1 /*- 2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/eventhandler.h> 41 #include <vm/uma.h> 42 #include <geom/geom.h> 43 #include <sys/proc.h> 44 #include <sys/kthread.h> 45 #include <sys/sched.h> 46 #include <geom/raid/g_raid.h> 47 #include "g_raid_md_if.h" 48 #include "g_raid_tr_if.h" 49 50 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 51 52 SYSCTL_DECL(_kern_geom); 53 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 54 u_int g_raid_aggressive_spare = 0; 55 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare); 56 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW, 57 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 58 u_int g_raid_debug = 0; 59 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug); 60 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0, 61 "Debug level"); 62 int g_raid_read_err_thresh = 10; 63 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh); 64 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW, 65 &g_raid_read_err_thresh, 0, 66 "Number of read errors equated to disk failure"); 67 u_int g_raid_start_timeout = 30; 68 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout); 69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW, 70 &g_raid_start_timeout, 0, 71 "Time to wait for all array components"); 72 static u_int g_raid_clean_time = 5; 73 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time); 74 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW, 75 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 76 static u_int g_raid_disconnect_on_failure = 1; 77 TUNABLE_INT("kern.geom.raid.disconnect_on_failure", 78 &g_raid_disconnect_on_failure); 79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, 80 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 81 static u_int g_raid_name_format = 0; 82 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format); 83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW, 84 &g_raid_name_format, 0, "Providers name format."); 85 static u_int g_raid_idle_threshold = 1000000; 86 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold); 87 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW, 88 &g_raid_idle_threshold, 1000000, 89 "Time in microseconds to consider a volume idle."); 90 91 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 92 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 93 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 94 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 95 } while (0) 96 97 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 98 LIST_HEAD_INITIALIZER(g_raid_md_classes); 99 100 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 101 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 102 103 LIST_HEAD(, g_raid_volume) g_raid_volumes = 104 LIST_HEAD_INITIALIZER(g_raid_volumes); 105 106 static eventhandler_tag g_raid_pre_sync = NULL; 107 static int g_raid_started = 0; 108 109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 110 struct g_geom *gp); 111 static g_taste_t g_raid_taste; 112 static void g_raid_init(struct g_class *mp); 113 static void g_raid_fini(struct g_class *mp); 114 115 struct g_class g_raid_class = { 116 .name = G_RAID_CLASS_NAME, 117 .version = G_VERSION, 118 .ctlreq = g_raid_ctl, 119 .taste = g_raid_taste, 120 .destroy_geom = g_raid_destroy_geom, 121 .init = g_raid_init, 122 .fini = g_raid_fini 123 }; 124 125 static void g_raid_destroy_provider(struct g_raid_volume *vol); 126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 131 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 132 static void g_raid_start(struct bio *bp); 133 static void g_raid_start_request(struct bio *bp); 134 static void g_raid_disk_done(struct bio *bp); 135 static void g_raid_poll(struct g_raid_softc *sc); 136 137 static const char * 138 g_raid_node_event2str(int event) 139 { 140 141 switch (event) { 142 case G_RAID_NODE_E_WAKE: 143 return ("WAKE"); 144 case G_RAID_NODE_E_START: 145 return ("START"); 146 default: 147 return ("INVALID"); 148 } 149 } 150 151 const char * 152 g_raid_disk_state2str(int state) 153 { 154 155 switch (state) { 156 case G_RAID_DISK_S_NONE: 157 return ("NONE"); 158 case G_RAID_DISK_S_OFFLINE: 159 return ("OFFLINE"); 160 case G_RAID_DISK_S_FAILED: 161 return ("FAILED"); 162 case G_RAID_DISK_S_STALE_FAILED: 163 return ("STALE_FAILED"); 164 case G_RAID_DISK_S_SPARE: 165 return ("SPARE"); 166 case G_RAID_DISK_S_STALE: 167 return ("STALE"); 168 case G_RAID_DISK_S_ACTIVE: 169 return ("ACTIVE"); 170 default: 171 return ("INVALID"); 172 } 173 } 174 175 static const char * 176 g_raid_disk_event2str(int event) 177 { 178 179 switch (event) { 180 case G_RAID_DISK_E_DISCONNECTED: 181 return ("DISCONNECTED"); 182 default: 183 return ("INVALID"); 184 } 185 } 186 187 const char * 188 g_raid_subdisk_state2str(int state) 189 { 190 191 switch (state) { 192 case G_RAID_SUBDISK_S_NONE: 193 return ("NONE"); 194 case G_RAID_SUBDISK_S_FAILED: 195 return ("FAILED"); 196 case G_RAID_SUBDISK_S_NEW: 197 return ("NEW"); 198 case G_RAID_SUBDISK_S_REBUILD: 199 return ("REBUILD"); 200 case G_RAID_SUBDISK_S_UNINITIALIZED: 201 return ("UNINITIALIZED"); 202 case G_RAID_SUBDISK_S_STALE: 203 return ("STALE"); 204 case G_RAID_SUBDISK_S_RESYNC: 205 return ("RESYNC"); 206 case G_RAID_SUBDISK_S_ACTIVE: 207 return ("ACTIVE"); 208 default: 209 return ("INVALID"); 210 } 211 } 212 213 static const char * 214 g_raid_subdisk_event2str(int event) 215 { 216 217 switch (event) { 218 case G_RAID_SUBDISK_E_NEW: 219 return ("NEW"); 220 case G_RAID_SUBDISK_E_DISCONNECTED: 221 return ("DISCONNECTED"); 222 default: 223 return ("INVALID"); 224 } 225 } 226 227 const char * 228 g_raid_volume_state2str(int state) 229 { 230 231 switch (state) { 232 case G_RAID_VOLUME_S_STARTING: 233 return ("STARTING"); 234 case G_RAID_VOLUME_S_BROKEN: 235 return ("BROKEN"); 236 case G_RAID_VOLUME_S_DEGRADED: 237 return ("DEGRADED"); 238 case G_RAID_VOLUME_S_SUBOPTIMAL: 239 return ("SUBOPTIMAL"); 240 case G_RAID_VOLUME_S_OPTIMAL: 241 return ("OPTIMAL"); 242 case G_RAID_VOLUME_S_UNSUPPORTED: 243 return ("UNSUPPORTED"); 244 case G_RAID_VOLUME_S_STOPPED: 245 return ("STOPPED"); 246 default: 247 return ("INVALID"); 248 } 249 } 250 251 static const char * 252 g_raid_volume_event2str(int event) 253 { 254 255 switch (event) { 256 case G_RAID_VOLUME_E_UP: 257 return ("UP"); 258 case G_RAID_VOLUME_E_DOWN: 259 return ("DOWN"); 260 case G_RAID_VOLUME_E_START: 261 return ("START"); 262 case G_RAID_VOLUME_E_STARTMD: 263 return ("STARTMD"); 264 default: 265 return ("INVALID"); 266 } 267 } 268 269 const char * 270 g_raid_volume_level2str(int level, int qual) 271 { 272 273 switch (level) { 274 case G_RAID_VOLUME_RL_RAID0: 275 return ("RAID0"); 276 case G_RAID_VOLUME_RL_RAID1: 277 return ("RAID1"); 278 case G_RAID_VOLUME_RL_RAID3: 279 return ("RAID3"); 280 case G_RAID_VOLUME_RL_RAID4: 281 return ("RAID4"); 282 case G_RAID_VOLUME_RL_RAID5: 283 return ("RAID5"); 284 case G_RAID_VOLUME_RL_RAID6: 285 return ("RAID6"); 286 case G_RAID_VOLUME_RL_RAID1E: 287 return ("RAID1E"); 288 case G_RAID_VOLUME_RL_SINGLE: 289 return ("SINGLE"); 290 case G_RAID_VOLUME_RL_CONCAT: 291 return ("CONCAT"); 292 case G_RAID_VOLUME_RL_RAID5E: 293 return ("RAID5E"); 294 case G_RAID_VOLUME_RL_RAID5EE: 295 return ("RAID5EE"); 296 default: 297 return ("UNKNOWN"); 298 } 299 } 300 301 int 302 g_raid_volume_str2level(const char *str, int *level, int *qual) 303 { 304 305 *level = G_RAID_VOLUME_RL_UNKNOWN; 306 *qual = G_RAID_VOLUME_RLQ_NONE; 307 if (strcasecmp(str, "RAID0") == 0) 308 *level = G_RAID_VOLUME_RL_RAID0; 309 else if (strcasecmp(str, "RAID1") == 0) 310 *level = G_RAID_VOLUME_RL_RAID1; 311 else if (strcasecmp(str, "RAID3") == 0) 312 *level = G_RAID_VOLUME_RL_RAID3; 313 else if (strcasecmp(str, "RAID4") == 0) 314 *level = G_RAID_VOLUME_RL_RAID4; 315 else if (strcasecmp(str, "RAID5") == 0) 316 *level = G_RAID_VOLUME_RL_RAID5; 317 else if (strcasecmp(str, "RAID6") == 0) 318 *level = G_RAID_VOLUME_RL_RAID6; 319 else if (strcasecmp(str, "RAID10") == 0 || 320 strcasecmp(str, "RAID1E") == 