1 /*- 2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/limits.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/bio.h> 38 #include <sys/sbuf.h> 39 #include <sys/sysctl.h> 40 #include <sys/malloc.h> 41 #include <sys/eventhandler.h> 42 #include <vm/uma.h> 43 #include <geom/geom.h> 44 #include <sys/proc.h> 45 #include <sys/kthread.h> 46 #include <sys/sched.h> 47 #include <geom/raid/g_raid.h> 48 #include "g_raid_md_if.h" 49 #include "g_raid_tr_if.h" 50 51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data"); 52 53 SYSCTL_DECL(_kern_geom); 54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff"); 55 int g_raid_enable = 1; 56 TUNABLE_INT("kern.geom.raid.enable", &g_raid_enable); 57 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RW, 58 &g_raid_enable, 0, "Enable on-disk metadata taste"); 59 u_int g_raid_aggressive_spare = 0; 60 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare); 61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW, 62 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare"); 63 u_int g_raid_debug = 0; 64 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug); 65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0, 66 "Debug level"); 67 int g_raid_read_err_thresh = 10; 68 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh); 69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW, 70 &g_raid_read_err_thresh, 0, 71 "Number of read errors equated to disk failure"); 72 u_int g_raid_start_timeout = 30; 73 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout); 74 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW, 75 &g_raid_start_timeout, 0, 76 "Time to wait for all array components"); 77 static u_int g_raid_clean_time = 5; 78 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time); 79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW, 80 &g_raid_clean_time, 0, "Mark volume as clean when idling"); 81 static u_int g_raid_disconnect_on_failure = 1; 82 TUNABLE_INT("kern.geom.raid.disconnect_on_failure", 83 &g_raid_disconnect_on_failure); 84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW, 85 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure."); 86 static u_int g_raid_name_format = 0; 87 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format); 88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW, 89 &g_raid_name_format, 0, "Providers name format."); 90 static u_int g_raid_idle_threshold = 1000000; 91 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold); 92 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW, 93 &g_raid_idle_threshold, 1000000, 94 "Time in microseconds to consider a volume idle."); 95 static u_int ar_legacy_aliases = 1; 96 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RW, 97 &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style."); 98 TUNABLE_INT("kern.geom_raid.legacy_aliases", &ar_legacy_aliases); 99 100 101 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \ 102 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \ 103 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \ 104 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \ 105 } while (0) 106 107 LIST_HEAD(, g_raid_md_class) g_raid_md_classes = 108 LIST_HEAD_INITIALIZER(g_raid_md_classes); 109 110 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes = 111 LIST_HEAD_INITIALIZER(g_raid_tr_classes); 112 113 LIST_HEAD(, g_raid_volume) g_raid_volumes = 114 LIST_HEAD_INITIALIZER(g_raid_volumes); 115 116 static eventhandler_tag g_raid_post_sync = NULL; 117 static int g_raid_started = 0; 118 static int g_raid_shutdown = 0; 119 120 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp, 121 struct g_geom *gp); 122 static g_taste_t g_raid_taste; 123 static void g_raid_init(struct g_class *mp); 124 static void g_raid_fini(struct g_class *mp); 125 126 struct g_class g_raid_class = { 127 .name = G_RAID_CLASS_NAME, 128 .version = G_VERSION, 129 .ctlreq = g_raid_ctl, 130 .taste = g_raid_taste, 131 .destroy_geom = g_raid_destroy_geom, 132 .init = g_raid_init, 133 .fini = g_raid_fini 134 }; 135 136 static void g_raid_destroy_provider(struct g_raid_volume *vol); 137 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event); 138 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event); 139 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event); 140 static int g_raid_update_node(struct g_raid_softc *sc, u_int event); 141 static void g_raid_dumpconf(struct sbuf *sb, const char *indent, 142 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp); 143 static void g_raid_start(struct bio *bp); 144 static void g_raid_start_request(struct bio *bp); 145 static void g_raid_disk_done(struct bio *bp); 146 static void g_raid_poll(struct g_raid_softc *sc); 147 148 static const char * 149 g_raid_node_event2str(int event) 150 { 151 152 switch (event) { 153 case G_RAID_NODE_E_WAKE: 154 return ("WAKE"); 155 case G_RAID_NODE_E_START: 156 return ("START"); 157 default: 158 return ("INVALID"); 159 } 160 } 161 162 const char * 163 g_raid_disk_state2str(int state) 164 { 165 166 switch (state) { 167 case G_RAID_DISK_S_NONE: 168 return ("NONE"); 169 case G_RAID_DISK_S_OFFLINE: 170 return ("OFFLINE"); 171 case G_RAID_DISK_S_DISABLED: 172 return ("DISABLED"); 173 case G_RAID_DISK_S_FAILED: 174 return ("FAILED"); 175 case G_RAID_DISK_S_STALE_FAILED: 176 return ("STALE_FAILED"); 177 case G_RAID_DISK_S_SPARE: 178 return ("SPARE"); 179 case G_RAID_DISK_S_STALE: 180 return ("STALE"); 181 case G_RAID_DISK_S_ACTIVE: 182 return ("ACTIVE"); 183 default: 184 return ("INVALID"); 185 } 186 } 187 188 static const char * 189 g_raid_disk_event2str(int event) 190 { 191 192 switch (event) { 193 case G_RAID_DISK_E_DISCONNECTED: 194 return ("DISCONNECTED"); 195 default: 196 return ("INVALID"); 197 } 198 } 199 200 const char * 201 g_raid_subdisk_state2str(int state) 202 { 203 204 switch (state) { 205 case G_RAID_SUBDISK_S_NONE: 206 return ("NONE"); 207 case G_RAID_SUBDISK_S_FAILED: 208 return ("FAILED"); 209 case G_RAID_SUBDISK_S_NEW: 210 return ("NEW"); 211 case G_RAID_SUBDISK_S_REBUILD: 212 return ("REBUILD"); 213 case G_RAID_SUBDISK_S_UNINITIALIZED: 214 return ("UNINITIALIZED"); 215 case G_RAID_SUBDISK_S_STALE: 216 return ("STALE"); 217 case G_RAID_SUBDISK_S_RESYNC: 218 return ("RESYNC"); 219 case G_RAID_SUBDISK_S_ACTIVE: 220 return ("ACTIVE"); 221 default: 222 return ("INVALID"); 223 } 224 } 225 226 static const char * 227 g_raid_subdisk_event2str(int event) 228 { 229 230 switch (event) { 231 case G_RAID_SUBDISK_E_NEW: 232 return ("NEW"); 233 case G_RAID_SUBDISK_E_FAILED: 234 return ("FAILED"); 235 case G_RAID_SUBDISK_E_DISCONNECTED: 236 return ("DISCONNECTED"); 237 default: 238 return ("INVALID"); 239 } 240 } 241 242 const char * 243 g_raid_volume_state2str(int state) 244 { 245 246 switch (state) { 247 case G_RAID_VOLUME_S_STARTING: 248 return ("STARTING"); 249 case G_RAID_VOLUME_S_BROKEN: 250 return ("BROKEN"); 251 case G_RAID_VOLUME_S_DEGRADED: 252 return ("DEGRADED"); 253 case G_RAID_VOLUME_S_SUBOPTIMAL: 254 return ("SUBOPTIMAL"); 255 case G_RAID_VOLUME_S_OPTIMAL: 256 return ("OPTIMAL"); 257 case G_RAID_VOLUME_S_UNSUPPORTED: 258 return ("UNSUPPORTED"); 259 case G_RAID_VOLUME_S_STOPPED: 260 return ("STOPPED"); 261 default: 262 return ("INVALID"); 263 } 264 } 265 266 static const char * 267 g_raid_volume_event2str(int event) 268 { 269 270 switch (event) { 271 case G_RAID_VOLUME_E_UP: 272 return ("UP"); 273 case G_RAID_VOLUME_E_DOWN: 274 return ("DOWN"); 275 case G_RAID_VOLUME_E_START: 276 return ("START"); 277 case G_RAID_VOLUME_E_STARTMD: 278 return ("STARTMD"); 279 default: 280 return ("INVALID"); 281 } 282 } 283 284 const char * 285 g_raid_volume_level2str(int level, int qual) 286 { 287 288 switch (level) { 289 case G_RAID_VOLUME_RL_RAID0: 290 return ("RAID0"); 291 case G_RAID_VOLUME_RL_RAID1: 292 return ("RAID1"); 293 case G_RAID_VOLUME_RL_RAID3: 294 if (qual == G_RAID_VOLUME_RLQ_R3P0) 295 return ("RAID3-P0"); 296 if (qual == G_RAID_VOLUME_RLQ_R3PN) 297 return ("RAID3-PN"); 298 return ("RAID3"); 299 case G_RAID_VOLUME_RL_RAID4: 300 if (qual == G_RAID_VOLUME_RLQ_R4P0) 301 return ("RAID4-P0"); 302 if (qual == G_RAID_VOLUME_RLQ_R4PN) 303 return ("RAID4-PN"); 304 return ("RAID4"); 305 case G_RAID_VOLUME_RL_RAID5: 306 if (qual == G_RAID_VOLUME_RLQ_R5RA) 307 return ("RAID5-RA"); 308 if (qual == G_RAID_VOLUME_RLQ_R5RS) 309 return ("RAID5-RS"); 310 if (qual == G_RAID_VOLUME_RLQ_R5LA) 311 return ("RAID5-LA"); 312 if (qual == G_RAID_VOLUME_RLQ_R5LS) 313 return ("RAID5-LS"); 314 return ("RAID5"); 315 case G_RAID_VOLUME_RL_RAID6: 316 if (qual == G_RAID_VOLUME_RLQ_R6RA) 317 return ("RAID6-RA"); 318 if (qual == G_RAID_VOLUME_RLQ_R6RS) 319 return ("RAID6-RS"); 320 if (qual == G_RAID_VOLUME_RLQ_R6LA) 321 return ("RAID6-LA"); 322 if (qual == G_RAID_VOLUME_RLQ_R6LS) 323 return ("RAID6-LS"); 324 return ("RAID6"); 325 case G_RAID_VOLUME_RL_RAIDMDF: 326 if (qual == G_RAID_VOLUME_RLQ_RMDFRA) 327 return ("RAIDMDF-RA"); 328 if (qual == G_RAID_VOLUME_RLQ_RMDFRS) 329 return ("RAIDMDF-RS"); 330 if (qual == G_RAID_VOLUME_RLQ_RMDFLA) 331 return ("RAIDMDF-LA"); 332 if (qual == G_RAID_VOLUME_RLQ_RMDFLS) 333 return ("RAIDMDF-LS"); 334 return ("RAIDMDF"); 335 case G_RAID_VOLUME_RL_RAID1E: 336 if (qual == G_RAID_VOLUME_RLQ_R1EA) 337 return ("RAID1E-A"); 338 if (qual == G_RAID_VOLUME_RLQ_R1EO) 339 return ("RAID1E-O"); 340 return ("RAID1E"); 341 case