect_on_failure = 1; 80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN, 81 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 82 static u_int g_raid_name_format = 0; 83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN, 84 &g_raid_name_format, 0, "Providers name format."); 85 static u_int g_raid_idle_threshold = 1000000; 86 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN, 87 &g_raid_idle_threshold, 1000000, 88 "Time in microseconds to consider a volume idle."); 89 90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 91 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 92 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 93 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 94 } while (0) 95 96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 97 LIST_HEAD_INITIALIZER(g_raid_md_classes); 98 99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 100 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 101 102 LIST_HEAD(, g_raid_volume) g_raid_volumes = 103 LIST_HEAD_INITIALIZER(g_raid_volumes); 104 105 static eventhandler_tag g_raid_post_sync = NULL; 106 static int g_raid_started = 0; 107 static int g_raid_shutdown = 0; 108 109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 110 struct g_geom *gp); 111 static g_taste_t g_raid_taste; 112 static void g_raid_init(struct g_class *mp); 113 static void g_raid_fini(struct g_class *mp); 114 115 struct g_class g_raid_class = { 116 .name = G_RAID_CLASS_NAME, 117 .version = G_VERSION, 118 .ctlreq = g_raid_ctl, 119 .taste = g_raid_taste, 120 .destroy_geom = g_raid_destroy_geom, 121 .init = g_raid_init, 122 .fini = g_raid_fini 123 }; 124 125 static void g_raid_destroy_provider(struct g_raid_volume *vol); 126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 131 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 132 static void g_raid_start(struct bio *bp); 133 static void g_raid_start_request(struct bio *bp); 134 static void g_raid_disk_done(struct bio *bp); 135 static void g_raid_poll(struct g_raid_softc *sc); 136 137 static const char * 138 g_raid_node_event2str(int event) 139 { 140 141 switch (event) { 142 case G_RAID_NODE_E_WAKE: 143 return ("WAKE"); 144 case G_RAID_NODE_E_START: 145 return ("START"); 146 default: 147 return ("INVALID"); 148 } 149 } 150 151 const char * 152 g_raid_disk_state2str(int state) 153 { 154 155 switch (state) { 156 case G_RAID_DISK_S_NONE: 157 return ("NONE"); 158 case G_RAID_DISK_S_OFFLINE: 159 return ("OFFLINE"); 160 case G_RAID_DISK_S_DISABLED: 161 return ("DISABLED"); 162 case G_RAID_DISK_S_FAILED: 163 return ("FAILED"); 164 case G_RAID_DISK_S_STALE_FAILED: 165 return ("STALE_FAILED"); 166 case G_RAID_DISK_S_SPARE: 167 return ("SPARE"); 168 case G_RAID_DISK_S_STALE: 169 return ("STALE"); 170 case G_RAID_DISK_S_ACTIVE: 171 return ("ACTIVE"); 172 default: 173 return ("INVALID"); 174 } 175 } 176 177 static const char * 178 g_raid_disk_event2str(int event) 179 { 180 181 switch (event) { 182 case G_RAID_DISK_E_DISCONNECTED: 183 return ("DISCONNECTED"); 184 default: 185 return ("INVALID"); 186 } 187 } 188 189 const char * 190 g_raid_subdisk_state2str(int state) 191 { 192 193 switch (state) { 194 case G_RAID_SUBDISK_S_NONE: 195 return ("NONE"); 196 case G_RAID_SUBDISK_S_FAILED: 197 return ("FAILED"); 198 case G_RAID_SUBDISK_S_NEW: 199 return ("NEW"); 200 case G_RAID_SUBDISK_S_REBUILD: 201 return ("REBUILD"); 202 case G_RAID_SUBDISK_S_UNINITIALIZED: 203 return ("UNINITIALIZED"); 204 case G_RAID_SUBDISK_S_STALE: 205 return ("STALE"); 206 case G_RAID_SUBDISK_S_RESYNC: 207 return ("RESYNC"); 208 case G_RAID_SUBDISK_S_ACTIVE: 209 return ("ACTIVE"); 210 default: 211 return ("INVALID"); 212 } 213 } 214 215 static const char * 216 g_raid_subdisk_event2str(int event) 217 { 218 219 switch (event) { 220 case G_RAID_SUBDISK_E_NEW: 221 return ("NEW"); 222 case G_RAID_SUBDISK_E_FAILED: 223 return ("FAILED"); 224 case G_RAID_SUBDISK_E_DISCONNECTED: 225 return ("DISCONNECTED"); 226 default: 227 return ("INVALID"); 228 } 229 } 230 231 const char * 232 g_raid_volume_state2str(int state) 233 { 234 235 switch (state) { 236 case G_RAID_VOLUME_S_STARTING: 237 return ("STARTING"); 238 case G_RAID_VOLUME_S_BROKEN: 239 return ("BROKEN"); 240 case G_RAID_VOLUME_S_DEGRADED: 241 return ("DEGRADED"); 242 case G_RAID_VOLUME_S_SUBOPTIMAL: 243 return ("SUBOPTIMAL"); 244 case G_RAID_VOLUME_S_OPTIMAL: 245 return ("OPTIMAL"); 246 case G_RAID_VOLUME_S_UNSUPPORTED: 247 return ("UNSUPPORTED"); 248 case G_RAID_VOLUME_S_STOPPED: 249 return ("STOPPED"); 250 default: 251 return ("INVALID"); 252 } 253 } 254 255 static const char * 256 g_raid_volume_event2str(int event) 257 { 258 259 switch (event) { 260 case G_RAID_VOLUME_E_UP: 261 return ("UP"); 262 case G_RAID_VOLUME_E_DOWN: 263 return ("DOWN"); 264 case G_RAID_VOLUME_E_START: 265 return ("START"); 266 case G_RAID_VOLUME_E_STARTMD: 267 return ("STARTMD"); 268 default: 269 return ("INVALID"); 270 } 271 } 272 273 const char * 274 g_raid_volume_level2str(int level, int qual) 275 { 276 277 switch (level) { 278 case G_RAID_VOLUME_RL_RAID0: 279 return ("RAID0"); 280 case G_RAID_VOLUME_RL_RAID1: 281 return ("RAID1"); 282 case G_RAID_VOLUME_RL_RAID3: 283 if (qual == G_RAID_VOLUME_RLQ_R3P0) 284 return ("RAID3-P0"); 285 if (qual == G_RAID_VOLUME_RLQ_R3PN) 286 return ("RAID3-PN"); 287 return ("RAID3"); 288 case G_RAID_VOLUME_RL_RAID4: 289 if (qual == G_RAID_VOLUME_RLQ_R4P0) 290 return ("RAID4-P0"); 291 if (qual == G_RAID_VOLUME_RLQ_R4PN) 292 return ("RAID4-PN"); 293 return ("RAID4"); 294 case G_RAID_VOLUME_RL_RAID5: 295 if (qual == G_RAID_VOLUME_RLQ_R5RA) 296 return ("RAID5-RA"); 297 if (qual == G_RAID_VOLUME_RLQ_R5RS) 298 return ("RAID5-RS"); 299 if (qual == G_RAID_VOLUME_RLQ_R5LA) 300 return ("RAID5-LA"); 301 if (qual == G_RAID_VOLUME_RLQ_R5LS) 302 return ("RAID5-LS"); 303 return ("RAID5"); 304 case G_RAID_VOLUME_RL_RAID6: 305 if (qual == G_RAID_VOLUME_RLQ_R6RA) 306 return ("RAID6-RA"); 307 if (qual == G_RAID_VOLUME_RLQ_R6RS) 308 return ("RAID6-RS"); 309 if (qual == G_RAID_VOLUME_RLQ_R6LA) 310 return ("RAID6-LA"); 311 if (qual == G_RAID_VOLUME_RLQ_R6LS) 312 return ("RAID6-LS"); 313 return ("RAID6"); 314 case G_RAID_VOLUME_RL_RAIDMDF: 315 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 316 return ("RAIDMDF-RA"); 317 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 318 return ("RAIDMDF-RS"); 319 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 320 return ("RAIDMDF-LA"); 321 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 322 return ("RAIDMDF-LS"); 323 return ("RAIDMDF"); 324 case G_RAID_VOLUME_RL_RAID1E: 325 if (qual == G_RAID_VOLUME_RLQ_R1EA) 326 return ("RAID1E-A"); 327 if (qual == G_RAID_VOLUME_RLQ_R1EO) 328 return ("RAID1E-O"); 329 return ("RAID1E"); 330 case G_RAID_VOLUME_RL_SINGLE: 331 return ("SINGLE"); 332 case G_RAID_VOLUME_RL_CONCAT: 333 return ("CONCAT"); 334 case G_RAID_VOLUME_RL_RAID5E: 335 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 336 return ("RAID5E-RA"); 337 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 338 return ("RAID5E-RS"); 339 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 340 return ("RAID5E-LA"); 341 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 342 return ("RAID5E-LS"); 343 return ("RAID5E"); 344 case G_RAID_VOLUME_RL_RAID5EE: 345 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 346 return ("RAID5EE-RA"); 347 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 348 return ("RAID5EE-RS"); 349 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 350 return ("RAID5EE-LA"); 351 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 352 return ("RAID5EE-LS"); 353 return ("RAID5EE"); 354 case G_RAID_VOLUME_RL_RAID5R: 355 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 356 return ("RAID5R-RA"); 357 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 358 return ("RAID5R-RS"); 359 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 360 return ("RAID5R-LA"); 361 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 362 return ("RAID5R-LS"); 363 return ("RAID5E"); 364 default: 365 return ("UNKNOWN"); 366 } 367 } 368 369 int 370 g_raid_volume_str2level(const char *str, int *level, int *qual) 371 { 372 373 *level = G_RAID_VOLUME_RL_UNKNOWN; 374 *qual = G_RAID_VOLUME_RLQ_NONE; 375 if (strcasecmp(str, "RAID0") == 0) 376 *level = G_RAID_VOLUME_RL_RAID0; 377 else if (strcasecmp(str, "RAID1") == 0) 378 *level = G_RAID_VOLUME_RL_RAID1; 379 else if (strcasecmp(str, "RAID3-P0") == 0) { 380 *level = G_RAID_VOLUME_RL_RAID3; 381 *qual = G_RAID_VOLUME_RLQ_R3P0; 382 } else if (strcasecmp(str, "RAID3-PN") == 0 || 383 strcasecmp(str, "RAID3") == 0) { 384 *level = G_RAID_VOLUME_RL_RAID3; 385 *qual = G_RAID_VOLUME_RLQ_R3PN; 386 } else if (strcasecmp(str, "RAID4-P0") == 0) { 387 *level = G_RAID_VOLUME_RL_RAID4; 388 *qual = G_RAID_VOLUME_RLQ_R4P0; 389 } else if (strcasecmp(str, "RAID4-PN") == 0 || 390 strcasecmp(str, "RAID4") == 0) { 391 *level = G_RAID_VOLUME_RL_RAID4; 392 *qual = G_RAID_VOLUME_RLQ_R4PN; 393 } else if (strcasecmp(str, "RAID5-RA") == 0) { 394 *level = G_RAID_VOLUME_RL_RAID5; 395 *qual = G_RAID_VOLUME_RLQ_R5RA; 396 } else if (strcasecmp(str, "RAID5-RS") == 0) { 397 *level = G_RAID_VOLUME_RL_RAID5; 398 *qual = G_RAID_VOLUME_RLQ_R5RS; 399 } else if (strcasecmp(str, "RAID5") == 0 || 400 strcasecmp(str, "RAID5-LA") == 0) { 401 *level = G_RAID_VOLUME_RL_RAID5; 402 *qual = G_RAID_VOLUME_RLQ_R5LA; 403 } else if (strcasecmp(str, "RAID5-LS") == 0) { 404 *level = G_RAID_VOLUME_RL_RAID5; 405 *qual = G_RAID_VOLUME_RLQ_R5LS; 406 } else if (strcasecmp(str, "RAID6-RA") == 0) { 407 *level = G_RAID_VOLUME_RL_RAID6; 408 *qual = G_RAID_VOLUME_RLQ_R6RA; 409 } else if (strcasecmp(str, "RAID6-RS") == 0) { 410 *level = G_RAID_VOLUME_RL_RAID6; 411 *qual = G_RAID_VOLUME_RLQ_R6RS; 412 } else if (strcasecmp(str, "RAID6") == 0 || 413 strcasecmp(str, "RAID6-LA") == 0) { 414 *level = G_RAID_VOLUME_RL_RAID6; 415 *qual = G_RAID_VOLUME_RLQ_R6LA; 416 } else if (strcasecmp(str, "RAID6-LS") == 0) { 417 *level = G_RAID_VOLUME_RL_RAID6; 418 *qual = G_RAID_VOLUME_RLQ_R6LS; 419 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 420 *level = G_RAID_VOLUME_RL_RAIDMDF; 421 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 422 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 423 *level = G_RAID_VOLUME_RL_RAIDMDF; 424 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 425 } else if (strcasecmp(str, "RAIDMDF") == 0 || 426 strcasecmp(str, "RAIDMDF-LA") == 0) { 427 *level = G_RAID_VOLUME_RL_RAIDMDF; 428 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 429 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 430 *level = G_RAID_VOLUME_RL_RAIDMDF; 431 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 432 } else if (strcasecmp(str, "RAID10") == 0 || 433 strcasecmp(str, "RAID1E") == 0 || 434 strcasecmp(str, "RAID1E-A") == 0) { 435 *level = G_RAID_VOLUME_RL_RAID1E; 436 *qual = G_RAID_VOLUME_RLQ_R1EA; 437 } else if (strcasecmp(str, "RAID1E-O") == 0) { 438 *level = G_RAID_VOLUME_RL_RAID1E; 439 *qual = G_RAID_VOLUME_RLQ_R1EO; 440 } else if (strcasecmp(str, "SINGLE") == 0) 441 *level = G_RAID_VOLUME_RL_SINGLE; 442 else if (strcasecmp(str, "CONCAT") == 0) 443 *level = G_RAID_VOLUME_RL_CONCAT; 444 else if (strcasecmp(str, "RAID5E-RA") == 0) { 445 *level = G_RAID_VOLUME_RL_RAID5E; 446 *qual = G_RAID_VOLUME_RLQ_R5ERA; 447 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 448 *level = G_RAID_VOLUME_RL_RAID5E; 449 *qual = G_RAID_VOLUME_RLQ_R5ERS; 450 } else if (strcasecmp(str, "RAID5E") == 0 || 451 strcasecmp(str, "RAID5E-LA") == 0) { 452 *level = G_RAID_VOLUME_RL_RAID5E; 453 *qual = G_RAID_VOLUME_RLQ_R5ELA; 454 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 455 *level = G_RAID_VOLUME_RL_RAID5E; 456 *qual = G_RAID_VOLUME_RLQ_R5ELS; 457 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 458 *level = G_RAID_VOLUME_RL_RAID5EE; 459 *qual = G_RAID_VOLUME_RLQ_R5EERA; 460 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 461 *level = G_RAID_VOLUME_RL_RAID5EE; 462 *qual = G_RAID_VOLUME_RLQ_R5EERS; 463 } else if (strcasecmp(str, "RAID5EE") == 0 || 464 strcasecmp(str, "RAID5EE-LA") == 0) { 465 *level = G_RAID_VOLUME_RL_RAID5EE; 466 *qual = G_RAID_VOLUME_RLQ_R5EELA; 467 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 468 *level = G_RAID_VOLUME_RL_RAID5EE; 469 *qual = G_RAID_VOLUME_RLQ_R5EELS; 470 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 471 *level = G_RAID_VOLUME_RL_RAID5R; 472 *qual = G_RAID_VOLUME_RLQ_R5RRA; 473 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 474 *level = G_RAID_VOLUME_RL_RAID5R; 475 *qual = G_RAID_VOLUME_RLQ_R5RRS; 476 } else if (strcasecmp(str, "RAID5R") == 0 || 477 strcasecmp(str, "RAID5R-LA") == 0) { 478 *level = G_RAID_VOLUME_RL_RAID5R; 479 *qual = G_RAID_VOLUME_RLQ_R5RLA; 480 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 481 *level = G_RAID_VOLUME_RL_RAID5R; 482 *qual = G_RAID_VOLUME_RLQ_R5RLS; 483 } else 484 return (-1); 485 return (0); 486 } 487 488 const char * 489 g_raid_get_diskname(struct g_raid_disk *disk) 490 { 491 492 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 493 return ("[unknown]"); 494 return (disk->d_consumer->provider->name); 495 } 496 497 void 498 g_raid_get_disk_info(struct g_raid_disk *disk) 499 { 500 struct g_consumer *cp = disk->d_consumer; 501 int error, len; 502 503 /* Read kernel dumping information. */ 504 disk->d_kd.offset = 0; 505 disk->d_kd.length = OFF_MAX; 506 len = sizeof(disk->d_kd); 507 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 508 if (error) 509 disk->d_kd.di.dumper = NULL; 510 if (disk->d_kd.di.dumper == NULL) 511 G_RAID_DEBUG1(2, disk->d_softc, 512 "Dumping not supported by %s: %d.", 513 cp->provider->name, error); 514 515 /* Read BIO_DELETE support. */ 516 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 517 if (error) 518 disk->d_candelete = 0; 519 if (!disk->d_candelete) 520 G_RAID_DEBUG1(2, disk->d_softc, 521 "BIO_DELETE not supported by %s: %d.", 522 cp->provider->name, error); 523 } 524 525 void 526 g_raid_report_disk_state(struct g_raid_disk *disk) 527 { 528 struct g_raid_subdisk *sd; 529 int len, state; 530 uint32_t s; 531 532 if (disk->d_consumer == NULL) 533 return; 534 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 535 s = G_STATE_ACTIVE; /* XXX */ 536 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 537 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 538 s = G_STATE_FAILED; 539 } else { 540 state = G_RAID_SUBDISK_S_ACTIVE; 541 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 542 if (sd->sd_state < state) 543 state = sd->sd_state; 544 } 545 if (state == G_RAID_SUBDISK_S_FAILED) 546 s = G_STATE_FAILED; 547 else if (state == G_RAID_SUBDISK_S_NEW || 548 state == G_RAID_SUBDISK_S_REBUILD) 549 s = G_STATE_REBUILD; 550 else if (state == G_RAID_SUBDISK_S_STALE || 551 state == G_RAID_SUBDISK_S_RESYNC) 552 s = G_STATE_RESYNC; 553 else 554 s = G_STATE_ACTIVE; 555 } 556 len = sizeof(s); 557 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 558 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 559 g_raid_get_diskname(disk), s); 560 } 561 562 void 563 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 564 { 565 566 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 567 g_raid_get_diskname(disk), 568 g_raid_disk_state2str(disk->d_state), 569 g_raid_disk_state2str(state)); 570 disk->d_state = state; 571 g_raid_report_disk_state(disk); 572 } 573 574 void 575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 576 { 577 578 G_RAID_DEBUG1(0, sd->sd_softc, 579 "Subdisk %s:%d-%s state changed from %s to %s.", 580 sd->sd_volume->v_name, sd->sd_pos, 581 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 582 g_raid_subdisk_state2str(sd->sd_state), 583 g_raid_subdisk_state2str(state)); 584 sd->sd_state = state; 585 if (sd->sd_disk) 586 g_raid_report_disk_state(sd->sd_disk); 587 } 588 589 void 590 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 591 { 592 593 G_RAID_DEBUG1(0, vol->v_softc, 594 "Volume %s state changed from %s to %s.", 595 vol->v_name, 596 g_raid_volume_state2str(vol->v_state), 597 g_raid_volume_state2str(state)); 598 vol->v_state = state; 599 } 600 601 /* 602 * --- Events handling functions --- 603 * Events in geom_raid are used to maintain subdisks and volumes status 604 * from one thread to simplify locking. 605 */ 606 static void 607 g_raid_event_free(struct g_raid_event *ep) 608 { 609 610 free(ep, M_RAID); 611 } 612 613 int 614 g_raid_event_send(void *arg, int event, int flags) 615 { 616 struct g_raid_softc *sc; 617 struct g_raid_event *ep; 618 int error; 619 620 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 621 sc = ((struct g_raid_volume *)arg)->v_softc; 622 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 623 sc = ((struct g_raid_disk *)arg)->d_softc; 624 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 625 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 626 } else { 627 sc = arg; 628 } 629 ep = malloc(sizeof(*ep), M_RAID, 630 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 631 if (ep == NULL) 632 return (ENOMEM); 633 ep->e_tgt = arg; 634 ep->e_event = event; 635 ep->e_flags = flags; 636 ep->e_error = 0; 637 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 638 mtx_lock(&sc->sc_queue_mtx); 639 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 640 mtx_unlock(&sc->sc_queue_mtx); 641 wakeup(sc); 642 643 if ((flags & G_RAID_EVENT_WAIT) == 0) 644 return (0); 645 646 sx_assert(&sc->sc_lock, SX_XLOCKED); 647 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 648 sx_xunlock(&sc->sc_lock); 649 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 650 mtx_lock(&sc->sc_queue_mtx); 651 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 652 hz * 5); 653 } 654 error = ep->e_error; 655 g_raid_event_free(ep); 656 sx_xlock(&sc->sc_lock); 657 return (error); 658 } 659 660 static void 661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 662 { 663 struct g_raid_event *ep, *tmpep; 664 665 sx_assert(&sc->sc_lock, SX_XLOCKED); 666 667 mtx_lock(&sc->sc_queue_mtx); 668 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 669 if (ep->e_tgt != tgt) 670 continue; 671 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 672 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 673 g_raid_event_free(ep); 674 else { 675 ep->e_error = ECANCELED; 676 wakeup(ep); 677 } 678 } 679 mtx_unlock(&sc->sc_queue_mtx); 680 } 681 682 static int 683 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 684 { 685 struct g_raid_event *ep; 686 int res = 0; 687 688 sx_assert(&sc->sc_lock, SX_XLOCKED); 689 690 mtx_lock(&sc->sc_queue_mtx); 691 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 692 if (ep->e_tgt != tgt) 693 continue; 694 res = 1; 695 break; 696 } 697 mtx_unlock(&sc->sc_queue_mtx); 698 return (res); 699 } 700 701 /* 702 * Return the number of disks in given state. 