0) 321 *level = G_RAID_VOLUME_RL_RAID1E; 322 else if (strcasecmp(str, "SINGLE") == 0) 323 *level = G_RAID_VOLUME_RL_SINGLE; 324 else if (strcasecmp(str, "CONCAT") == 0) 325 *level = G_RAID_VOLUME_RL_CONCAT; 326 else if (strcasecmp(str, "RAID5E") == 0) 327 *level = G_RAID_VOLUME_RL_RAID5E; 328 else if (strcasecmp(str, "RAID5EE") == 0) 329 *level = G_RAID_VOLUME_RL_RAID5EE; 330 else 331 return (-1); 332 return (0); 333 } 334 335 const char * 336 g_raid_get_diskname(struct g_raid_disk *disk) 337 { 338 339 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 340 return ("[unknown]"); 341 return (disk->d_consumer->provider->name); 342 } 343 344 void 345 g_raid_report_disk_state(struct g_raid_disk *disk) 346 { 347 struct g_raid_subdisk *sd; 348 int len, state; 349 uint32_t s; 350 351 if (disk->d_consumer == NULL) 352 return; 353 if (disk->d_state == G_RAID_DISK_S_FAILED || 354 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 355 s = G_STATE_FAILED; 356 } else { 357 state = G_RAID_SUBDISK_S_ACTIVE; 358 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 359 if (sd->sd_state < state) 360 state = sd->sd_state; 361 } 362 if (state == G_RAID_SUBDISK_S_FAILED) 363 s = G_STATE_FAILED; 364 else if (state == G_RAID_SUBDISK_S_NEW || 365 state == G_RAID_SUBDISK_S_REBUILD) 366 s = G_STATE_REBUILD; 367 else if (state == G_RAID_SUBDISK_S_STALE || 368 state == G_RAID_SUBDISK_S_RESYNC) 369 s = G_STATE_RESYNC; 370 else 371 s = G_STATE_ACTIVE; 372 } 373 len = sizeof(s); 374 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 375 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 376 g_raid_get_diskname(disk), s); 377 } 378 379 void 380 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 381 { 382 383 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 384 g_raid_get_diskname(disk), 385 g_raid_disk_state2str(disk->d_state), 386 g_raid_disk_state2str(state)); 387 disk->d_state = state; 388 g_raid_report_disk_state(disk); 389 } 390 391 void 392 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 393 { 394 395 G_RAID_DEBUG1(0, sd->sd_softc, 396 "Subdisk %s:%d-%s state changed from %s to %s.", 397 sd->sd_volume->v_name, sd->sd_pos, 398 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 399 g_raid_subdisk_state2str(sd->sd_state), 400 g_raid_subdisk_state2str(state)); 401 sd->sd_state = state; 402 if (sd->sd_disk) 403 g_raid_report_disk_state(sd->sd_disk); 404 } 405 406 void 407 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 408 { 409 410 G_RAID_DEBUG1(0, vol->v_softc, 411 "Volume %s state changed from %s to %s.", 412 vol->v_name, 413 g_raid_volume_state2str(vol->v_state), 414 g_raid_volume_state2str(state)); 415 vol->v_state = state; 416 } 417 418 /* 419 * --- Events handling functions --- 420 * Events in geom_raid are used to maintain subdisks and volumes status 421 * from one thread to simplify locking. 422 */ 423 static void 424 g_raid_event_free(struct g_raid_event *ep) 425 { 426 427 free(ep, M_RAID); 428 } 429 430 int 431 g_raid_event_send(void *arg, int event, int flags) 432 { 433 struct g_raid_softc *sc; 434 struct g_raid_event *ep; 435 int error; 436 437 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 438 sc = ((struct g_raid_volume *)arg)->v_softc; 439 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 440 sc = ((struct g_raid_disk *)arg)->d_softc; 441 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 442 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 443 } else { 444 sc = arg; 445 } 446 ep = malloc(sizeof(*ep), M_RAID, 447 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 448 if (ep == NULL) 449 return (ENOMEM); 450 ep->e_tgt = arg; 451 ep->e_event = event; 452 ep->e_flags = flags; 453 ep->e_error = 0; 454 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 455 mtx_lock(&sc->sc_queue_mtx); 456 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 457 mtx_unlock(&sc->sc_queue_mtx); 458 wakeup(sc); 459 460 if ((flags & G_RAID_EVENT_WAIT) == 0) 461 return (0); 462 463 sx_assert(&sc->sc_lock, SX_XLOCKED); 464 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 465 sx_xunlock(&sc->sc_lock); 466 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 467 mtx_lock(&sc->sc_queue_mtx); 468 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 469 hz * 5); 470 } 471 error = ep->e_error; 472 g_raid_event_free(ep); 473 sx_xlock(&sc->sc_lock); 474 return (error); 475 } 476 477 static void 478 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 479 { 480 struct g_raid_event *ep, *tmpep; 481 482 sx_assert(&sc->sc_lock, SX_XLOCKED); 483 484 mtx_lock(&sc->sc_queue_mtx); 485 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 486 if (ep->e_tgt != tgt) 487 continue; 488 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 489 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 490 g_raid_event_free(ep); 491 else { 492 ep->e_error = ECANCELED; 493 wakeup(ep); 494 } 495 } 496 mtx_unlock(&sc->sc_queue_mtx); 497 } 498 499 static int 500 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 501 { 502 struct g_raid_event *ep; 503 int res = 0; 504 505 sx_assert(&sc->sc_lock, SX_XLOCKED); 506 507 mtx_lock(&sc->sc_queue_mtx); 508 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 509 if (ep->e_tgt != tgt) 510 continue; 511 res = 1; 512 break; 513 } 514 mtx_unlock(&sc->sc_queue_mtx); 515 return (res); 516 } 517 518 /* 519 * Return the number of disks in given state. 520 * If state is equal to -1, count all connected disks. 521 */ 522 u_int 523 g_raid_ndisks(struct g_raid_softc *sc, int state) 524 { 525 struct g_raid_disk *disk; 526 u_int n; 527 528 sx_assert(&sc->sc_lock, SX_LOCKED); 529 530 n = 0; 531 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 532 if (disk->d_state == state || state == -1) 533 n++; 534 } 535 return (n); 536 } 537 538 /* 539 * Return the number of subdisks in given state. 540 * If state is equal to -1, count all connected disks. 541 */ 542 u_int 543 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 544 { 545 struct g_raid_subdisk *subdisk; 546 struct g_raid_softc *sc; 547 u_int i, n ; 548 549 sc = vol->v_softc; 550 sx_assert(&sc->sc_lock, SX_LOCKED); 551 552 n = 0; 553 for (i = 0; i < vol->v_disks_count; i++) { 554 subdisk = &vol->v_subdisks[i]; 555 if ((state == -1 && 556 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 557 subdisk->sd_state == state) 558 n++; 559 } 560 return (n); 561 } 562 563 /* 564 * Return the first subdisk in given state. 565 * If state is equal to -1, then the first connected disks. 566 */ 567 struct g_raid_subdisk * 568 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 569 { 570 struct g_raid_subdisk *sd; 571 struct g_raid_softc *sc; 572 u_int i; 573 574 sc = vol->v_softc; 575 sx_assert(&sc->sc_lock, SX_LOCKED); 576 577 for (i = 0; i < vol->v_disks_count; i++) { 578 sd = &vol->v_subdisks[i]; 579 if ((state == -1 && 580 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 581 sd->sd_state == state) 582 return (sd); 583 } 584 return (NULL); 585 } 586 587 struct g_consumer * 588 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 589 { 590 struct g_consumer *cp; 591 struct g_provider *pp; 592 593 g_topology_assert(); 594 595 if (strncmp(name, "/dev/", 5) == 0) 596 name += 5; 597 pp = g_provider_by_name(name); 598 if (pp == NULL) 599 return (NULL); 600 cp = g_new_consumer(sc->sc_geom); 601 if (g_attach(cp, pp) != 0) { 602 g_destroy_consumer(cp); 603 return (NULL); 604 } 605 if (g_access(cp, 1, 1, 1) != 0) { 606 g_detach(cp); 607 g_destroy_consumer(cp); 608 return (NULL); 609 } 610 return (cp); 611 } 612 613 static u_int 614 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 615 { 616 struct bio *bp; 617 u_int nreqs = 0; 618 619 mtx_lock(&sc->sc_queue_mtx); 620 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 621 if (bp->bio_from == cp) 622 nreqs++; 623 } 624 mtx_unlock(&sc->sc_queue_mtx); 625 return (nreqs); 626 } 627 628 u_int 629 g_raid_nopens(struct g_raid_softc *sc) 630 { 631 struct g_raid_volume *vol; 632 u_int opens; 633 634 opens = 0; 635 