G_RAID_VOLUME_RL_SINGLE: 342 return ("SINGLE"); 343 case G_RAID_VOLUME_RL_CONCAT: 344 return ("CONCAT"); 345 case G_RAID_VOLUME_RL_RAID5E: 346 if (qual == G_RAID_VOLUME_RLQ_R5ERA) 347 return ("RAID5E-RA"); 348 if (qual == G_RAID_VOLUME_RLQ_R5ERS) 349 return ("RAID5E-RS"); 350 if (qual == G_RAID_VOLUME_RLQ_R5ELA) 351 return ("RAID5E-LA"); 352 if (qual == G_RAID_VOLUME_RLQ_R5ELS) 353 return ("RAID5E-LS"); 354 return ("RAID5E"); 355 case G_RAID_VOLUME_RL_RAID5EE: 356 if (qual == G_RAID_VOLUME_RLQ_R5EERA) 357 return ("RAID5EE-RA"); 358 if (qual == G_RAID_VOLUME_RLQ_R5EERS) 359 return ("RAID5EE-RS"); 360 if (qual == G_RAID_VOLUME_RLQ_R5EELA) 361 return ("RAID5EE-LA"); 362 if (qual == G_RAID_VOLUME_RLQ_R5EELS) 363 return ("RAID5EE-LS"); 364 return ("RAID5EE"); 365 case G_RAID_VOLUME_RL_RAID5R: 366 if (qual == G_RAID_VOLUME_RLQ_R5RRA) 367 return ("RAID5R-RA"); 368 if (qual == G_RAID_VOLUME_RLQ_R5RRS) 369 return ("RAID5R-RS"); 370 if (qual == G_RAID_VOLUME_RLQ_R5RLA) 371 return ("RAID5R-LA"); 372 if (qual == G_RAID_VOLUME_RLQ_R5RLS) 373 return ("RAID5R-LS"); 374 return ("RAID5E"); 375 default: 376 return ("UNKNOWN"); 377 } 378 } 379 380 int 381 g_raid_volume_str2level(const char *str, int *level, int *qual) 382 { 383 384 *level = G_RAID_VOLUME_RL_UNKNOWN; 385 *qual = G_RAID_VOLUME_RLQ_NONE; 386 if (strcasecmp(str, "RAID0") == 0) 387 *level = G_RAID_VOLUME_RL_RAID0; 388 else if (strcasecmp(str, "RAID1") == 0) 389 *level = G_RAID_VOLUME_RL_RAID1; 390 else if (strcasecmp(str, "RAID3-P0") == 0) { 391 *level = G_RAID_VOLUME_RL_RAID3; 392 *qual = G_RAID_VOLUME_RLQ_R3P0; 393 } else if (strcasecmp(str, "RAID3-PN") == 0 || 394 strcasecmp(str, "RAID3") == 0) { 395 *level = G_RAID_VOLUME_RL_RAID3; 396 *qual = G_RAID_VOLUME_RLQ_R3PN; 397 } else if (strcasecmp(str, "RAID4-P0") == 0) { 398 *level = G_RAID_VOLUME_RL_RAID4; 399 *qual = G_RAID_VOLUME_RLQ_R4P0; 400 } else if (strcasecmp(str, "RAID4-PN") == 0 || 401 strcasecmp(str, "RAID4") == 0) { 402 *level = G_RAID_VOLUME_RL_RAID4; 403 *qual = G_RAID_VOLUME_RLQ_R4PN; 404 } else if (strcasecmp(str, "RAID5-RA") == 0) { 405 *level = G_RAID_VOLUME_RL_RAID5; 406 *qual = G_RAID_VOLUME_RLQ_R5RA; 407 } else if (strcasecmp(str, "RAID5-RS") == 0) { 408 *level = G_RAID_VOLUME_RL_RAID5; 409 *qual = G_RAID_VOLUME_RLQ_R5RS; 410 } else if (strcasecmp(str, "RAID5") == 0 || 411 strcasecmp(str, "RAID5-LA") == 0) { 412 *level = G_RAID_VOLUME_RL_RAID5; 413 *qual = G_RAID_VOLUME_RLQ_R5LA; 414 } else if (strcasecmp(str, "RAID5-LS") == 0) { 415 *level = G_RAID_VOLUME_RL_RAID5; 416 *qual = G_RAID_VOLUME_RLQ_R5LS; 417 } else if (strcasecmp(str, "RAID6-RA") == 0) { 418 *level = G_RAID_VOLUME_RL_RAID6; 419 *qual = G_RAID_VOLUME_RLQ_R6RA; 420 } else if (strcasecmp(str, "RAID6-RS") == 0) { 421 *level = G_RAID_VOLUME_RL_RAID6; 422 *qual = G_RAID_VOLUME_RLQ_R6RS; 423 } else if (strcasecmp(str, "RAID6") == 0 || 424 strcasecmp(str, "RAID6-LA") == 0) { 425 *level = G_RAID_VOLUME_RL_RAID6; 426 *qual = G_RAID_VOLUME_RLQ_R6LA; 427 } else if (strcasecmp(str, "RAID6-LS") == 0) { 428 *level = G_RAID_VOLUME_RL_RAID6; 429 *qual = G_RAID_VOLUME_RLQ_R6LS; 430 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) { 431 *level = G_RAID_VOLUME_RL_RAIDMDF; 432 *qual = G_RAID_VOLUME_RLQ_RMDFRA; 433 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) { 434 *level = G_RAID_VOLUME_RL_RAIDMDF; 435 *qual = G_RAID_VOLUME_RLQ_RMDFRS; 436 } else if (strcasecmp(str, "RAIDMDF") == 0 || 437 strcasecmp(str, "RAIDMDF-LA") == 0) { 438 *level = G_RAID_VOLUME_RL_RAIDMDF; 439 *qual = G_RAID_VOLUME_RLQ_RMDFLA; 440 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) { 441 *level = G_RAID_VOLUME_RL_RAIDMDF; 442 *qual = G_RAID_VOLUME_RLQ_RMDFLS; 443 } else if (strcasecmp(str, "RAID10") == 0 || 444 strcasecmp(str, "RAID1E") == 0 || 445 strcasecmp(str, "RAID1E-A") == 0) { 446 *level = G_RAID_VOLUME_RL_RAID1E; 447 *qual = G_RAID_VOLUME_RLQ_R1EA; 448 } else if (strcasecmp(str, "RAID1E-O") == 0) { 449 *level = G_RAID_VOLUME_RL_RAID1E; 450 *qual = G_RAID_VOLUME_RLQ_R1EO; 451 } else if (strcasecmp(str, "SINGLE") == 0) 452 *level = G_RAID_VOLUME_RL_SINGLE; 453 else if (strcasecmp(str, "CONCAT") == 0) 454 *level = G_RAID_VOLUME_RL_CONCAT; 455 else if (strcasecmp(str, "RAID5E-RA") == 0) { 456 *level = G_RAID_VOLUME_RL_RAID5E; 457 *qual = G_RAID_VOLUME_RLQ_R5ERA; 458 } else if (strcasecmp(str, "RAID5E-RS") == 0) { 459 *level = G_RAID_VOLUME_RL_RAID5E; 460 *qual = G_RAID_VOLUME_RLQ_R5ERS; 461 } else if (strcasecmp(str, "RAID5E") == 0 || 462 strcasecmp(str, "RAID5E-LA") == 0) { 463 *level = G_RAID_VOLUME_RL_RAID5E; 464 *qual = G_RAID_VOLUME_RLQ_R5ELA; 465 } else if (strcasecmp(str, "RAID5E-LS") == 0) { 466 *level = G_RAID_VOLUME_RL_RAID5E; 467 *qual = G_RAID_VOLUME_RLQ_R5ELS; 468 } else if (strcasecmp(str, "RAID5EE-RA") == 0) { 469 *level = G_RAID_VOLUME_RL_RAID5EE; 470 *qual = G_RAID_VOLUME_RLQ_R5EERA; 471 } else if (strcasecmp(str, "RAID5EE-RS") == 0) { 472 *level = G_RAID_VOLUME_RL_RAID5EE; 473 *qual = G_RAID_VOLUME_RLQ_R5EERS; 474 } else if (strcasecmp(str, "RAID5EE") == 0 || 475 strcasecmp(str, "RAID5EE-LA") == 0) { 476 *level = G_RAID_VOLUME_RL_RAID5EE; 477 *qual = G_RAID_VOLUME_RLQ_R5EELA; 478 } else if (strcasecmp(str, "RAID5EE-LS") == 0) { 479 *level = G_RAID_VOLUME_RL_RAID5EE; 480 *qual = G_RAID_VOLUME_RLQ_R5EELS; 481 } else if (strcasecmp(str, "RAID5R-RA") == 0) { 482 *level = G_RAID_VOLUME_RL_RAID5R; 483 *qual = G_RAID_VOLUME_RLQ_R5RRA; 484 } else if (strcasecmp(str, "RAID5R-RS") == 0) { 485 *level = G_RAID_VOLUME_RL_RAID5R; 486 *qual = G_RAID_VOLUME_RLQ_R5RRS; 487 } else if (strcasecmp(str, "RAID5R") == 0 || 488 strcasecmp(str, "RAID5R-LA") == 0) { 489 *level = G_RAID_VOLUME_RL_RAID5R; 490 *qual = G_RAID_VOLUME_RLQ_R5RLA; 491 } else if (strcasecmp(str, "RAID5R-LS") == 0) { 492 *level = G_RAID_VOLUME_RL_RAID5R; 493 *qual = G_RAID_VOLUME_RLQ_R5RLS; 494 } else 495 return (-1); 496 return (0); 497 } 498 499 const char * 500 g_raid_get_diskname(struct g_raid_disk *disk) 501 { 502 503 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL) 504 return ("[unknown]"); 505 return (disk->d_consumer->provider->name); 506 } 507 508 void 509 g_raid_get_disk_info(struct g_raid_disk *disk) 510 { 511 struct g_consumer *cp = disk->d_consumer; 512 int error, len; 513 514 /* Read kernel dumping information. */ 515 disk->d_kd.offset = 0; 516 disk->d_kd.length = OFF_MAX; 517 len = sizeof(disk->d_kd); 518 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); 519 if (error) 520 disk->d_kd.di.dumper = NULL; 521 if (disk->d_kd.di.dumper == NULL) 522 G_RAID_DEBUG1(2, disk->d_softc, 523 "Dumping not supported by %s: %d.", 524 cp->provider->name, error); 525 526 /* Read BIO_DELETE support. */ 527 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete); 528 if (error) 529 disk->d_candelete = 0; 530 if (!disk->d_candelete) 531 G_RAID_DEBUG1(2, disk->d_softc, 532 "BIO_DELETE not supported by %s: %d.", 533 cp->provider->name, error); 534 } 535 536 void 537 g_raid_report_disk_state(struct g_raid_disk *disk) 538 { 539 struct g_raid_subdisk *sd; 540 int len, state; 541 uint32_t s; 542 543 if (disk->d_consumer == NULL) 544 return; 545 if (disk->d_state == G_RAID_DISK_S_DISABLED) { 546 s = G_STATE_ACTIVE; /* XXX */ 547 } else if (disk->d_state == G_RAID_DISK_S_FAILED || 548 disk->d_state == G_RAID_DISK_S_STALE_FAILED) { 549 s = G_STATE_FAILED; 550 } else { 551 state = G_RAID_SUBDISK_S_ACTIVE; 552 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 553 if (sd->sd_state < state) 554 state = sd->sd_state; 555 } 556 if (state == G_RAID_SUBDISK_S_FAILED) 557 s = G_STATE_FAILED; 558 else if (state == G_RAID_SUBDISK_S_NEW || 559 state == G_RAID_SUBDISK_S_REBUILD) 560 s = G_STATE_REBUILD; 561 else if (state == G_RAID_SUBDISK_S_STALE || 562 state == G_RAID_SUBDISK_S_RESYNC) 563 s = G_STATE_RESYNC; 564 else 565 s = G_STATE_ACTIVE; 566 } 567 len = sizeof(s); 568 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s); 569 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.", 570 g_raid_get_diskname(disk), s); 571 } 572 573 void 574 g_raid_change_disk_state(struct g_raid_disk *disk, int state) 575 { 576 577 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.", 578 g_raid_get_diskname(disk), 579 g_raid_disk_state2str(disk->d_state), 580 g_raid_disk_state2str(state)); 581 disk->d_state = state; 582 g_raid_report_disk_state(disk); 583 } 584 585 void 586 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state) 587 { 588 589 G_RAID_DEBUG1(0, sd->sd_softc, 590 "Subdisk %s:%d-%s state changed from %s to %s.", 591 sd->sd_volume->v_name, sd->sd_pos, 592 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]", 593 g_raid_subdisk_state2str(sd->sd_state), 594 g_raid_subdisk_state2str(state)); 595 sd->sd_state = state; 596 if (sd->sd_disk) 597 g_raid_report_disk_state(sd->sd_disk); 598 } 599 600 void 601 g_raid_change_volume_state(struct g_raid_volume *vol, int state) 602 { 603 604 G_RAID_DEBUG1(0, vol->v_softc, 605 "Volume %s state changed from %s to %s.", 606 vol->v_name, 607 g_raid_volume_state2str(vol->v_state), 608 g_raid_volume_state2str(state)); 609 vol->v_state = state; 610 } 611 612 /* 613 * --- Events handling functions --- 614 * Events in geom_raid are used to maintain subdisks and volumes status 615 * from one thread to simplify locking. 