703 * If state is equal to -1, count all connected disks. 704 */ 705 u_int 706 g_raid_ndisks(struct g_raid_softc *sc, int state) 707 { 708 struct g_raid_disk *disk; 709 u_int n; 710 711 sx_assert(&sc->sc_lock, SX_LOCKED); 712 713 n = 0; 714 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 715 if (disk->d_state == state || state == -1) 716 n++; 717 } 718 return (n); 719 } 720 721 /* 722 * Return the number of subdisks in given state. 723 * If state is equal to -1, count all connected disks. 724 */ 725 u_int 726 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 727 { 728 struct g_raid_subdisk *subdisk; 729 struct g_raid_softc *sc __diagused; 730 u_int i, n ; 731 732 sc = vol->v_softc; 733 sx_assert(&sc->sc_lock, SX_LOCKED); 734 735 n = 0; 736 for (i = 0; i < vol->v_disks_count; i++) { 737 subdisk = &vol->v_subdisks[i]; 738 if ((state == -1 && 739 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 740 subdisk->sd_state == state) 741 n++; 742 } 743 return (n); 744 } 745 746 /* 747 * Return the first subdisk in given state. 748 * If state is equal to -1, then the first connected disks. 749 */ 750 struct g_raid_subdisk * 751 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 752 { 753 struct g_raid_subdisk *sd; 754 struct g_raid_softc *sc __diagused; 755 u_int i; 756 757 sc = vol->v_softc; 758 sx_assert(&sc->sc_lock, SX_LOCKED); 759 760 for (i = 0; i < vol->v_disks_count; i++) { 761 sd = &vol->v_subdisks[i]; 762 if ((state == -1 && 763 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 764 sd->sd_state == state) 765 return (sd); 766 } 767 return (NULL); 768 } 769 770 struct g_consumer * 771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 772 { 773 struct g_consumer *cp; 774 struct g_provider *pp; 775 776 g_topology_assert(); 777 778 if (strncmp(name, _PATH_DEV, 5) == 0) 779 name += 5; 780 pp = g_provider_by_name(name); 781 if (pp == NULL) 782 return (NULL); 783 cp = g_new_consumer(sc->sc_geom); 784 cp->flags |= G_CF_DIRECT_RECEIVE; 785 if (g_attach(cp, pp) != 0) { 786 g_destroy_consumer(cp); 787 return (NULL); 788 } 789 if (g_access(cp, 1, 1, 1) != 0) { 790 g_detach(cp); 791 g_destroy_consumer(cp); 792 return (NULL); 793 } 794 return (cp); 795 } 796 797 static u_int 798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 799 { 800 struct bio *bp; 801 u_int nreqs = 0; 802 803 mtx_lock(&sc->sc_queue_mtx); 804 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 805 if (bp->bio_from == cp) 806 nreqs++; 807 } 808 mtx_unlock(&sc->sc_queue_mtx); 809 return (nreqs); 810 } 811 812 u_int 813 g_raid_nopens(struct g_raid_softc *sc) 814 { 815 struct g_raid_volume *vol; 816 u_int opens; 817 818 opens = 0; 819 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 820 if (vol->v_provider_open != 0) 821 opens++; 822 } 823 return (opens); 824 } 825 826 static int 827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 828 { 829 830 if (cp->index > 0) { 831 G_RAID_DEBUG1(2, sc, 832 "I/O requests for %s exist, can't destroy it now.", 833 cp->provider->name); 834 return (1); 835 } 836 if (g_raid_nrequests(sc, cp) > 0) { 837 G_RAID_DEBUG1(2, sc, 838 "I/O requests for %s in queue, can't destroy it now.", 839 cp->provider->name); 840 return (1); 841 } 842 return (0); 843 } 844 845 static void 846 g_raid_destroy_consumer(void *arg, int flags __unused) 847 { 848 struct g_consumer *cp; 849 850 g_topology_assert(); 851 852 cp = arg; 853 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 854 g_detach(cp); 855 g_destroy_consumer(cp); 856 } 857 858 void 859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 860 { 861 struct g_provider *pp; 862 int retaste_wait; 863 864 g_topology_assert_not(); 865 866 g_topology_lock(); 867 cp->private = NULL; 868 if (g_raid_consumer_is_busy(sc, cp)) 869 goto out; 870 pp = cp->provider; 871 retaste_wait = 0; 872 if (cp->acw == 1) { 873 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 874 retaste_wait = 1; 875 } 876 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 877 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 878 if (retaste_wait) { 879 /* 880 * After retaste event was send (inside g_access()), we can send 881 * event to detach and destroy consumer. 882 * A class, which has consumer to the given provider connected 883 * will not receive retaste event for the provider. 884 * This is the way how I ignore retaste events when I close 885 * consumers opened for write: I detach and destroy consumer 886 * after retaste event is sent. 887 */ 888 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 889 goto out; 890 } 891 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 892 g_detach(cp); 893 g_destroy_consumer(cp); 894 out: 895 g_topology_unlock(); 896 } 897 898 static void 899 g_raid_orphan(struct g_consumer *cp) 900 { 901 struct g_raid_disk *disk; 902 903 g_topology_assert(); 904 905 disk = cp->private; 906 if (disk == NULL) 907 return; 908 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 909 G_RAID_EVENT_DISK); 910 } 911 912 static void 913 g_raid_clean(struct g_raid_volume *vol, int acw) 914 { 915 struct g_raid_softc *sc; 916 int timeout; 917 918 sc = vol->v_softc; 919 g_topology_assert_not(); 920 sx_assert(&sc->sc_lock, SX_XLOCKED); 921 922 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 923 // return; 924 if (!vol->v_dirty) 925 return; 926 if (vol->v_writes > 0) 927 return; 928 if (acw > 0 || (acw == -1 && 929 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 930 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 931 if (!g_raid_shutdown && timeout > 0) 932 return; 933 } 934 vol->v_dirty = 0; 935 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 936 vol->v_name); 937 g_raid_write_metadata(sc, vol, NULL, NULL); 938 } 939 940 static void 941 g_raid_dirty(struct g_raid_volume *vol) 942 { 943 struct g_raid_softc *sc; 944 945 sc = vol->v_softc; 946 g_topology_assert_not(); 947 sx_assert(&sc->sc_lock, SX_XLOCKED); 948 949 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 950 // return; 951 vol->v_dirty = 1; 952 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 953 vol->v_name); 954 g_raid_write_metadata(sc, vol, NULL, NULL); 955 } 956 957 void 958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 959 { 960 struct g_raid_volume *vol; 961 struct g_raid_subdisk *sd; 962 struct bio_queue_head queue; 963 struct bio *cbp; 964 int i; 965 966 vol = tr->tro_volume; 967 968 /* 969 * Allocate all bios before sending any request, so we can return 970 * ENOMEM in nice and clean way. 971 */ 972 bioq_init(&queue); 973 for (i = 0; i < vol->v_disks_count; i++) { 974 sd = &vol->v_subdisks[i]; 975 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 976 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 977 continue; 978 cbp = g_clone_bio(bp); 979 if (cbp == NULL) 980 goto failure; 981 cbp->bio_caller1 = sd; 982 bioq_insert_tail(&queue, cbp); 983 } 984 while ((cbp = bioq_takefirst(&queue)) != NULL) { 985 sd = cbp->bio_caller1; 986 cbp->bio_caller1 = NULL; 987 g_raid_subdisk_iostart(sd, cbp); 988 } 989 return; 990 failure: 991 while ((cbp = bioq_takefirst(&queue)) != NULL) 992 g_destroy_bio(cbp); 993 if (bp->bio_error == 0) 994 bp->bio_error = ENOMEM; 995 g_raid_iodone(bp, bp->bio_error); 996 } 997 998 static void 999 g_raid_tr_kerneldump_common_done(struct bio *bp) 1000 { 1001 1002 bp->bio_flags |= BIO_DONE; 1003 } 1004 1005 int 1006 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1007 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1008 { 1009 struct g_raid_softc *sc; 1010 struct g_raid_volume *vol; 1011 struct bio bp; 1012 1013 vol = tr->tro_volume; 1014 sc = vol->v_softc; 1015 1016 g_reset_bio(&bp); 1017 bp.bio_cmd = BIO_WRITE; 1018 bp.bio_done = g_raid_tr_kerneldump_common_done; 1019 bp.bio_attribute = NULL; 1020 bp.bio_offset = offset; 1021 bp.bio_length = length; 1022 bp.bio_data = virtual; 1023 bp.bio_to = vol->v_provider; 1024 1025 g_raid_start(&bp); 1026 while (!