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 636 if (vol->v_provider_open != 0) 637 opens++; 638 } 639 return (opens); 640 } 641 642 static int 643 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 644 { 645 646 if (cp->index > 0) { 647 G_RAID_DEBUG1(2, sc, 648 "I/O requests for %s exist, can't destroy it now.", 649 cp->provider->name); 650 return (1); 651 } 652 if (g_raid_nrequests(sc, cp) > 0) { 653 G_RAID_DEBUG1(2, sc, 654 "I/O requests for %s in queue, can't destroy it now.", 655 cp->provider->name); 656 return (1); 657 } 658 return (0); 659 } 660 661 static void 662 g_raid_destroy_consumer(void *arg, int flags __unused) 663 { 664 struct g_consumer *cp; 665 666 g_topology_assert(); 667 668 cp = arg; 669 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 670 g_detach(cp); 671 g_destroy_consumer(cp); 672 } 673 674 void 675 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 676 { 677 struct g_provider *pp; 678 int retaste_wait; 679 680 g_topology_assert_not(); 681 682 g_topology_lock(); 683 cp->private = NULL; 684 if (g_raid_consumer_is_busy(sc, cp)) 685 goto out; 686 pp = cp->provider; 687 retaste_wait = 0; 688 if (cp->acw == 1) { 689 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 690 retaste_wait = 1; 691 } 692 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 693 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 694 if (retaste_wait) { 695 /* 696 * After retaste event was send (inside g_access()), we can send 697 * event to detach and destroy consumer. 698 * A class, which has consumer to the given provider connected 699 * will not receive retaste event for the provider. 700 * This is the way how I ignore retaste events when I close 701 * consumers opened for write: I detach and destroy consumer 702 * after retaste event is sent. 703 */ 704 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 705 goto out; 706 } 707 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 708 g_detach(cp); 709 g_destroy_consumer(cp); 710 out: 711 g_topology_unlock(); 712 } 713 714 static void 715 g_raid_orphan(struct g_consumer *cp) 716 { 717 struct g_raid_disk *disk; 718 719 g_topology_assert(); 720 721 disk = cp->private; 722 if (disk == NULL) 723 return; 724 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 725 G_RAID_EVENT_DISK); 726 } 727 728 static int 729 g_raid_clean(struct g_raid_volume *vol, int acw) 730 { 731 struct g_raid_softc *sc; 732 int timeout; 733 734 sc = vol->v_softc; 735 g_topology_assert_not(); 736 sx_assert(&sc->sc_lock, SX_XLOCKED); 737 738 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 739 // return (0); 740 if (!vol->v_dirty) 741 return (0); 742 if (vol->v_writes > 0) 743 return (0); 744 if (acw > 0 || (acw == -1 && 745 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 746 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 747 if (timeout > 0) 748 return (timeout); 749 } 750 vol->v_dirty = 0; 751 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 752 vol->v_name); 753 g_raid_write_metadata(sc, vol, NULL, NULL); 754 return (0); 755 } 756 757 static void 758 g_raid_dirty(struct g_raid_volume *vol) 759 { 760 struct g_raid_softc *sc; 761 762 sc = vol->v_softc; 763 g_topology_assert_not(); 764 sx_assert(&sc->sc_lock, SX_XLOCKED); 765 766 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 767 // return; 768 vol->v_dirty = 1; 769 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 770 vol->v_name); 771 g_raid_write_metadata(sc, vol, NULL, NULL); 772 } 773 774 void 775 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 776 { 777 struct g_raid_softc *sc; 778 struct g_raid_volume *vol; 779 struct g_raid_subdisk *sd; 780 struct bio_queue_head queue; 781 struct bio *cbp; 782 int i; 783 784 vol = tr->tro_volume; 785 sc = vol->v_softc; 786 787 /* 788 * Allocate all bios before sending any request, so we can return 789 * ENOMEM in nice and clean way. 790 */ 791 bioq_init(&queue); 792 for (i = 0; i < vol->v_disks_count; i++) { 793 sd = &vol->v_subdisks[i]; 794 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 795 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 796 continue; 797 cbp = g_clone_bio(bp); 798 if (cbp == NULL) 799 goto failure; 800 cbp->bio_caller1 = sd; 801 bioq_insert_tail(&queue, cbp); 802 } 803 for (cbp = bioq_first(&queue); cbp != NULL; 804 cbp = bioq_first(&queue)) { 805 bioq_remove(&queue, cbp); 806 sd = cbp->bio_caller1; 807 cbp->bio_caller1 = NULL; 808 g_raid_subdisk_iostart(sd, cbp); 809 } 810 return; 811 failure: 812 for (cbp = bioq_first(&queue); cbp != NULL; 813 cbp = bioq_first(&queue)) { 814 bioq_remove(&queue, cbp); 815 g_destroy_bio(cbp); 816 } 817 if (bp->bio_error == 0) 818 bp->bio_error = ENOMEM; 819 g_raid_iodone(bp, bp->bio_error); 820 } 821 822 static void 823 g_raid_tr_kerneldump_common_done(struct bio *bp) 824 { 825 826 bp->bio_flags |= BIO_DONE; 827 } 828 829 int 830 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 831 void *virtual, vm_offset_t physical, off_t offset, size_t length) 832 { 833 struct g_raid_softc *sc; 834 struct g_raid_volume *vol; 835 struct bio bp; 836 837 vol = tr->tro_volume; 838 sc = vol->v_softc; 839 840 bzero(&bp, sizeof(bp)); 841 bp.bio_cmd = BIO_WRITE; 842 bp.bio_done = g_raid_tr_kerneldump_common_done; 843 bp.bio_attribute = NULL; 844 bp.bio_offset = offset; 845 bp.bio_length = length; 846 bp.bio_data = virtual; 847 bp.bio_to = vol->v_provider; 848 849 g_raid_start(&bp); 850 while (!(bp.bio_flags & BIO_DONE)) { 851 G_RAID_DEBUG1(4, sc, "Poll..."); 852 g_raid_poll(sc); 853 DELAY(10); 854 } 855 856 return (bp.bio_error != 0 ? EIO : 0); 857 } 858 859 static int 860 g_raid_dump(void *arg, 861 void *virtual, vm_offset_t physical, off_t offset, size_t length) 862 { 863 struct g_raid_volume *vol; 864 int error; 865 866 vol = (struct g_raid_volume *)arg; 867 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 868 (long long unsigned)offset, (long long unsigned)length); 869 870 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 871 virtual, physical, offset, length); 872 return (error); 873 } 874 875 static void 876 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 877 { 878 struct g_kerneldump *gkd; 879 struct g_provider *pp; 880 struct g_raid_volume *vol; 881 882 gkd = (struct g_kerneldump*)bp->bio_data; 883 pp = bp->bio_to; 884 vol = pp->private; 885 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 886 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 887 gkd->di.dumper = g_raid_dump; 888 gkd->di.priv = vol; 889 gkd->di.blocksize = vol->v_sectorsize; 890 gkd->di.maxiosize = DFLTPHYS; 891 gkd->di.mediaoffset = gkd->offset; 892 if ((gkd->offset + gkd->length) > vol->v_mediasize) 893 gkd->length = vol->v_mediasize - gkd->offset; 894 gkd->di.mediasize = gkd->length; 895 g_io_deliver(bp, 0); 896 } 897 898 static void 899 g_raid_start(struct bio *bp) 900 { 901 struct g_raid_softc *sc; 902 903 sc = bp->bio_to->geom->softc; 904 /* 905 * If sc == NULL or there are no valid disks, provider's error 906 * should be set and g_raid_start() should not be called at all. 907 */ 908 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 909 // ("Provider's error should be set (error=%d)(mirror=%s).", 910 // bp->bio_to->error, bp->bio_to->name)); 911 G_RAID_LOGREQ(3, bp, "Request received."); 912 913 switch (bp->bio_cmd) { 914 case BIO_READ: 915 case BIO_WRITE: 916 case BIO_DELETE: 917 case BIO_FLUSH: 918 break; 919 case BIO_GETATTR: 920 if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 921 g_raid_kerneldump(sc, bp); 922 else 923 g_io_deliver(bp, EOPNOTSUPP); 924 return; 925 default: 926 g_io_deliver(bp, EOPNOTSUPP); 927 return; 928 } 929 mtx_lock(&sc->sc_queue_mtx); 930 bioq_disksort(&sc->sc_queue, bp); 931 mtx_unlock(&sc->sc_queue_mtx); 932 if (!dumping) { 933 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 934 wakeup(sc); 935 } 936 } 937 938 static int 939 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 940 { 941 /* 942 * 5 cases: 943 * (1) bp entirely below NO 944 * (2) bp entirely above NO 945 * (3) bp start below, but end in range YES 