616 */ 617 static void 618 g_raid_event_free(struct g_raid_event *ep) 619 { 620 621 free(ep, M_RAID); 622 } 623 624 int 625 g_raid_event_send(void *arg, int event, int flags) 626 { 627 struct g_raid_softc *sc; 628 struct g_raid_event *ep; 629 int error; 630 631 if ((flags & G_RAID_EVENT_VOLUME) != 0) { 632 sc = ((struct g_raid_volume *)arg)->v_softc; 633 } else if ((flags & G_RAID_EVENT_DISK) != 0) { 634 sc = ((struct g_raid_disk *)arg)->d_softc; 635 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) { 636 sc = ((struct g_raid_subdisk *)arg)->sd_softc; 637 } else { 638 sc = arg; 639 } 640 ep = malloc(sizeof(*ep), M_RAID, 641 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT); 642 if (ep == NULL) 643 return (ENOMEM); 644 ep->e_tgt = arg; 645 ep->e_event = event; 646 ep->e_flags = flags; 647 ep->e_error = 0; 648 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc); 649 mtx_lock(&sc->sc_queue_mtx); 650 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next); 651 mtx_unlock(&sc->sc_queue_mtx); 652 wakeup(sc); 653 654 if ((flags & G_RAID_EVENT_WAIT) == 0) 655 return (0); 656 657 sx_assert(&sc->sc_lock, SX_XLOCKED); 658 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep); 659 sx_xunlock(&sc->sc_lock); 660 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) { 661 mtx_lock(&sc->sc_queue_mtx); 662 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event", 663 hz * 5); 664 } 665 error = ep->e_error; 666 g_raid_event_free(ep); 667 sx_xlock(&sc->sc_lock); 668 return (error); 669 } 670 671 static void 672 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt) 673 { 674 struct g_raid_event *ep, *tmpep; 675 676 sx_assert(&sc->sc_lock, SX_XLOCKED); 677 678 mtx_lock(&sc->sc_queue_mtx); 679 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) { 680 if (ep->e_tgt != tgt) 681 continue; 682 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 683 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) 684 g_raid_event_free(ep); 685 else { 686 ep->e_error = ECANCELED; 687 wakeup(ep); 688 } 689 } 690 mtx_unlock(&sc->sc_queue_mtx); 691 } 692 693 static int 694 g_raid_event_check(struct g_raid_softc *sc, void *tgt) 695 { 696 struct g_raid_event *ep; 697 int res = 0; 698 699 sx_assert(&sc->sc_lock, SX_XLOCKED); 700 701 mtx_lock(&sc->sc_queue_mtx); 702 TAILQ_FOREACH(ep, &sc->sc_events, e_next) { 703 if (ep->e_tgt != tgt) 704 continue; 705 res = 1; 706 break; 707 } 708 mtx_unlock(&sc->sc_queue_mtx); 709 return (res); 710 } 711 712 /* 713 * Return the number of disks in given state. 714 * If state is equal to -1, count all connected disks. 715 */ 716 u_int 717 g_raid_ndisks(struct g_raid_softc *sc, int state) 718 { 719 struct g_raid_disk *disk; 720 u_int n; 721 722 sx_assert(&sc->sc_lock, SX_LOCKED); 723 724 n = 0; 725 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { 726 if (disk->d_state == state || state == -1) 727 n++; 728 } 729 return (n); 730 } 731 732 /* 733 * Return the number of subdisks in given state. 734 * If state is equal to -1, count all connected disks. 735 */ 736 u_int 737 g_raid_nsubdisks(struct g_raid_volume *vol, int state) 738 { 739 struct g_raid_subdisk *subdisk; 740 struct g_raid_softc *sc; 741 u_int i, n ; 742 743 sc = vol->v_softc; 744 sx_assert(&sc->sc_lock, SX_LOCKED); 745 746 n = 0; 747 for (i = 0; i < vol->v_disks_count; i++) { 748 subdisk = &vol->v_subdisks[i]; 749 if ((state == -1 && 750 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) || 751 subdisk->sd_state == state) 752 n++; 753 } 754 return (n); 755 } 756 757 /* 758 * Return the first subdisk in given state. 759 * If state is equal to -1, then the first connected disks. 760 */ 761 struct g_raid_subdisk * 762 g_raid_get_subdisk(struct g_raid_volume *vol, int state) 763 { 764 struct g_raid_subdisk *sd; 765 struct g_raid_softc *sc; 766 u_int i; 767 768 sc = vol->v_softc; 769 sx_assert(&sc->sc_lock, SX_LOCKED); 770 771 for (i = 0; i < vol->v_disks_count; i++) { 772 sd = &vol->v_subdisks[i]; 773 if ((state == -1 && 774 sd->sd_state != G_RAID_SUBDISK_S_NONE) || 775 sd->sd_state == state) 776 return (sd); 777 } 778 return (NULL); 779 } 780 781 struct g_consumer * 782 g_raid_open_consumer(struct g_raid_softc *sc, const char *name) 783 { 784 struct g_consumer *cp; 785 struct g_provider *pp; 786 787 g_topology_assert(); 788 789 if (strncmp(name, "/dev/", 5) == 0) 790 name += 5; 791 pp = g_provider_by_name(name); 792 if (pp == NULL) 793 return (NULL); 794 cp = g_new_consumer(sc->sc_geom); 795 cp->flags |= G_CF_DIRECT_RECEIVE; 796 if (g_attach(cp, pp) != 0) { 797 g_destroy_consumer(cp); 798 return (NULL); 799 } 800 if (g_access(cp, 1, 1, 1) != 0) { 801 g_detach(cp); 802 g_destroy_consumer(cp); 803 return (NULL); 804 } 805 return (cp); 806 } 807 808 static u_int 809 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp) 810 { 811 struct bio *bp; 812 u_int nreqs = 0; 813 814 mtx_lock(&sc->sc_queue_mtx); 815 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) { 816 if (bp->bio_from == cp) 817 nreqs++; 818 } 819 mtx_unlock(&sc->sc_queue_mtx); 820 return (nreqs); 821 } 822 823 u_int 824 g_raid_nopens(struct g_raid_softc *sc) 825 { 826 struct g_raid_volume *vol; 827 u_int opens; 828 829 opens = 0; 830 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 831 if (vol->v_provider_open != 0) 832 opens++; 833 } 834 return (opens); 835 } 836 837 static int 838 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp) 839 { 840 841 if (cp->index > 0) { 842 G_RAID_DEBUG1(2, sc, 843 "I/O requests for %s exist, can't destroy it now.", 844 cp->provider->name); 845 return (1); 846 } 847 if (g_raid_nrequests(sc, cp) > 0) { 848 G_RAID_DEBUG1(2, sc, 849 "I/O requests for %s in queue, can't destroy it now.", 850 cp->provider->name); 851 return (1); 852 } 853 return (0); 854 } 855 856 static void 857 g_raid_destroy_consumer(void *arg, int flags __unused) 858 { 859 struct g_consumer *cp; 860 861 g_topology_assert(); 862 863 cp = arg; 864 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name); 865 g_detach(cp); 866 g_destroy_consumer(cp); 867 } 868 869 void 870 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp) 871 { 872 struct g_provider *pp; 873 int retaste_wait; 874 875 g_topology_assert_not(); 876 877 g_topology_lock(); 878 cp->private = NULL; 879 if (g_raid_consumer_is_busy(sc, cp)) 880 goto out; 881 pp = cp->provider; 882 retaste_wait = 0; 883 if (cp->acw == 1) { 884 if ((pp->geom->flags & G_GEOM_WITHER) == 0) 885 retaste_wait = 1; 886 } 887 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0) 888 g_access(cp, -cp->acr, -cp->acw, -cp->ace); 889 if (retaste_wait) { 890 /* 891 * After retaste event was send (inside g_access()), we can send 892 * event to detach and destroy consumer. 893 * A class, which has consumer to the given provider connected 894 * will not receive retaste event for the provider. 895 * This is the way how I ignore retaste events when I close 896 * consumers opened for write: I detach and destroy consumer 897 * after retaste event is sent. 898 */ 899 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL); 900 goto out; 901 } 902 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name); 903 g_detach(cp); 904 g_destroy_consumer(cp); 905 out: 906 g_topology_unlock(); 907 } 908 909 static void 910 g_raid_orphan(struct g_consumer *cp) 911 { 912 struct g_raid_disk *disk; 913 914 g_topology_assert(); 915 916 disk = cp->private; 917 if (disk == NULL) 918 return; 919 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED, 920 G_RAID_EVENT_DISK); 921 } 922 923 static void 924 g_raid_clean(struct g_raid_volume *vol, int acw) 925 { 926 struct g_raid_softc *sc; 927 int timeout; 928 929 sc = vol->v_softc; 930 g_topology_assert_not(); 931 sx_assert(&sc->sc_lock, SX_XLOCKED); 932 933 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 934 // return; 935 if (!vol->v_dirty) 936 return; 937 if (vol->v_writes > 0) 938 return; 939 if (acw > 0 || (acw == -1 && 940 vol->v_provider != NULL && vol->v_provider->acw > 0)) { 941 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write); 942 if (!g_raid_shutdown && timeout > 0) 943 return; 944 } 945 vol->v_dirty = 0; 946 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.", 947 vol->v_name); 948 g_raid_write_metadata(sc, vol, NULL, NULL); 949 } 950 951 static void 952 g_raid_dirty(struct g_raid_volume *vol) 953 { 954 struct g_raid_softc *sc; 955 956 sc = vol->v_softc; 957 g_topology_assert_not(); 958 sx_assert(&sc->sc_lock, SX_XLOCKED); 959 960 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0) 961 // return; 962 vol->v_dirty = 1; 963 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.", 964 vol->v_name); 965 g_raid_write_metadata(sc, vol, NULL, NULL); 966 } 967 968 void 969 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp) 970 { 971 struct g_raid_softc *sc; 972 struct g_raid_volume *vol; 973 struct g_raid_subdisk *sd; 974 struct bio_queue_head queue; 975 struct bio *cbp; 976 int i; 977 978 vol = tr->tro_volume; 979 sc = vol->v_softc; 980 981 /* 982 * Allocate all bios before sending any request, so we can return 983 * ENOMEM in nice and clean way. 984 */ 985 bioq_init(&queue); 986 for (i = 0; i < vol->v_disks_count; i++) { 987 sd = &vol->v_subdisks[i]; 988 if (sd->sd_state == G_RAID_SUBDISK_S_NONE || 989 sd->sd_state == G_RAID_SUBDISK_S_FAILED) 990 continue; 991 cbp = g_clone_bio(bp); 992 if (cbp == NULL) 993 goto failure; 994 cbp->bio_caller1 = sd; 995 bioq_insert_tail(&queue, cbp); 996 } 997 while ((cbp = bioq_takefirst(&queue)) != NULL) { 998 sd = cbp->bio_caller1; 999 cbp->bio_caller1 = NULL; 1000 g_raid_subdisk_iostart(sd, cbp); 1001 } 1002 return; 1003 failure: 1004 while ((cbp = bioq_takefirst(&queue)) != NULL) 1005 g_destroy_bio(cbp); 1006 if (bp->bio_error == 0) 1007 bp->bio_error = ENOMEM; 1008 g_raid_iodone(bp, bp->bio_error); 1009 } 1010 1011 static void 1012 g_raid_tr_kerneldump_common_done(struct bio *bp) 1013 { 1014 1015 bp->bio_flags |= BIO_DONE; 1016 } 1017 1018 int 1019 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr, 1020 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1021 { 1022 struct g_raid_softc *sc; 1023 struct g_raid_volume *vol; 1024 struct bio bp; 1025 1026 vol = tr->tro_volume; 1027 sc = vol->v_softc; 1028 1029 bzero(&bp, sizeof(bp)); 1030 bp.bio_cmd = BIO_WRITE; 1031 bp.bio_done = g_raid_tr_kerneldump_common_done; 1032 bp.bio_attribute = NULL; 1033 bp.bio_offset = offset; 1034 bp.bio_length = length; 1035 bp.bio_data = virtual; 1036 bp.bio_to = vol->v_provider; 1037 1038 g_raid_start(&bp); 1039 while (!