(bp.bio_flags & BIO_DONE)) { 1027 G_RAID_DEBUG1(4, sc, "Poll..."); 1028 g_raid_poll(sc); 1029 DELAY(10); 1030 } 1031 1032 return (bp.bio_error != 0 ? EIO : 0); 1033 } 1034 1035 static int 1036 g_raid_dump(void *arg, void *virtual, off_t offset, size_t length) 1037 { 1038 struct g_raid_volume *vol; 1039 int error; 1040 1041 vol = (struct g_raid_volume *)arg; 1042 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1043 (long long unsigned)offset, (long long unsigned)length); 1044 1045 error = G_RAID_TR_KERNELDUMP(vol->v_tr, virtual, offset, length); 1046 return (error); 1047 } 1048 1049 static void 1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1051 { 1052 struct g_kerneldump *gkd; 1053 struct g_provider *pp; 1054 struct g_raid_volume *vol; 1055 1056 gkd = (struct g_kerneldump*)bp->bio_data; 1057 pp = bp->bio_to; 1058 vol = pp->private; 1059 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1060 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1061 gkd->di.dumper = g_raid_dump; 1062 gkd->di.priv = vol; 1063 gkd->di.blocksize = vol->v_sectorsize; 1064 gkd->di.maxiosize = DFLTPHYS; 1065 gkd->di.mediaoffset = gkd->offset; 1066 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1067 gkd->length = vol->v_mediasize - gkd->offset; 1068 gkd->di.mediasize = gkd->length; 1069 g_io_deliver(bp, 0); 1070 } 1071 1072 static void 1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1074 { 1075 struct g_provider *pp; 1076 struct g_raid_volume *vol; 1077 struct g_raid_subdisk *sd; 1078 int i, val; 1079 1080 pp = bp->bio_to; 1081 vol = pp->private; 1082 for (i = 0; i < vol->v_disks_count; i++) { 1083 sd = &vol->v_subdisks[i]; 1084 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1085 continue; 1086 if (sd->sd_disk->d_candelete) 1087 break; 1088 } 1089 val = i < vol->v_disks_count; 1090 g_handleattr(bp, "GEOM::candelete", &val, sizeof(val)); 1091 } 1092 1093 static void 1094 g_raid_start(struct bio *bp) 1095 { 1096 struct g_raid_softc *sc; 1097 1098 sc = bp->bio_to->geom->softc; 1099 /* 1100 * If sc == NULL or there are no valid disks, provider's error 1101 * should be set and g_raid_start() should not be called at all. 1102 */ 1103 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1104 // ("Provider's error should be set (error=%d)(mirror=%s).", 1105 // bp->bio_to->error, bp->bio_to->name)); 1106 G_RAID_LOGREQ(3, bp, "Request received."); 1107 1108 switch (bp->bio_cmd) { 1109 case BIO_READ: 1110 case BIO_WRITE: 1111 case BIO_DELETE: 1112 case BIO_FLUSH: 1113 case BIO_SPEEDUP: 1114 break; 1115 case BIO_GETATTR: 1116 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1117 g_raid_candelete(sc, bp); 1118 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1119 g_raid_kerneldump(sc, bp); 1120 else 1121 g_io_deliver(bp, EOPNOTSUPP); 1122 return; 1123 default: 1124 g_io_deliver(bp, EOPNOTSUPP); 1125 return; 1126 } 1127 mtx_lock(&sc->sc_queue_mtx); 1128 bioq_insert_tail(&sc->sc_queue, bp); 1129 mtx_unlock(&sc->sc_queue_mtx); 1130 if (!dumping) { 1131 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1132 wakeup(sc); 1133 } 1134 } 1135 1136 static int 1137 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1138 { 1139 /* 1140 * 5 cases: 1141 * (1) bp entirely below NO 1142 * (2) bp entirely above NO 1143 * (3) bp start below, but end in range YES 1144 * (4) bp entirely within YES 1145 * (5) bp starts within, ends above YES 1146 * 1147 * lock range 10-19 (offset 10 length 10) 1148 * (1) 1-5: first if kicks it out 1149 * (2) 30-35: second if kicks it out 1150 * (3) 5-15: passes both ifs 1151 * (4) 12-14: passes both ifs 1152 * (5) 19-20: passes both 1153 */ 1154 off_t lend = lstart + len - 1; 1155 off_t bstart = bp->bio_offset; 1156 off_t bend = bp->bio_offset + bp->bio_length - 1; 1157 1158 if (bend < lstart) 1159 return (0); 1160 if (lend < bstart) 1161 return (0); 1162 return (1); 1163 } 1164 1165 static int 1166 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1167 { 1168 struct g_raid_lock *lp; 1169 1170 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1171 1172 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1173 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1174 return (1); 1175 } 1176 return (0); 1177 } 1178 1179 static void 1180 g_raid_start_request(struct bio *bp) 1181 { 1182 struct g_raid_softc *sc __diagused; 1183 struct g_raid_volume *vol; 1184 1185 sc = bp->bio_to->geom->softc; 1186 sx_assert(&sc->sc_lock, SX_LOCKED); 1187 vol = bp->bio_to->private; 1188 1189 /* 1190 * Check to see if this item is in a locked range. If so, 1191 * queue it to our locked queue and return. We'll requeue 1192 * it when the range is unlocked. Internal I/O for the 1193 * rebuild/rescan/recovery process is excluded from this 1194 * check so we can actually do the recovery. 1195 */ 1196 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1197 g_raid_is_in_locked_range(vol, bp)) { 1198 G_RAID_LOGREQ(3, bp, "Defer request."); 1199 bioq_insert_tail(&vol->v_locked, bp); 1200 return; 1201 } 1202 1203 /* 1204 * If we're actually going to do the write/delete, then 1205 * update the idle stats for the volume. 1206 */ 1207 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1208 if (!vol->v_dirty) 1209 g_raid_dirty(vol); 1210 vol->v_writes++; 1211 } 1212 1213 /* 1214 * Put request onto inflight queue, so we can check if new 1215 * synchronization requests don't collide with it. Then tell 1216 * the transformation layer to start the I/O. 1217 */ 1218 bioq_insert_tail(&vol->v_inflight, bp); 1219 G_RAID_LOGREQ(4, bp, "Request started"); 1220 G_RAID_TR_IOSTART(vol->v_tr, bp); 1221 } 1222 1223 static void 1224 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1225 { 1226 off_t off, len; 1227 struct bio *nbp; 1228 struct g_raid_lock *lp; 1229 1230 vol->v_pending_lock = 0; 1231 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1232 if (lp->l_pending) { 1233 off = lp->l_offset; 1234 len = lp->l_length; 1235 lp->l_pending = 0; 1236 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1237 if (g_raid_bio_overlaps(nbp, off, len)) 1238 lp->l_pending++; 1239 } 1240 if (lp->l_pending) { 1241 vol->v_pending_lock = 1; 1242 G_RAID_DEBUG1(4, vol->v_softc, 1243 "Deferred lock(%jd, %jd) has %d pending", 1244 (intmax_t)off, (intmax_t)(off + len), 1245 lp->l_pending); 1246 continue; 1247 } 1248 G_RAID_DEBUG1(4, vol->v_softc, 1249 "Deferred lock of %jd to %jd completed", 1250 (intmax_t)off, (intmax_t)(off + len)); 1251 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1252 } 1253 } 1254 } 1255 1256 void 1257 g_raid_iodone(struct bio *bp, int error) 1258 { 1259 struct g_raid_softc *sc __diagused; 1260 struct g_raid_volume *vol; 1261 1262 sc = bp->bio_to->geom->softc; 1263 sx_assert(&sc->sc_lock, SX_LOCKED); 1264 vol = bp->bio_to->private; 1265 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1266 1267 /* Update stats if we done write/delete. */ 1268 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1269 vol->v_writes--; 1270 vol->v_last_write = time_uptime; 1271 } 1272 1273 bioq_remove(&vol->v_inflight, bp); 1274 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1275 g_raid_finish_with_locked_ranges(vol, bp); 1276 getmicrouptime(&vol->v_last_done); 1277 g_io_deliver(bp, error); 1278 } 1279 1280 int 1281 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1282 struct bio *ignore, void *argp) 1283 { 1284 struct g_raid_softc *sc; 1285 struct g_raid_lock *lp; 1286 struct bio *bp; 1287 1288 sc = vol->v_softc; 1289 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1290 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1291 lp->l_offset = off; 1292 lp->l_length = len; 1293 lp->l_callback_arg = argp; 1294 1295 lp->l_pending = 0; 1296 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1297 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1298 lp->l_pending++; 1299 } 1300 1301 /* 1302 * If there are any writes that are pending, we return EBUSY. All 1303 * callers will have to wait until all pending writes clear. 1304 */ 1305 if (lp->l_pending > 0) { 1306 vol->v_pending_lock = 1; 1307 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1308 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1309 return (EBUSY); 1310 } 1311 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1312 (intmax_t)off, (intmax_t)(off+len)); 1313 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1314 return (0); 1315 } 1316 1317 int 1318 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1319 { 1320 struct g_raid_lock *lp; 1321 struct g_raid_softc *sc; 1322 struct bio *bp; 1323 1324 sc = vol->v_softc; 1325 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1326 if (lp->l_offset == off && lp->l_length == len) { 1327 LIST_REMOVE(lp, l_next); 1328 /* XXX 1329 * Right now we just put them all back on the queue 1330 * and hope for the best. We hope this because any 1331 * locked ranges will go right back on this list 1332 * when the worker thread runs. 1333 * XXX 1334 */ 1335 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1336 (intmax_t)lp->l_offset, 1337 (intmax_t)(lp->l_offset+lp->l_length)); 1338 mtx_lock(&sc->sc_queue_mtx); 1339 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1340 bioq_insert_tail(&sc->sc_queue, bp); 1341 mtx_unlock(&sc->sc_queue_mtx); 1342 free(lp, M_RAID); 1343 return (0); 1344 } 1345 } 1346 return (EINVAL); 1347 } 1348 1349 void 1350 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1351 { 1352 struct g_consumer *cp; 1353 struct g_raid_disk *disk, *tdisk; 1354 1355 bp->bio_caller1 = sd; 1356 1357 /* 1358 * Make sure that the disk is present. Generally it is a task of 1359 * transformation layers to not send requests to absent disks, but 1360 * it is better to be safe and report situation then sorry. 