946 * (4) bp entirely within YES 947 * (5) bp starts within, ends above YES 948 * 949 * lock range 10-19 (offset 10 length 10) 950 * (1) 1-5: first if kicks it out 951 * (2) 30-35: second if kicks it out 952 * (3) 5-15: passes both ifs 953 * (4) 12-14: passes both ifs 954 * (5) 19-20: passes both 955 */ 956 off_t lend = lstart + len - 1; 957 off_t bstart = bp->bio_offset; 958 off_t bend = bp->bio_offset + bp->bio_length - 1; 959 960 if (bend < lstart) 961 return (0); 962 if (lend < bstart) 963 return (0); 964 return (1); 965 } 966 967 static int 968 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 969 { 970 struct g_raid_lock *lp; 971 972 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 973 974 LIST_FOREACH(lp, &vol->v_locks, l_next) { 975 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 976 return (1); 977 } 978 return (0); 979 } 980 981 static void 982 g_raid_start_request(struct bio *bp) 983 { 984 struct g_raid_softc *sc; 985 struct g_raid_volume *vol; 986 987 sc = bp->bio_to->geom->softc; 988 sx_assert(&sc->sc_lock, SX_LOCKED); 989 vol = bp->bio_to->private; 990 991 /* 992 * Check to see if this item is in a locked range. If so, 993 * queue it to our locked queue and return. We'll requeue 994 * it when the range is unlocked. Internal I/O for the 995 * rebuild/rescan/recovery process is excluded from this 996 * check so we can actually do the recovery. 997 */ 998 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 999 g_raid_is_in_locked_range(vol, bp)) { 1000 G_RAID_LOGREQ(3, bp, "Defer request."); 1001 bioq_insert_tail(&vol->v_locked, bp); 1002 return; 1003 } 1004 1005 /* 1006 * If we're actually going to do the write/delete, then 1007 * update the idle stats for the volume. 1008 */ 1009 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1010 if (!vol->v_dirty) 1011 g_raid_dirty(vol); 1012 vol->v_writes++; 1013 } 1014 1015 /* 1016 * Put request onto inflight queue, so we can check if new 1017 * synchronization requests don't collide with it. Then tell 1018 * the transformation layer to start the I/O. 1019 */ 1020 bioq_insert_tail(&vol->v_inflight, bp); 1021 G_RAID_LOGREQ(4, bp, "Request started"); 1022 G_RAID_TR_IOSTART(vol->v_tr, bp); 1023 } 1024 1025 static void 1026 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1027 { 1028 off_t off, len; 1029 struct bio *nbp; 1030 struct g_raid_lock *lp; 1031 1032 vol->v_pending_lock = 0; 1033 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1034 if (lp->l_pending) { 1035 off = lp->l_offset; 1036 len = lp->l_length; 1037 lp->l_pending = 0; 1038 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1039 if (g_raid_bio_overlaps(nbp, off, len)) 1040 lp->l_pending++; 1041 } 1042 if (lp->l_pending) { 1043 vol->v_pending_lock = 1; 1044 G_RAID_DEBUG1(4, vol->v_softc, 1045 "Deferred lock(%jd, %jd) has %d pending", 1046 (intmax_t)off, (intmax_t)(off + len), 1047 lp->l_pending); 1048 continue; 1049 } 1050 G_RAID_DEBUG1(4, vol->v_softc, 1051 "Deferred lock of %jd to %jd completed", 1052 (intmax_t)off, (intmax_t)(off + len)); 1053 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1054 } 1055 } 1056 } 1057 1058 void 1059 g_raid_iodone(struct bio *bp, int error) 1060 { 1061 struct g_raid_softc *sc; 1062 struct g_raid_volume *vol; 1063 1064 sc = bp->bio_to->geom->softc; 1065 sx_assert(&sc->sc_lock, SX_LOCKED); 1066 vol = bp->bio_to->private; 1067 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1068 1069 /* Update stats if we done write/delete. */ 1070 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1071 vol->v_writes--; 1072 vol->v_last_write = time_uptime; 1073 } 1074 1075 bioq_remove(&vol->v_inflight, bp); 1076 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1077 g_raid_finish_with_locked_ranges(vol, bp); 1078 getmicrouptime(&vol->v_last_done); 1079 g_io_deliver(bp, error); 1080 } 1081 1082 int 1083 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1084 struct bio *ignore, void *argp) 1085 { 1086 struct g_raid_softc *sc; 1087 struct g_raid_lock *lp; 1088 struct bio *bp; 1089 1090 sc = vol->v_softc; 1091 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1092 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1093 lp->l_offset = off; 1094 lp->l_length = len; 1095 lp->l_callback_arg = argp; 1096 1097 lp->l_pending = 0; 1098 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1099 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1100 lp->l_pending++; 1101 } 1102 1103 /* 1104 * If there are any writes that are pending, we return EBUSY. All 1105 * callers will have to wait until all pending writes clear. 1106 */ 1107 if (lp->l_pending > 0) { 1108 vol->v_pending_lock = 1; 1109 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1110 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1111 return (EBUSY); 1112 } 1113 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1114 (intmax_t)off, (intmax_t)(off+len)); 1115 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1116 return (0); 1117 } 1118 1119 int 1120 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1121 { 1122 struct g_raid_lock *lp; 1123 struct g_raid_softc *sc; 1124 struct bio *bp; 1125 1126 sc = vol->v_softc; 1127 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1128 if (lp->l_offset == off && lp->l_length == len) { 1129 LIST_REMOVE(lp, l_next); 1130 /* XXX 1131 * Right now we just put them all back on the queue 1132 * and hope for the best. We hope this because any 1133 * locked ranges will go right back on this list 1134 * when the worker thread runs. 1135 * XXX 1136 */ 1137 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1138 (intmax_t)lp->l_offset, 1139 (intmax_t)(lp->l_offset+lp->l_length)); 1140 mtx_lock(&sc->sc_queue_mtx); 1141 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1142 bioq_disksort(&sc->sc_queue, bp); 1143 mtx_unlock(&sc->sc_queue_mtx); 1144 free(lp, M_RAID); 1145 return (0); 1146 } 1147 } 1148 return (EINVAL); 1149 } 1150 1151 void 1152 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1153 { 1154 struct g_consumer *cp; 1155 struct g_raid_disk *disk, *tdisk; 1156 1157 bp->bio_caller1 = sd; 1158 1159 /* 1160 * Make sure that the disk is present. Generally it is a task of 1161 * transformation layers to not send requests to absent disks, but 1162 * it is better to be safe and report situation then sorry. 1163 */ 1164 if (sd->sd_disk == NULL) { 1165 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1166 nodisk: 1167 bp->bio_from = NULL; 1168 bp->bio_to = NULL; 1169 bp->bio_error = ENXIO; 1170 g_raid_disk_done(bp); 1171 return; 1172 } 1173 disk = sd->sd_disk; 1174 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1175 disk->d_state != G_RAID_DISK_S_FAILED) { 1176 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1177 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1178 goto nodisk; 1179 } 1180 1181 cp = disk->d_consumer; 1182 bp->bio_from = cp; 1183 bp->bio_to = cp->provider; 1184 cp->index++; 1185 1186 /* Update average disks load. */ 1187 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1188 if (tdisk->d_consumer == NULL) 1189 tdisk->d_load = 0; 1190 else 1191 tdisk->d_load = (tdisk->d_consumer->index * 1192 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1193 } 1194 1195 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1196 if (dumping) { 1197 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1198 if (bp->bio_cmd == BIO_WRITE) { 1199 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1200 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1201 } else 1202 bp->bio_error = EOPNOTSUPP; 1203 g_raid_disk_done(bp); 1204 } else { 1205 bp->bio_done = g_raid_disk_done; 1206 bp->bio_offset += sd->sd_offset; 1207 G_RAID_LOGREQ(3, bp, "Sending request."); 1208 g_io_request(bp, cp); 1209 } 1210 } 1211 1212 int 1213 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1214 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1215 { 1216 1217 if (sd->sd_disk == NULL) 1218 return (ENXIO); 1219 if (sd->sd_disk->d_kd.di.dumper == NULL) 1220 return (EOPNOTSUPP); 