(bp.bio_flags & BIO_DONE)) { 1040 G_RAID_DEBUG1(4, sc, "Poll..."); 1041 g_raid_poll(sc); 1042 DELAY(10); 1043 } 1044 1045 return (bp.bio_error != 0 ? EIO : 0); 1046 } 1047 1048 static int 1049 g_raid_dump(void *arg, 1050 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1051 { 1052 struct g_raid_volume *vol; 1053 int error; 1054 1055 vol = (struct g_raid_volume *)arg; 1056 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.", 1057 (long long unsigned)offset, (long long unsigned)length); 1058 1059 error = G_RAID_TR_KERNELDUMP(vol->v_tr, 1060 virtual, physical, offset, length); 1061 return (error); 1062 } 1063 1064 static void 1065 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp) 1066 { 1067 struct g_kerneldump *gkd; 1068 struct g_provider *pp; 1069 struct g_raid_volume *vol; 1070 1071 gkd = (struct g_kerneldump*)bp->bio_data; 1072 pp = bp->bio_to; 1073 vol = pp->private; 1074 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)", 1075 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length); 1076 gkd->di.dumper = g_raid_dump; 1077 gkd->di.priv = vol; 1078 gkd->di.blocksize = vol->v_sectorsize; 1079 gkd->di.maxiosize = DFLTPHYS; 1080 gkd->di.mediaoffset = gkd->offset; 1081 if ((gkd->offset + gkd->length) > vol->v_mediasize) 1082 gkd->length = vol->v_mediasize - gkd->offset; 1083 gkd->di.mediasize = gkd->length; 1084 g_io_deliver(bp, 0); 1085 } 1086 1087 static void 1088 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp) 1089 { 1090 struct g_provider *pp; 1091 struct g_raid_volume *vol; 1092 struct g_raid_subdisk *sd; 1093 int *val; 1094 int i; 1095 1096 val = (int *)bp->bio_data; 1097 pp = bp->bio_to; 1098 vol = pp->private; 1099 *val = 0; 1100 for (i = 0; i < vol->v_disks_count; i++) { 1101 sd = &vol->v_subdisks[i]; 1102 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1103 continue; 1104 if (sd->sd_disk->d_candelete) { 1105 *val = 1; 1106 break; 1107 } 1108 } 1109 g_io_deliver(bp, 0); 1110 } 1111 1112 static void 1113 g_raid_start(struct bio *bp) 1114 { 1115 struct g_raid_softc *sc; 1116 1117 sc = bp->bio_to->geom->softc; 1118 /* 1119 * If sc == NULL or there are no valid disks, provider's error 1120 * should be set and g_raid_start() should not be called at all. 1121 */ 1122 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING, 1123 // ("Provider's error should be set (error=%d)(mirror=%s).", 1124 // bp->bio_to->error, bp->bio_to->name)); 1125 G_RAID_LOGREQ(3, bp, "Request received."); 1126 1127 switch (bp->bio_cmd) { 1128 case BIO_READ: 1129 case BIO_WRITE: 1130 case BIO_DELETE: 1131 case BIO_FLUSH: 1132 break; 1133 case BIO_GETATTR: 1134 if (!strcmp(bp->bio_attribute, "GEOM::candelete")) 1135 g_raid_candelete(sc, bp); 1136 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump")) 1137 g_raid_kerneldump(sc, bp); 1138 else 1139 g_io_deliver(bp, EOPNOTSUPP); 1140 return; 1141 default: 1142 g_io_deliver(bp, EOPNOTSUPP); 1143 return; 1144 } 1145 mtx_lock(&sc->sc_queue_mtx); 1146 bioq_disksort(&sc->sc_queue, bp); 1147 mtx_unlock(&sc->sc_queue_mtx); 1148 if (!dumping) { 1149 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc); 1150 wakeup(sc); 1151 } 1152 } 1153 1154 static int 1155 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len) 1156 { 1157 /* 1158 * 5 cases: 1159 * (1) bp entirely below NO 1160 * (2) bp entirely above NO 1161 * (3) bp start below, but end in range YES 1162 * (4) bp entirely within YES 1163 * (5) bp starts within, ends above YES 1164 * 1165 * lock range 10-19 (offset 10 length 10) 1166 * (1) 1-5: first if kicks it out 1167 * (2) 30-35: second if kicks it out 1168 * (3) 5-15: passes both ifs 1169 * (4) 12-14: passes both ifs 1170 * (5) 19-20: passes both 1171 */ 1172 off_t lend = lstart + len - 1; 1173 off_t bstart = bp->bio_offset; 1174 off_t bend = bp->bio_offset + bp->bio_length - 1; 1175 1176 if (bend < lstart) 1177 return (0); 1178 if (lend < bstart) 1179 return (0); 1180 return (1); 1181 } 1182 1183 static int 1184 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp) 1185 { 1186 struct g_raid_lock *lp; 1187 1188 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED); 1189 1190 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1191 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length)) 1192 return (1); 1193 } 1194 return (0); 1195 } 1196 1197 static void 1198 g_raid_start_request(struct bio *bp) 1199 { 1200 struct g_raid_softc *sc; 1201 struct g_raid_volume *vol; 1202 1203 sc = bp->bio_to->geom->softc; 1204 sx_assert(&sc->sc_lock, SX_LOCKED); 1205 vol = bp->bio_to->private; 1206 1207 /* 1208 * Check to see if this item is in a locked range. If so, 1209 * queue it to our locked queue and return. We'll requeue 1210 * it when the range is unlocked. Internal I/O for the 1211 * rebuild/rescan/recovery process is excluded from this 1212 * check so we can actually do the recovery. 1213 */ 1214 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) && 1215 g_raid_is_in_locked_range(vol, bp)) { 1216 G_RAID_LOGREQ(3, bp, "Defer request."); 1217 bioq_insert_tail(&vol->v_locked, bp); 1218 return; 1219 } 1220 1221 /* 1222 * If we're actually going to do the write/delete, then 1223 * update the idle stats for the volume. 1224 */ 1225 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1226 if (!vol->v_dirty) 1227 g_raid_dirty(vol); 1228 vol->v_writes++; 1229 } 1230 1231 /* 1232 * Put request onto inflight queue, so we can check if new 1233 * synchronization requests don't collide with it. Then tell 1234 * the transformation layer to start the I/O. 1235 */ 1236 bioq_insert_tail(&vol->v_inflight, bp); 1237 G_RAID_LOGREQ(4, bp, "Request started"); 1238 G_RAID_TR_IOSTART(vol->v_tr, bp); 1239 } 1240 1241 static void 1242 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp) 1243 { 1244 off_t off, len; 1245 struct bio *nbp; 1246 struct g_raid_lock *lp; 1247 1248 vol->v_pending_lock = 0; 1249 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1250 if (lp->l_pending) { 1251 off = lp->l_offset; 1252 len = lp->l_length; 1253 lp->l_pending = 0; 1254 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) { 1255 if (g_raid_bio_overlaps(nbp, off, len)) 1256 lp->l_pending++; 1257 } 1258 if (lp->l_pending) { 1259 vol->v_pending_lock = 1; 1260 G_RAID_DEBUG1(4, vol->v_softc, 1261 "Deferred lock(%jd, %jd) has %d pending", 1262 (intmax_t)off, (intmax_t)(off + len), 1263 lp->l_pending); 1264 continue; 1265 } 1266 G_RAID_DEBUG1(4, vol->v_softc, 1267 "Deferred lock of %jd to %jd completed", 1268 (intmax_t)off, (intmax_t)(off + len)); 1269 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1270 } 1271 } 1272 } 1273 1274 void 1275 g_raid_iodone(struct bio *bp, int error) 1276 { 1277 struct g_raid_softc *sc; 1278 struct g_raid_volume *vol; 1279 1280 sc = bp->bio_to->geom->softc; 1281 sx_assert(&sc->sc_lock, SX_LOCKED); 1282 vol = bp->bio_to->private; 1283 G_RAID_LOGREQ(3, bp, "Request done: %d.", error); 1284 1285 /* Update stats if we done write/delete. */ 1286 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) { 1287 vol->v_writes--; 1288 vol->v_last_write = time_uptime; 1289 } 1290 1291 bioq_remove(&vol->v_inflight, bp); 1292 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp)) 1293 g_raid_finish_with_locked_ranges(vol, bp); 1294 getmicrouptime(&vol->v_last_done); 1295 g_io_deliver(bp, error); 1296 } 1297 1298 int 1299 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len, 1300 struct bio *ignore, void *argp) 1301 { 1302 struct g_raid_softc *sc; 1303 struct g_raid_lock *lp; 1304 struct bio *bp; 1305 1306 sc = vol->v_softc; 1307 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO); 1308 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next); 1309 lp->l_offset = off; 1310 lp->l_length = len; 1311 lp->l_callback_arg = argp; 1312 1313 lp->l_pending = 0; 1314 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) { 1315 if (bp != ignore && g_raid_bio_overlaps(bp, off, len)) 1316 lp->l_pending++; 1317 } 1318 1319 /* 1320 * If there are any writes that are pending, we return EBUSY. All 1321 * callers will have to wait until all pending writes clear. 