1361 */ 1362 if (sd->sd_disk == NULL) { 1363 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1364 nodisk: 1365 bp->bio_from = NULL; 1366 bp->bio_to = NULL; 1367 bp->bio_error = ENXIO; 1368 g_raid_disk_done(bp); 1369 return; 1370 } 1371 disk = sd->sd_disk; 1372 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1373 disk->d_state != G_RAID_DISK_S_FAILED) { 1374 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1375 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1376 goto nodisk; 1377 } 1378 1379 cp = disk->d_consumer; 1380 bp->bio_from = cp; 1381 bp->bio_to = cp->provider; 1382 cp->index++; 1383 1384 /* Update average disks load. */ 1385 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1386 if (tdisk->d_consumer == NULL) 1387 tdisk->d_load = 0; 1388 else 1389 tdisk->d_load = (tdisk->d_consumer->index * 1390 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1391 } 1392 1393 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1394 if (dumping) { 1395 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1396 if (bp->bio_cmd == BIO_WRITE) { 1397 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1398 bp->bio_data, bp->bio_offset, bp->bio_length); 1399 } else 1400 bp->bio_error = EOPNOTSUPP; 1401 g_raid_disk_done(bp); 1402 } else { 1403 bp->bio_done = g_raid_disk_done; 1404 bp->bio_offset += sd->sd_offset; 1405 G_RAID_LOGREQ(3, bp, "Sending request."); 1406 g_io_request(bp, cp); 1407 } 1408 } 1409 1410 int 1411 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, void *virtual, 1412 off_t offset, size_t length) 1413 { 1414 1415 if (sd->sd_disk == NULL) 1416 return (ENXIO); 1417 if (sd->sd_disk->d_kd.di.dumper == NULL) 1418 return (EOPNOTSUPP); 1419 return (dump_write(&sd->sd_disk->d_kd.di, virtual, 1420 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, length)); 1421 } 1422 1423 static void 1424 g_raid_disk_done(struct bio *bp) 1425 { 1426 struct g_raid_softc *sc; 1427 struct g_raid_subdisk *sd; 1428 1429 sd = bp->bio_caller1; 1430 sc = sd->sd_softc; 1431 mtx_lock(&sc->sc_queue_mtx); 1432 bioq_insert_tail(&sc->sc_queue, bp); 1433 mtx_unlock(&sc->sc_queue_mtx); 1434 if (!dumping) 1435 wakeup(sc); 1436 } 1437 1438 static void 1439 g_raid_disk_done_request(struct bio *bp) 1440 { 1441 struct g_raid_softc *sc; 1442 struct g_raid_disk *disk; 1443 struct g_raid_subdisk *sd; 1444 struct g_raid_volume *vol; 1445 1446 g_topology_assert_not(); 1447 1448 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1449 sd = bp->bio_caller1; 1450 sc = sd->sd_softc; 1451 vol = sd->sd_volume; 1452 if (bp->bio_from != NULL) { 1453 bp->bio_from->index--; 1454 disk = bp->bio_from->private; 1455 if (disk == NULL) 1456 g_raid_kill_consumer(sc, bp->bio_from); 1457 } 1458 bp->bio_offset -= sd->sd_offset; 1459 1460 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1461 } 1462 1463 static void 1464 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1465 { 1466 1467 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1468 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1469 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1470 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1471 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1472 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1473 else 1474 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1475 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1476 KASSERT(ep->e_error == 0, 1477 ("Error cannot be handled.")); 1478 g_raid_event_free(ep); 1479 } else { 1480 ep->e_flags |= G_RAID_EVENT_DONE; 1481 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1482 mtx_lock(&sc->sc_queue_mtx); 1483 wakeup(ep); 1484 mtx_unlock(&sc->sc_queue_mtx); 1485 } 1486 } 1487 1488 /* 1489 * Worker thread. 1490 */ 1491 static void 1492 g_raid_worker(void *arg) 1493 { 1494 struct g_raid_softc *sc; 1495 struct g_raid_event *ep; 1496 struct g_raid_volume *vol; 1497 struct bio *bp; 1498 struct timeval now, t; 1499 int timeout, rv; 1500 1501 sc = arg; 1502 thread_lock(curthread); 1503 sched_prio(curthread, PRIBIO); 1504 thread_unlock(curthread); 1505 1506 sx_xlock(&sc->sc_lock); 1507 for (;;) { 1508 mtx_lock(&sc->sc_queue_mtx); 1509 /* 1510 * First take a look at events. 1511 * This is important to handle events before any I/O requests. 1512 */ 1513 bp = NULL; 1514 vol = NULL; 1515 rv = 0; 1516 ep = TAILQ_FIRST(&sc->sc_events); 1517 if (ep != NULL) 1518 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1519 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1520 ; 1521 else { 1522 getmicrouptime(&now); 1523 t = now; 1524 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1525 if (bioq_first(&vol->v_inflight) == NULL && 1526 vol->v_tr && 1527 timevalcmp(&vol->v_last_done, &t, < )) 1528 t = vol->v_last_done; 1529 } 1530 timevalsub(&t, &now); 1531 timeout = g_raid_idle_threshold + 1532 t.tv_sec * 1000000 + t.tv_usec; 1533 if (timeout > 0) { 1534 /* 1535 * Two steps to avoid overflows at HZ=1000 1536 * and idle timeouts > 2.1s. Some rounding 1537 * errors can occur, but they are < 1tick, 1538 * which is deemed to be close enough for 1539 * this purpose. 1540 */ 1541 int micpertic = 1000000 / hz; 1542 timeout = (timeout + micpertic - 1) / micpertic; 1543 sx_xunlock(&sc->sc_lock); 1544 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1545 PRIBIO | PDROP, "-", timeout); 1546 sx_xlock(&sc->sc_lock); 1547 goto process; 1548 } else 1549 rv = EWOULDBLOCK; 1550 } 1551 mtx_unlock(&sc->sc_queue_mtx); 1552 process: 1553 if (ep != NULL) { 1554 g_raid_handle_event(sc, ep); 1555 } else if (bp != NULL) { 1556 if (bp->bio_to != NULL && 1557 bp->bio_to->geom == sc->sc_geom) 1558 g_raid_start_request(bp); 1559 else 1560 g_raid_disk_done_request(bp); 1561 } else if (rv == EWOULDBLOCK) { 1562 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1563 g_raid_clean(vol, -1); 1564 if (bioq_first(&vol->v_inflight) == NULL && 1565 vol->v_tr) { 1566 t.tv_sec = g_raid_idle_threshold / 1000000; 1567 t.tv_usec = g_raid_idle_threshold % 1000000; 1568 timevaladd(&t, &vol->v_last_done); 1569 getmicrouptime(&now); 1570 if (timevalcmp(&t, &now, <= )) { 1571 G_RAID_TR_IDLE(vol->v_tr); 1572 vol->v_last_done = now; 1573 } 1574 } 1575 } 1576 } 1577 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1578 g_raid_destroy_node(sc, 1); /* May not return. */ 1579 } 1580 } 1581 1582 static void 1583 g_raid_poll(struct g_raid_softc *sc) 1584 { 1585 struct g_raid_event *ep; 1586 struct bio *bp; 1587 1588 sx_xlock(&sc->sc_lock); 1589 mtx_lock(&sc->sc_queue_mtx); 1590 /* 1591 * First take a look at events. 1592 * This is important to handle events before any I/O requests. 1593 */ 1594 ep = TAILQ_FIRST(&sc->sc_events); 1595 if (ep != NULL) { 1596 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1597 mtx_unlock(&sc->sc_queue_mtx); 1598 g_raid_handle_event(sc, ep); 1599 goto out; 1600 } 1601 bp = bioq_takefirst(&sc->sc_queue); 1602 if (bp != NULL) { 1603 mtx_unlock(&sc->sc_queue_mtx); 1604 if (bp->bio_from == NULL || 1605 bp->bio_from->geom != sc->sc_geom) 1606 g_raid_start_request(bp); 1607 else 1608 g_raid_disk_done_request(bp); 1609 } 1610 out: 1611 sx_xunlock(&sc->sc_lock); 1612 } 1613 1614 static void 1615 g_raid_launch_provider(struct g_raid_volume *vol) 1616 { 1617 struct g_raid_disk *disk; 1618 struct g_raid_subdisk *sd; 1619 struct g_raid_softc *sc; 1620 struct g_provider *pp; 1621 char name[G_RAID_MAX_VOLUMENAME]; 1622 off_t off; 1623 int i; 1624 1625 sc = vol->v_softc; 1626 sx_assert(&sc->sc_lock, SX_LOCKED); 1627 1628 g_topology_lock(); 1629 /* Try to name provider with volume name. */ 1630 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1631 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1632 g_provider_by_name(name) != NULL) { 1633 /* Otherwise use sequential volume number. */ 1634 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1635 } 1636 1637 pp = g_new_providerf(sc->sc_geom, "%s", name); 1638 pp->flags |= G_PF_DIRECT_RECEIVE; 1639 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1640 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1641 for (i = 0; i < vol->v_disks_count; i++) { 1642 sd = &vol->v_subdisks[i]; 1643 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1644 continue; 1645 if ((sd->sd_disk->d_consumer->provider->flags & 