1221 return (dump_write(&sd->sd_disk->d_kd.di, 1222 virtual, physical, 1223 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1224 length)); 1225 } 1226 1227 static void 1228 g_raid_disk_done(struct bio *bp) 1229 { 1230 struct g_raid_softc *sc; 1231 struct g_raid_subdisk *sd; 1232 1233 sd = bp->bio_caller1; 1234 sc = sd->sd_softc; 1235 mtx_lock(&sc->sc_queue_mtx); 1236 bioq_disksort(&sc->sc_queue, bp); 1237 mtx_unlock(&sc->sc_queue_mtx); 1238 if (!dumping) 1239 wakeup(sc); 1240 } 1241 1242 static void 1243 g_raid_disk_done_request(struct bio *bp) 1244 { 1245 struct g_raid_softc *sc; 1246 struct g_raid_disk *disk; 1247 struct g_raid_subdisk *sd; 1248 struct g_raid_volume *vol; 1249 1250 g_topology_assert_not(); 1251 1252 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1253 sd = bp->bio_caller1; 1254 sc = sd->sd_softc; 1255 vol = sd->sd_volume; 1256 if (bp->bio_from != NULL) { 1257 bp->bio_from->index--; 1258 disk = bp->bio_from->private; 1259 if (disk == NULL) 1260 g_raid_kill_consumer(sc, bp->bio_from); 1261 } 1262 bp->bio_offset -= sd->sd_offset; 1263 1264 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1265 } 1266 1267 static void 1268 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1269 { 1270 1271 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1272 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1273 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1274 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1275 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1276 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1277 else 1278 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1279 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1280 KASSERT(ep->e_error == 0, 1281 ("Error cannot be handled.")); 1282 g_raid_event_free(ep); 1283 } else { 1284 ep->e_flags |= G_RAID_EVENT_DONE; 1285 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1286 mtx_lock(&sc->sc_queue_mtx); 1287 wakeup(ep); 1288 mtx_unlock(&sc->sc_queue_mtx); 1289 } 1290 } 1291 1292 /* 1293 * Worker thread. 1294 */ 1295 static void 1296 g_raid_worker(void *arg) 1297 { 1298 struct g_raid_softc *sc; 1299 struct g_raid_event *ep; 1300 struct g_raid_volume *vol; 1301 struct bio *bp; 1302 struct timeval now, t; 1303 int timeout, rv; 1304 1305 sc = arg; 1306 thread_lock(curthread); 1307 sched_prio(curthread, PRIBIO); 1308 thread_unlock(curthread); 1309 1310 sx_xlock(&sc->sc_lock); 1311 for (;;) { 1312 mtx_lock(&sc->sc_queue_mtx); 1313 /* 1314 * First take a look at events. 1315 * This is important to handle events before any I/O requests. 1316 */ 1317 bp = NULL; 1318 vol = NULL; 1319 rv = 0; 1320 ep = TAILQ_FIRST(&sc->sc_events); 1321 if (ep != NULL) 1322 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1323 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1324 ; 1325 else { 1326 getmicrouptime(&now); 1327 t = now; 1328 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1329 if (bioq_first(&vol->v_inflight) == NULL && 1330 vol->v_tr && 1331 timevalcmp(&vol->v_last_done, &t, < )) 1332 t = vol->v_last_done; 1333 } 1334 timevalsub(&t, &now); 1335 timeout = g_raid_idle_threshold + 1336 t.tv_sec * 1000000 + t.tv_usec; 1337 if (timeout > 0) { 1338 /* 1339 * Two steps to avoid overflows at HZ=1000 1340 * and idle timeouts > 2.1s. Some rounding 1341 * errors can occur, but they are < 1tick, 1342 * which is deemed to be close enough for 1343 * this purpose. 1344 */ 1345 int micpertic = 1000000 / hz; 1346 timeout = (timeout + micpertic - 1) / micpertic; 1347 sx_xunlock(&sc->sc_lock); 1348 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1349 PRIBIO | PDROP, "-", timeout); 1350 sx_xlock(&sc->sc_lock); 1351 goto process; 1352 } else 1353 rv = EWOULDBLOCK; 1354 } 1355 mtx_unlock(&sc->sc_queue_mtx); 1356 process: 1357 if (ep != NULL) { 1358 g_raid_handle_event(sc, ep); 1359 } else if (bp != NULL) { 1360 if (bp->bio_to != NULL && 1361 bp->bio_to->geom == sc->sc_geom) 1362 g_raid_start_request(bp); 1363 else 1364 g_raid_disk_done_request(bp); 1365 } else if (rv == EWOULDBLOCK) { 1366 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1367 if (vol->v_writes == 0 && vol->v_dirty) 1368 g_raid_clean(vol, -1); 1369 if (bioq_first(&vol->v_inflight) == NULL && 1370 vol->v_tr) { 1371 t.tv_sec = g_raid_idle_threshold / 1000000; 1372 t.tv_usec = g_raid_idle_threshold % 1000000; 1373 timevaladd(&t, &vol->v_last_done); 1374 getmicrouptime(&now); 1375 if (timevalcmp(&t, &now, <= )) { 1376 G_RAID_TR_IDLE(vol->v_tr); 1377 vol->v_last_done = now; 1378 } 1379 } 1380 } 1381 } 1382 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1383 g_raid_destroy_node(sc, 1); /* May not return. */ 1384 } 1385 } 1386 1387 static void 1388 g_raid_poll(struct g_raid_softc *sc) 1389 { 1390 struct g_raid_event *ep; 1391 struct bio *bp; 1392 1393 sx_xlock(&sc->sc_lock); 1394 mtx_lock(&sc->sc_queue_mtx); 1395 /* 1396 * First take a look at events. 1397 * This is important to handle events before any I/O requests. 1398 */ 1399 ep = TAILQ_FIRST(&sc->sc_events); 1400 if (ep != NULL) { 1401 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1402 mtx_unlock(&sc->sc_queue_mtx); 1403 g_raid_handle_event(sc, ep); 1404 goto out; 1405 } 1406 bp = bioq_takefirst(&sc->sc_queue); 1407 if (bp != NULL) { 1408 mtx_unlock(&sc->sc_queue_mtx); 1409 if (bp->bio_from == NULL || 1410 bp->bio_from->geom != sc->sc_geom) 1411 g_raid_start_request(bp); 1412 else 1413 g_raid_disk_done_request(bp); 1414 } 1415 out: 1416 sx_xunlock(&sc->sc_lock); 1417 } 1418 1419 static void 1420 g_raid_launch_provider(struct g_raid_volume *vol) 1421 { 1422 struct g_raid_disk *disk; 1423 struct g_raid_softc *sc; 1424 struct g_provider *pp; 1425 char name[G_RAID_MAX_VOLUMENAME]; 1426 off_t off; 1427 1428 sc = vol->v_softc; 1429 sx_assert(&sc->sc_lock, SX_LOCKED); 1430 1431 g_topology_lock(); 1432 /* Try to name provider with volume name. */ 1433 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1434 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1435 g_provider_by_name(name) != NULL) { 1436 /* Otherwise use sequential volume number. */ 1437 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1438 } 1439 pp = g_new_providerf(sc->sc_geom, "%s", name); 1440 pp->private = vol; 1441 pp->mediasize = vol->v_mediasize; 1442 pp->sectorsize = vol->v_sectorsize; 1443 pp->stripesize = 0; 1444 pp->stripeoffset = 0; 1445 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1446 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1447 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1448 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1449 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1450 disk->d_consumer != NULL && 1451 disk->d_consumer->provider != NULL) { 1452 pp->stripesize = disk->d_consumer->provider->stripesize; 1453 off = disk->d_consumer->provider->stripeoffset; 1454 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1455 if (off > 0) 1456 pp->stripeoffset %= off; 1457 } 1458 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1459 pp->stripesize *= (vol->v_disks_count - 1); 1460 pp->stripeoffset *= (vol->v_disks_count - 1); 1461 } 1462 } else 1463 pp->stripesize = vol->v_strip_size; 1464 vol->v_provider = pp; 1465 g_error_provider(pp, 0); 1466 g_topology_unlock(); 1467 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1468 pp->name, vol->v_name); 1469 } 1470 1471 static void 1472 g_raid_destroy_provider(struct g_raid_volume *vol) 1473 { 1474 struct g_raid_softc *sc; 1475 struct g_provider *pp; 1476 struct bio *bp, *tmp; 1477 1478 g_topology_assert_not(); 1479 sc = vol->v_softc; 1480 pp = vol->v_provider; 1481 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1482 1483 g_topology_lock(); 1484 g_error_provider(pp, ENXIO); 1485 mtx_lock(&sc->sc_queue_mtx); 1486 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1487 if (bp->bio_to != pp) 1488 continue; 1489 bioq_remove(&sc->sc_queue, bp); 1490 g_io_deliver(bp, ENXIO); 1491 } 1492 mtx_unlock(&sc->sc_queue_mtx); 1493 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1494 pp->name, vol->v_name); 1495 g_wither_provider(pp, ENXIO); 1496 g_topology_unlock(); 1497 vol->v_provider = NULL; 1498 } 1499 1500 /* 1501 * Update device state. 