1322 */ 1323 if (lp->l_pending > 0) { 1324 vol->v_pending_lock = 1; 1325 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend", 1326 (intmax_t)off, (intmax_t)(off+len), lp->l_pending); 1327 return (EBUSY); 1328 } 1329 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd", 1330 (intmax_t)off, (intmax_t)(off+len)); 1331 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg); 1332 return (0); 1333 } 1334 1335 int 1336 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len) 1337 { 1338 struct g_raid_lock *lp; 1339 struct g_raid_softc *sc; 1340 struct bio *bp; 1341 1342 sc = vol->v_softc; 1343 LIST_FOREACH(lp, &vol->v_locks, l_next) { 1344 if (lp->l_offset == off && lp->l_length == len) { 1345 LIST_REMOVE(lp, l_next); 1346 /* XXX 1347 * Right now we just put them all back on the queue 1348 * and hope for the best. We hope this because any 1349 * locked ranges will go right back on this list 1350 * when the worker thread runs. 1351 * XXX 1352 */ 1353 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd", 1354 (intmax_t)lp->l_offset, 1355 (intmax_t)(lp->l_offset+lp->l_length)); 1356 mtx_lock(&sc->sc_queue_mtx); 1357 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL) 1358 bioq_disksort(&sc->sc_queue, bp); 1359 mtx_unlock(&sc->sc_queue_mtx); 1360 free(lp, M_RAID); 1361 return (0); 1362 } 1363 } 1364 return (EINVAL); 1365 } 1366 1367 void 1368 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp) 1369 { 1370 struct g_consumer *cp; 1371 struct g_raid_disk *disk, *tdisk; 1372 1373 bp->bio_caller1 = sd; 1374 1375 /* 1376 * Make sure that the disk is present. Generally it is a task of 1377 * transformation layers to not send requests to absent disks, but 1378 * it is better to be safe and report situation then sorry. 1379 */ 1380 if (sd->sd_disk == NULL) { 1381 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!"); 1382 nodisk: 1383 bp->bio_from = NULL; 1384 bp->bio_to = NULL; 1385 bp->bio_error = ENXIO; 1386 g_raid_disk_done(bp); 1387 return; 1388 } 1389 disk = sd->sd_disk; 1390 if (disk->d_state != G_RAID_DISK_S_ACTIVE && 1391 disk->d_state != G_RAID_DISK_S_FAILED) { 1392 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a " 1393 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 1394 goto nodisk; 1395 } 1396 1397 cp = disk->d_consumer; 1398 bp->bio_from = cp; 1399 bp->bio_to = cp->provider; 1400 cp->index++; 1401 1402 /* Update average disks load. */ 1403 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) { 1404 if (tdisk->d_consumer == NULL) 1405 tdisk->d_load = 0; 1406 else 1407 tdisk->d_load = (tdisk->d_consumer->index * 1408 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8; 1409 } 1410 1411 disk->d_last_offset = bp->bio_offset + bp->bio_length; 1412 if (dumping) { 1413 G_RAID_LOGREQ(3, bp, "Sending dumping request."); 1414 if (bp->bio_cmd == BIO_WRITE) { 1415 bp->bio_error = g_raid_subdisk_kerneldump(sd, 1416 bp->bio_data, 0, bp->bio_offset, bp->bio_length); 1417 } else 1418 bp->bio_error = EOPNOTSUPP; 1419 g_raid_disk_done(bp); 1420 } else { 1421 bp->bio_done = g_raid_disk_done; 1422 bp->bio_offset += sd->sd_offset; 1423 G_RAID_LOGREQ(3, bp, "Sending request."); 1424 g_io_request(bp, cp); 1425 } 1426 } 1427 1428 int 1429 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, 1430 void *virtual, vm_offset_t physical, off_t offset, size_t length) 1431 { 1432 1433 if (sd->sd_disk == NULL) 1434 return (ENXIO); 1435 if (sd->sd_disk->d_kd.di.dumper == NULL) 1436 return (EOPNOTSUPP); 1437 return (dump_write(&sd->sd_disk->d_kd.di, 1438 virtual, physical, 1439 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, 1440 length)); 1441 } 1442 1443 static void 1444 g_raid_disk_done(struct bio *bp) 1445 { 1446 struct g_raid_softc *sc; 1447 struct g_raid_subdisk *sd; 1448 1449 sd = bp->bio_caller1; 1450 sc = sd->sd_softc; 1451 mtx_lock(&sc->sc_queue_mtx); 1452 bioq_disksort(&sc->sc_queue, bp); 1453 mtx_unlock(&sc->sc_queue_mtx); 1454 if (!dumping) 1455 wakeup(sc); 1456 } 1457 1458 static void 1459 g_raid_disk_done_request(struct bio *bp) 1460 { 1461 struct g_raid_softc *sc; 1462 struct g_raid_disk *disk; 1463 struct g_raid_subdisk *sd; 1464 struct g_raid_volume *vol; 1465 1466 g_topology_assert_not(); 1467 1468 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error); 1469 sd = bp->bio_caller1; 1470 sc = sd->sd_softc; 1471 vol = sd->sd_volume; 1472 if (bp->bio_from != NULL) { 1473 bp->bio_from->index--; 1474 disk = bp->bio_from->private; 1475 if (disk == NULL) 1476 g_raid_kill_consumer(sc, bp->bio_from); 1477 } 1478 bp->bio_offset -= sd->sd_offset; 1479 1480 G_RAID_TR_IODONE(vol->v_tr, sd, bp); 1481 } 1482 1483 static void 1484 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep) 1485 { 1486 1487 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0) 1488 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event); 1489 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0) 1490 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event); 1491 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0) 1492 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event); 1493 else 1494 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event); 1495 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) { 1496 KASSERT(ep->e_error == 0, 1497 ("Error cannot be handled.")); 1498 g_raid_event_free(ep); 1499 } else { 1500 ep->e_flags |= G_RAID_EVENT_DONE; 1501 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep); 1502 mtx_lock(&sc->sc_queue_mtx); 1503 wakeup(ep); 1504 mtx_unlock(&sc->sc_queue_mtx); 1505 } 1506 } 1507 1508 /* 1509 * Worker thread. 1510 */ 1511 static void 1512 g_raid_worker(void *arg) 1513 { 1514 struct g_raid_softc *sc; 1515 struct g_raid_event *ep; 1516 struct g_raid_volume *vol; 1517 struct bio *bp; 1518 struct timeval now, t; 1519 int timeout, rv; 1520 1521 sc = arg; 1522 thread_lock(curthread); 1523 sched_prio(curthread, PRIBIO); 1524 thread_unlock(curthread); 1525 1526 sx_xlock(&sc->sc_lock); 1527 for (;;) { 1528 mtx_lock(&sc->sc_queue_mtx); 1529 /* 1530 * First take a look at events. 1531 * This is important to handle events before any I/O requests. 1532 */ 1533 bp = NULL; 1534 vol = NULL; 1535 rv = 0; 1536 ep = TAILQ_FIRST(&sc->sc_events); 1537 if (ep != NULL) 1538 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1539 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL) 1540 ; 1541 else { 1542 getmicrouptime(&now); 1543 t = now; 1544 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1545 if (bioq_first(&vol->v_inflight) == NULL && 1546 vol->v_tr && 1547 timevalcmp(&vol->v_last_done, &t, < )) 1548 t = vol->v_last_done; 1549 } 1550 timevalsub(&t, &now); 1551 timeout = g_raid_idle_threshold + 1552 t.tv_sec * 1000000 + t.tv_usec; 1553 if (timeout > 0) { 1554 /* 1555 * Two steps to avoid overflows at HZ=1000 1556 * and idle timeouts > 2.1s. Some rounding 1557 * errors can occur, but they are < 1tick, 1558 * which is deemed to be close enough for 1559 * this purpose. 1560 */ 1561 int micpertic = 1000000 / hz; 1562 timeout = (timeout + micpertic - 1) / micpertic; 1563 sx_xunlock(&sc->sc_lock); 1564 MSLEEP(rv, sc, &sc->sc_queue_mtx, 1565 PRIBIO | PDROP, "-", timeout); 1566 sx_xlock(&sc->sc_lock); 1567 goto process; 1568 } else 1569 rv = EWOULDBLOCK; 1570 } 1571 mtx_unlock(&sc->sc_queue_mtx); 1572 process: 1573 if (ep != NULL) { 1574 g_raid_handle_event(sc, ep); 1575 } else if (bp != NULL) { 1576 if (bp->bio_to != NULL && 1577 bp->bio_to->geom == sc->sc_geom) 1578 g_raid_start_request(bp); 1579 else 1580 g_raid_disk_done_request(bp); 1581 } else if (rv == EWOULDBLOCK) { 1582 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 1583 g_raid_clean(vol, -1); 1584 if (bioq_first(&vol->v_inflight) == NULL && 1585 vol->v_tr) { 1586 t.tv_sec = g_raid_idle_threshold / 1000000; 1587 t.tv_usec = g_raid_idle_threshold % 1000000; 1588 timevaladd(&t, &vol->v_last_done); 1589 getmicrouptime(&now); 1590 if (timevalcmp(&t, &now, <= )) { 1591 G_RAID_TR_IDLE(vol->v_tr); 1592 vol->v_last_done = now; 1593 } 1594 } 1595 } 1596 } 1597 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 1598 g_raid_destroy_node(sc, 1); /* May not return. */ 1599 } 1600 } 1601 1602 static void 1603 g_raid_poll(struct g_raid_softc *sc) 1604 { 1605 struct g_raid_event *ep; 1606 struct bio *bp; 1607 1608 sx_xlock(&sc->sc_lock); 1609 mtx_lock(&sc->sc_queue_mtx); 1610 /* 1611 * First take a look at events. 1612 * This is important to handle events before any I/O requests. 1613 */ 1614 ep = TAILQ_FIRST(&sc->sc_events); 1615 if (ep != NULL) { 1616 TAILQ_REMOVE(&sc->sc_events, ep, e_next); 1617 mtx_unlock(&sc->sc_queue_mtx); 1618 g_raid_handle_event(sc, ep); 1619 goto out; 1620 } 1621 bp = bioq_takefirst(&sc->sc_queue); 1622 if (bp != NULL) { 1623 mtx_unlock(&sc->sc_queue_mtx); 1624 if (bp->bio_from == NULL || 1625 bp->bio_from->geom != sc->sc_geom) 1626 g_raid_start_request(bp); 1627 else 1628 g_raid_disk_done_request(bp); 1629 } 1630 out: 1631 sx_xunlock(&sc->sc_lock); 1632 } 1633 1634 static void 1635 g_raid_launch_provider(struct g_raid_volume *vol) 1636 { 1637 struct g_raid_disk *disk; 1638 struct g_raid_subdisk *sd; 1639 struct g_raid_softc *sc; 1640 struct g_provider *pp; 1641 char name[G_RAID_MAX_VOLUMENAME]; 1642 char announce_buf[80], buf1[32]; 1643 off_t off; 1644 int i; 1645 1646 sc = vol->v_softc; 1647 sx_assert(&sc->sc_lock, SX_LOCKED); 1648 1649 g_topology_lock(); 1650 /* Try to name provider with volume name. */ 1651 snprintf(name, sizeof(name), "raid/%s", vol->v_name); 1652 if (g_raid_name_format == 0 || vol->v_name[0] == 0 || 1653 g_provider_by_name(name) != NULL) { 1654 /* Otherwise use sequential volume number. */ 1655 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id); 1656 } 1657 1658 /* 1659 * Create a /dev/ar%d that the old ataraid(4) stack once 1660 * created as an alias for /dev/raid/r%d if requested. 