1646 G_PF_ACCEPT_UNMAPPED) == 0) 1647 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1648 } 1649 } 1650 pp->private = vol; 1651 pp->mediasize = vol->v_mediasize; 1652 pp->sectorsize = vol->v_sectorsize; 1653 pp->stripesize = 0; 1654 pp->stripeoffset = 0; 1655 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1656 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1657 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1658 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1659 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1660 disk->d_consumer != NULL && 1661 disk->d_consumer->provider != NULL) { 1662 pp->stripesize = disk->d_consumer->provider->stripesize; 1663 off = disk->d_consumer->provider->stripeoffset; 1664 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1665 if (off > 0) 1666 pp->stripeoffset %= off; 1667 } 1668 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1669 pp->stripesize *= (vol->v_disks_count - 1); 1670 pp->stripeoffset *= (vol->v_disks_count - 1); 1671 } 1672 } else 1673 pp->stripesize = vol->v_strip_size; 1674 vol->v_provider = pp; 1675 g_error_provider(pp, 0); 1676 g_topology_unlock(); 1677 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1678 pp->name, vol->v_name); 1679 } 1680 1681 static void 1682 g_raid_destroy_provider(struct g_raid_volume *vol) 1683 { 1684 struct g_raid_softc *sc; 1685 struct g_provider *pp; 1686 struct bio *bp, *tmp; 1687 1688 g_topology_assert_not(); 1689 sc = vol->v_softc; 1690 pp = vol->v_provider; 1691 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1692 1693 g_topology_lock(); 1694 g_error_provider(pp, ENXIO); 1695 mtx_lock(&sc->sc_queue_mtx); 1696 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1697 if (bp->bio_to != pp) 1698 continue; 1699 bioq_remove(&sc->sc_queue, bp); 1700 g_io_deliver(bp, ENXIO); 1701 } 1702 mtx_unlock(&sc->sc_queue_mtx); 1703 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1704 pp->name, vol->v_name); 1705 g_wither_provider(pp, ENXIO); 1706 g_topology_unlock(); 1707 vol->v_provider = NULL; 1708 } 1709 1710 /* 1711 * Update device state. 1712 */ 1713 static int 1714 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1715 { 1716 struct g_raid_softc *sc; 1717 1718 sc = vol->v_softc; 1719 sx_assert(&sc->sc_lock, SX_XLOCKED); 1720 1721 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1722 g_raid_volume_event2str(event), 1723 vol->v_name); 1724 switch (event) { 1725 case G_RAID_VOLUME_E_DOWN: 1726 if (vol->v_provider != NULL) 1727 g_raid_destroy_provider(vol); 1728 break; 1729 case G_RAID_VOLUME_E_UP: 1730 if (vol->v_provider == NULL) 1731 g_raid_launch_provider(vol); 1732 break; 1733 case G_RAID_VOLUME_E_START: 1734 if (vol->v_tr) 1735 G_RAID_TR_START(vol->v_tr); 1736 return (0); 1737 default: 1738 if (sc->sc_md) 1739 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1740 return (0); 1741 } 1742 1743 /* Manage root mount release. */ 1744 if (vol->v_starting) { 1745 vol->v_starting = 0; 1746 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1747 root_mount_rel(vol->v_rootmount); 1748 vol->v_rootmount = NULL; 1749 } 1750 if (vol->v_stopping && vol->v_provider_open == 0) 1751 g_raid_destroy_volume(vol); 1752 return (0); 1753 } 1754 1755 /* 1756 * Update subdisk state. 1757 */ 1758 static int 1759 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1760 { 1761 struct g_raid_softc *sc; 1762 struct g_raid_volume *vol; 1763 1764 sc = sd->sd_softc; 1765 vol = sd->sd_volume; 1766 sx_assert(&sc->sc_lock, SX_XLOCKED); 1767 1768 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1769 g_raid_subdisk_event2str(event), 1770 vol->v_name, sd->sd_pos, 1771 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1772 if (vol->v_tr) 1773 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1774 1775 return (0); 1776 } 1777 1778 /* 1779 * Update disk state. 1780 */ 1781 static int 1782 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1783 { 1784 struct g_raid_softc *sc; 1785 1786 sc = disk->d_softc; 1787 sx_assert(&sc->sc_lock, SX_XLOCKED); 1788 1789 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1790 g_raid_disk_event2str(event), 1791 g_raid_get_diskname(disk)); 1792 1793 if (sc->sc_md) 1794 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1795 return (0); 1796 } 1797 1798 /* 1799 * Node event. 1800 */ 1801 static int 1802 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1803 { 1804 sx_assert(&sc->sc_lock, SX_XLOCKED); 1805 1806 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1807 g_raid_node_event2str(event)); 1808 1809 if (event == G_RAID_NODE_E_WAKE) 1810 return (0); 1811 if (sc->sc_md) 1812 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1813 return (0); 1814 } 1815 1816 static int 1817 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1818 { 1819 struct g_raid_volume *vol; 1820 struct g_raid_softc *sc; 1821 int dcw, opens, error = 0; 1822 1823 g_topology_assert(); 1824 sc = pp->geom->softc; 1825 vol = pp->private; 1826 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1827 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1828 1829 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1830 acr, acw, ace); 1831 dcw = pp->acw + acw; 1832 1833 g_topology_unlock(); 1834 sx_xlock(&sc->sc_lock); 1835 /* Deny new opens while dying. */ 1836 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1837 error = ENXIO; 1838 goto out; 1839 } 1840 /* Deny write opens for read-only volumes. */ 1841 if (vol->v_read_only && acw > 0) { 1842 error = EROFS; 1843 goto out; 1844 } 1845 if (dcw == 0) 1846 g_raid_clean(vol, dcw); 1847 vol->v_provider_open += acr + acw + ace; 1848 /* Handle delayed node destruction. */ 1849 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1850 vol->v_provider_open == 0) { 1851 /* Count open volumes. */ 1852 opens = g_raid_nopens(sc); 1853 if (opens == 0) { 1854 sc->sc_stopping = G_RAID_DESTROY_HARD; 1855 /* Wake up worker to make it selfdestruct. */ 1856 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1857 } 1858 } 1859 /* Handle open volume destruction. */ 1860 if (vol->v_stopping && vol->v_provider_open == 0) 1861 g_raid_destroy_volume(vol); 1862 out: 1863 sx_xunlock(&sc->sc_lock); 1864 g_topology_lock(); 1865 return (error); 1866 } 1867 1868 struct g_raid_softc * 1869 g_raid_create_node(struct g_class *mp, 1870 const char *name, struct g_raid_md_object *md) 1871 { 1872 struct g_raid_softc *sc; 1873 struct g_geom *gp; 1874 int error; 1875 1876 g_topology_assert(); 1877 G_RAID_DEBUG(1, "Creating array %s.", name); 1878 1879 gp = g_new_geomf(mp, "%s", name); 1880 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1881 gp->start = g_raid_start; 1882 gp->orphan = g_raid_orphan; 1883 gp->access = g_raid_access; 1884 gp->dumpconf = g_raid_dumpconf; 1885 1886 sc->sc_md = md; 1887 sc->sc_geom = gp; 1888 sc->sc_flags = 0; 1889 TAILQ_INIT(&sc->sc_volumes); 1890 TAILQ_INIT(&sc->sc_disks); 1891 sx_init(&sc->sc_lock, "graid:lock"); 1892 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1893 TAILQ_INIT(&sc->sc_events); 1894 bioq_init(&sc->sc_queue); 1895 gp->softc = sc; 1896 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1897 "g_raid %s", name); 1898 if (error != 0) { 1899 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1900 mtx_destroy(&sc->sc_queue_mtx); 1901 sx_destroy(&sc->sc_lock); 1902 g_destroy_geom(sc->sc_geom); 1903 free(sc, M_RAID); 1904 return (NULL); 1905 } 1906 1907 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1908 return (sc); 1909 } 1910 1911 struct g_raid_volume * 1912 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1913 { 1914 struct g_raid_volume *vol, *vol1; 1915 int i; 1916 1917 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1918 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1919 vol->v_softc = sc; 1920 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1921 vol->v_state = G_RAID_VOLUME_S_STARTING; 1922 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1923 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1924 vol->v_rotate_parity = 1; 1925 bioq_init(&vol->v_inflight); 1926 bioq_init(&vol->v_locked); 1927 LIST_INIT(&vol->v_locks); 1928 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1929 vol->v_subdisks[i].sd_softc = sc; 1930 vol->v_subdisks[i].sd_volume = vol; 1931 vol->v_subdisks[i].sd_pos = i; 1932 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1933 } 1934 1935 /* Find free ID for this volume. */ 1936 g_topology_lock(); 1937 vol1 = vol; 1938 if (id >= 0) { 1939 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1940 if (vol1->v_global_id == id) 1941 break; 1942 } 1943 } 1944 if (vol1 != NULL) { 1945 for (id = 0; ; id++) { 1946 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1947 if (vol1->v_global_id == id) 1948 break; 1949 } 1950 if (vol1 == NULL) 1951 break; 1952 } 1953 } 1954 vol->v_global_id = id; 1955 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1956 g_topology_unlock(); 1957 1958 /* Delay root