1502 */ 1503 static int 1504 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1505 { 1506 struct g_raid_softc *sc; 1507 1508 sc = vol->v_softc; 1509 sx_assert(&sc->sc_lock, SX_XLOCKED); 1510 1511 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1512 g_raid_volume_event2str(event), 1513 vol->v_name); 1514 switch (event) { 1515 case G_RAID_VOLUME_E_DOWN: 1516 if (vol->v_provider != NULL) 1517 g_raid_destroy_provider(vol); 1518 break; 1519 case G_RAID_VOLUME_E_UP: 1520 if (vol->v_provider == NULL) 1521 g_raid_launch_provider(vol); 1522 break; 1523 case G_RAID_VOLUME_E_START: 1524 if (vol->v_tr) 1525 G_RAID_TR_START(vol->v_tr); 1526 return (0); 1527 default: 1528 if (sc->sc_md) 1529 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1530 return (0); 1531 } 1532 1533 /* Manage root mount release. */ 1534 if (vol->v_starting) { 1535 vol->v_starting = 0; 1536 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1537 root_mount_rel(vol->v_rootmount); 1538 vol->v_rootmount = NULL; 1539 } 1540 if (vol->v_stopping && vol->v_provider_open == 0) 1541 g_raid_destroy_volume(vol); 1542 return (0); 1543 } 1544 1545 /* 1546 * Update subdisk state. 1547 */ 1548 static int 1549 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1550 { 1551 struct g_raid_softc *sc; 1552 struct g_raid_volume *vol; 1553 1554 sc = sd->sd_softc; 1555 vol = sd->sd_volume; 1556 sx_assert(&sc->sc_lock, SX_XLOCKED); 1557 1558 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1559 g_raid_subdisk_event2str(event), 1560 vol->v_name, sd->sd_pos, 1561 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1562 if (vol->v_tr) 1563 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1564 1565 return (0); 1566 } 1567 1568 /* 1569 * Update disk state. 1570 */ 1571 static int 1572 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1573 { 1574 struct g_raid_softc *sc; 1575 1576 sc = disk->d_softc; 1577 sx_assert(&sc->sc_lock, SX_XLOCKED); 1578 1579 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1580 g_raid_disk_event2str(event), 1581 g_raid_get_diskname(disk)); 1582 1583 if (sc->sc_md) 1584 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1585 return (0); 1586 } 1587 1588 /* 1589 * Node event. 1590 */ 1591 static int 1592 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1593 { 1594 sx_assert(&sc->sc_lock, SX_XLOCKED); 1595 1596 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1597 g_raid_node_event2str(event)); 1598 1599 if (event == G_RAID_NODE_E_WAKE) 1600 return (0); 1601 if (sc->sc_md) 1602 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1603 return (0); 1604 } 1605 1606 static int 1607 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1608 { 1609 struct g_raid_volume *vol; 1610 struct g_raid_softc *sc; 1611 int dcw, opens, error = 0; 1612 1613 g_topology_assert(); 1614 sc = pp->geom->softc; 1615 vol = pp->private; 1616 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1617 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1618 1619 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1620 acr, acw, ace); 1621 dcw = pp->acw + acw; 1622 1623 g_topology_unlock(); 1624 sx_xlock(&sc->sc_lock); 1625 /* Deny new opens while dying. */ 1626 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1627 error = ENXIO; 1628 goto out; 1629 } 1630 if (dcw == 0 && vol->v_dirty) 1631 g_raid_clean(vol, dcw); 1632 vol->v_provider_open += acr + acw + ace; 1633 /* Handle delayed node destruction. */ 1634 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1635 vol->v_provider_open == 0) { 1636 /* Count open volumes. */ 1637 opens = g_raid_nopens(sc); 1638 if (opens == 0) { 1639 sc->sc_stopping = G_RAID_DESTROY_HARD; 1640 /* Wake up worker to make it selfdestruct. */ 1641 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1642 } 1643 } 1644 /* Handle open volume destruction. */ 1645 if (vol->v_stopping && vol->v_provider_open == 0) 1646 g_raid_destroy_volume(vol); 1647 out: 1648 sx_xunlock(&sc->sc_lock); 1649 g_topology_lock(); 1650 return (error); 1651 } 1652 1653 struct g_raid_softc * 1654 g_raid_create_node(struct g_class *mp, 1655 const char *name, struct g_raid_md_object *md) 1656 { 1657 struct g_raid_softc *sc; 1658 struct g_geom *gp; 1659 int error; 1660 1661 g_topology_assert(); 1662 G_RAID_DEBUG(1, "Creating array %s.", name); 1663 1664 gp = g_new_geomf(mp, "%s", name); 1665 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1666 gp->start = g_raid_start; 1667 gp->orphan = g_raid_orphan; 1668 gp->access = g_raid_access; 1669 gp->dumpconf = g_raid_dumpconf; 1670 1671 sc->sc_md = md; 1672 sc->sc_geom = gp; 1673 sc->sc_flags = 0; 1674 TAILQ_INIT(&sc->sc_volumes); 1675 TAILQ_INIT(&sc->sc_disks); 1676 sx_init(&sc->sc_lock, "gmirror:lock"); 1677 mtx_init(&sc->sc_queue_mtx, "gmirror:queue", NULL, MTX_DEF); 1678 TAILQ_INIT(&sc->sc_events); 1679 bioq_init(&sc->sc_queue); 1680 gp->softc = sc; 1681 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1682 "g_raid %s", name); 1683 if (error != 0) { 1684 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1685 mtx_destroy(&sc->sc_queue_mtx); 1686 sx_destroy(&sc->sc_lock); 1687 g_destroy_geom(sc->sc_geom); 1688 free(sc, M_RAID); 1689 return (NULL); 1690 } 1691 1692 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1693 return (sc); 1694 } 1695 1696 struct g_raid_volume * 1697 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1698 { 1699 struct g_raid_volume *vol, *vol1; 1700 int i; 1701 1702 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1703 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1704 vol->v_softc = sc; 1705 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1706 vol->v_state = G_RAID_VOLUME_S_STARTING; 1707 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1708 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1709 bioq_init(&vol->v_inflight); 1710 bioq_init(&vol->v_locked); 1711 LIST_INIT(&vol->v_locks); 1712 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1713 vol->v_subdisks[i].sd_softc = sc; 1714 vol->v_subdisks[i].sd_volume = vol; 1715 vol->v_subdisks[i].sd_pos = i; 1716 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1717 } 1718 1719 /* Find free ID for this volume. */ 1720 g_topology_lock(); 1721 vol1 = vol; 1722 if (id >= 0) { 1723 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1724 if (vol1->v_global_id == id) 1725 break; 1726 } 1727 } 1728 if (vol1 != NULL) { 1729 for (id = 0; ; id++) { 1730 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1731 if (vol1->v_global_id == id) 1732 break; 1733 } 1734 if (vol1 == NULL) 1735 break; 1736 } 1737 } 1738 vol->v_global_id = id; 1739 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1740 g_topology_unlock(); 1741 1742 /* Delay root mounting. */ 1743 vol->v_rootmount = root_mount_hold("GRAID"); 1744 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1745 vol->v_starting = 1; 1746 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1747 return (vol); 1748 } 1749 1750 struct g_raid_disk * 1751 g_raid_create_disk(struct g_raid_softc *sc) 1752 { 1753 struct g_raid_disk *disk; 1754 1755 G_RAID_DEBUG1(1, sc, "Creating disk."); 1756 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 1757 disk->d_softc = sc; 1758 disk->d_state = G_RAID_DISK_S_NONE; 1759 TAILQ_INIT(&disk->d_subdisks); 1760 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 1761 return (disk); 1762 } 1763 1764 int g_raid_start_volume(struct g_raid_volume *vol) 1765 { 1766 struct g_raid_tr_class *class; 1767 struct g_raid_tr_object *obj; 1768 int status; 1769 1770 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 1771 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 1772 G_RAID_DEBUG1(2, vol->v_softc, 1773 "Tasting volume %s for %s transformation.", 1774 vol->v_name, class->name); 1775 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 1776 M_WAITOK); 1777 obj->tro_class = class; 1778 