1661 * This helps going from stable/7 ataraid devices to newer 1662 * FreeBSD releases. sbruno 07 MAY 2013 1663 */ 1664 1665 if (ar_legacy_aliases) { 1666 snprintf(announce_buf, sizeof(announce_buf), 1667 "kern.devalias.%s", name); 1668 snprintf(buf1, sizeof(buf1), 1669 "ar%d", vol->v_global_id); 1670 setenv(announce_buf, buf1); 1671 } 1672 1673 pp = g_new_providerf(sc->sc_geom, "%s", name); 1674 pp->flags |= G_PF_DIRECT_RECEIVE; 1675 if (vol->v_tr->tro_class->trc_accept_unmapped) { 1676 pp->flags |= G_PF_ACCEPT_UNMAPPED; 1677 for (i = 0; i < vol->v_disks_count; i++) { 1678 sd = &vol->v_subdisks[i]; 1679 if (sd->sd_state == G_RAID_SUBDISK_S_NONE) 1680 continue; 1681 if ((sd->sd_disk->d_consumer->provider->flags & 1682 G_PF_ACCEPT_UNMAPPED) == 0) 1683 pp->flags &= ~G_PF_ACCEPT_UNMAPPED; 1684 } 1685 } 1686 pp->private = vol; 1687 pp->mediasize = vol->v_mediasize; 1688 pp->sectorsize = vol->v_sectorsize; 1689 pp->stripesize = 0; 1690 pp->stripeoffset = 0; 1691 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 || 1692 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 || 1693 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE || 1694 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) { 1695 if ((disk = vol->v_subdisks[0].sd_disk) != NULL && 1696 disk->d_consumer != NULL && 1697 disk->d_consumer->provider != NULL) { 1698 pp->stripesize = disk->d_consumer->provider->stripesize; 1699 off = disk->d_consumer->provider->stripeoffset; 1700 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset; 1701 if (off > 0) 1702 pp->stripeoffset %= off; 1703 } 1704 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) { 1705 pp->stripesize *= (vol->v_disks_count - 1); 1706 pp->stripeoffset *= (vol->v_disks_count - 1); 1707 } 1708 } else 1709 pp->stripesize = vol->v_strip_size; 1710 vol->v_provider = pp; 1711 g_error_provider(pp, 0); 1712 g_topology_unlock(); 1713 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.", 1714 pp->name, vol->v_name); 1715 } 1716 1717 static void 1718 g_raid_destroy_provider(struct g_raid_volume *vol) 1719 { 1720 struct g_raid_softc *sc; 1721 struct g_provider *pp; 1722 struct bio *bp, *tmp; 1723 1724 g_topology_assert_not(); 1725 sc = vol->v_softc; 1726 pp = vol->v_provider; 1727 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name)); 1728 1729 g_topology_lock(); 1730 g_error_provider(pp, ENXIO); 1731 mtx_lock(&sc->sc_queue_mtx); 1732 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) { 1733 if (bp->bio_to != pp) 1734 continue; 1735 bioq_remove(&sc->sc_queue, bp); 1736 g_io_deliver(bp, ENXIO); 1737 } 1738 mtx_unlock(&sc->sc_queue_mtx); 1739 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.", 1740 pp->name, vol->v_name); 1741 g_wither_provider(pp, ENXIO); 1742 g_topology_unlock(); 1743 vol->v_provider = NULL; 1744 } 1745 1746 /* 1747 * Update device state. 1748 */ 1749 static int 1750 g_raid_update_volume(struct g_raid_volume *vol, u_int event) 1751 { 1752 struct g_raid_softc *sc; 1753 1754 sc = vol->v_softc; 1755 sx_assert(&sc->sc_lock, SX_XLOCKED); 1756 1757 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.", 1758 g_raid_volume_event2str(event), 1759 vol->v_name); 1760 switch (event) { 1761 case G_RAID_VOLUME_E_DOWN: 1762 if (vol->v_provider != NULL) 1763 g_raid_destroy_provider(vol); 1764 break; 1765 case G_RAID_VOLUME_E_UP: 1766 if (vol->v_provider == NULL) 1767 g_raid_launch_provider(vol); 1768 break; 1769 case G_RAID_VOLUME_E_START: 1770 if (vol->v_tr) 1771 G_RAID_TR_START(vol->v_tr); 1772 return (0); 1773 default: 1774 if (sc->sc_md) 1775 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event); 1776 return (0); 1777 } 1778 1779 /* Manage root mount release. */ 1780 if (vol->v_starting) { 1781 vol->v_starting = 0; 1782 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount); 1783 root_mount_rel(vol->v_rootmount); 1784 vol->v_rootmount = NULL; 1785 } 1786 if (vol->v_stopping && vol->v_provider_open == 0) 1787 g_raid_destroy_volume(vol); 1788 return (0); 1789 } 1790 1791 /* 1792 * Update subdisk state. 1793 */ 1794 static int 1795 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event) 1796 { 1797 struct g_raid_softc *sc; 1798 struct g_raid_volume *vol; 1799 1800 sc = sd->sd_softc; 1801 vol = sd->sd_volume; 1802 sx_assert(&sc->sc_lock, SX_XLOCKED); 1803 1804 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.", 1805 g_raid_subdisk_event2str(event), 1806 vol->v_name, sd->sd_pos, 1807 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); 1808 if (vol->v_tr) 1809 G_RAID_TR_EVENT(vol->v_tr, sd, event); 1810 1811 return (0); 1812 } 1813 1814 /* 1815 * Update disk state. 1816 */ 1817 static int 1818 g_raid_update_disk(struct g_raid_disk *disk, u_int event) 1819 { 1820 struct g_raid_softc *sc; 1821 1822 sc = disk->d_softc; 1823 sx_assert(&sc->sc_lock, SX_XLOCKED); 1824 1825 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.", 1826 g_raid_disk_event2str(event), 1827 g_raid_get_diskname(disk)); 1828 1829 if (sc->sc_md) 1830 G_RAID_MD_EVENT(sc->sc_md, disk, event); 1831 return (0); 1832 } 1833 1834 /* 1835 * Node event. 1836 */ 1837 static int 1838 g_raid_update_node(struct g_raid_softc *sc, u_int event) 1839 { 1840 sx_assert(&sc->sc_lock, SX_XLOCKED); 1841 1842 G_RAID_DEBUG1(2, sc, "Event %s for the array.", 1843 g_raid_node_event2str(event)); 1844 1845 if (event == G_RAID_NODE_E_WAKE) 1846 return (0); 1847 if (sc->sc_md) 1848 G_RAID_MD_EVENT(sc->sc_md, NULL, event); 1849 return (0); 1850 } 1851 1852 static int 1853 g_raid_access(struct g_provider *pp, int acr, int acw, int ace) 1854 { 1855 struct g_raid_volume *vol; 1856 struct g_raid_softc *sc; 1857 int dcw, opens, error = 0; 1858 1859 g_topology_assert(); 1860 sc = pp->geom->softc; 1861 vol = pp->private; 1862 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name)); 1863 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name)); 1864 1865 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name, 1866 acr, acw, ace); 1867 dcw = pp->acw + acw; 1868 1869 g_topology_unlock(); 1870 sx_xlock(&sc->sc_lock); 1871 /* Deny new opens while dying. */ 1872 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) { 1873 error = ENXIO; 1874 goto out; 1875 } 1876 /* Deny write opens for read-only volumes. */ 1877 if (vol->v_read_only && acw > 0) { 1878 error = EROFS; 1879 goto out; 1880 } 1881 if (dcw == 0) 1882 g_raid_clean(vol, dcw); 1883 vol->v_provider_open += acr + acw + ace; 1884 /* Handle delayed node destruction. */ 1885 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED && 1886 vol->v_provider_open == 0) { 1887 /* Count open volumes. */ 1888 opens = g_raid_nopens(sc); 1889 if (opens == 0) { 1890 sc->sc_stopping = G_RAID_DESTROY_HARD; 1891 /* Wake up worker to make it selfdestruct. */ 1892 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 1893 } 1894 } 1895 /* Handle open volume destruction. */ 1896 if (vol->v_stopping && vol->v_provider_open == 0) 1897 g_raid_destroy_volume(vol); 1898 out: 1899 sx_xunlock(&sc->sc_lock); 1900 g_topology_lock(); 1901 return (error); 1902 } 1903 1904 struct g_raid_softc * 1905 g_raid_create_node(struct g_class *mp, 1906 const char *name, struct g_raid_md_object *md) 1907 { 1908 struct g_raid_softc *sc; 1909 struct g_geom *gp; 1910 int error; 1911 1912 g_topology_assert(); 1913 G_RAID_DEBUG(1, "Creating array %s.", name); 1914 1915 gp = g_new_geomf(mp, "%s", name); 1916 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO); 1917 gp->start = g_raid_start; 1918 gp->orphan = g_raid_orphan; 1919 gp->access = g_raid_access; 1920 gp->dumpconf = g_raid_dumpconf; 1921 1922 sc->sc_md = md; 1923 sc->sc_geom = gp; 1924 sc->sc_flags = 0; 1925 TAILQ_INIT(&sc->sc_volumes); 1926 TAILQ_INIT(&sc->sc_disks); 1927 sx_init(&sc->sc_lock, "graid:lock"); 1928 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF); 1929 TAILQ_INIT(&sc->sc_events); 1930 bioq_init(&sc->sc_queue); 1931 gp->softc = sc; 1932 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0, 1933 "g_raid %s", name); 1934 if (error != 0) { 1935 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name); 1936 mtx_destroy(&sc->sc_queue_mtx); 1937 sx_destroy(&sc->sc_lock); 1938 g_destroy_geom(sc->sc_geom); 1939 free(sc, M_RAID); 1940 return (NULL); 1941 } 1942 1943 G_RAID_DEBUG1(0, sc, "Array %s created.", name); 1944 return (sc); 1945 } 1946 1947 struct g_raid_volume * 1948 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id) 1949 { 1950 struct g_raid_volume *vol, *vol1; 1951 int i; 1952 1953 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name); 1954 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO); 1955 vol->v_softc = sc; 1956 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME); 1957 vol->v_state = G_RAID_VOLUME_S_STARTING; 1958 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; 1959 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN; 1960 vol->v_rotate_parity = 1; 1961 bioq_init(&vol->v_inflight); 1962 bioq_init(&vol->v_locked); 1963 LIST_INIT(&vol->v_locks); 1964 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 1965 vol->v_subdisks[i].sd_softc = sc; 1966 vol->v_subdisks[i].sd_volume = vol; 1967 vol->v_subdisks[i].sd_pos = i; 1968 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE; 1969 } 1970 1971 /* Find free ID for this volume. */ 1972 g_topology_lock(); 1973 vol1 = vol; 1974 if (id >= 0) { 1975 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1976 if (vol1->v_global_id == id) 1977 break; 1978 } 1979 } 1980 if (vol1 != NULL) { 1981 for (id = 0; ; id++) { 1982 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) { 1983 if (vol1->v_global_id == id) 1984 break; 1985 } 1986 if (vol1 == NULL) 1987 break; 1988 } 1989 } 1990 vol->v_global_id = id; 1991 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next); 1992 g_topology_unlock(); 1993 1994 /* Delay root mounting. */ 1995 vol->v_rootmount = root_mount_hold("GRAID"); 1996 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount); 1997 vol->v_starting = 1; 1998 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next); 1999 return (vol); 2000 } 2001 2002 struct g_raid_disk * 2003 g_raid_create_disk(struct g_raid_softc *sc) 2004 { 2005 struct g_raid_disk *disk; 2006 2007 G_RAID_DEBUG1(1, sc, "Creating disk."); 2008 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO); 2009 disk->d_softc = sc; 2010 disk->d_state = G_RAID_DISK_S_NONE; 2011 TAILQ_INIT(&disk->d_subdisks); 2012 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next); 2013 return (disk); 2014 } 2015 2016 int g_raid_start_volume(struct g_raid_volume *vol) 2017 { 2018 struct g_raid_tr_class *class; 2019 struct g_raid_tr_object *obj; 2020 int status; 2021 2022 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name); 2023 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) { 2024 if (!class->trc_enable) 2025 continue; 2026 G_RAID_DEBUG1(2, vol->v_softc, 2027 "Tasting volume %s for %s transformation.", 2028 vol->v_name, class->name); 2029 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2030 M_WAITOK); 2031 obj->tro_class = class; 2032 obj->tro_volume = vol; 2033 status = G_RAID_TR_TASTE(obj, vol); 2034 if (status != G_RAID_TR_TASTE_FAIL) 2035 break; 2036 kobj_delete((kobj_t)obj, M_RAID); 2037 } 2038 if (class == NULL) { 2039 G_RAID_DEBUG1(0, vol->v_softc, 2040 "No transformation module found for %s.", 2041 vol->v_name); 2042 vol->v_tr = NULL; 2043 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED); 2044 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN, 2045 G_RAID_EVENT_VOLUME); 2046 return (-1); 2047 } 2048 G_RAID_DEBUG1(2, vol->v_softc, 2049 "Transformation module %s chosen for %s.", 2050 class->name, vol->v_name); 2051 vol->v_tr = obj; 2052 return (0); 2053 } 2054 2055 int 2056 g_raid_destroy_node(struct g_raid_softc *sc, int worker) 2057 { 2058 struct g_raid_volume *vol, *tmpv; 2059 struct g_raid_disk *disk, *tmpd; 2060 int error = 0; 2061 2062 sc->sc_stopping = G_RAID_DESTROY_HARD; 2063 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) { 2064 if (g_raid_destroy_volume(vol)) 2065 error = EBUSY; 2066 } 2067 if (error) 2068 return (error); 2069 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) { 2070 if (g_raid_destroy_disk(disk)) 2071 error = EBUSY; 2072 } 2073 if (error) 2074 return (error); 2075 if (sc->sc_md) { 2076 G_RAID_MD_FREE(sc->sc_md); 2077 kobj_delete((kobj_t)sc->sc_md, M_RAID); 2078 sc->sc_md = NULL; 2079 } 2080 if (sc->sc_geom != NULL) { 2081 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name); 2082 g_topology_lock(); 2083 sc->sc_geom->softc = NULL; 2084 g_wither_geom(sc->sc_geom, ENXIO); 2085 g_topology_unlock(); 2086 sc->sc_geom = NULL; 2087 } else 2088 G_RAID_DEBUG(1, "Array destroyed."); 2089 if (worker) { 2090 g_raid_event_cancel(sc, sc); 2091 mtx_destroy(&sc->sc_queue_mtx); 2092 sx_xunlock(&sc->sc_lock); 2093 sx_destroy(&sc->sc_lock); 2094 wakeup(&sc->sc_stopping); 2095 free(sc, M_RAID); 2096 curthread->td_pflags &= ~TDP_GEOM; 2097 G_RAID_DEBUG(1, "Thread exiting."); 2098 kproc_exit(0); 2099 } else { 2100 /* Wake up worker to make it selfdestruct. */ 2101 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2102 } 2103 return (0); 2104 } 2105 2106 int 2107 g_raid_destroy_volume(struct g_raid_volume *vol) 2108 { 2109 struct g_raid_softc *sc; 2110 struct g_raid_disk *disk; 2111 int i; 2112 2113 sc = vol->v_softc; 2114 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name); 2115 vol->v_stopping = 1; 2116 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) { 2117 if (vol->v_tr) { 2118 G_RAID_TR_STOP(vol->v_tr); 2119 return (EBUSY); 2120 } else 2121 vol->v_state = G_RAID_VOLUME_S_STOPPED; 2122 } 2123 if (g_raid_event_check(sc, vol) != 0) 2124 return (EBUSY); 2125 if (vol->v_provider != NULL) 2126 return (EBUSY); 2127 if (vol->v_provider_open != 0) 2128 return (EBUSY); 2129 if (vol->v_tr) { 2130 G_RAID_TR_FREE(vol->v_tr); 2131 kobj_delete((kobj_t)vol->v_tr, M_RAID); 2132 vol->v_tr = NULL; 2133 } 2134 if (vol->v_rootmount) 2135 root_mount_rel(vol->v_rootmount); 2136 g_topology_lock(); 2137 LIST_REMOVE(vol, v_global_next); 2138 g_topology_unlock(); 2139 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next); 2140 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) { 2141 g_raid_event_cancel(sc, &vol->v_subdisks[i]); 2142 disk = vol->v_subdisks[i].sd_disk; 2143 if (disk == NULL) 2144 continue; 2145 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next); 2146 } 2147 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name); 2148 if (sc->sc_md) 2149 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol); 2150 g_raid_event_cancel(sc, vol); 2151 free(vol, M_RAID); 2152 if (sc->sc_stopping == G_RAID_DESTROY_HARD) { 2153 /* Wake up worker to let it selfdestruct. */ 2154 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2155 } 2156 return (0); 2157 } 2158 2159 int 2160 g_raid_destroy_disk(struct g_raid_disk *disk) 2161 { 2162 struct g_raid_softc *sc; 2163 struct g_raid_subdisk *sd, *tmp; 2164 2165 sc = disk->d_softc; 2166 G_RAID_DEBUG1(2, sc, "Destroying disk."); 2167 if (disk->d_consumer) { 2168 g_raid_kill_consumer(sc, disk->d_consumer); 2169 disk->d_consumer = NULL; 2170 } 2171 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) { 2172 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); 2173 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, 2174 G_RAID_EVENT_SUBDISK); 2175 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next); 2176 sd->sd_disk = NULL; 2177 } 2178 TAILQ_REMOVE(&sc->sc_disks, disk, d_next); 2179 if (sc->sc_md) 2180 G_RAID_MD_FREE_DISK(sc->sc_md, disk); 2181 g_raid_event_cancel(sc, disk); 2182 free(disk, M_RAID); 2183 return (0); 2184 } 2185 2186 int 2187 g_raid_destroy(struct g_raid_softc *sc, int how) 2188 { 2189 int error, opens; 2190 2191 g_topology_assert_not(); 2192 if (sc == NULL) 2193 return (ENXIO); 2194 sx_assert(&sc->sc_lock, SX_XLOCKED); 2195 2196 /* Count open volumes. */ 2197 opens = g_raid_nopens(sc); 2198 2199 /* React on some opened volumes. */ 2200 if (opens > 0) { 2201 switch (how) { 2202 case G_RAID_DESTROY_SOFT: 2203 G_RAID_DEBUG1(1, sc, 2204 "%d volumes are still open.", 2205 opens); 2206 sx_xunlock(&sc->sc_lock); 2207 return (EBUSY); 2208 case G_RAID_DESTROY_DELAYED: 2209 G_RAID_DEBUG1(1, sc, 2210 "Array will be destroyed on last close."); 2211 sc->sc_stopping = G_RAID_DESTROY_DELAYED; 2212 sx_xunlock(&sc->sc_lock); 2213 return (EBUSY); 2214 case G_RAID_DESTROY_HARD: 2215 G_RAID_DEBUG1(1, sc, 2216 "%d volumes are still open.", 2217 opens); 2218 } 2219 } 2220 2221 /* Mark node for destruction. */ 2222 sc->sc_stopping = G_RAID_DESTROY_HARD; 2223 /* Wake up worker to let it selfdestruct. */ 2224 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0); 2225 /* Sleep until node destroyed. */ 2226 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock, 2227 PRIBIO | PDROP, "r:destroy", hz * 3); 2228 return (error == EWOULDBLOCK ? EBUSY : 0); 2229 } 2230 2231 static void 2232 g_raid_taste_orphan(struct g_consumer *cp) 2233 { 2234 2235 KASSERT(1 == 0, ("%s called while tasting %s.", __func__, 2236 cp->provider->name)); 2237 } 2238 2239 static struct g_geom * 2240 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused) 2241 { 2242 struct g_consumer *cp; 2243 struct g_geom *gp, *geom; 2244 struct g_raid_md_class *class; 2245 struct g_raid_md_object *obj; 2246 int status; 2247 2248 g_topology_assert(); 2249 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name); 2250 if (!g_raid_enable) 2251 return (NULL); 2252 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name); 2253 2254 geom = NULL; 2255 status = G_RAID_MD_TASTE_FAIL; 2256 gp = g_new_geomf(mp, "raid:taste"); 2257 /* 2258 * This orphan function should be never called. 