mounting. */ 1959 vol->v_rootmount = root_mount_hold("GRAID"); 1960 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1961 vol->v_starting = 1; 1962 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1963 return (vol); 1964 } 1965 1966 struct g_raid_disk * 1967 g_raid_create_disk(struct g_raid_softc *sc) 1968 { 1969 struct g_raid_disk *disk; 1970 1971 G_RAID_DEBUG1(1, sc, "Creating disk."); 1972 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1973 disk->d_softc = sc; 1974 disk->d_state = G_RAID_DISK_S_NONE; 1975 TAILQ_INIT(&disk->d_subdisks); 1976 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1977 return (disk); 1978 } 1979 1980 int g_raid_start_volume(struct g_raid_volume *vol) 1981 { 1982 struct g_raid_tr_class *class; 1983 struct g_raid_tr_object *obj; 1984 int status; 1985 1986 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1987 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1988 if (!class->trc_enable) 1989 continue; 1990 G_RAID_DEBUG1(2, vol->v_softc, 1991 "Tasting volume %s for %s transformation.", 1992 vol->v_name, class->name); 1993 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1994 M_WAITOK); 1995 obj->tro_class = class; 1996 obj->tro_volume = vol; 1997 status = G_RAID_TR_TASTE(obj, vol); 1998 if (status != G_RAID_TR_TASTE_FAIL) 1999 break; 2000 kobj_delete((kobj_t)obj, M_RAID); 2001 } 2002 if (class == NULL) { 2003 G_RAID_DEBUG1(0, vol->v_softc, 2004 "No transformation module found for %s.", 2005 vol->v_name); 2006 vol->v_tr = NULL; 2007 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2008 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2009 G_RAID_EVENT_VOLUME); 2010 return (-1); 2011 } 2012 G_RAID_DEBUG1(2, vol->v_softc, 2013 "Transformation module %s chosen for %s.", 2014 class->name, vol->v_name); 2015 vol->v_tr = obj; 2016 return (0); 2017 } 2018 2019 int 2020 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2021 { 2022 struct g_raid_volume *vol, *tmpv; 2023 struct g_raid_disk *disk, *tmpd; 2024 int error = 0; 2025 2026 sc->sc_stopping = G_RAID_DESTROY_HARD; 2027 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2028 if (g_raid_destroy_volume(vol)) 2029 error = EBUSY; 2030 } 2031 if (error) 2032 return (error); 2033 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2034 if (g_raid_destroy_disk(disk)) 2035 error = EBUSY; 2036 } 2037 if (error) 2038 return (error); 2039 if (sc->sc_md) { 2040 G_RAID_MD_FREE(sc->sc_md); 2041 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2042 sc->sc_md = NULL; 2043 } 2044 if (sc->sc_geom != NULL) { 2045 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2046 g_topology_lock(); 2047 sc->sc_geom->softc = NULL; 2048 g_wither_geom(sc->sc_geom, ENXIO); 2049 g_topology_unlock(); 2050 sc->sc_geom = NULL; 2051 } else 2052 G_RAID_DEBUG(1, "Array destroyed."); 2053 if (worker) { 2054 g_raid_event_cancel(sc, sc); 2055 mtx_destroy(&sc->sc_queue_mtx); 2056 sx_xunlock(&sc->sc_lock); 2057 sx_destroy(&sc->sc_lock); 2058 wakeup(&sc->sc_stopping); 2059 free(sc, M_RAID); 2060 curthread->td_pflags &= ~TDP_GEOM; 2061 G_RAID_DEBUG(1, "Thread exiting."); 2062 kproc_exit(0); 2063 } else { 2064 /* Wake up worker to make it selfdestruct. */ 2065 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2066 } 2067 return (0); 2068 } 2069 2070 int 2071 g_raid_destroy_volume(struct g_raid_volume *vol) 2072 { 2073 struct g_raid_softc *sc; 2074 struct g_raid_disk *disk; 2075 int i; 2076 2077 sc = vol->v_softc; 2078 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2079 vol->v_stopping = 1; 2080 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2081 if (vol->v_tr) { 2082 G_RAID_TR_STOP(vol->v_tr); 2083 return (EBUSY); 2084 } else 2085 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2086 } 2087 if (g_raid_event_check(sc, vol) != 0) 2088 return (EBUSY); 2089 if (vol->v_provider != NULL) 2090 return (EBUSY); 2091 if (vol->v_provider_open != 0) 2092 return (EBUSY); 2093 if (vol->v_tr) { 2094 G_RAID_TR_FREE(vol->v_tr); 2095 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2096 vol->v_tr = NULL; 2097 } 2098 if (vol->v_rootmount) 2099 root_mount_rel(vol->v_rootmount); 2100 g_topology_lock(); 2101 LIST_REMOVE(vol, v_global_next); 2102 g_topology_unlock(); 2103 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2104 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2105 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2106 disk = vol->v_subdisks[i].sd_disk; 2107 if (disk == NULL) 2108 continue; 2109 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2110 } 2111 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2112 if (sc->sc_md) 2113 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2114 g_raid_event_cancel(sc, vol); 2115 free(vol, M_RAID); 2116 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2117 /* Wake up worker to let it selfdestruct. */ 2118 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2119 } 2120 return (0); 2121 } 2122 2123 int 2124 g_raid_destroy_disk(struct g_raid_disk *disk) 2125 { 2126 struct g_raid_softc *sc; 2127 struct g_raid_subdisk *sd, *tmp; 2128 2129 sc = disk->d_softc; 2130 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2131 if (disk->d_consumer) { 2132 g_raid_kill_consumer(sc, disk->d_consumer); 2133 disk->d_consumer = NULL; 2134 } 2135 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2136 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2137 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2138 G_RAID_EVENT_SUBDISK); 2139 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2140 sd->sd_disk = NULL; 2141 } 2142 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2143 if (sc->sc_md) 2144 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2145 g_raid_event_cancel(sc, disk); 2146 free(disk, M_RAID); 2147 return (0); 2148 } 2149 2150 int 2151 g_raid_destroy(struct g_raid_softc *sc, int how) 2152 { 2153 int error, opens; 2154 2155 g_topology_assert_not(); 2156 if (sc == NULL) 2157 return (ENXIO); 2158 sx_assert(&sc->sc_lock, SX_XLOCKED); 2159 2160 /* Count open volumes. */ 2161 opens = g_raid_nopens(sc); 2162 2163 /* React on some opened volumes. */ 2164 if (opens > 0) { 2165 switch (how) { 2166 case G_RAID_DESTROY_SOFT: 2167 G_RAID_DEBUG1(1, sc, 2168 "%d volumes are still open.", 2169 opens); 2170 sx_xunlock(&sc->sc_lock); 2171 return (EBUSY); 2172 case G_RAID_DESTROY_DELAYED: 2173 G_RAID_DEBUG1(1, sc, 2174 "Array will be destroyed on last close."); 2175 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2176 sx_xunlock(&sc->sc_lock); 2177 return (EBUSY); 2178 case G_RAID_DESTROY_HARD: 2179 G_RAID_DEBUG1(1, sc, 2180 "%d volumes are still open.", 2181 opens); 2182 } 2183 } 2184 2185 /* Mark node for destruction. */ 2186 sc->sc_stopping = G_RAID_DESTROY_HARD; 2187 /* Wake up worker to let it selfdestruct. */ 2188 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2189 /* Sleep until node destroyed. */ 2190 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2191 PRIBIO | PDROP, "r:destroy", hz * 3); 2192 return (error == EWOULDBLOCK ? EBUSY : 0); 2193 } 2194 2195 static void 2196 g_raid_taste_orphan(struct g_consumer *cp) 2197 { 2198 2199 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2200 cp->provider->name)); 2201 } 2202 2203 static struct g_geom * 2204 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2205 { 2206 struct g_consumer *cp; 2207 struct g_geom *gp, *geom; 2208 struct g_raid_md_class *class; 2209 struct g_raid_md_object *obj; 2210 int status; 2211 2212 g_topology_assert(); 2213 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2214 if (!g_raid_enable) 2215 return (NULL); 2216 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2217 2218 geom = NULL; 2219 status = G_RAID_MD_TASTE_FAIL; 2220 gp = g_new_geomf(mp, "raid:taste"); 2221 /* 2222 * This orphan function should be never called. 