obj->tro_volume = vol; 1779 status = G_RAID_TR_TASTE(obj, vol); 1780 if (status != G_RAID_TR_TASTE_FAIL) 1781 break; 1782 kobj_delete((kobj_t)obj, M_RAID); 1783 } 1784 if (class == NULL) { 1785 G_RAID_DEBUG1(0, vol->v_softc, 1786 "No transformation module found for %s.", 1787 vol->v_name); 1788 vol->v_tr = NULL; 1789 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 1790 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 1791 G_RAID_EVENT_VOLUME); 1792 return (-1); 1793 } 1794 G_RAID_DEBUG1(2, vol->v_softc, 1795 "Transformation module %s chosen for %s.", 1796 class->name, vol->v_name); 1797 vol->v_tr = obj; 1798 return (0); 1799 } 1800 1801 int 1802 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 1803 { 1804 struct g_raid_volume *vol, *tmpv; 1805 struct g_raid_disk *disk, *tmpd; 1806 int error = 0; 1807 1808 sc->sc_stopping = G_RAID_DESTROY_HARD; 1809 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 1810 if (g_raid_destroy_volume(vol)) 1811 error = EBUSY; 1812 } 1813 if (error) 1814 return (error); 1815 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 1816 if (g_raid_destroy_disk(disk)) 1817 error = EBUSY; 1818 } 1819 if (error) 1820 return (error); 1821 if (sc->sc_md) { 1822 G_RAID_MD_FREE(sc->sc_md); 1823 kobj_delete((kobj_t)sc->sc_md, M_RAID); 1824 sc->sc_md = NULL; 1825 } 1826 if (sc->sc_geom != NULL) { 1827 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 1828 g_topology_lock(); 1829 sc->sc_geom->softc = NULL; 1830 g_wither_geom(sc->sc_geom, ENXIO); 1831 g_topology_unlock(); 1832 sc->sc_geom = NULL; 1833 } else 1834 G_RAID_DEBUG(1, "Array destroyed."); 1835 if (worker) { 1836 g_raid_event_cancel(sc, sc); 1837 mtx_destroy(&sc->sc_queue_mtx); 1838 sx_xunlock(&sc->sc_lock); 1839 sx_destroy(&sc->sc_lock); 1840 wakeup(&sc->sc_stopping); 1841 free(sc, M_RAID); 1842 curthread->td_pflags &= ~TDP_GEOM; 1843 G_RAID_DEBUG(1, "Thread exiting."); 1844 kproc_exit(0); 1845 } else { 1846 /* Wake up worker to make it selfdestruct. */ 1847 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1848 } 1849 return (0); 1850 } 1851 1852 int 1853 g_raid_destroy_volume(struct g_raid_volume *vol) 1854 { 1855 struct g_raid_softc *sc; 1856 struct g_raid_disk *disk; 1857 int i; 1858 1859 sc = vol->v_softc; 1860 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 1861 vol->v_stopping = 1; 1862 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 1863 if (vol->v_tr) { 1864 G_RAID_TR_STOP(vol->v_tr); 1865 return (EBUSY); 1866 } else 1867 vol->v_state = G_RAID_VOLUME_S_STOPPED; 1868 } 1869 if (g_raid_event_check(sc, vol) != 0) 1870 return (EBUSY); 1871 if (vol->v_provider != NULL) 1872 return (EBUSY); 1873 if (vol->v_provider_open != 0) 1874 return (EBUSY); 1875 if (vol->v_tr) { 1876 G_RAID_TR_FREE(vol->v_tr); 1877 kobj_delete((kobj_t)vol->v_tr, M_RAID); 1878 vol->v_tr = NULL; 1879 } 1880 if (vol->v_rootmount) 1881 root_mount_rel(vol->v_rootmount); 1882 g_topology_lock(); 1883 LIST_REMOVE(vol, v_global_next); 1884 g_topology_unlock(); 1885 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 1886 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1887 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 1888 disk = vol->v_subdisks[i].sd_disk; 1889 if (disk == NULL) 1890 continue; 1891 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 1892 } 1893 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 1894 if (sc->sc_md) 1895 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 1896 g_raid_event_cancel(sc, vol); 1897 free(vol, M_RAID); 1898 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 1899 /* Wake up worker to let it selfdestruct. */ 1900 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1901 } 1902 return (0); 1903 } 1904 1905 int 1906 g_raid_destroy_disk(struct g_raid_disk *disk) 1907 { 1908 struct g_raid_softc *sc; 1909 struct g_raid_subdisk *sd, *tmp; 1910 1911 sc = disk->d_softc; 1912 G_RAID_DEBUG1(2, sc, "Destroying disk."); 1913 if (disk->d_consumer) { 1914 g_raid_kill_consumer(sc, disk->d_consumer); 1915 disk->d_consumer = NULL; 1916 } 1917 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 1918 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 1919 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 1920 G_RAID_EVENT_SUBDISK); 1921 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 1922 sd->sd_disk = NULL; 1923 } 1924 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 1925 if (sc->sc_md) 1926 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 1927 g_raid_event_cancel(sc, disk); 1928 free(disk, M_RAID); 1929 return (0); 1930 } 1931 1932 int 1933 g_raid_destroy(struct g_raid_softc *sc, int how) 1934 { 1935 int opens; 1936 1937 g_topology_assert_not(); 1938 if (sc == NULL) 1939 return (ENXIO); 1940 sx_assert(&sc->sc_lock, SX_XLOCKED); 1941 1942 /* Count open volumes. */ 1943 opens = g_raid_nopens(sc); 1944 1945 /* React on some opened volumes. */ 1946 if (opens > 0) { 1947 switch (how) { 1948 case G_RAID_DESTROY_SOFT: 1949 G_RAID_DEBUG1(1, sc, 1950 "%d volumes are still open.", 1951 opens); 1952 return (EBUSY); 1953 case G_RAID_DESTROY_DELAYED: 1954 G_RAID_DEBUG1(1, sc, 1955 "Array will be destroyed on last close."); 1956 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 1957 return (EBUSY); 1958 case G_RAID_DESTROY_HARD: 1959 G_RAID_DEBUG1(1, sc, 1960 "%d volumes are still open.", 1961 opens); 1962 } 1963 } 1964 1965 /* Mark node for destruction. */ 1966 sc->sc_stopping = G_RAID_DESTROY_HARD; 1967 /* Wake up worker to let it selfdestruct. */ 1968 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1969 /* Sleep until node destroyed. */ 1970 sx_sleep(&sc->sc_stopping, &sc->sc_lock, 1971 PRIBIO | PDROP, "r:destroy", 0); 1972 return (0); 1973 } 1974 1975 static void 1976 g_raid_taste_orphan(struct g_consumer *cp) 1977 { 1978 1979 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 1980 cp->provider->name)); 1981 } 1982 1983 static struct g_geom * 1984 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 1985 { 1986 struct g_consumer *cp; 1987 struct g_geom *gp, *geom; 1988 struct g_raid_md_class *class; 1989 struct g_raid_md_object *obj; 1990 int status; 1991 1992 g_topology_assert(); 1993 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 1994 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 1995 1996 gp = g_new_geomf(mp, "mirror:taste"); 1997 /* 1998 * This orphan function should be never called. 1999 */ 2000 gp->orphan = g_raid_taste_orphan; 2001 cp = g_new_consumer(gp); 2002 g_attach(cp, pp); 2003 2004 geom = NULL; 2005 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2006 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2007 pp->name, class->name); 2008 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2009 M_WAITOK); 2010 obj->mdo_class = class; 2011 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2012 if (status != G_RAID_MD_TASTE_NEW) 2013 kobj_delete((kobj_t)obj, M_RAID); 2014 if (status != G_RAID_MD_TASTE_FAIL) 2015 break; 2016 } 2017 2018 g_detach(cp); 2019 g_destroy_consumer(cp); 2020 g_destroy_geom(gp); 2021 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2022 return (geom); 2023 } 2024 2025 int 2026 g_raid_create_node_format(const char *format, struct g_geom **gp) 2027 { 2028 struct g_raid_md_class *class; 2029 struct g_raid_md_object *obj; 2030 int status; 2031 2032 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2033 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2034 if (strcasecmp(class->name, format) == 0) 2035 break; 2036 } 2037 if (class == NULL) { 2038 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2039 return (G_RAID_MD_TASTE_FAIL); 2040 } 2041 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2042 M_WAITOK); 2043 obj->mdo_class = class; 2044 status = G_RAID_MD_CREATE(obj, &g_raid_class, gp); 2045 if (status != G_RAID_MD_TASTE_NEW) 2046 kobj_delete((kobj_t)obj, M_RAID); 2047 return (status); 2048 } 2049 2050 static int 2051 g_raid_destroy_geom(struct gctl_req *req __unused, 2052 struct g_class *mp __unused, struct g_geom *gp) 2053 { 2054 struct