2259 */ 2260 gp->orphan = g_raid_taste_orphan; 2261 cp = g_new_consumer(gp); 2262 cp->flags |= G_CF_DIRECT_RECEIVE; 2263 g_attach(cp, pp); 2264 if (g_access(cp, 1, 0, 0) != 0) 2265 goto ofail; 2266 2267 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2268 if (!class->mdc_enable) 2269 continue; 2270 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.", 2271 pp->name, class->name); 2272 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2273 M_WAITOK); 2274 obj->mdo_class = class; 2275 status = G_RAID_MD_TASTE(obj, mp, cp, &geom); 2276 if (status != G_RAID_MD_TASTE_NEW) 2277 kobj_delete((kobj_t)obj, M_RAID); 2278 if (status != G_RAID_MD_TASTE_FAIL) 2279 break; 2280 } 2281 2282 if (status == G_RAID_MD_TASTE_FAIL) 2283 (void)g_access(cp, -1, 0, 0); 2284 ofail: 2285 g_detach(cp); 2286 g_destroy_consumer(cp); 2287 g_destroy_geom(gp); 2288 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name); 2289 return (geom); 2290 } 2291 2292 int 2293 g_raid_create_node_format(const char *format, struct gctl_req *req, 2294 struct g_geom **gp) 2295 { 2296 struct g_raid_md_class *class; 2297 struct g_raid_md_object *obj; 2298 int status; 2299 2300 G_RAID_DEBUG(2, "Creating array for %s metadata.", format); 2301 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) { 2302 if (strcasecmp(class->name, format) == 0) 2303 break; 2304 } 2305 if (class == NULL) { 2306 G_RAID_DEBUG(1, "No support for %s metadata.", format); 2307 return (G_RAID_MD_TASTE_FAIL); 2308 } 2309 obj = (void *)kobj_create((kobj_class_t)class, M_RAID, 2310 M_WAITOK); 2311 obj->mdo_class = class; 2312 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp); 2313 if (status != G_RAID_MD_TASTE_NEW) 2314 kobj_delete((kobj_t)obj, M_RAID); 2315 return (status); 2316 } 2317 2318 static int 2319 g_raid_destroy_geom(struct gctl_req *req __unused, 2320 struct g_class *mp __unused, struct g_geom *gp) 2321 { 2322 struct g_raid_softc *sc; 2323 int error; 2324 2325 g_topology_unlock(); 2326 sc = gp->softc; 2327 sx_xlock(&sc->sc_lock); 2328 g_cancel_event(sc); 2329 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT); 2330 g_topology_lock(); 2331 return (error); 2332 } 2333 2334 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol, 2335 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2336 { 2337 2338 if (sc->sc_stopping == G_RAID_DESTROY_HARD) 2339 return; 2340 if (sc->sc_md) 2341 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk); 2342 } 2343 2344 void g_raid_fail_disk(struct g_raid_softc *sc, 2345 struct g_raid_subdisk *sd, struct g_raid_disk *disk) 2346 { 2347 2348 if (disk == NULL) 2349 disk = sd->sd_disk; 2350 if (disk == NULL) { 2351 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!"); 2352 return; 2353 } 2354 if (disk->d_state != G_RAID_DISK_S_ACTIVE) { 2355 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a " 2356 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state)); 2357 return; 2358 } 2359 if (sc->sc_md) 2360 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk); 2361 } 2362 2363 static void 2364 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp, 2365 struct g_consumer *cp, struct g_provider *pp) 2366 { 2367 struct g_raid_softc *sc; 2368 struct g_raid_volume *vol; 2369 struct g_raid_subdisk *sd; 2370 struct g_raid_disk *disk; 2371 int i, s; 2372 2373 g_topology_assert(); 2374 2375 sc = gp->softc; 2376 if (sc == NULL) 2377 return; 2378 if (pp != NULL) { 2379 vol = pp->private; 2380 g_topology_unlock(); 2381 sx_xlock(&sc->sc_lock); 2382 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent, 2383 sc->sc_md->mdo_class->name, 2384 g_raid_volume_level2str(vol->v_raid_level, 2385 vol->v_raid_level_qualifier)); 2386 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent, 2387 vol->v_name); 2388 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent, 2389 g_raid_volume_level2str(vol->v_raid_level, 2390 vol->v_raid_level_qualifier)); 2391 sbuf_printf(sb, 2392 "%s<Transformation>%s</Transformation>\n", indent, 2393 vol->v_tr ? vol->v_tr->tro_class->name : "NONE"); 2394 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent, 2395 vol->v_disks_count); 2396 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent, 2397 vol->v_strip_size); 2398 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2399 g_raid_volume_state2str(vol->v_state)); 2400 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent, 2401 vol->v_dirty ? "Yes" : "No"); 2402 sbuf_printf(sb, "%s<Subdisks>", indent); 2403 for (i = 0; i < vol->v_disks_count; i++) { 2404 sd = &vol->v_subdisks[i]; 2405 if (sd->sd_disk != NULL && 2406 sd->sd_disk->d_consumer != NULL) { 2407 sbuf_printf(sb, "%s ", 2408 g_raid_get_diskname(sd->sd_disk)); 2409 } else { 2410 sbuf_printf(sb, "NONE "); 2411 } 2412 sbuf_printf(sb, "(%s", 2413 g_raid_subdisk_state2str(sd->sd_state)); 2414 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2415 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2416 sbuf_printf(sb, " %d%%", 2417 (int)(sd->sd_rebuild_pos * 100 / 2418 sd->sd_size)); 2419 } 2420 sbuf_printf(sb, ")"); 2421 if (i + 1 < vol->v_disks_count) 2422 sbuf_printf(sb, ", "); 2423 } 2424 sbuf_printf(sb, "</Subdisks>\n"); 2425 sx_xunlock(&sc->sc_lock); 2426 g_topology_lock(); 2427 } else if (cp != NULL) { 2428 disk = cp->private; 2429 if (disk == NULL) 2430 return; 2431 g_topology_unlock(); 2432 sx_xlock(&sc->sc_lock); 2433 sbuf_printf(sb, "%s<State>%s", indent, 2434 g_raid_disk_state2str(disk->d_state)); 2435 if (!TAILQ_EMPTY(&disk->d_subdisks)) { 2436 sbuf_printf(sb, " ("); 2437 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2438 sbuf_printf(sb, "%s", 2439 g_raid_subdisk_state2str(sd->sd_state)); 2440 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD || 2441 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) { 2442 sbuf_printf(sb, " %d%%", 2443 (int)(sd->sd_rebuild_pos * 100 / 2444 sd->sd_size)); 2445 } 2446 if (TAILQ_NEXT(sd, sd_next)) 2447 sbuf_printf(sb, ", "); 2448 } 2449 sbuf_printf(sb, ")"); 2450 } 2451 sbuf_printf(sb, "</State>\n"); 2452 sbuf_printf(sb, "%s<Subdisks>", indent); 2453 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { 2454 sbuf_printf(sb, "r%d(%s):%d@%ju", 2455 sd->sd_volume->v_global_id, 2456 sd->sd_volume->v_name, 2457 sd->sd_pos, sd->sd_offset); 2458 if (TAILQ_NEXT(sd, sd_next)) 2459 sbuf_printf(sb, ", "); 2460 } 2461 sbuf_printf(sb, "</Subdisks>\n"); 2462 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent, 2463 disk->d_read_errs); 2464 sx_xunlock(&sc->sc_lock); 2465 g_topology_lock(); 2466 } else { 2467 g_topology_unlock(); 2468 sx_xlock(&sc->sc_lock); 2469 if (sc->sc_md) { 2470 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent, 2471 sc->sc_md->mdo_class->name); 2472 } 2473 if (!TAILQ_EMPTY(&sc->sc_volumes)) { 2474 s = 0xff; 2475 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) { 2476 if (vol->v_state < s) 2477 s = vol->v_state; 2478 } 2479 sbuf_printf(sb, "%s<State>%s</State>\n", indent, 2480 g_raid_volume_state2str(s)); 2481 } 2482 sx_xunlock(&sc->sc_lock); 2483 g_topology_lock(); 2484 } 2485 } 2486 2487 static void 2488 g_raid_shutdown_post_sync(void *arg, int howto) 2489 { 2490 struct g_class *mp; 2491 struct g_geom *gp, *gp2; 2492 struct g_raid_softc *sc; 2493 struct g_raid_volume *vol; 2494 2495 mp = arg; 2496 DROP_GIANT(); 2497 g_topology_lock(); 2498 g_raid_shutdown = 1; 2499 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) { 2500 if ((sc = gp->softc) == NULL) 2501 continue; 2502 g_topology_unlock(); 2503 sx_xlock(&sc->sc_lock); 2504 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) 2505 g_raid_clean(vol, -1); 2506 g_cancel_event(sc); 2507 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED); 2508 g_topology_lock(); 2509 } 2510 g_topology_unlock(); 2511 PICKUP_GIANT(); 2512 } 2513 2514 static void 2515 g_raid_init(struct g_class *mp) 2516 { 2517 2518 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync, 2519 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST); 2520 if (g_raid_post_sync == NULL) 2521 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event."); 2522 g_raid_started = 1; 2523 } 2524 2525 static void 2526 g_raid_fini(struct g_class *mp) 2527 { 2528 2529 if (g_raid_post_sync != NULL) 2530 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync); 2531 g_raid_started = 0; 2532 } 2533 2534 int 2535 g_raid_md_modevent(module_t mod, int type, void *arg) 2536 { 2537 struct g_raid_md_class *class, *c, *nc; 2538 int error; 2539 2540 error = 0; 2541 class = arg; 2542 switch (type) { 2543 case MOD_LOAD: 2544 c = LIST_FIRST(&g_raid_md_classes); 2545 if (c == NULL || c->mdc_priority > class->mdc_priority) 2546 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list); 2547 else { 2548 while ((nc = LIST_NEXT(c, mdc_list)) != NULL && 2549 nc->mdc_priority < class->mdc_priority) 2550 c = nc; 2551 LIST_INSERT_AFTER(c, class, mdc_list); 2552 } 2553 if (g_raid_started) 2554 g_retaste(&g_raid_class); 2555 break; 2556 case MOD_UNLOAD: 2557 LIST_REMOVE(class, mdc_list); 2558 break; 2559 default: 2560 error = EOPNOTSUPP; 2561 break; 2562 } 2563 2564 return (error); 2565 } 2566 2567 int 2568 g_raid_tr_modevent(module_t mod, int type, void *arg) 2569 { 2570 struct g_raid_tr_class *class, *c, *nc; 2571 int error; 2572 2573 error = 0; 2574 class = arg; 2575 switch (type) { 2576 case MOD_LOAD: 2577 c = LIST_FIRST(&g_raid_tr_classes); 2578 if (c == NULL || c->trc_priority > class->trc_priority) 2579 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list); 2580 else { 2581 while ((nc = LIST_NEXT(c, trc_list)) != NULL && 2582 nc->trc_priority < class->trc_priority) 2583 c = nc; 2584 LIST_INSERT_AFTER(c, class, trc_list); 2585 } 2586 break; 2587 case MOD_UNLOAD: 2588 LIST_REMOVE(class, trc_list); 2589 break; 2590 default: 2591 error = EOPNOTSUPP; 2592 break; 2593 } 2594 2595 return (error); 2596 } 2597 2598 /* 2599 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid) 2600 * to reduce module priority, allowing submodules to register them first. 2601 */ 2602 static moduledata_t g_raid_mod = { 2603 "g_raid", 2604 g_modevent, 2605 &g_raid_class 2606 }; 2607 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD); 2608 MODULE_VERSION(geom_raid, 0); 2609