2223 */ 2224 gp->orphan = g_raid_taste_orphan; 2225 cp = g_new_consumer(gp); 2226 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2227 if (g_attach(cp, pp) != 0) 2228 goto ofail2; 2229 if (g_access(cp, 1, 0, 0) != 0) 2230 goto ofail; 2231 2232 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2233 if (!class->mdc_enable) 2234 continue; 2235 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2236 pp->name, class->name); 2237 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2238 M_WAITOK); 2239 obj->mdo_class = class; 2240 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2241 if (status != G_RAID_MD_TASTE_NEW) 2242 kobj_delete((kobj_t)obj, M_RAID); 2243 if (status != G_RAID_MD_TASTE_FAIL) 2244 break; 2245 } 2246 2247 if (status == G_RAID_MD_TASTE_FAIL) 2248 (void)g_access(cp, -1, 0, 0); 2249 ofail: 2250 g_detach(cp); 2251 ofail2: 2252 g_destroy_consumer(cp); 2253 g_destroy_geom(gp); 2254 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2255 return (geom); 2256 } 2257 2258 int 2259 g_raid_create_node_format(const char *format, struct gctl_req *req, 2260 struct g_geom **gp) 2261 { 2262 struct g_raid_md_class *class; 2263 struct g_raid_md_object *obj; 2264 int status; 2265 2266 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2267 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2268 if (strcasecmp(class->name, format) == 0) 2269 break; 2270 } 2271 if (class == NULL) { 2272 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2273 return (G_RAID_MD_TASTE_FAIL); 2274 } 2275 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2276 M_WAITOK); 2277 obj->mdo_class = class; 2278 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2279 if (status != G_RAID_MD_TASTE_NEW) 2280 kobj_delete((kobj_t)obj, M_RAID); 2281 return (status); 2282 } 2283 2284 static int 2285 g_raid_destroy_geom(struct gctl_req *req __unused, 2286 struct g_class *mp __unused, struct g_geom *gp) 2287 { 2288 struct g_raid_softc *sc; 2289 int error; 2290 2291 g_topology_unlock(); 2292 sc = gp->softc; 2293 sx_xlock(&sc->sc_lock); 2294 g_cancel_event(sc); 2295 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2296 g_topology_lock(); 2297 return (error); 2298 } 2299 2300 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2301 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2302 { 2303 2304 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2305 return; 2306 if (sc->sc_md) 2307 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2308 } 2309 2310 void g_raid_fail_disk(struct g_raid_softc *sc, 2311 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2312 { 2313 2314 if (disk == NULL) 2315 disk = sd->sd_disk; 2316 if (disk == NULL) { 2317 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2318 return; 2319 } 2320 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2321 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2322 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2323 return; 2324 } 2325 if (sc->sc_md) 2326 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2327 } 2328 2329 static void 2330 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2331 struct g_consumer *cp, struct g_provider *pp) 2332 { 2333 struct g_raid_softc *sc; 2334 struct g_raid_volume *vol; 2335 struct g_raid_subdisk *sd; 2336 struct g_raid_disk *disk; 2337 int i, s; 2338 2339 g_topology_assert(); 2340 2341 sc = gp->softc; 2342 if (sc == NULL) 2343 return; 2344 if (pp != NULL) { 2345 vol = pp->private; 2346 g_topology_unlock(); 2347 sx_xlock(&sc->sc_lock); 2348 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2349 sc->sc_md->mdo_class->name, 2350 g_raid_volume_level2str(vol->v_raid_level, 2351 vol->v_raid_level_qualifier)); 2352 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2353 vol->v_name); 2354 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2355 g_raid_volume_level2str(vol->v_raid_level, 2356 vol->v_raid_level_qualifier)); 2357 sbuf_printf(sb, 2358 "%s<Transformation>%s</Transformation>\n", indent, 2359 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2360 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2361 vol->v_disks_count); 2362 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2363 vol->v_strip_size); 2364 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2365 g_raid_volume_state2str(vol->v_state)); 2366 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2367 vol->v_dirty ? "Yes" : "No"); 2368 sbuf_printf(sb, "%s<Subdisks>", indent); 2369 for (i = 0; i < vol->v_disks_count; i++) { 2370 sd = &vol->v_subdisks[i]; 2371 if (sd->sd_disk != NULL && 2372 sd->sd_disk->d_consumer != NULL) { 2373 sbuf_printf(sb, "%s ", 2374 g_raid_get_diskname(sd->sd_disk)); 2375 } else { 2376 sbuf_cat(sb, "NONE "); 2377 } 2378 sbuf_printf(sb, "(%s", 2379 g_raid_subdisk_state2str(sd->sd_state)); 2380 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2381 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2382 sbuf_printf(sb, " %d%%", 2383 (int)(sd->sd_rebuild_pos * 100 / 2384 sd->sd_size)); 2385 } 2386 sbuf_cat(sb, ")"); 2387 if (i + 1 < vol->v_disks_count) 2388 sbuf_cat(sb, ", "); 2389 } 2390 sbuf_cat(sb, "</Subdisks>\n"); 2391 sx_xunlock(&sc->sc_lock); 2392 g_topology_lock(); 2393 } else if (cp != NULL) { 2394 disk = cp->private; 2395 if (disk == NULL) 2396 return; 2397 g_topology_unlock(); 2398 sx_xlock(&sc->sc_lock); 2399 sbuf_printf(sb, "%s<State>%s", indent, 2400 g_raid_disk_state2str(disk->d_state)); 2401 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2402 sbuf_cat(sb, " ("); 2403 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2404 sbuf_printf(sb, "%s", 2405 g_raid_subdisk_state2str(sd->sd_state)); 2406 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2407 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2408 sbuf_printf(sb, " %d%%", 2409 (int)(sd->sd_rebuild_pos * 100 / 2410 sd->sd_size)); 2411 } 2412 if (TAILQ_NEXT(sd, sd_next)) 2413 sbuf_cat(sb, ", "); 2414 } 2415 sbuf_cat(sb, ")"); 2416 } 2417 sbuf_cat(sb, "</State>\n"); 2418 sbuf_printf(sb, "%s<Subdisks>", indent); 2419 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2420 sbuf_printf(sb, "r%d(%s):%d@%ju", 2421 sd->sd_volume->v_global_id, 2422 sd->sd_volume->v_name, 2423 sd->sd_pos, (uintmax_t)sd->sd_offset); 2424 if (TAILQ_NEXT(sd, sd_next)) 2425 sbuf_cat(sb, ", "); 2426 } 2427 sbuf_cat(sb, "</Subdisks>\n"); 2428 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2429 disk->d_read_errs); 2430 sx_xunlock(&sc->sc_lock); 2431 g_topology_lock(); 2432 } else { 2433 g_topology_unlock(); 2434 sx_xlock(&sc->sc_lock); 2435 if (sc->sc_md) { 2436 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2437 sc->sc_md->mdo_class->name); 2438 } 2439 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2440 s = 0xff; 2441 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2442 if (vol->v_state < s) 2443 s = vol->v_state; 2444 } 2445 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2446 g_raid_volume_state2str(s)); 2447 } 2448 sx_xunlock(&sc->sc_lock); 2449 g_topology_lock(); 2450 } 2451 } 2452 2453 static void 2454 g_raid_shutdown_post_sync(void *arg, int howto) 2455 { 2456 struct g_class *mp; 2457 struct g_geom *gp, *gp2; 2458 struct g_raid_softc *sc; 2459 struct g_raid_volume *vol; 2460 2461 mp = arg; 2462 g_topology_lock(); 2463 g_raid_shutdown = 1; 2464 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2465 if ((sc = gp->softc) == NULL) 2466 continue; 2467 g_topology_unlock(); 2468 sx_xlock(&sc->sc_lock); 2469 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2470 g_raid_clean(vol, -1); 2471 g_cancel_event(sc); 2472 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2473 g_topology_lock(); 2474 } 2475 g_topology_unlock(); 2476 } 2477 2478 static void 2479 g_raid_init(struct g_class *mp) 2480 { 2481 2482 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2483 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2484 if (g_raid_post_sync == NULL) 2485 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2486 g_raid_started = 1; 2487 } 2488 2489 static void 2490 g_raid_fini(struct g_class *mp) 2491 { 2492 2493 if (g_raid_post_sync != NULL) 2494 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2495 g_raid_started = 0; 2496 } 2497 2498 int 2499 g_raid_md_modevent(module_t mod, int type, void *arg) 2500 { 2501 struct g_raid_md_class *class, *c, *nc; 2502 int error; 2503 2504 error = 0; 2505 class = arg; 2506 switch (type) { 2507 case MOD_LOAD: 2508 c = LIST_FIRST(&g_raid_md_classes); 2509 if (c == NULL || c->mdc_priority > class->mdc_priority) 2510 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2511 else { 2512 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2513 nc->mdc_priority < class->mdc_priority) 2514 c = nc; 2515 LIST_INSERT_AFTER(c, class, mdc_list); 2516 } 2517 if (g_raid_started) 2518 g_retaste(&g_raid_class); 2519 break; 2520 case MOD_UNLOAD: 2521 LIST_REMOVE(class, mdc_list); 2522 break; 2523 default: 2524 error = EOPNOTSUPP; 2525 break; 2526 } 2527 2528 return (error); 2529 } 2530 2531 int 2532 g_raid_tr_modevent(module_t mod, int type, void *arg) 2533 { 2534 struct g_raid_tr_class *class, *c, *nc; 2535 int error; 2536 2537 error = 0; 2538 class = arg; 2539 switch (type) { 2540 case MOD_LOAD: 2541 c = LIST_FIRST(&g_raid_tr_classes); 2542 if (c == NULL || c->trc_priority > class->trc_priority) 2543 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2544 else { 2545 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2546 nc->trc_priority < class->trc_priority) 2547 c = nc; 2548 LIST_INSERT_AFTER(c, class, trc_list); 2549 } 2550 break; 2551 case MOD_UNLOAD: 2552 LIST_REMOVE(class, trc_list); 2553 break; 2554 default: 2555 error = EOPNOTSUPP; 2556 break; 2557 } 2558 2559 return (error); 2560 } 2561 2562 /* 2563 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2564 * to reduce module priority, allowing submodules to register them first. 2565 */ 2566 static moduledata_t g_raid_mod = { 2567 "g_raid", 2568 g_modevent, 2569 &g_raid_class 2570 }; 2571 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2572 MODULE_VERSION(geom_raid, 0); 2573