g_raid_softc *sc; 2055 int error; 2056 2057 g_topology_unlock(); 2058 sc = gp->softc; 2059 sx_xlock(&sc->sc_lock); 2060 g_cancel_event(sc); 2061 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2062 if (error != 0) 2063 sx_xunlock(&sc->sc_lock); 2064 g_topology_lock(); 2065 return (error); 2066 } 2067 2068 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2069 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2070 { 2071 2072 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2073 return; 2074 if (sc->sc_md) 2075 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2076 } 2077 2078 void g_raid_fail_disk(struct g_raid_softc *sc, 2079 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2080 { 2081 2082 if (disk == NULL) 2083 disk = sd->sd_disk; 2084 if (disk == NULL) { 2085 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2086 return; 2087 } 2088 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2089 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2090 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2091 return; 2092 } 2093 if (sc->sc_md) 2094 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2095 } 2096 2097 static void 2098 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2099 struct g_consumer *cp, struct g_provider *pp) 2100 { 2101 struct g_raid_softc *sc; 2102 struct g_raid_volume *vol; 2103 struct g_raid_subdisk *sd; 2104 struct g_raid_disk *disk; 2105 int i, s; 2106 2107 g_topology_assert(); 2108 2109 sc = gp->softc; 2110 if (sc == NULL) 2111 return; 2112 if (pp != NULL) { 2113 vol = pp->private; 2114 g_topology_unlock(); 2115 sx_xlock(&sc->sc_lock); 2116 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2117 vol->v_name); 2118 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2119 g_raid_volume_level2str(vol->v_raid_level, 2120 vol->v_raid_level_qualifier)); 2121 sbuf_printf(sb, 2122 "%s<Transformation>%s</Transformation>\n", indent, 2123 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2124 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2125 vol->v_disks_count); 2126 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2127 vol->v_strip_size); 2128 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2129 g_raid_volume_state2str(vol->v_state)); 2130 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2131 vol->v_dirty ? "Yes" : "No"); 2132 sbuf_printf(sb, "%s<Subdisks>", indent); 2133 for (i = 0; i < vol->v_disks_count; i++) { 2134 sd = &vol->v_subdisks[i]; 2135 if (sd->sd_disk != NULL && 2136 sd->sd_disk->d_consumer != NULL) { 2137 sbuf_printf(sb, "%s ", 2138 g_raid_get_diskname(sd->sd_disk)); 2139 } else { 2140 sbuf_printf(sb, "NONE "); 2141 } 2142 sbuf_printf(sb, "(%s", 2143 g_raid_subdisk_state2str(sd->sd_state)); 2144 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2145 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2146 sbuf_printf(sb, " %d%%", 2147 (int)(sd->sd_rebuild_pos * 100 / 2148 sd->sd_size)); 2149 } 2150 sbuf_printf(sb, ")"); 2151 if (i + 1 < vol->v_disks_count) 2152 sbuf_printf(sb, ", "); 2153 } 2154 sbuf_printf(sb, "</Subdisks>\n"); 2155 sx_xunlock(&sc->sc_lock); 2156 g_topology_lock(); 2157 } else if (cp != NULL) { 2158 disk = cp->private; 2159 if (disk == NULL) 2160 return; 2161 g_topology_unlock(); 2162 sx_xlock(&sc->sc_lock); 2163 sbuf_printf(sb, "%s<State>%s", indent, 2164 g_raid_disk_state2str(disk->d_state)); 2165 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2166 sbuf_printf(sb, " ("); 2167 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2168 sbuf_printf(sb, "%s", 2169 g_raid_subdisk_state2str(sd->sd_state)); 2170 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2171 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2172 sbuf_printf(sb, " %d%%", 2173 (int)(sd->sd_rebuild_pos * 100 / 2174 sd->sd_size)); 2175 } 2176 if (TAILQ_NEXT(sd, sd_next)) 2177 sbuf_printf(sb, ", "); 2178 } 2179 sbuf_printf(sb, ")"); 2180 } 2181 sbuf_printf(sb, "</State>\n"); 2182 sbuf_printf(sb, "%s<Subdisks>", indent); 2183 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2184 sbuf_printf(sb, "r%d(%s):%d@%ju", 2185 sd->sd_volume->v_global_id, 2186 sd->sd_volume->v_name, 2187 sd->sd_pos, sd->sd_offset); 2188 if (TAILQ_NEXT(sd, sd_next)) 2189 sbuf_printf(sb, ", "); 2190 } 2191 sbuf_printf(sb, "</Subdisks>\n"); 2192 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2193 disk->d_read_errs); 2194 sx_xunlock(&sc->sc_lock); 2195 g_topology_lock(); 2196 } else { 2197 g_topology_unlock(); 2198 sx_xlock(&sc->sc_lock); 2199 if (sc->sc_md) { 2200 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2201 sc->sc_md->mdo_class->name); 2202 } 2203 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2204 s = 0xff; 2205 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2206 if (vol->v_state < s) 2207 s = vol->v_state; 2208 } 2209 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2210 g_raid_volume_state2str(s)); 2211 } 2212 sx_xunlock(&sc->sc_lock); 2213 g_topology_lock(); 2214 } 2215 } 2216 2217 static void 2218 g_raid_shutdown_pre_sync(void *arg, int howto) 2219 { 2220 struct g_class *mp; 2221 struct g_geom *gp, *gp2; 2222 struct g_raid_softc *sc; 2223 int error; 2224 2225 mp = arg; 2226 DROP_GIANT(); 2227 g_topology_lock(); 2228 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2229 if ((sc = gp->softc) == NULL) 2230 continue; 2231 g_topology_unlock(); 2232 sx_xlock(&sc->sc_lock); 2233 g_cancel_event(sc); 2234 error = g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2235 if (error != 0) 2236 sx_xunlock(&sc->sc_lock); 2237 g_topology_lock(); 2238 } 2239 g_topology_unlock(); 2240 PICKUP_GIANT(); 2241 } 2242 2243 static void 2244 g_raid_init(struct g_class *mp) 2245 { 2246 2247 g_raid_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync, 2248 g_raid_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST); 2249 if (g_raid_pre_sync == NULL) 2250 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2251 g_raid_started = 1; 2252 } 2253 2254 static void 2255 g_raid_fini(struct g_class *mp) 2256 { 2257 2258 if (g_raid_pre_sync != NULL) 2259 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid_pre_sync); 2260 g_raid_started = 0; 2261 } 2262 2263 int 2264 g_raid_md_modevent(module_t mod, int type, void *arg) 2265 { 2266 struct g_raid_md_class *class, *c, *nc; 2267 int error; 2268 2269 error = 0; 2270 class = arg; 2271 switch (type) { 2272 case MOD_LOAD: 2273 c = LIST_FIRST(&g_raid_md_classes); 2274 if (c == NULL || c->mdc_priority > class->mdc_priority) 2275 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2276 else { 2277 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2278 nc->mdc_priority < class->mdc_priority) 2279 c = nc; 2280 LIST_INSERT_AFTER(c, class, mdc_list); 2281 } 2282 if (g_raid_started) 2283 g_retaste(&g_raid_class); 2284 break; 2285 case MOD_UNLOAD: 2286 LIST_REMOVE(class, mdc_list); 2287 break; 2288 default: 2289 error = EOPNOTSUPP; 2290 break; 2291 } 2292 2293 return (error); 2294 } 2295 2296 int 2297 g_raid_tr_modevent(module_t mod, int type, void *arg) 2298 { 2299 struct g_raid_tr_class *class, *c, *nc; 2300 int error; 2301 2302 error = 0; 2303 class = arg; 2304 switch (type) { 2305 case MOD_LOAD: 2306 c = LIST_FIRST(&g_raid_tr_classes); 2307 if (c == NULL || c->trc_priority > class->trc_priority) 2308 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2309 else { 2310 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2311 nc->trc_priority < class->trc_priority) 2312 c = nc; 2313 LIST_INSERT_AFTER(c, class, trc_list); 2314 } 2315 break; 2316 case MOD_UNLOAD: 2317 LIST_REMOVE(class, trc_list); 2318 break; 2319 default: 2320 error = EOPNOTSUPP; 2321 break; 2322 } 2323 2324 return (error); 2325 } 2326 2327 /* 2328 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2329 * to reduce module priority, allowing submodules to register them first. 2330 */ 2331 static moduledata_t g_raid_mod = { 2332 "g_raid", 2333 g_modevent, 2334 &g_raid_class 2335 }; 2336 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2337 MODULE_VERSION(geom_raid, 0); 2338